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Abstract In this paper we propose a cloud-based distributed 
architecture for solving the Simultaneous Localization and 
Mapping (SLAM) problem and implement a Rao-
Blackwellized Particle Filtering-based SLAM algorithm in a 
multi-node cluster environment in the cloud. With this 
approach we obtained significant efficiency improvements in 
computation time. This gain in efficiency allows the algorithm 
to increase its complexity and frequency of calculations, 
which are factors for increasing the accuracy of the maps built. 
Because the computation happens in a cloud environment the 
robot’s onboard computer can be a low end computer. Our 
method for implementing particle filtering in the cloud 
environment is not specific to the SLAM algorithm and can be 
applied to any computationally intensive particle filtering 
algorithm. 

1. Introduction  
Cloud Computing has long being identified as a key enabling 
technology for Internet of Things applications, which connect 
everything ranging from such simple devices as thermostats to 
complex industrial machinery, robots, and even the services 
running in the cloud. The cloud services are used by these 
devices to do both real time and offline analytics at large scale 
to process large amounts of data produced by these devices. 
On the one hand there are computationally intensive 
algorithms for processing device data that can benefit from 
cloud processing for real time response. The methods used by 
these computationally expensive algorithms are powerful, but 
impossible to run near the devices due to high computational 
and specialized hardware requirements. At the same time there 
are applications that have to be scaled to support vast number 
of devices and are inherently suitable for central data 
processing. This paper explores the first type of applications 
by implementing a computationally expensive robotics 
application to showcase a means of achieving complex 
parallelism for real time applications in the cloud. 
 
Parallel implementations of real time robotics algorithms 
mostly deal with running on multicore machines using threads 

as the primary parallelization mechanism. Scaling such 
applications using threads in multicore machines is bounded 
by the number of CPU cores available and the amount of 
memory in a single machine, which are often not enough for 
computationally expensive algorithms to provide a real time 
response. Being able to execute computations in parallel, in a 
distributed environment can be beneficial to these robotics 
applications requiring low latencies. Also these applications 
can be scaled up and down depending on the processing 
requirements, making clouds a cost effective solution. 
 
Simultaneous localization and mapping (SLAM) is an 
important capability for mobile robots and has been studied 
extensively in the relevant literature. Computing the position 
of a robot in an unknown environment amidst measurement 
errors while simultaneously computing a map of the 
environment can be a computationally challenging task. 
SLAM algorithms can use various inputs like distance 
readings from a laser rangefinder, images of the environment 
and images combined with distances. We have chosen a 
popular SLAM algorithm called GMapping to implement in 
the cloud. GMapping uses distance measurements from a laser 
range finder and odometer measurements of the robot for its 
calculations and is a Rao-Blackwellized Particle 
Filtering(RBPF) based SLAM algorithm[1, 2]. It is known to 
work well in practice and has been integrated into robots like 
TurtleBot. The algorithm is computationally expensive and 
can produce better results using more resources.  
 
IoTCloud is a framework which can transfer data from devices 
to a cloud computing environment for scalable data processing 
with real time response. The data from the devices is 
encapsulated into events and sent to cloud systems in real 
time. IoTCloud employs a distributed stream processing 
framework (DSPF)[3] for developing and executing scalable 
real time applications in the cloud. We have implemented the 
RBPF SLAM algorithm to work in the cloud on top of the 
IoTCloud platform. Laser scans and odometer readings are 
sent from the robot to the cloud as a stream of events where 
they are processed by the SLAM application and results are 
sent back to the robot immediately. The algorithm runs in a 
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fully distributed environment in which different parts run on 
different nodes. To reduce the time required, the most 
expensive computation of the algorithm is run in parallel in a 
distributed set of nodes.  
 
The main contribution of this paper is to propose a novel 
framework to compute particle filtering based algorithms, 
specifically RBPF based SLAM in a distributed cloud 
environment to achieve higher efficiency in computation time. 
In the rest of the paper we will first discuss the related work, 
then we introduce the IoTCloud framework. After this we 
discuss how to develop the robotics applications using the 
SLAM algorithm and then discuss the design of the parallel 
RBPF SLAM algorithm. Finally we will conclude with the 
results and discussion. 

