
Streaming Parallel Implementation of Rao-Blackwellized Particle Filtering
SLAM in the Cloud for Mobile Robots

Abstract In this paper we propose a cloud-based distributed
architecture for solving the Simultaneous Localization and
Mapping (SLAM) problem and implement a Rao-
Blackwellized Particle Filtering-based SLAM algorithm in a
multi-node cluster environment in the cloud. With this
approach we obtained significant efficiency improvements in
computation time. This gain in efficiency allows the algorithm
to increase its complexity and frequency of calculations,
which are factors for increasing the accuracy of the maps built.
Because the computation happens in a cloud environment the
robot’s onboard computer can be a low end computer. Our
method for implementing particle filtering in the cloud
environment is not specific to the SLAM algorithm and can be
applied to any computationally intensive particle filtering
algorithm.

1. Introduction
Cloud Computing has long being identified as a key enabling
technology for Internet of Things applications, which connect
everything ranging from such simple devices as thermostats to
complex industrial machinery, robots, and even the services
running in the cloud. The cloud services are used by these
devices to do both real time and offline analytics at large scale
to process large amounts of data produced by these devices.
On the one hand there are computationally intensive
algorithms for processing device data that can benefit from
cloud processing for real time response. The methods used by
these computationally expensive algorithms are powerful, but
impossible to run near the devices due to high computational
and specialized hardware requirements. At the same time there
are applications that have to be scaled to support vast number
of devices and are inherently suitable for central data
processing. This paper explores the first type of applications
by implementing a computationally expensive robotics
application to showcase a means of achieving complex
parallelism for real time applications in the cloud.

Parallel implementations of real time robotics algorithms
mostly deal with running on multicore machines using threads

as the primary parallelization mechanism. Scaling such
applications using threads in multicore machines is bounded
by the number of CPU cores available and the amount of
memory in a single machine, which are often not enough for
computationally expensive algorithms to provide a real time
response. Being able to execute computations in parallel, in a
distributed environment can be beneficial to these robotics
applications requiring low latencies. Also these applications
can be scaled up and down depending on the processing
requirements, making clouds a cost effective solution.

Simultaneous localization and mapping (SLAM) is an
important capability for mobile robots and has been studied
extensively in the relevant literature. Computing the position
of a robot in an unknown environment amidst measurement
errors while simultaneously computing a map of the
environment can be a computationally challenging task.
SLAM algorithms can use various inputs like distance
readings from a laser rangefinder, images of the environment
and images combined with distances. We have chosen a
popular SLAM algorithm called GMapping to implement in
the cloud. GMapping uses distance measurements from a laser
range finder and odometer measurements of the robot for its
calculations and is a Rao-Blackwellized Particle
Filtering(RBPF) based SLAM algorithm[1, 2]. It is known to
work well in practice and has been integrated into robots like
TurtleBot. The algorithm is computationally expensive and
can produce better results using more resources.

IoTCloud is a framework which can transfer data from devices
to a cloud computing environment for scalable data processing
with real time response. The data from the devices is
encapsulated into events and sent to cloud systems in real
time. IoTCloud employs a distributed stream processing
framework (DSPF)[3] for developing and executing scalable
real time applications in the cloud. We have implemented the
RBPF SLAM algorithm to work in the cloud on top of the
IoTCloud platform. Laser scans and odometer readings are
sent from the robot to the cloud as a stream of events where
they are processed by the SLAM application and results are
sent back to the robot immediately. The algorithm runs in a

Supun Kamburugamuve, Geoffrey C. Fox
School of Informatics and Computing and CGL

Indiana University
Bloomington, USA

[skamburu, gcf]@indiana.edu

Hengjing He
State Key Lab. of Power System, Dept. of Electrical

Engineering, Tsinghua University
Beijing, China

hehj11@mails.tsinghua.edu.cn

fully distributed environment in which different parts run on
different nodes. To reduce the time required, the most
expensive computation of the algorithm is run in parallel in a
distributed set of nodes.

The main contribution of this paper is to propose a novel
framework to compute particle filtering based algorithms,
specifically RBPF based SLAM in a distributed cloud
environment to achieve higher efficiency in computation time.
In the rest of the paper we will first discuss the related work,
then we introduce the IoTCloud framework. After this we
discuss how to develop the robotics applications using the
SLAM algorithm and then discuss the design of the parallel
RBPF SLAM algorithm. Finally we will conclude with the
results and discussion.

