
Streaming Computational Science: Applications,
Technology and Resource Management for HPC.

Geoffrey C. Fox∗, Devarshi Ghoshal‡, Shantenu Jha†, Andre Luckow†, Lavanya Ramakrishnan‡,
∗ School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA

Email: gcf@indiana.edu
† Electrical and Computer Engineering, RADICAL, Rutgers University, Piscataway, NJ 08854, USA

Email: shantenu.jha@rutgers.edu
‡ Lawrence Berkeley National Laboratory

Email: lramakrishnan@lbl.gov

Data streaming from on-line instruments, large scale simu-
lations, and distributed sensors such as those found in trans-
portation systems and urban environments point to the growing
interest and important role of streaming data and related real-
time steering and control.

We define a stream to be a possibly unbounded sequence of
events. Successive events may or may not be correlated and
each event may optionally include a timestamp. Exemplars of
streams include time-series data generated by instruments, ex-
periments, simulations, or commercial applications including
social media posts. Steering is defined as the ability to dy-
namically change the progression of a computational process
such as a large-scale simulation via an external computational
process.

Steering, which is inevitably real-time, might include chang-
ing progress of simulations, or realigning experimental sen-
sors, or control of autonomous vehicles. Streaming and steer-
ing often occur together. An example could be for an exascale
simulation where it is impractical to store every timestep and
the data must be reduced, resulting in streams which may
constitute the final results from the simulation in a manner
similar to the way we use data from an instrument in a massive
physics experiment.

The Department of Energy (DOE) Office of Science and
National Science Foundation (NSF) facilities including ac-
celerators, light sources, neutron sources and environmental
sensors are producing large volumes of streaming data. The
streaming data needs to be analyzed in reactive real-time, or
processed in near real-time to enable next- generation scientific
discoveries. There has also been an explosion of new research
and technologies for stream analytics from the academic and
private sectors to address the growing data volumes from
social media and other web applications. However, there has
been no effort in either documenting the critical research
opportunities or building a community that can create and
foster productive collaborations across scientific disciplines,
government agencies and industry.

To address these shortcomings, a two-part workshop se-
ries, STREAM: Streaming Requirements, Experience, Ap-
plications and Middleware Workshop (STREAM2015 and
STREAM2016), was conducted to bring the community to-

gether as well as to identify gaps and future efforts needed
across various funding agencies. This paper summarizes the
lessons learnt from these twin workshops and some selective
research examples consistent with workshop recommenda-
tions.

I. APPLICATION CHARACTERISTICS

Several characteristics were identified that should be used
to develop a detailed classification of streaming applications
and in deriving requirement for processing system. These
include the size of events; the use of control or steering; the
connection between events such as their ordering and stateful
event processing; use of human in the loop for feedback;
universality of interfaces; adaptive pipelines needed in research
today; need to identify the important information ”rapidly”;
access control; adaptive flow control; the challenge of real-
time data assimilation; complexity of data in individual events;
need for fault tolerance; provenance especially in adaptive
applications where data result of previous workflow; accuracy
and use of sampled data; error recovery problematic data will
choke when passed through the algorithm again; what are
data structures and appropriate storage matching hardware and
application needs. A Table can be found in the Reports [1]
which is not reproduced here for space considerations.

In most cases, the data is distributed, which affects synchro-
nization, parallelism and algorithms. Synchronization might
be needed to produce for example a coherent state, but this
is hard with inherently distributed asynchronous data sources
and processing. It is useful to understand the latency that can
be tolerated between data collection and processing data.

Coupled streams, multiple streams and interaction of
streams with distributed data are important in some cases. The
response time is important for UAV applications and robots;
it is not so critical for e-commerce transaction streams. The
needed data longevity is unclear – some fields assume data is
kept all the time but where do you store it and what is the cost
can become dominant considerations. We need to characterize
the value of data how much data are we willing to lose during
the processing?

Application processing can be characterized by the com-
plexity of processing, the possible need for a quick turnaround,



offline or online mode etc. We need to distinguish between
two types of streaming applications: firstly, a closed pro-
cess that runs for a long-time, and secondly an adaptive
computation with lot of human involvement. The latter is
seen in processing of experimental data with adjustments to
data-gathering equipment based on analysis of results. Some
science applications require high-speed, fully automatic and
complex adaptive processing. Here it is often not cost-effective
to make an automated pipeline for each case.

Within large scale simulations, there are event streaming
techniques which will be essential, as every snapshot can’t be
saved. Steering is pervasive; in particular sensors sometimes
need to be steered

There is a need to respond to variable rates or load
changes such as between peak and non-peak hours. This
requires an elastic system capable of dynamic scalability based
on the changing rates. This creates interesting programming
paradigms involving unbounded data with sliding windows
with the need to detect changes between windows.