2. Related Work 
To the best of our knowledge, using distributed cloud 
infrastructure to execute particle filtering-based SLAM 
algorithms has not been studied in the literature. Recent work 
in[4] has exploited multicore and GPU architectures to speed 
up the particle filtering-based computations and [5] has used 
multicore architecture to create a parallel implementation of 
the GMapping algorithm with good performance gains. Our 
approach depends on a distributed environment where 
multicore architecture of individual machines and multiple 
such nodes are being exploited by the algorithm. 
is a framework developed to move some of the expensive 
computations of a SLAM algorithm into a cloud environment 
for processing. The SLAM algorithm in C2TAM is different 
from the version used in this work and has different 
computation requirements. Also our work proposes a generic 
scalable real time framework for computing the maps online 
with significant gains in the processing time. C2TAM does not 
provide such a framework. Zhang et al [6] describe an 
approach where CUDA API is used to run the scan matching 
step of GMapping algorithm in GPUs to improve the 
performance of the algorithm.  
  
Distributed streaming algorithms have been deployed for tasks 
like clustering social data in stream [7] with excellent 
performance enhancements. The algorithm we developed is 
different from those implementations because of the nature of 
the parallelism and the real time constraints. Those 
applications are mostly data parallel, whereas we focus on a 
computationally parallel application.  

3. Background 

3.1  IoTCloud framework 

IoTCloud[8] is an open source framework developed at 
Indiana University to connect IoT devices to cloud services. It  
consists of a set of distributed nodes running close to the 
devices to gather data, a set of publish-subscribe brokers to 
relay the information to the cloud services, and a distributed 
stream processing framework (DSPF) coupled with batch 
processing engines in the cloud to process the data and return 
(control) information to the IoT devices. Real time 
applications execute data analytics at the DSPF layer, 
achieving streaming real-time processing. The IoTCloud 
platform uses Apache Storm[9] as the DSPF, RabbitMQ[10] 
or Kafka[11] as the message broker and an OpenStack 
academic cloud[12] (or bare-metal cluster) as the platform. To 
scale the applications with number of devices we need 
distributed coordination among parallel tasks and discovery of 
devices; both are achieved with a ZooKeeper[13] based 
coordination and discovery service. 

 
In general, a real time application running in a DSPF can be 
modeled as a directed acyclic graph (DAG) consisting of 
streams and stream processing tasks. Stream tasks are at the 
nodes of the graph and streams are the edges connecting the 
nodes. A stream is an unbounded sequence of events flowing 
through the edges of the graph and each such event consists of 

Figure 1 IoTCloud Architecture 



data represented in some format. The processing tasks at the 
nodes consume input streams and produce output streams. A 
DSPF provides the necessary API and infrastructure to 
develop and execute such applications in a cluster of 
computation nodes. Their main tasks include: 1. Providing an 
API to develop streaming applications; 2. Distributing the 
stream tasks in the cluster and managing the life cycle of 
tasks; 3. Creating the communication fabric; 4. Monitoring 
and gathering statistics about the applications; 5. Provide 
mechanisms to recover from faults. In general DSPF allows 
the same task to be executed in parallel and provides rich 
communication channels among the tasks. Some DSPF’s 
allow the applications to define the stream workflow graph 
explicitly, while others create the graph dynamically at run 
time from implicit information. We have developed a 
distributed streaming parallel version of the RBPF SLAM 
algorithm by mapping it to a stream processing DAG within 
the IoTCloud framework. 
 
To connect a device to the cloud services, a user must develop 
a gateway application that connects to the device’s data 
stream. Underlying details of the communication between the 
gateway and the cloud services is abstracted and a simple API 
is provided to send and receive data to the gateway 
application. The real time applications are developed at the 
streaming layer according to the API’s provided by the DSPF. 
Dataflow between the application and the device can happen 
via TCP, device specific message protocols, message brokers, 
etc. Once an application is deployed in an IoTCloud gateway 
the cloud applications can discover those applications and 
connect to them for data processing using the discovery 
service.  

3.1.1 Design of GMapping application 

One of our main goals was to develop a generic parallel 
version of the GMapping algorithm that can be used with any 
robot. The parallel version of this algorithm as a streaming 
workflow in Apache Storm and code is open source. To 
validate its practical use, we have developed an application to 
connect the TurtleBot[14] robot by Willow Garage to the 
GMapping algorithm running in the cloud using the IOTCloud 
platform. TurtleBot is an off-the-shelf differential drive robot 
equipped with a Microsoft Kinect sensor. It has a ROS[15] 
driver and a supporting software stack which can be used to 
retrieve information such as odometry, laser scans from the 
robot, as well as controlling its movement. 
 