2. Related Work
To the best of our knowledge, using distributed cloud
infrastructure to execute particle filtering-based SLAM
algorithms has not been studied in the literature. Recent work
in[4] has exploited multicore and GPU architectures to speed
up the particle filtering-based computations and [5] has used
multicore architecture to create a parallel implementation of
the GMapping algorithm with good performance gains. Our
approach depends on a distributed environment where
multicore architecture of individual machines and multiple
such nodes are being exploited by the algorithm.
is a framework developed to move some of the expensive
computations of a SLAM algorithm into a cloud environment
for processing. The SLAM algorithm in C2TAM is different
from the version used in this work and has different
computation requirements. Also our work proposes a generic
scalable real time framework for computing the maps online
with significant gains in the processing time. C2TAM does not
provide such a framework. Zhang et al [6] describe an
approach where CUDA API is used to run the scan matching
step of GMapping algorithm in GPUs to improve the
performance of the algorithm.

Distributed streaming algorithms have been deployed for tasks
like clustering social data in stream [7] with excellent
performance enhancements. The algorithm we developed is
different from those implementations because of the nature of
the parallelism and the real time constraints. Those
applications are mostly data parallel, whereas we focus on a
computationally parallel application.

3. Background

3.1 IoTCloud framework

IoTCloud[8] is an open source framework developed at
Indiana University to connect IoT devices to cloud services. It
consists of a set of distributed nodes running close to the
devices to gather data, a set of publish-subscribe brokers to
relay the information to the cloud services, and a distributed
stream processing framework (DSPF) coupled with batch
processing engines in the cloud to process the data and return
(control) information to the IoT devices. Real time
applications execute data analytics at the DSPF layer,
achieving streaming real-time processing. The IoTCloud
platform uses Apache Storm[9] as the DSPF, RabbitMQ[10]
or Kafka[11] as the message broker and an OpenStack
academic cloud[12] (or bare-metal cluster) as the platform. To
scale the applications with number of devices we need
distributed coordination among parallel tasks and discovery of
devices; both are achieved with a ZooKeeper[13] based
coordination and discovery service.

In general, a real time application running in a DSPF can be
modeled as a directed acyclic graph (DAG) consisting of
streams and stream processing tasks. Stream tasks are at the
nodes of the graph and streams are the edges connecting the
nodes. A stream is an unbounded sequence of events flowing
through the edges of the graph and each such event consists of

Figure 1 IoTCloud Architecture

data represented in some format. The processing tasks at the
nodes consume input streams and produce output streams. A
DSPF provides the necessary API and infrastructure to
develop and execute such applications in a cluster of
computation nodes. Their main tasks include: 1. Providing an
API to develop streaming applications; 2. Distributing the
stream tasks in the cluster and managing the life cycle of
tasks; 3. Creating the communication fabric; 4. Monitoring
and gathering statistics about the applications; 5. Provide
mechanisms to recover from faults. In general DSPF allows
the same task to be executed in parallel and provides rich
communication channels among the tasks. Some DSPF’s
allow the applications to define the stream workflow graph
explicitly, while others create the graph dynamically at run
time from implicit information. We have developed a
distributed streaming parallel version of the RBPF SLAM
algorithm by mapping it to a stream processing DAG within
the IoTCloud framework.

To connect a device to the cloud services, a user must develop
a gateway application that connects to the device’s data
stream. Underlying details of the communication between the
gateway and the cloud services is abstracted and a simple API
is provided to send and receive data to the gateway
application. The real time applications are developed at the
streaming layer according to the API’s provided by the DSPF.
Dataflow between the application and the device can happen
via TCP, device specific message protocols, message brokers,
etc. Once an application is deployed in an IoTCloud gateway
the cloud applications can discover those applications and
connect to them for data processing using the discovery
service.

3.1.1 Design of GMapping application

One of our main goals was to develop a generic parallel
version of the GMapping algorithm that can be used with any
robot. The parallel version of this algorithm as a streaming
workflow in Apache Storm and code is open source. To
validate its practical use, we have developed an application to
connect the TurtleBot[14] robot by Willow Garage to the
GMapping algorithm running in the cloud using the IOTCloud
platform. TurtleBot is an off-the-shelf differential drive robot
equipped with a Microsoft Kinect sensor. It has a ROS[15]
driver and a supporting software stack which can be used to
retrieve information such as odometry, laser scans from the
robot, as well as controlling its movement.

The application that connects to the ROS-based API of the
robot is deployed in an IoTCloud Gateway running in a
desktop machine, where it subscribes to laser scans coming

from the IR sensor of the Kinect and odometer readings of the
TurtleBot. It converts the ROS messages to a format that suits
the cloud application and sends transformed data to the
application running in the FutureGrid OpenStack[12] VMs
using the message brokering layer. Correlation between the
odometer readings and the laser scans is done at the gateway
to reduce the complexity of the cloud application and keep it
generic. The application running in the cloud generates a map
according to the information it receives and sends this back to
the workstation running the Gateway, which saves and
publishes it back to ROS for viewing.