One needs to characterize workflows better; for example
where are computations done are they close to the source of the
data or does data stream to the cloud? This is exemplified by
comparison of Akamai edge vs Google server farms. There is
a well known discussion of three processing locations: sensor
(source), fog (computing near source) or cloud (back-end).
Which cloud one chooses as location might affect turnaround?

Does the sensor’s connectivity facilitate certain processing
modes or does it constrain processing modes the answer could
be time dependent. Does the processing (cloud) need to be
self distributed? One needs to address the case with no cloud
connection (at a particular time). What aspects of processing
are sensitive to hierarchical (sensor-fog-cloud) programming
model; does query processing get decomposed at all levels?
What parts of system need to talk to all services/nodes? How
much can be done at each level of hierarchy?.

Projects such as large telescopes or accelerators with long
timelines need to consider timeline of evolving technologies
for streaming data as industry is driving rapid change. One can
identify needed functions and components and if one programs
to this high level model, it should be easier to incorporate
underlying technology change.

II. CURRENT STATE OF TECHNOLOGY

Streaming solutions have evolved in both academic research
and industry. Not too surprisingly, differences exist between
industry and research applications.

The three industry giants – Amazon (Kinesis), Google
(Beam) and Microsoft (Trill) have their own streaming tech-
nologies. Although operating at large scale their uses like e-
commerce and logging transactions have important differences
from the research applications discussed. There are many
solutions built around open source Apache solutions like
Samza, Storm.

Integration of the many technologies to build ”end-to-
end” streaming infrastructure is a basic challenge, as is the

lack of consensus as to appropriate hardware and software
infrastructure.

The issues at the intersection of streaming and HPC were
a consistent theme across both workshops. One reason to
explore this intersection is that commericial solutions are not
converging with the needs of science big data. Another is
that resources available for large scale research applications
are typified as resources configured as HPC clusters and thus
with the dual if not conflicting roles of supporting streaming
requirements along with static batch-queue requirements.

Industrial solutions are powerful and scalable, but they are
designed around a different kind of scalability: the ability
to support a large number of applications each of which is
not very data intensive. In contrast, scientific applications are
characterized by either high data-volumes, rates or latency
sensitivity. Further, there is a disconnect between HPC and
BigData software stacks in the areas of performance and
architectural components.

Other differences pertains to event size, which is often large
in research use cases. Nonetheless it is instructive to look at
industrial streaming solutions have emerged, including Apache
Spark, Flink, Storm, Heron, Samza, Kinesis and MillWheel.
We provide a detailed description of the two solutions Heron
and Apache Beam that have emerged in as leading industry
solutions.

III. WORKSHOP RECOMMENDATIONS

The full list of findings and recommendations can be found
at http://streamingsystems.org and workshop report at the
ASCR site [1]. Here we provide a selective set of findings and
recommendations to motivate a research program in streaming
systems for large-scale computational science.

• Managing the end-to-end workflow is critical to ensure
innovations from streaming data. This requires investi-
gation of new programming models, as the programming
and runtime requirements of streaming applications are
different from the traditional MPI-based applications that
have dominated scientific computing. As such, there is
a gap in capabilities of existing programming models.
There is a need for a systematic evaluation of existing
approaches and research in new programming models.
The complexity of the end-to-end orchestration of real-
time streaming data and processing imposes performance
constraints and new functional requirements. There is a
critical need to support real-time steering and human-in-
the-loop activities for next- generation streaming work-
flows.

• Meeting the needs of the streaming and steering
applications will require development of capabilities
and support from NSF and DOE high performance
computing and networking facilities. Historically, NSF
and DOE HPC facilities have focused on batch queue
jobs. Also, the network is a critical part of the streaming
and steering dataflows, but is not seamlessly integrated
into user workflows. There is a need for better technical
support and policies that facilitate streaming data and



steering jobs with batch capabilities. In general, there is a
need for community efforts and infrastructure to develop
and support capabilities for streaming.

• Develop and sustain a software ecosystem that sup-
ports the needs of the streaming applications on
HPC Platforms: Develop techniques and methodologies
that enable streaming solutions to be integrated into
existing domain-specific software stacks and ensure long-
term software sustainability. Bridge the research versus
product tension, and allow for robust prototypes to be
integrated into existing application/domain-specific soft-
ware stacks. In particular, find mechanisms to incorporate
advances made by industrial products into scientific com-
puting software ecosystem.