The application that connects to the ROS-based API of the 
robot is deployed in an IoTCloud Gateway running in a 
desktop machine, where it subscribes to laser scans coming 

from the IR sensor of the Kinect and odometer readings of the 
TurtleBot. It converts the ROS messages to a format that suits 
the cloud application and sends transformed data to the 
application running in the FutureGrid OpenStack[12] VMs 
using the message brokering layer. Correlation between the 
odometer readings and the laser scans is done at the gateway 
to reduce the complexity of the cloud application and keep it 
generic. The application running in the cloud generates a map 
according to the information it receives and sends this back to 
the workstation running the Gateway, which saves and 
publishes it back to ROS for viewing. 
 
3.2 RBPF SLAM Algorithm 
 
As described in [1, 2]  Rao-Blacwellized particle filter for 
SLAM is estimating the posterior 𝑝𝑝(𝑥𝑥1:𝑡𝑡 ,𝑚𝑚|𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡−1) where 
𝑥𝑥1:𝑡𝑡 = 𝑥𝑥1, … ,𝑥𝑥𝑡𝑡  is the trajectory of the robot and m is the map. 
𝑧𝑧1:𝑡𝑡 = 𝑧𝑧1, … , 𝑧𝑧𝑡𝑡 are the laser readings observed and 𝑢𝑢1:𝑡𝑡−1 =
𝑢𝑢1, … ,𝑢𝑢𝑡𝑡−1 are the odometer measurements.  
 
𝑝𝑝(𝑥𝑥1:𝑡𝑡 ,𝑚𝑚|𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡−1) = 𝑝𝑝(𝑚𝑚|𝑥𝑥1:𝑡𝑡 , 𝑧𝑧1:𝑡𝑡)𝑝𝑝(𝑥𝑥1:𝑡𝑡|𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡−1) 

 
The above factorization first estimates the position of the robot 
given the observations, and then calculates the map given and 
the trajectory of the robot. Map calculation can be done 
efficiently if the trajectory is known. To estimate the position 
of the robot over possible trajectories, it uses a particle filter. 
The particle filter maintains a set of particles, with each one 
containing a probable map of the environment and a possible 
trajectory of the robot. The map associated with the particle is 
built using the robot’s trajectory associated with the particle 
and the laser readings observed.  
 

Figure 2 Turtlebot Application 



To calculate the trajectory of the robot a new reading 𝑧𝑧𝑡𝑡 ,𝑢𝑢𝑡𝑡−1 
is used. A standard implementation of the algorithm executes 
the following steps for particle using that particle’s 
information:  
 
1. Make an initial guess 𝑥𝑥𝑡𝑡

′(𝑖𝑖) = 𝑥𝑥𝑡𝑡−1
′(𝑖𝑖) ⊕𝑢𝑢𝑡𝑡−1, where ⊕ is 

standard pose compounding operator. The algorithm 
incorporates the motion model parameters of the robot when 
calculating the initial guess. 
2. Use the ScanMatching algorithm shown in Algorithm 1 to 
optimize initial guess 𝑥𝑥𝑡𝑡

′(𝑖𝑖) using the 𝑚𝑚𝑡𝑡−1
(𝑖𝑖) and laser reading 𝑧𝑧𝑡𝑡. 

If the ScanMatching fails, use the previous guess. 
3.  Update the weight of the particle 
4. The map 𝑚𝑚𝑡𝑡

(𝑖𝑖) of the particle is updated with the new 
position 𝑥𝑥𝑡𝑡

(𝑖𝑖) and 𝑧𝑧𝑡𝑡. 
 
After updating each particle, the algorithm calculates 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 =

1

∑ �𝑤𝑤(𝑖𝑖)�
2𝑛𝑛

𝑖𝑖
 using the weight of each particle and does resampling 

according to the calculated value. When resampling happens 
the algorithm draws particles with replacements from the set 
according to their weights. Resampled particles are used with 
the next reading. At each reading the algorithm takes the map 
associated with the particle of highest weight as the correct 
map.  