3.2 RBPF SLAM Algorithm

As described in [1, 2] Rao-Blacwellized particle filter for
SLAM is estimating the posterior 𝑝𝑝(𝑥𝑥1:𝑡𝑡 ,𝑚𝑚|𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡−1) where
𝑥𝑥1:𝑡𝑡 = 𝑥𝑥1, … ,𝑥𝑥𝑡𝑡 is the trajectory of the robot and m is the map.
𝑧𝑧1:𝑡𝑡 = 𝑧𝑧1, … , 𝑧𝑧𝑡𝑡 are the laser readings observed and 𝑢𝑢1:𝑡𝑡−1 =
𝑢𝑢1, … ,𝑢𝑢𝑡𝑡−1 are the odometer measurements.

𝑝𝑝(𝑥𝑥1:𝑡𝑡 ,𝑚𝑚|𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡−1) = 𝑝𝑝(𝑚𝑚|𝑥𝑥1:𝑡𝑡 , 𝑧𝑧1:𝑡𝑡)𝑝𝑝(𝑥𝑥1:𝑡𝑡|𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡−1)

The above factorization first estimates the position of the robot
given the observations, and then calculates the map given and
the trajectory of the robot. Map calculation can be done
efficiently if the trajectory is known. To estimate the position
of the robot over possible trajectories, it uses a particle filter.
The particle filter maintains a set of particles, with each one
containing a probable map of the environment and a possible
trajectory of the robot. The map associated with the particle is
built using the robot’s trajectory associated with the particle
and the laser readings observed.

Figure 2 Turtlebot Application

To calculate the trajectory of the robot a new reading 𝑧𝑧𝑡𝑡 ,𝑢𝑢𝑡𝑡−1
is used. A standard implementation of the algorithm executes
the following steps for particle using that particle’s
information:

1. Make an initial guess 𝑥𝑥𝑡𝑡

′(𝑖𝑖) = 𝑥𝑥𝑡𝑡−1
′(𝑖𝑖) ⊕𝑢𝑢𝑡𝑡−1, where ⊕ is

standard pose compounding operator. The algorithm
incorporates the motion model parameters of the robot when
calculating the initial guess.
2. Use the ScanMatching algorithm shown in Algorithm 1 to
optimize initial guess 𝑥𝑥𝑡𝑡

′(𝑖𝑖) using the 𝑚𝑚𝑡𝑡−1
(𝑖𝑖) and laser reading 𝑧𝑧𝑡𝑡.

If the ScanMatching fails, use the previous guess.
3. Update the weight of the particle
4. The map 𝑚𝑚𝑡𝑡

(𝑖𝑖) of the particle is updated with the new
position 𝑥𝑥𝑡𝑡

(𝑖𝑖) and 𝑧𝑧𝑡𝑡.

After updating each particle, the algorithm calculates 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 =

1

∑ �𝑤𝑤(𝑖𝑖)�
2𝑛𝑛

𝑖𝑖
 using the weight of each particle and does resampling

according to the calculated value. When resampling happens
the algorithm draws particles with replacements from the set
according to their weights. Resampled particles are used with
the next reading. At each reading the algorithm takes the map
associated with the particle of highest weight as the correct
map.

Algorithm 1 Scan Matching Algorithm

The computation time of the algorithm depends on the number
of particles used, size of the environment, and the number of
points in the distance reading. In general by increasing the
number of particles, the accuracy of the algorithm can be
improved. Moving some of the expensive computations to the
cloud allows the robot’s onboard computer to be a low-end
computer consuming less power.

4. Streaming Parallel Algorithm Design

To enable continuous processing of the incoming laser
readings, the distributed algorithm has to work on a stream of
laser readings and odometer readings coming from the robot in
real time. In our platform such applications are written over a
DSPF. Applications logic is divided into small components
which are distributed in the cluster and connected by streams
of events.

Profiling has shown that RBPF SLAM algorithm spends
nearly 98% of its computation time on the Scan Matching
step, which is done for each particle independently of the
others. Because the computation on a particle is independent
of other particles, this algorithm is well suited for parallel
execution. In a distributed environment the particles can be
moved to different computation nodes and computation on
particles can be executed in parallel. Even though the
computations over the particles can be easily made parallel,
resampling which requires information about all the particles
needs to be executed serially and must gather results from the
parallel execution of particles. The resampling removes some
of the existing particles and duplicates them in the system.
After resampling, some of the particles have to be re-
distributed over the cluster.