IV. BRINGING STREAMING TO HPC SYSTEMS

In response to the recommendations of STREAM work-
shops, we have an ongoing research agenda. Here we cover
three specific aspects – mini-apps, Pilot-Streaming and E-
HPC, where the latter two address different limitations arising
from traditional static HPC resource management capabilities.

A. Streaming Mini-Applications

We are developing two streaming mini-applications: MASS
and MASA.

• MASS (MiniApp for Stream Source): Stream data source,
which can be tuned to produce different types of data
streams.

• MASA (MiniApp for Streaming Analysis) Stream data
analysis/application, which captures most/some of the ba-
sic properties of the streaming / online analysis including
online reconstruction and other online applications. The
purpose of this mini-app is to serve as a benchmark across
different runtime systems and infrastructure.

These mini-applications will be used to develop benchmarks
that can be used to evaluate existing solutions, identify com-
munity best practices and drive generalization across science
needs by developing common libraries.

B. Pilot-Streaming: Abstraction based integration resource
management for HPC and Stream processing

Stream processing is becoming an increasingly important
part of scientific application pipeline. While traditionally
streaming applications primarily performance simple analytics
(smooth averages, max detection) on the incoming data stream,
the computational demands are growing. For example, to
run deep learning based computer-vision algorithms, such as
convolutional neural networks on the incoming data stream,
vasts amounts of scalable compute resources are required.

Thus, the ability to integrate streaming applications with
scalable HPC applications becomes increasingly important.
Often, streaming, batch and interactive processing utilizing dif-
ferent abstractions and runtime systems need to be combined.
Further, batch-based offline algorithms need to be adapted to
process windows of data instead of the complete bounded data-
set. Often, stream processing frameworks only provide a subset

of the functionality of batch processing frameworks and are
less mature than these. Building a abstraction that is capable
of unifying this disperse landscape of tools is a challenging
task.

Having surveyed the current state of streaming frameworks
and applications, we propose a novel abstraction for resource
management of joint batch and stream processing framework
that supports the provisioning of suitable resource configura-
tions and execution strategies for highly dynamic streaming
applications. This abstraction – referred to as Pilot-Streaming
addresses the challenges identified above in particular with
respect to heterogeneity and resource management.

The Pilot-Abstraction offers a unified approach for compute
and data management across heterogeneous compute resources
(HPC, cloud, Hadoop), storage resources (e. g. local disks,
cloud storage, parallel filesystems, SSD) and memory. It pro-
vide efficient mechanisms for managing data [2] and compute
across different, possibly distributed backends. It allows the
efficient management of intermediate and output data taking
into account data locality. We have explored the applicability
of the Pilot-Abstraction [3] to data-intensive applications on
HPC and Hadoop environment [2], [4], [5], [6].

While the original abstraction [?] was designed for batch-
oriented applications, the addition of streaming capabilities
will enhance its applicability and suitability of distributed
data-intensive applications. The coupling of data processing
with a variety of data sources (often external to the streaming
application) using a message broker, such as Kafka. Pilot-
Memory allows the coupling of data production and processing
within the same resource.

Pilot-Streaming is an extensible framework allowing the
simple addition of new streaming data sources and processing
frameworks.

• Streaming Data Processing API and Framework: For
the processing of streaming data applications can utilize
the Pilot-API for defining Compute- Units. Compute-
Units can subscribe to streaming Data-Units and process
these exploiting task-level if necessary.

• Streaming Data Source Access: Make streaming source
(e. g. Kafka topics) accessible for Compute-Units and
enable the micro-batch processing of discretized chunks
of incoming data. The Kafka adaptor is implemented
using the Kafka Python API [7].

• Extensibility and Interoperability: In addition to the
Pilot-API, Pilot-Streaming support the interoperable use
of other stream processing frameworks (e. g. Spark
Streaming and Flink), which enables applications to uti-
lize the different capabilities of these frameworks in a
unified way. By generalizing the window function ab-
straction into a higher- level abstraction, applications can
be expressed independently of the underlying execution
engine.

Figure 1 illustrates how we utilize the Pilot-Abstraction
to provide runtime for streaming applications as well as to
support the interoperable use of third-party streaming engines
where appropriate.