 
Algorithm 1 Scan Matching Algorithm 

The computation time of the algorithm depends on the number 
of particles used, size of the environment, and the number of 
points in the distance reading. In general by increasing the 
number of particles, the accuracy of the algorithm can be 
improved.  Moving some of the expensive computations to the 
cloud allows the robot’s onboard computer to be a low-end 
computer consuming less power.  

4. Streaming Parallel Algorithm Design 
 
To enable continuous processing of the incoming laser 
readings, the distributed algorithm has to work on a stream of 
laser readings and odometer readings coming from the robot in 
real time. In our platform such applications are written over a 
DSPF. Applications logic is divided into small components 
which are distributed in the cluster and connected by streams 
of events.  
 
Profiling has shown that RBPF SLAM algorithm spends 
nearly 98% of its computation time on the Scan Matching 
step, which is done for each particle independently of the 
others.  Because the computation on a particle is independent 
of other particles, this algorithm is well suited for parallel 
execution. In a distributed environment the particles can be 
moved to different computation nodes and computation on 
particles can be executed in parallel. Even though the 
computations over the particles can be easily made parallel, 
resampling which requires information about all the particles 
needs to be executed serially and must gather results from the 
parallel execution of particles. The resampling removes some 
of the existing particles and duplicates them in the system. 
After resampling, some of the particles have to be re-
distributed over the cluster.  
 
The stream workflow of the algorithm is shown in Figure 3 
implemented as an Apache Storm topology. The topology 
defines the data flow graph of the application with Java-based 
task implementations at the nodes and communication links 
defining the edges. The different components of this workflow 
run in a cluster of nodes in the cloud. The arrows in the 
diagram show the communication between these components 
and it happens through TCP. As we can see, the main tasks of 
the algorithm are divided into ScanMatcherBolt, 
ReSamplingBolt and MapBuilding bolt. The LaserScanBolt 
receives the data from the robot and sends it to the rest of the 
application. The BestParticleSend bolt and MapSend bolt send 
the results back to the robot. The MapBuilding bolt builds a 
renderable map expected by the robot and is not a part of the 
core algorithm. 
A key idea behind our distributed implementation is to scatter 
the particles across a set of tasks running in parallel across a 
cluster of nodes and do the expensive ScanMatching operation 
in parallel. This particle specific code (steps 1, 2, 3 and 4 of 
the algorithm) is encapsulated in the ScanMatcher bolt of the 
workflow and we can configure how many instances of that 
bolt are running in parallel. The number of instances of the 
ScanMatcher bolt running parallel defines the parallelism of 
the algorithm. When multiple ScanMatcher bolts are running 

1 function scanMatch(post,readings)  
2  l = −∞  
3  bestPose = post 
4  likelihood = likelihood(post, readings) 
5  delta = presetDelta  
6  for i = 1 to n reffinements do  
7    delta = delta/2 
8    pose = bestPose 
9    repeat  
10      for d = 1 to K do  
11        xd = deterministicsample(poset,delta) 
12        localL = likelihood(xd,readings) 
13        if localL > l  
14          l = localL  
15          bestPose = xd  
16        end if  
17       end for  
18   until l > likelihood  
19  end for  
20  return l, bestPose  
21 end function 



in parallel, the algorithm partitions the particles into these 
bolts. The ScanMatcher task does the computation on the 
assigned particles serially. 
 
The resampling bolt requires the result of the ScanMatcher 
bolts running in parallel, so it waits until all the resampling 
bolts are finished for one reading of the computation and 
sends the results. After a resampling happens, it can remove 
some existing particles and duplicate others. Because of this 

the particles assigned to ScanMatcher tasks have to be 
rearranged after a resample. The directed communication 
required among the parallel ScanMatcher tasks to do the 
reassignment is not well supported by Apache Storm, so we 
use an external RabbitMQ message broker for such 
communications. All the data flowing through the various 
communication channels are in byte format and the algorithm 
uses Kryo to serialize the objects to bytes. The dataflow steps 
as shown in Figure 3 are described below.  
 