The stream workflow of the algorithm is shown in Figure 3
implemented as an Apache Storm topology. The topology
defines the data flow graph of the application with Java-based
task implementations at the nodes and communication links
defining the edges. The different components of this workflow
run in a cluster of nodes in the cloud. The arrows in the
diagram show the communication between these components
and it happens through TCP. As we can see, the main tasks of
the algorithm are divided into ScanMatcherBolt,
ReSamplingBolt and MapBuilding bolt. The LaserScanBolt
receives the data from the robot and sends it to the rest of the
application. The BestParticleSend bolt and MapSend bolt send
the results back to the robot. The MapBuilding bolt builds a
renderable map expected by the robot and is not a part of the
core algorithm.
A key idea behind our distributed implementation is to scatter
the particles across a set of tasks running in parallel across a
cluster of nodes and do the expensive ScanMatching operation
in parallel. This particle specific code (steps 1, 2, 3 and 4 of
the algorithm) is encapsulated in the ScanMatcher bolt of the
workflow and we can configure how many instances of that
bolt are running in parallel. The number of instances of the
ScanMatcher bolt running parallel defines the parallelism of
the algorithm. When multiple ScanMatcher bolts are running

1 function scanMatch(post,readings)
2 l = −∞
3 bestPose = post
4 likelihood = likelihood(post, readings)
5 delta = presetDelta
6 for i = 1 to n reffinements do
7 delta = delta/2
8 pose = bestPose
9 repeat
10 for d = 1 to K do
11 xd = deterministicsample(poset,delta)
12 localL = likelihood(xd,readings)
13 if localL > l
14 l = localL
15 bestPose = xd
16 end if
17 end for
18 until l > likelihood
19 end for
20 return l, bestPose
21 end function

in parallel, the algorithm partitions the particles into these
bolts. The ScanMatcher task does the computation on the
assigned particles serially.

The resampling bolt requires the result of the ScanMatcher
bolts running in parallel, so it waits until all the resampling
bolts are finished for one reading of the computation and
sends the results. After a resampling happens, it can remove
some existing particles and duplicate others. Because of this

the particles assigned to ScanMatcher tasks have to be
rearranged after a resample. The directed communication
required among the parallel ScanMatcher tasks to do the
reassignment is not well supported by Apache Storm, so we
use an external RabbitMQ message broker for such
communications. All the data flowing through the various
communication channels are in byte format and the algorithm
uses Kryo to serialize the objects to bytes. The dataflow steps
as shown in Figure 3 are described below.

1. Laser scans and odometry readings are received by the
LaserScan spout through the message broker layer. It
discovers communication channels using the ZooKeeper-
based discovery service of IoTCloud. Each message contains a
laser scan and a corresponding odometer reading in byte
format. This spout sends the bytes it receives to the Dispatcher
bolt without any modifications.
2. Laser scans are sent to a Dispatcher bolt that controls the
parallel algorithm. The bolt broadcasts the same Laser Scan to

the parallel tasks. When the parallel ScanMatcher tasks
complete, they send a message confirming this back to the
Dispatcher bolt, which sends the next reading to the parallel
tasks. It always uses the latest readings and drops the readings
it receives while the parallel tasks are running.
3. Each parallel ScanMatcher task receives the same laser
reading and does calculations with the particles assigned.
After this it sends the updated particle values to the
Resampling bolt. The implementation doesn’t send the maps
associated with the particles to the resampling bolt because a
resampling bolt doesn’t need the map to do its computation
and maps can be large objects depending on the world size.
5. After resampling, the resampling bolt calculates new
particle assignments to the ScanMatcher bolts. This
reassignment is done considering the old assignment and
relocating cost using the Hungarian algorithm. A new global
particle assignment is broadcast to all the task instances of the
ScanMatcher bolts using an external RabbitMQ topic.
6. In parallel to Step 5, the resampling bolt sends the
resampled particle values to their new destinations according
to the assignment. This also uses RabbitMQ queues to directly
send the messages to the tasks. A task is identified by an id
and this id is used as a routing key in the messages.
7. After the parallel tasks of ScanMatcher bolt receive the new
assignment, they distribute the maps associated with the
resampled particles to their correct destination. All the task
instances of the ScanMatcher bolts do this simultaneously.
8. The ScanMatcher bolt with the best valued particle sends its
values and the map to the MapBulding bolt. This then builds a
renderable map from the map used by the particle. It will also
send the best particle to the BestParticle Send bolt which will
directly send the information to gateways.
9. Best particle information will be sent to gateways.
10. The map expected by the visualizer will be sent to
gateways.
11. ScanMatcher bolts send messages indicating their
willingness to accept the next reading to the dispatcher bolt.

