
Streaming Applications for IOT with Real Time QoS

Supun Kamburugamuve, Geoffrey C. Fox

School of Informatics & Computing

Indiana University, Bloomington, IN USA

1. Introduction

Cloud Computing has long being identified as a key enabling

technology for Internet of Things applications. In consideration

of this we have developed an open source framework called

IoTCloud[1] to connect IoT devices to cloud services.

IoTCloud was funded as a part of research for AFOSR in

Cloud-Based Perception and Control of Sensor Nets and Robot

Swarms. It consists of: a set of distributed nodes running close

to the devices to gather data; a set of publish-subscribe brokers

to relay the information to the cloud services; and a distributed

stream processing framework (DSPF) coupled with batch

processing engines in the cloud to process the data and return

(control) information to the IoT devices. Real-time applications

execute data analytics at the DSPF layer to achieve streaming

real-time processing. Our open-source IoTCloud platform uses

Apache Storm1 as the DSPF, RabbitMQ or Kafka as the

message broker and an OpenStack academic cloud (or bare-

1 https://storm.apache.org/

metal cluster) FutureSystems as the platform. To scale the

applications with the number of devices, we need distributed

coordination among parallel tasks and discovery of devices,

both achieved with a ZooKeeper-based coordination and

discovery service. In this white paper we mainly focus on

quality of service (QoS) for real-time applications in IoTCloud.

In general a real-time application running in a DSPF can be

modeled as a directed graph consisting of streams and stream

processing tasks. Stream tasks are the nodes of the graph and

streams are the edges connecting these nodes. A stream is an

unbounded sequence of events flowing through the edges of the

graph. The processing tasks at the nodes consume input streams

and produce output streams. In our work, if a real-time

application produces correct answers but violates timing

requirements, we classify this as having performance faults.

For most streaming applications, latency is of utmost

importance and the system should be able to recover fast

enough from faults for the normal processing to continue with

minimal effect on the applications. We have developed several

cloud-based robotics applications, including parallel

simultaneous localization and mapping (SLAM)[2], collision

avoidance[3] and image processing applications for robots such

as TurtleBot and drones, all requiring strict message processing

guarantees.

2. IoT Challenges for Streaming Applications

We present five categories of streaming applications based on

challenges they pose to the backend Cloud control system.

1. Set of independent events where precise time sequencing is

unimportant. Example: independent measurements from

large number of temperature sensors.

2. Time series of connected small events where time ordering is

important. Example: streaming audio or video; robot

monitoring.

3. Set of independent large events where each event needs

parallel processing with time sequencing not being critical.

Example: processing images from telescopes or light

sources with material or biological sciences.

4. Set of connected large events where each event needs

parallel processing with time sequencing being critical.

Example: processing high resolution monitoring (including

video) information from robots (self-driving cars) with real-

time response needed.

5. Stream of connected small or large events that need to be

integrated in a complex way. Example: tweets or other
Figure 1 IoTCloud Architecture

online data which we are using to update old clusters and

find new ones rather than just classifying tweets based on

previous clusters as in category 1), i.e. where we update

models as well as using them to classify events.

These 5 categories can be considered in terms of single or

multiple heterogeneous streams. Our initial work has identified

difficulties in meeting real-time constraints in cloud-controlled

IoT due to either the intrinsic time needed to process events or

fluctuations in processing time caused by virtualization, multi-

stream interference and messaging fluctuations. Figure 2 shows

the fluctuations we observed with RabbitMQ and Kafka with

minimal processing in Apache Storm. It also exhibits

fluctuations in processing Kinect data in Storm from a

Turtlebot with RabbitMQ. Large computational complexity in

event processing is naturally addressed by using parallelism in

the Storm bolts, although that can also lead to further

sensitivity to fluctuations. With current technologies we can

handle category 1) automatically and 3) with user-designed

parallelism. The other cases require careful tuning on a case-

by-case basis and we still can see unexpected large fluctuations

in processing time that currently are not addressed except by

over-provisioning.