1. Laser scans and odometry readings are received by the 
LaserScan spout through the message broker layer. It 
discovers communication channels using the ZooKeeper-
based discovery service of IoTCloud. Each message contains a 
laser scan and a corresponding odometer reading in byte 
format. This spout sends the bytes it receives to the Dispatcher 
bolt without any modifications. 
2. Laser scans are sent to a Dispatcher bolt that controls the 
parallel algorithm. The bolt broadcasts the same Laser Scan to 

the parallel tasks. When the parallel ScanMatcher tasks 
complete, they send a message confirming this back to the 
Dispatcher bolt, which sends the next reading to the parallel 
tasks. It always uses the latest readings and drops the readings 
it receives while the parallel tasks are running.  
3. Each parallel ScanMatcher task receives the same laser 
reading and does calculations with the particles assigned. 
After this it sends the updated particle values to the 
Resampling bolt. The implementation doesn’t send the maps 
associated with the particles to the resampling bolt because a 
resampling bolt doesn’t need the map to do its computation 
and maps can be large objects depending on the world size. 
5. After resampling, the resampling bolt calculates new 
particle assignments to the ScanMatcher bolts. This 
reassignment is done considering the old assignment and 
relocating cost using the Hungarian algorithm. A new global 
particle assignment is broadcast to all the task instances of the 
ScanMatcher bolts using an external RabbitMQ topic. 
6. In parallel to Step 5, the resampling bolt sends the 
resampled particle values to their new destinations according 
to the assignment. This also uses RabbitMQ queues to directly 
send the messages to the tasks. A task is identified by an id 
and this id is used as a routing key in the messages. 
7. After the parallel tasks of ScanMatcher bolt receive the new 
assignment, they distribute the maps associated with the 
resampled particles to their correct destination. All the task 
instances of the ScanMatcher bolts do this simultaneously. 
8. The ScanMatcher bolt with the best valued particle sends its 
values and the map to the MapBulding bolt. This then builds a 
renderable map from the map used by the particle. It will also 
send the best particle to the BestParticle Send bolt which will 
directly send the information to gateways.  
9. Best particle information will be sent to gateways.  
10. The map expected by the visualizer will be sent to 
gateways. 
11. ScanMatcher bolts send messages indicating their 
willingness to accept the next reading to the dispatcher bolt. 
 
This algorithm doesn’t require all the laser scan readings from 
the robot to compute the map correctly and can lose some of 
the messages. The parallel algorithm exploits this feature and 
drops the messages at a Dispatcher bolt that are coming in 
between the computations to avoid memory overflow of the 
system. The original serial algorithm runs every 5 seconds for 
the TurtleBot map building. We can run our algorithm much 
faster than that speed, thereby allowing the robot to move 
faster. Owing to the design of the GMapping algorithm, only a 
few resampling steps are needed during map building. This 
reduces the number of times the algorithm has to distribute 
particle maps among the tasks. Nevertheless we need the 
gathering step at Resampling Bolt after each parallel 

Figure 3 Storm Streaming Work Flow for Parallel RBPF SLAM 



computation to calculate the weights and determine the best 
particle at that time. 
 
An open source serial version of the algorithm implemented in 
C++ language is available through OpenSlam.org. Because of 
the C++ implementation, this algorithm is not suitable for our 
platform, which mainly focuses on Java-based 
applications.  This has been identified as a shortcoming of our 
platform because there are many device-related algorithms 
written in C/C++ and we would like to address this in the 
future. The algorithm described above was implemented in 
Java with the API provided by the DSPF.  

5. Results & Discussion 
The goal of our experiments was to verify the correctness of 
our approach and its practical use in addition to measuring the 
scalability of the algorithm. We conducted experiments with 
the real robot and a robot simulator as well as a SLAM 
benchmark dataset. The experiments with the real robot were 
conducted in small indoor environments and the results are not 
shown here. All the experiments ran in FutureGrid[12] 
OpenStack VMs. The OpenStack experiments used 5 large 
VM instances for Apache Storm Workers, 1 large instance for 
RabbitMQ message broker and 1 large instance for ZooKeeper 
and Storm master (Nimbus) node. A FutureGrid Large 
instance VM has 8GB memory and 4 CPU cores running at 
2.8 GHz. For all the tests the gateway node was running in 
another large instance VM of FutureGrid. Each instance of the 
Storm worker nodes runs 4 Storm worker processes with 
1.5GB of memory allocated. The renderable map building 
happens asynchronously after a configurable time has passed 
and is not a core part of the algorithm. We did not measure the 
time it takes to build the maps; instead we focused on the 
computation.  
 