This algorithm doesn’t require all the laser scan readings from
the robot to compute the map correctly and can lose some of
the messages. The parallel algorithm exploits this feature and
drops the messages at a Dispatcher bolt that are coming in
between the computations to avoid memory overflow of the
system. The original serial algorithm runs every 5 seconds for
the TurtleBot map building. We can run our algorithm much
faster than that speed, thereby allowing the robot to move
faster. Owing to the design of the GMapping algorithm, only a
few resampling steps are needed during map building. This
reduces the number of times the algorithm has to distribute
particle maps among the tasks. Nevertheless we need the
gathering step at Resampling Bolt after each parallel

Figure 3 Storm Streaming Work Flow for Parallel RBPF SLAM

computation to calculate the weights and determine the best
particle at that time.

An open source serial version of the algorithm implemented in
C++ language is available through OpenSlam.org. Because of
the C++ implementation, this algorithm is not suitable for our
platform, which mainly focuses on Java-based
applications. This has been identified as a shortcoming of our
platform because there are many device-related algorithms
written in C/C++ and we would like to address this in the
future. The algorithm described above was implemented in
Java with the API provided by the DSPF.

5. Results & Discussion
The goal of our experiments was to verify the correctness of
our approach and its practical use in addition to measuring the
scalability of the algorithm. We conducted experiments with
the real robot and a robot simulator as well as a SLAM
benchmark dataset. The experiments with the real robot were
conducted in small indoor environments and the results are not
shown here. All the experiments ran in FutureGrid[12]
OpenStack VMs. The OpenStack experiments used 5 large
VM instances for Apache Storm Workers, 1 large instance for
RabbitMQ message broker and 1 large instance for ZooKeeper
and Storm master (Nimbus) node. A FutureGrid Large
instance VM has 8GB memory and 4 CPU cores running at
2.8 GHz. For all the tests the gateway node was running in
another large instance VM of FutureGrid. Each instance of the
Storm worker nodes runs 4 Storm worker processes with
1.5GB of memory allocated. The renderable map building
happens asynchronously after a configurable time has passed
and is not a core part of the algorithm. We did not measure the
time it takes to build the maps; instead we focused on the
computation.

To verify the accuracy of the algorithm, we use the ACES
building SLAM benchmark data set described in [11]. We
used the ROS rviz to visualize the maps being built by the
application. The obtained map is shown in Figure 4.
GMapping is a well-known and well-tested algorithm. We did
not try to extensively verify the accuracy of the algorithm on
different datasets due to that fact and instead focused on the

parallel behavior of the algorithm in our experiments. Parallel
speedup of an algorithm is defined as (Time Serial Algorithm
takes)/(Time parallel algorithm takes), i.e 𝑇𝑇𝑇𝑇/𝑇𝑇𝑝𝑝. It gives a
measurement of how much better a parallel algorithm can
perform compared to the serial version. The speedup of the
algorithm was measured by recording the time required to
compute each laser reading and getting the average of these
individual times. For ACES data set we use a map of size
80x80m with a .05 resolution and for Simbad the map was
30x30m with .05 resolution. We tested the algorithm with 20,
60 and 100 particles for both data sets. For each of these
datasets, the serial version time was measured for different
particle sizes in a FutureGrid machine that we used for
running the parallel version. In the DSPF cluster we had 5
worker nodes with 20 CPU cores, hence each worker utilized a
single CPU core. To test the parallel behavior of the algorithm
we used 4, 8, 12, 16 and 20 parallel tasks.

Table 1 Futuregrid VM Configuration

CPU Model Intel Core i7 9xx
CPU Frequency/Mhz 2933.436
Cores 4
Thread per core 1
Memory/MB 8192
OS Ubuntu 12.04.4 (Linux 3.2.0)
Hypervisor KVM

Figure 4 ACES building MAP built with Angular Update .25 and
Linear Update 0.5

The parallel speedup gained for ACES building dataset and
Simbad dataset is shown Figure 4. For ACES, the number of
laser reading are relatively low and because of this
computation at the ScanMatcher bolts is correspondingly less,
making the increase in speedup low after 12 particles. On the
other hand, Simbad dataset has about 4 times more distance
measurements per reading and produces higher speed gains.