HPC Resources 
(Slurm, Torque, SGE)

Spark
Compute Unit

App 1

Pilot-Abstraction

R
es

ou
rc

e 
Le

ve
l

M
id

dl
ew

ar
e

Ap
pl

i-
ca

tio
n

Cloud Resources

Message Broker
(Kafka, Kinesis, Google Pub/Sub)

Flink
Compute Unit

Pilot 
Compute Unit

App 2 App n…

In-Memory
(Redis, Alluxio)

Distributed Execution 
Management (Spark, Flink, Dask)

Fig. 1. Pilot-Job: Streaming and Memory Capabilities Extension

In this paper, we demonstrate (i) the extension of the Pilot-
Data capabilities to the management of unbounded streaming
data, (ii) how application-level scheduling mechanism pro-
vided by the Pilot-Abstraction can interoperate with distributed
execution engines designed for streaming analytics (such as
Spark Streaming). We will use MASS and MASA to validate
the proposed architecture end-to-end from the streaming data
source to the processing layer.

C. E-HPC: Supporting elasticity for Stream processing

Science experiments are increasingly processed on HPC
systems as complex scientific workflows with real-time and
dynamic resource needs. However, as was highlighted in the
workshops findings, today’s HPC platforms are still designed
to support monolithic static MPI applications and present
severe challenges in performance, utilization and reliability
for next-generation scientific workflows that need elastic man-
agement of HPC resources. There is a need for an elastic
framework to support the dynamic and real-time needs of
scientific streaming workflows running on HPC resources.

In our current work, we are developing an elastic frame-
work, Elastic-HPC (E-HPC) for managing resources of scien-
tific workflows in an HPC environment. It provides a dynamic,
adaptable resource management and execution framework that
is capable of growing and shrinking the allocated resources for
a workflow during execution. Specifically, existing workflows
and workflow tools can use E-HPC as a backend execution
framework. E-HPC transforms the HPC resource substrate to
a malleable platform for stream processing pipelines.

E-HPC manages an elastic dynamic window of resources
for stream processing pipelines built over todays static HPC
jobs. E-HPC handles the dynamic resource needs of stream
processing by auto-scaling. In its current implementation, it
uses checkpoint-restart mechanism to save and launch work-
flow stages on different number of resources and interfaces
with the workflow engine to manage the interaction with
the user and managing the execution. Users or their scripts
scripts or workflow programs can setup appropriate policies,
rules on managing the resources for the dynamic streams.
Users can either submit a workflow description to E-HPC or
instrument their workflow script through the interface that E-
HPC provides.

E-HPC has two main components – i) coordinator and ii)
tracker. The coordinator interfaces with the users and workflow

engines, whereas the tracker keeps track of job execution
and resource requirements. A user submits a workflow to E-
HPC, and the coordinator generates job submission scripts
corresponding to the different stages of the workflow. The
jobs are submitted to run on HPC resources through the batch
scheduler. E-HPC also creates a tracker for each job that runs
on these HPC resources. It uses Distributed MultiThreaded
CheckPointing (DMTCP), a checkpoint-restart library, for
saving the execution state of workflow stages and restart the
workflow on a different set of resources. This auto-scaling ca-
pability of E-HPC allows a streaming workflow to dynamically
adapt to its changing data and resource requirements.

REFERENCES

[1] https://science.energy.gov/∼/media/ascr/pdf/programdocuments/docs/
2017/STREAM2016.pdf.

[2] A. Luckow, M. Santcroos, A. Zebrowski, and S. Jha, “Pilot-data: An
abstraction for distributed data,” Journal of Parallel and Distributed
Computing, 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0743731514001725

[3] A. Luckow, L. Lacinski, and S. Jha, “SAGA BigJob: An Extensible
and Interoperable Pilot-Job Abstraction for Distributed Applications and
Systems,” in The 10th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2010, pp. 135–144.

[4] A. Luckow, P. K. Mantha, and S. Jha, “Pilot-abstraction: A valid
abstraction for data-intensive applications on hpc, hadoop and cloud
infrastructures?” CoRR, vol. abs/1501.05041, 2015. [Online]. Available:
http://arxiv.org/abs/1501.05041

[5] A. Luckow, I. Paraskevakos, G. Chantzialexiou, and S. Jha, “Hadoop
on HPC: integrating hadoop and pilot-based dynamic resource
management,” CoRR, vol. abs/1602.00345, 2016. [Online]. Available:
http://arxiv.org/abs/1602.00345

[6] A. Luckow, I. Paraskevakos, G. Chantzialexiou, and S. Jha, “Hadoop
on HPC: Integrating Hadoop and Pilot-based Dynamic Resource Man-
agement,” IEEE International Workshop on High-Performance Big Data
Computing in conjunction with The 30th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2016), 2016.

[7] A. Montalenti, “Pykafka: Fast, pythonic kafka, at last!” http://blog.parsely.
com/post/3886/pykafka-now/, 2016.