To verify the accuracy of the algorithm, we use the ACES 
building SLAM benchmark data set described in [11]. We 
used the ROS rviz to visualize the maps being built by the 
application. The obtained map is shown in Figure 4. 
GMapping is a well-known and well-tested algorithm. We did 
not try to extensively verify the accuracy of the algorithm on 
different datasets due to that fact and instead focused on the 

parallel behavior of the algorithm in our experiments. Parallel 
speedup of an algorithm is defined as (Time Serial Algorithm 
takes)/(Time parallel algorithm takes), i.e 𝑇𝑇𝑇𝑇/𝑇𝑇𝑝𝑝.  It gives a 
measurement of how much better a parallel algorithm can 
perform compared to the serial version. The speedup of the 
algorithm was measured by recording the time required to 
compute each laser reading and getting the average of these 
individual times. For ACES data set we use a map of size 
80x80m with a .05 resolution and for Simbad the map was 
30x30m with .05 resolution. We tested the algorithm with 20, 
60 and 100 particles for both data sets. For each of these 
datasets, the serial version time was measured for different 
particle sizes in a FutureGrid machine that we used for 
running the parallel version. In the DSPF cluster we had 5 
worker nodes with 20 CPU cores, hence each worker utilized a 
single CPU core. To test the parallel behavior of the algorithm 
we used 4, 8, 12, 16 and 20 parallel tasks. 

Table 1 Futuregrid VM Configuration 

CPU Model Intel Core i7 9xx 
CPU Frequency/Mhz 2933.436 
Cores 4 
Thread per core 1 
Memory/MB 8192 
OS Ubuntu 12.04.4 (Linux 3.2.0) 
Hypervisor KVM 

 

 

Figure 4 ACES building MAP built with Angular Update .25 and 
Linear Update 0.5 



The parallel speedup gained for ACES building dataset and 
Simbad dataset is shown Figure 4. For ACES, the number of 
laser reading are relatively low and because of this 
computation at the  ScanMatcher bolts is correspondingly less, 
making the increase in speedup low after 12 particles. On the 
other hand, Simbad dataset has about 4 times more distance 
measurements per reading and produces higher speed gains.  

Table 2 Serial average time for different laser readings 
and particles 

Laser\Particles 20 60 100 
640  987.8 2778.7 4633.84 
640 with Cutoff  792.86 2391.4 4008.7 
180 180 537 927.2 

 

Ideally the parallel speedup should be close to 20 when we 
have 20 parallel tasks and we investigated any factors that 
could drag the speedup down. Only the scan matching step of 
the algorithm is executed in parallel; the resampling step is 
done serially. Because this serial computation is relatively less 
expensive than the Scan Matching computation, the speedup 
loss is not significant at this step. The main factor for reducing 
the distributed parallel computations is the I/O time. I/O time 
is not present in the serial version of the algorithm and is a 
totally new addition to the computation time. Because our 
computation is done in Java, Java garbage collection also can 
have an effect on the performance. Figure 5a shows the I/O 
time, GC time and computation time for different parallel 
tasks and particle sizes. As clearly seen from these results, 

there is a nearly a constant average I/O overhead in the 
parallel algorithm. When the number of parallel tasks 
increases, the time decreases, and because of the I/O overhead 
the speedup reduces. The average GC time was negligible but 
we have seen instances where it increases the individual 
computation times.  

Another factor that affects parallel computation is the 
computation time difference among parallel tasks. Let’s 
assume we have 𝑛𝑛 parallel ScanMatcher tasks taking 
𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑚𝑚, … , 𝑡𝑡𝑛𝑛 times and take 𝑡𝑡𝑚𝑚 as the maximum time 
among those times. In the serial case the total time for Scan 
Matching procedure will be 𝑡𝑡1 + 𝑡𝑡2 + ⋯𝑡𝑡𝑚𝑚 + ⋯+ 𝑡𝑡𝑛𝑛. For the 
parallel case the time will be 𝑡𝑡𝑚𝑚 because the Resampling has 
to wait for all the parallel tasks to complete. The ideal case for 
parallel is when all the times in parallel tasks are equal. The 
overhead introduced because of the difference in times will be 

𝑡𝑡𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑡𝑡𝑚𝑚 − (𝑡𝑡1 + 𝑡𝑡2 +⋯𝑡𝑡𝑚𝑚 +⋯+ 𝑡𝑡𝑛𝑛) /𝑛𝑛.  