Table 2 Serial average time for different laser readings
and particles

Laser\Particles 20 60 100
640 987.8 2778.7 4633.84
640 with Cutoff 792.86 2391.4 4008.7
180 180 537 927.2

Ideally the parallel speedup should be close to 20 when we
have 20 parallel tasks and we investigated any factors that
could drag the speedup down. Only the scan matching step of
the algorithm is executed in parallel; the resampling step is
done serially. Because this serial computation is relatively less
expensive than the Scan Matching computation, the speedup
loss is not significant at this step. The main factor for reducing
the distributed parallel computations is the I/O time. I/O time
is not present in the serial version of the algorithm and is a
totally new addition to the computation time. Because our
computation is done in Java, Java garbage collection also can
have an effect on the performance. Figure 5a shows the I/O
time, GC time and computation time for different parallel
tasks and particle sizes. As clearly seen from these results,

there is a nearly a constant average I/O overhead in the
parallel algorithm. When the number of parallel tasks
increases, the time decreases, and because of the I/O overhead
the speedup reduces. The average GC time was negligible but
we have seen instances where it increases the individual
computation times.

Another factor that affects parallel computation is the
computation time difference among parallel tasks. Let’s
assume we have 𝑛𝑛 parallel ScanMatcher tasks taking
𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑚𝑚, … , 𝑡𝑡𝑛𝑛 times and take 𝑡𝑡𝑚𝑚 as the maximum time
among those times. In the serial case the total time for Scan
Matching procedure will be 𝑡𝑡1 + 𝑡𝑡2 + ⋯𝑡𝑡𝑚𝑚 + ⋯+ 𝑡𝑡𝑛𝑛. For the
parallel case the time will be 𝑡𝑡𝑚𝑚 because the Resampling has
to wait for all the parallel tasks to complete. The ideal case for
parallel is when all the times in parallel tasks are equal. The
overhead introduced because of the difference in times will be

𝑡𝑡𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑡𝑡𝑚𝑚 − (𝑡𝑡1 + 𝑡𝑡2 +⋯𝑡𝑡𝑚𝑚 +⋯+ 𝑡𝑡𝑛𝑛) /𝑛𝑛.

As we can clearly see, when the difference between the
maximum time and average time increases, parallel overhead
increases. Figure 5b shows the average overhead calculated
for the Simbad dataset against the total time. The calculations
are done for cases where particles are distributed equally
among the parallel tasks. The average overhead remained
constant and the total time decreases as parallel tasks increase,
producing less speedup.

Figure 4 Parallel behavior of the algorithm for 180 and 640 laser readings. The two graphs at the
top show the actual time and bottom graphs show the speedup

Figure 5e Time variations with in serial algorithm without limit on

steps

Figure 5g Time variations with limit of 140 steps for 60 particles with

4 and 20 parallel tasks, mean and max of parallel times along with
total time is shown

To further investigate the behavior of the algorithm we drew
the individual times as shown in Figure 5d and 5e. There are
high peaks in the individual times in both serial and parallel
algorithms. The while loop ending in line 18 of Algorithm 1
can execute an arbitrary number of steps. Sometimes this
results in large loops compared to the average. Figure 5c
shows the average steps count and standard deviation of steps
executed by the ScanMatching algorithm for Simbad dataset.
The standard deviation can be large and sometimes we have
seen 2~3 times more steps than the average. This is especially
problematic for the parallel case because one or two particles
can significantly increase the response time. Since we have a
large number of particles, cutting off the optimization for one

or two of them prematurely shouldn’t affect the algorithm.
Also we can easily increase the number of particles if needed
to compensate for the premature cutoff of the optimization in
the parallel case. Another observation was that these large
numbers of steps occur at later refinements in the
ScanMatching algorithm with small delta values. So the
corrections gained executing many loops is minimal in most
cases. Considering these factors, we changed the algorithm to
have a configurable cutoff for the number of steps and
performed experiments by setting the max number of steps to
140, which is close to the average. The changed ScanMatching
algorithm is shown in Algorithm 2. Any maps built by the
algorithm were of comparable quality to the previous

Figure 5d Time variations without limit on steps for 60 particles with
4 and 20 parallel tasks, mean and max of parallel times along with

total time is shown

Figure 5f Time variations with limit of 140 steps for 60 particles
with 4 and 20 parallel tasks, , mean and max of parallel times along

with total time is shown

Figure 5b Overhead of imbalanced parallel
computation

Figure 5a IO, GC and Compute time for 640 readings Figure 5c Average step count
with standard deviation

algorithm. The resulting time variations for two tests are
shown in Figure 5f and 5g. Now we no longer see some of the
big peaks and variations we saw in Figure 5d. The high peaks
are due to minor garbage collections occurring. Figure 6
shows the average time reduction and speedup after the cutoff.
As expected, we see an improvement in speedup as well,
because the parallel overhead is now reduced as shown in
Figure 7. This demonstrates that the cutoff is an important
configuration parameter for parallel versions that can be tuned
case by case to obtain optimum performance and correctness.