Figure 2 Fluctuations in Time of IoTCloud using RabbitMQ

and Kafka with Minimal Processing in Storm

Figure 4 Fluctuation in Time of IoTCloud with processing

Kinect data from TurtleBot with RabbitMQ

3. Next Steps

To reduce the fluctuations, we propose to duplicate some of the

expensive computations as shown in Figure 3. In this

architecture we dynamically replicate the streaming

computation tasks within cloud clusters to achieve good

performance in at least one replica. This replication will not be

universal but rather only when achieving QoS demands that we

do so, like when monitoring shows that the initial task is

delayed. This will drastically reduce overhead from replication

in many cases. We will dynamically identify the streaming

tasks that require replication and apply it at the task level rather

than the streaming application level. This dynamic replication

of streaming tasks will be implemented for Apache Storm as

described above. To dynamically increase the Storm servers,

we will use a resource manager such as Apache Yarn coupled

with the IaaS layer.

For the processing stage in Fig. 2, the fluctuations in time at the

broker are much less pronounced in RabbitMQ than in Kafka.

We will scale the brokers at runtime to minimize such effects

to the system by monitoring performance of brokers. Then a

controller will directly use the IaaS infrastructure to scale the

brokers as needed by increasing the number of assigned VMs.

To scale an application that receives input from multiple

sources as a single stream and needs to differentiate each

source, the larger stream must be partitioned into sub-streams

according to the source. This can be achieved with current

frameworks, but when parallel processing and state tracking are

needed, the application code becomes complex. Having tasks

running in the same process with threads can make the

performance of individual tasks unpredictable. Thread-based

parallelism and process-based parallelism have to be examined

carefully to choose the best suitable strategy for obtaining

adequate QoS guarantees. Scheduling must take subtask

parallelism, thread and process-based parallelism into account.

Having efficient communication among the streaming tasks can

reduce the network congestion, thus leading to better QoS in

the overall system. Also having such efficient communication

reduces the latency of the application, which is a quality of

service itself. We have found that the current DSPFs available

lack efficient communication, which is perfected by the HPC

community for operations such as broadcasting. We have

adapted these algorithms for Storm, taking into consideration

0

200

Ti
m

e
in

 m
s

Messages over time

Kafka RabbitMQ

20

40

Ti
m

e
in

 m
s

Messages over time
Figure 3 Extended Architecture of IoTCloud

both cloud runtime environments and the nature of streaming

applications. The graph in Fig. 5 shows the latency when using

a tree-based broadcasting algorithm and the naïve

implementation. With the naïve implementation the

broadcasting node send messages to each worker separately.

Figure 5. The overall latency of the application when using

Naive broadcast implementation and Tree-based broadcast.

Different lines correspond to different parallel tasks with the

two implementations. 50 and 20 Tree broadcast lines are on top

of each other.

The application used in this experiment has one node

broadcasting to parallel tasks (20 and 50), which does

synchronous processing. Its data flow is RabbitMQ →

Broadcast → Parallel Workers → Gather → RabbitMQ. We

are running Storm on an 8-Node cluster, with each node having

4 worker processes. The broadcasting algorithm uses a tree

with branching factor equal to the number of nodes for the first

level and a branching factor of 2 afterwards. Figure 5 clearly

shows that a significant gain can be achieved with the new

broadcasting algorithm and latency doesn’t increase when

increasing the parallel workers. We are continuing to

investigate the behavior of different algorithms and settings for

synchronous and asynchronous parallel processing streaming

applications.

References

1. Kamburugamuve, Supun, Leif Christiansen, and Geoffrey

Fox. "A Framework for Real Time Processing of Sensor

Data in the Cloud." Journal of Sensors2015 (2015).

2. Kamburugamuve, Supun, Hengjing He, Geoffrey Fox, and

David Crandall. ”Cloud-based Parallel Implementation of

SLAM for Mobile Robots”.

3. He, Hengjing, Supun Kamburugamuve, and Geoffrey C.

Fox. "Cloud based real-time multi-robot collision avoidance

for swarm robotics."

0

10

20

30

40

50

60

70

80

10000 40000 80000 120000 160000

La
te

n
cy

 m
s

Message size in bytes

50-Naïve 50-Tree Broadcast

20-Naïve 20-Tree Broadcast