As we can clearly see, when the difference between the 
maximum time and average time increases, parallel overhead 
increases. Figure 5b shows the average overhead calculated 
for the Simbad dataset against the total time. The calculations 
are done for cases where particles are distributed equally 
among the parallel tasks. The average overhead remained 
constant and the total time decreases as parallel tasks increase, 
producing less speedup.  

 

Figure 4 Parallel behavior of the algorithm for 180 and 640 laser readings. The two graphs at the 
top show the actual time and bottom graphs show the speedup 



 

 
Figure 5e Time variations with in serial algorithm without limit on 

steps 

 

 
Figure 5g Time variations with limit of 140 steps for 60 particles with 

4 and 20 parallel tasks, mean and max of parallel times along with 
total time is shown 

To further investigate the behavior of the algorithm we drew 
the individual times as shown in Figure 5d and 5e. There are 
high peaks in the individual times in both serial and parallel 
algorithms. The while loop ending in line 18 of Algorithm 1 
can execute an arbitrary number of steps. Sometimes this 
results in large loops compared to the average. Figure 5c 
shows the average steps count and standard deviation of steps 
executed by the ScanMatching algorithm for Simbad dataset. 
The standard deviation can be large and sometimes we have 
seen 2~3 times more steps than the average. This is especially 
problematic for the parallel case because one or two particles 
can significantly increase the response time. Since we have a 
large number of particles, cutting off the optimization for one 

or two of them prematurely shouldn’t affect the algorithm. 
Also we can easily increase the number of particles if needed 
to compensate for the premature cutoff of the optimization in 
the parallel case. Another observation was that these large 
numbers of steps occur at later refinements in the 
ScanMatching algorithm with small delta values. So the 
corrections gained executing many loops is minimal in most 
cases. Considering these factors, we changed the algorithm to 
have a configurable cutoff for the number of steps and 
performed experiments by setting the max number of steps to 
140, which is close to the average. The changed ScanMatching 
algorithm is shown in Algorithm 2. Any maps built by the 
algorithm were of comparable quality to the previous 

 

  

Figure 5d Time variations without limit on steps for 60 particles with 
4 and 20 parallel tasks, mean and max of parallel times along with 

total time is shown 

Figure 5f Time variations with limit of 140 steps for 60 particles 
with 4 and 20 parallel tasks, , mean and max of parallel times along 

with total time is shown 

Figure 5b Overhead of imbalanced parallel 
computation 

Figure 5a IO, GC and Compute time for 640 readings Figure 5c Average step count 
with standard deviation 



algorithm. The resulting time variations for two tests are 
shown in Figure 5f and 5g. Now we no longer see some of the 
big peaks and variations we saw in Figure 5d. The high peaks 
are due to minor garbage collections occurring. Figure 6 
shows the average time reduction and speedup after the cutoff. 
As expected, we see an improvement in speedup as well, 
because the parallel overhead is now reduced as shown in 
Figure 7. This demonstrates that the cutoff is an important 
configuration parameter for parallel versions that can be tuned 
case by case to obtain optimum performance and correctness.  

 

Algorithm 2 ScanMatching algorithm with configurable cutoff 

 

Figure 6 Time and Speedup after cutoff of 140 

 
Figure 7 Overhead introduced because of compute time differences 

after step cutoff of 140 

 

Figure 8 Resampling overhead 

Because we have chosen an upper bound to cutoff iterations in 
particles which occur infrequently, we didn’t observe a large 
speedup gain or reduction in average time. Instead now the 
algorithm won’t have very large peaks that increase the 
individual computation times. For our experiments we cut the 
iteration count to prevent very large variations. It would be a 
worthy exercise to cut these further to gain even more 
processing time over the distributed tasks and see how the 
algorithm behaves. This will be an environment and robot 
dependent experiment and can potentially produce better 
results. 