Algorithm 2 ScanMatching algorithm with configurable cutoff

Figure 6 Time and Speedup after cutoff of 140

Figure 7 Overhead introduced because of compute time differences

after step cutoff of 140

Figure 8 Resampling overhead

Because we have chosen an upper bound to cutoff iterations in
particles which occur infrequently, we didn’t observe a large
speedup gain or reduction in average time. Instead now the
algorithm won’t have very large peaks that increase the
individual computation times. For our experiments we cut the
iteration count to prevent very large variations. It would be a
worthy exercise to cut these further to gain even more
processing time over the distributed tasks and see how the
algorithm behaves. This will be an environment and robot
dependent experiment and can potentially produce better
results.

Even though the resampling only happens occasionally in the
GMapping algorithm it can introduce a large overhead to the
parallel algorithm because of the IO requirements for
redistributing the particles and the maps associated with them.
Also the stream processing engines are not optimized for
group communications required among the parallel tasks for
achieving such distribution tasks. In our case we were relying
on an external broker. Figure 7 shows the difference in
calculations when we conducted the resampling step for each
operation with the Simbad dataset.

function scanMatch(poset,readings)
 steps = 0
 l = −∞
 bestPose = poset
 likelihood = likelihood(poset, readings)
 delta = presetDelta
 for i = 1 to n reffinements do
 delta = delta/2
 pose = bestPose
 repeat
 for d = 1 to K do
 xd = deterministicsample(poset,delta)
 localL = likelihood(xd,readings)
 steps++
 if localL > l
 l = localL
 bestPose = xd
 end if
 end for
 until l > likelihood && steps < cutOff
 end for
 return l, bestPose
end function

While this is not a major concern for SLAM applications,
there are applications that can by affected by such variations.
Note that the two lines in the Figure 5 have minimal
correlation between them, due to the un-deterministic nature
of the algorithm.

The algorithm does not use guaranteed message processing
features of the DSPF, allowing it to run with the lowest
latency possible through the DSPF. Also there is no
coordination among the parallel tasks for each parallel
computation of a laser reading. If a laser reading processing
fails at a parallel task, the only way the algorithm can recover
is by using timeouts.

Because the parallel algorithm runs much faster than the serial
version, it can be used to build a map for a fast moving robot.
Also the accuracy of the maps built is increased due to the
increased number of readings our algorithm is able to use for
calculations. One of the biggest challenges in particle filtering-
based methods is that time required for the computation
increases with the number of particles. A higher number of
particles generally means increased accuracy for the
algorithm. By distributing the particles across machines, an
application can utilize a high number of particles, improving
the accuracy of the algorithms.

6. Conclusion
In this paper we discussed how to develop distributed parallel
robotics applications in the cloud using a generic framework.
The results show some significant improvements in the
performance gains, and the system can be extended for many
such applications. Because the algorithm runs on a distributed
cloud infrastructure, it has access to a large amount of memory
and CPU power. For map building in large environments
where the algorithm needs an increased number of particles or
for cases where robots have dense laser readings, the methods
introduced in the paper can be used effectively.

Random increases in the number of iterations for a particle can
produce computation time imbalances between the parallel
workers and reduce the response time, as well as hurt the
overall parallel speedup. For this application we addressed the
problem by introducing an upper bound to the number of
steps, which works perfectly well in practice for this scenario.
Another approach would be to introduce duplicate
computations for such applications to get the computation
with minimum time and discard the rest. This is a more
generic method that can be applied irrespective of the
application at the expense of more resources.

Another factor for speedup reduction is the I/O time. We have
observed that the broadcast and gathering of results in the
streaming tasks takes considerable I/O time. At the moment
the state distribution between the parallel workers requires a
third node, such as an external broker or another streaming
task acting as an intermediary. A group communication API
between the parallel tasks can be a worthy addition to a DSPF.

7. Future Work
Complex programming is required to develop and scale
intricate IoT applications with modern distributed stream
processing engines, mainly due to the low level APIs exposed.
High level APIs are required in order to handle such complex
interactions by abstracting out the underlying details. For
example, parallelization of an application can be embedded
into the programming model of a DSPF rather than
programming the parallel execution manually.

