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1. Introduction 

Cloud Computing has long being identified as a key enabling 

technology for Internet of Things applications. In consideration 

of this we have developed an open source framework called 

IoTCloud[1] to connect IoT devices to cloud services. 

IoTCloud was funded as a part of research for AFOSR in 

Cloud-Based Perception and Control of Sensor Nets and Robot 

Swarms. It consists of: a set of distributed nodes running close 

to the devices to gather data; a set of publish-subscribe brokers 

to relay the information to the cloud services; and a distributed 

stream processing framework (DSPF) coupled with batch 

processing engines in the cloud to process the data and return 

(control) information to the IoT devices. Real-time applications 

execute data analytics at the DSPF layer to achieve streaming 

real-time processing. Our open-source IoTCloud platform uses 

Apache Storm1 as the DSPF, RabbitMQ or Kafka as the 

message broker and an OpenStack academic cloud (or bare-

                                                           
1 https://storm.apache.org/ 

metal cluster) FutureSystems as the platform. To scale the 

applications with the number of devices, we need distributed 

coordination among parallel tasks and discovery of devices, 

both achieved with a ZooKeeper-based coordination and 

discovery service. In this white paper we mainly focus on 

quality of service (QoS) for real-time applications in IoTCloud.    

In general a real-time application running in a DSPF can be 

modeled as a directed graph consisting of streams and stream 

processing tasks. Stream tasks are the nodes of the graph and 

streams are the edges connecting these nodes. A stream is an 

unbounded sequence of events flowing through the edges of the 

graph. The processing tasks at the nodes consume input streams 

and produce output streams. In our work, if a real-time 

application produces correct answers but violates timing 

requirements, we classify this as having performance faults. 

For most streaming applications, latency is of utmost 

importance and the system should be able to recover fast 

enough from faults for the normal processing to continue with 

minimal effect on the applications. We have developed several 

cloud-based robotics applications, including parallel 

simultaneous localization and mapping (SLAM)[2], collision 

avoidance[3] and image processing applications for robots such 

as TurtleBot and drones, all requiring strict message processing 

guarantees. 

2. IoT Challenges for Streaming Applications 

We present five categories of streaming applications based on 

challenges they pose to the backend Cloud control system. 

1. Set of independent events where precise time sequencing is 

unimportant. Example: independent measurements from 

large number of temperature sensors. 

2. Time series of connected small events where time ordering is 

important. Example: streaming audio or video; robot 

monitoring. 

3. Set of independent large events where each event needs 

parallel processing with time sequencing not being critical. 

Example: processing images from telescopes or light 

sources with material or biological sciences. 

4. Set of connected large events where each event needs 

parallel processing with time sequencing being critical. 

Example: processing high resolution monitoring (including 

video) information from robots (self-driving cars) with real-

time response needed. 

5. Stream of connected small or large events that need to be 

integrated in a complex way. Example: tweets or other 
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online data which we are using to update old clusters and 

find new ones rather than just classifying tweets based on 

previous clusters as in category 1), i.e. where we update 

models as well as using them to classify events. 

These 5 categories can be considered in terms of single or 

multiple heterogeneous streams. Our initial work has identified 

difficulties in meeting real-time constraints in cloud-controlled 

IoT due to either the intrinsic time needed to process events or 

fluctuations in processing time caused by virtualization, multi-

stream interference and messaging fluctuations. Figure 2 shows 

the fluctuations we observed with RabbitMQ and Kafka with 

minimal processing in Apache Storm. It also exhibits 

fluctuations in processing Kinect data in Storm from a 

Turtlebot with RabbitMQ. Large computational complexity in 

event processing is naturally addressed by using parallelism in 

the Storm bolts, although that can also lead to further 

sensitivity to fluctuations. With current technologies we can 

handle category 1) automatically and 3) with user-designed 

parallelism. The other cases require careful tuning on a case-

by-case basis and we still can see unexpected large fluctuations 

in processing time that currently are not addressed except by 

over-provisioning.  

 

Figure 2 Fluctuations in Time of IoTCloud using RabbitMQ 

and Kafka with Minimal Processing in Storm 

 

Figure 4 Fluctuation in Time of IoTCloud with processing 

Kinect data from TurtleBot with RabbitMQ 

3. Next Steps 

To reduce the fluctuations, we propose to duplicate some of the 

expensive computations as shown in Figure 3. In this 

architecture we dynamically replicate the streaming 

computation tasks within cloud clusters to achieve good 

performance in at least one replica. This replication will not be 

universal but rather only when achieving QoS demands that we 

do so, like when monitoring shows that the initial task is 

delayed. This  will drastically reduce overhead from replication 

in many cases. We will dynamically identify the streaming 

tasks that require replication and apply it at the task level rather 

than the streaming application level. This dynamic replication 

of streaming tasks will be implemented for Apache Storm as 

described above. To dynamically increase the Storm servers, 

we will use a resource manager such as Apache Yarn coupled 

with the IaaS layer.  

For the processing stage in Fig. 2, the fluctuations in time at the 

broker are much less pronounced in RabbitMQ than in Kafka. 

We will scale the brokers at runtime to minimize such effects 

to the system by monitoring performance of brokers. Then a 

controller will directly use the IaaS infrastructure to scale the 

brokers as needed by increasing the number of assigned VMs. 

To scale an application that receives input from multiple 

sources as a single stream and needs to differentiate each 

source, the larger stream must be partitioned into sub-streams 

according to the source. This can be achieved with current 

frameworks, but when parallel processing and state tracking are 

needed, the application code becomes complex. Having tasks 

running in the same process with threads can make the 

performance of individual tasks unpredictable. Thread-based 

parallelism and process-based parallelism have to be examined 

carefully to choose the best suitable strategy for obtaining 

adequate QoS guarantees. Scheduling must take subtask 

parallelism, thread and process-based parallelism into account. 

Having efficient communication among the streaming tasks can 

reduce the network congestion, thus leading to better QoS in 

the overall system. Also having such efficient communication 

reduces the latency of the application, which is a quality of 

service itself. We have found that the current DSPFs available 

lack efficient communication, which is perfected by the HPC 

community for operations such as broadcasting. We have 

adapted these algorithms for Storm, taking into consideration 
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both cloud runtime environments and the nature of streaming 

applications. The graph in Fig. 5 shows the latency when using 

a tree-based broadcasting algorithm and the naïve 

implementation. With the naïve implementation the 

broadcasting node send messages to each worker separately. 

 

Figure 5. The overall latency of the application when using 

Naive broadcast implementation and Tree-based broadcast. 

Different lines correspond to different parallel tasks with the 

two implementations. 50 and 20 Tree broadcast lines are on top 

of each other.  

The application used in this experiment has one node 

broadcasting to parallel tasks (20 and 50), which does 

synchronous processing. Its data flow is RabbitMQ → 

Broadcast → Parallel Workers → Gather → RabbitMQ. We 

are running Storm on an 8-Node cluster, with each node having 

4 worker processes. The broadcasting algorithm uses a tree 

with branching factor equal to the number of nodes for the first 

level and a branching factor of 2 afterwards. Figure 5 clearly 

shows that a significant gain can be achieved with the new 

broadcasting algorithm and latency doesn’t increase when 

increasing the parallel workers. We are continuing to 

investigate the behavior of different algorithms and settings for 

synchronous and asynchronous parallel processing streaming 

applications. 
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