Even though the resampling only happens occasionally in the 
GMapping algorithm it can introduce a large overhead to the 
parallel algorithm because of the IO requirements for 
redistributing the particles and the maps associated with them. 
Also the stream processing engines are not optimized for 
group communications required among the parallel tasks for 
achieving such distribution tasks. In our case we were relying 
on an external broker. Figure 7 shows the difference in 
calculations when we conducted the resampling step for each 
operation with the Simbad dataset.  

function scanMatch(poset,readings) 
  steps = 0  
  l = −∞  
  bestPose = poset 
  likelihood = likelihood(poset, readings) 
  delta = presetDelta  
  for i = 1 to n reffinements do  
    delta = delta/2 
    pose = bestPose 
    repeat  
      for d = 1 to K do  
        xd = deterministicsample(poset,delta) 
        localL = likelihood(xd,readings) 
        steps++ 
        if localL > l  
          l = localL  
          bestPose = xd  
        end if  
       end for  
     until l > likelihood && steps < cutOff 
   end for  
   return l, bestPose  
end function 



While this is not a major concern for SLAM applications, 
there are applications that can by affected by such variations. 
Note that the two lines in the Figure 5 have minimal 
correlation between them, due to the un-deterministic nature 
of the algorithm. 

The algorithm does not use guaranteed message processing 
features of the DSPF, allowing it to run with the lowest 
latency possible through the DSPF. Also there is no 
coordination among the parallel tasks for each parallel 
computation of a laser reading. If a laser reading processing 
fails at a parallel task, the only way the algorithm can recover 
is by using timeouts.  

Because the parallel algorithm runs much faster than the serial 
version, it can be used to build a map for a fast moving robot. 
Also the accuracy of the maps built is increased due to the 
increased number of readings our algorithm is able to use for 
calculations. One of the biggest challenges in particle filtering-
based methods is that time required for the computation 
increases with the number of particles. A higher number of 
particles generally means increased accuracy for the 
algorithm. By distributing the particles across machines, an 
application can utilize a high number of particles, improving 
the accuracy of the algorithms.  

6. Conclusion 
In this paper we discussed how to develop distributed parallel 
robotics applications in the cloud using a generic framework. 
The results show some significant improvements in the 
performance gains, and the system can be extended for many 
such applications. Because the algorithm runs on a distributed 
cloud infrastructure, it has access to a large amount of memory 
and CPU power. For map building in large environments 
where the algorithm needs an increased number of particles or 
for cases where robots have dense laser readings, the methods 
introduced in the paper can be used effectively.  
 
Random increases in the number of iterations for a particle can 
produce computation time imbalances between the parallel 
workers and reduce the response time, as well as hurt the 
overall parallel speedup. For this application we addressed the 
problem by introducing an upper bound to the number of 
steps, which works perfectly well in practice for this scenario. 
Another approach would be to introduce duplicate 
computations for such applications to get the computation 
with minimum time and discard the rest. This is a more 
generic method that can be applied irrespective of the 
application at the expense of more resources. 
 

Another factor for speedup reduction is the I/O time. We have 
observed that the broadcast and gathering of results in the 
streaming tasks takes considerable I/O time. At the moment 
the state distribution between the parallel workers requires a 
third node, such as an external broker or another streaming 
task acting as an intermediary. A group communication API 
between the parallel tasks can be a worthy addition to a DSPF. 

7. Future Work 
Complex programming is required to develop and scale 
intricate IoT applications with modern distributed stream 
processing engines, mainly due to the low level APIs exposed. 
High level APIs are required in order to handle such complex 
interactions by abstracting out the underlying details. For 
example, parallelization of an application can be embedded 
into the programming model of a DSPF rather than 
programming the parallel execution manually. 
 
Our work has identified difficulties in meeting real time 
constraints in cloud controlled IoT due to the intrinsic time 
needed to process events or fluctuations in processing time 
caused by virtualization, multi-stream interference and 
messaging fluctuations. In the future we would like to address 
these fluctuations in computation time. One possible approach 
is to use duplicate computation to avoid random fluctuations at 
the cost of more resource utilization, although developing 
efficient duplication of computation can be a challenging task.  
 
Another important area is how to schedule the tasks in a 
dynamic environment where devices connect and disconnect 
randomly. As this occurs the application resources must be 
rescheduled to get optimum performance out of the system. 
Having such dynamic resource scheduling is difficult because 
the applications keep the state in the memory. Approaches like 
distributed in-memory key value stores can be used to 
preserve the state so that applications can be migrated to 
different computation nodes at runtime. 
 
The algorithm implementation is specific to SLAM but the 
methods used can be easily generalized to any particle filtering 
algorithm. Extending this work to extract out a generic API to 
develop any particle filtering algorithm in a distributed 
environment can be a worthy experiment.  
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