Our work has identified difficulties in meeting real time
constraints in cloud controlled IoT due to the intrinsic time
needed to process events or fluctuations in processing time
caused by virtualization, multi-stream interference and
messaging fluctuations. In the future we would like to address
these fluctuations in computation time. One possible approach
is to use duplicate computation to avoid random fluctuations at
the cost of more resource utilization, although developing
efficient duplication of computation can be a challenging task.

Another important area is how to schedule the tasks in a
dynamic environment where devices connect and disconnect
randomly. As this occurs the application resources must be
rescheduled to get optimum performance out of the system.
Having such dynamic resource scheduling is difficult because
the applications keep the state in the memory. Approaches like
distributed in-memory key value stores can be used to
preserve the state so that applications can be migrated to
different computation nodes at runtime.

The algorithm implementation is specific to SLAM but the
methods used can be easily generalized to any particle filtering
algorithm. Extending this work to extract out a generic API to
develop any particle filtering algorithm in a distributed
environment can be a worthy experiment.

Acknowledgement

The authors would like to thank the Indiana University
FutureGrid team for their support in setting up the system in
FutureGrid NSF award OCI-0910812. This work was partially
supported by AFOSR award FA9550-13-1-0225 “Cloud-

Based Perception and Control of Sensor Nets and Robot
Swarms”.

References

[1] G. Grisetti, C. Stachniss, and W. Burgard, "Improving

grid-based slam with rao-blackwellized particle filters by
adaptive proposals and selective resampling," in Robotics
and Automation, 2005. ICRA 2005. Proceedings of the
2005 IEEE International Conference on, 2005, pp. 2432-
2437.

[2] G. Grisetti, C. Stachniss, and W. Burgard, "Improved
techniques for grid mapping with rao-blackwellized
particle filters," Robotics, IEEE Transactions on, vol. 23,
pp. 34-46, 2007.

[3] S. Kamburugamuve, G. Fox, D. Leake, and J. Qiu,
"Survey of Distributed Stream Processing for Large
Stream Sources."

[4] M. Chitchian, A. S. van Amesfoort, A. Simonetto, T.
Keviczky, and H. J. Sips, "Particle filters on multi-core
processors," Dept. Comput. Sci., Delft Univ. Technology,
Delft, The Netherlands, Tech. Rep. PDS-2012-001,(Feb.
2012)[Online]. Available: http://www. pds. ewi. tudelft.
nl/fileadmin/pds/reports/2012/PDS-2012-001. pdf. Code
available at: https://github. com/alxames/esthera, 2012.

[5] B. D. Gouveia, D. Portugal, and L. Marques, "Speeding
up rao-blackwellized particle filter SLAM with a
multithreaded architecture," in Intelligent Robots and
Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, 2014, pp. 1583-1588.

[6] H. Zhang and F. Martin, "CUDA accelerated robot
localization and mapping," in Technologies for Practical
Robot Applications (TePRA), 2013 IEEE International
Conference on, 2013, pp. 1-6.

[7] X. Gao, E. Ferrara, and J. Qiu, "Parallel Clustering of
High-Dimensional Social Media Data Streams."

[8] I. U. Community Grids Lab. (2015). IoTCloud.
Available: http://iotcloud.github.io/

[9] Q. Anderson, Storm Real-time Processing Cookbook:
Packt Publishing Ltd, 2013.

[10] A. Videla and J. J. Williams, RabbitMQ in action:
Manning, 2012.

[11] J. Kreps, N. Narkhede, and J. Rao, "Kafka: A distributed
messaging system for log processing," in Proceedings of
the NetDB, 2011.

[12] G. Fox, G. von Laszewski, J. Diaz, K. Keahey, J. Fortes,
R. Figueiredo, et al., "FutureGrid—A reconfigurable
testbed for Cloud, HPC and Grid Computing,"
Contemporary High Performance Computing: From
Petascale toward Exascale, Computational Science.
Chapman and Hall/CRC, 2013.

[13] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,
"ZooKeeper: Wait-free Coordination for Internet-scale
Systems," in USENIX Annual Technical Conference,
2010, p. 9.

[14] (2014). TurtleBot. Available:
http://wiki.ros.org/Robots/TurtleBot

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J.
Leibs, et al., "ROS: an open-source Robot Operating
System," in ICRA workshop on open source software,
2009, p. 5.

http://www/
http://iotcloud.github.io/
http://wiki.ros.org/Robots/TurtleBot

	1. Introduction
	2. Related Work
	3. Background
	3.1 IoTCloud framework
	3.1.1 Design of GMapping application
	4. Streaming Parallel Algorithm Design
	5. Results & Discussion
	6. Conclusion
	7. Future Work
	Acknowledgement
	References

