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Abstract  
 

Clouds and MapReduce have shown themselves to be a broadly useful approach to 

scientific computing especially for parallel data intensive applications. However they 

have limited applicability to some areas such as data mining because MapReduce has 

poor performance on problems with an iterative structure present in the linear algebra 

that underlies much data analysis. Such problems can be run efficiently on clusters 

using MPI leading to a hybrid cloud and cluster environment. This motivates the 

design and implementation of an open source Iterative MapReduce system Twister. 

 

Comparisons of Amazon, Azure, and traditional Linux and Windows environments on 

common applications have shown encouraging performance and usability 

comparisons in several important non iterative cases. These are linked to MPI 

applications for final stages of the data analysis. Further we have released the open 

source Twister Iterative MapReduce and benchmarked it against basic MapReduce 

(Hadoop) and MPI in information retrieval and life sciences applications.  

 

The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive 

production environment while Twister promises a uniform programming environment 

for many Life Sciences applications.  We used commercial clouds Amazon and Azure 

and the NSF resource FutureGrid to perform detailed comparisons and evaluations of 

different approaches to data intensive computing. Several applications were 

developed in MPI, MapReduce and Twister in these different environments. 
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Background  
Cloud computing [1]  is at the peak of the Gartner technology hype curve [2], but 

there are good reasons to believe that it is for real and will be important for large scale 

scientific computing: 

1) Clouds are the largest scale computer centers constructed, and so they have the 

capacity to be important to large-scale science problems as well as those at small 

scale. 

2) Clouds exploit the economies of this scale and so can be expected to be a cost 

effective approach to computing. Their architecture explicitly addresses the 

important fault tolerance issue. 

3) Clouds are commercially supported and so one can expect reasonably robust 

software without the sustainability difficulties seen from the academic software 

systems critical to much current cyberinfrastructure. 

4) There are 3 major vendors of clouds (Amazon, Google, and Microsoft) and many 

other infrastructure and software cloud technology vendors including Eucalyptus 

Systems, which spun off from UC Santa Barbara HPC research. This competition 

should ensure that clouds develop in a healthy, innovative fashion. Further 

attention is already being given to cloud standards [3]. 

5) There are many cloud research efforts, conferences, and other activities including 

Nimbus [4], OpenNebula [5], Sector/Sphere [6], and Eucalyptus [7]. 

6) There are a growing number of academic and science cloud systems supporting 

users through NSF Programs for Google/IBM and Microsoft Azure systems. In 

NSF OCI, FutureGrid [8] offers a cloud testbed, and Magellan [9] is a major DoE 

experimental cloud system. The EU framework 7 project VENUS-C [10] is just 

starting with an emphasis on Azure. 

7) Clouds offer attractive "on-demand" elastic and interactive computing. 
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Much scientific computing can be performed on clouds [11], but there are some well-

documented problems with using clouds, including: 

1) The centralized computing model for clouds runs counter to the principle of 

"bringing the computing to the data", and bringing the "data to a commercial 

cloud facility" may be slow and expensive. 

2)  There are many security, legal, and privacy issues [12] that often mimic those of 

the Internet which are especially problematic in areas such health informatics. 

3)  The virtualized networking currently used in the virtual machines (VM) in today’s 

commercial clouds and jitter from complex operating system functions increases 

synchronization/communication costs. This is especially serious in large-scale 

parallel computing and leads to significant overheads in many MPI applications 

[13-15]. Indeed, the usual (and attractive) fault tolerance model for clouds runs 

counter to the tight synchronization needed in most MPI applications. Specialized 

VMs and operating systems can give excellent MPI performance [16] but we will 

consider commodity approaches here. Amazon has just announced Cluster 

Compute instances in this area. 

4)  Private clouds do not currently offer the rich platform features seen on commercial 

clouds [17]. 

Some of these issues can be addressed with customized (private) clouds and enhanced 

bandwidth from research systems like TeraGrid to commercial cloud networks. 

However it seems likely that clouds will not supplant traditional approaches for very 

large-scale parallel (MPI) jobs in the near future. Thus we consider a hybrid model 

with jobs running on classic HPC systems, clouds, or both as workflows could link 

HPC and cloud systems. Commercial clouds support "massively parallel" or “many 
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tasks” applications, but only those that are loosely coupled and so insensitive to 

higher synchronization costs. We focus on the MapReduce programming model [18], 

which can be implemented on any cluster using the open source Hadoop [19] software 

for Linux or the Microsoft Dryad system [20, 21] for Windows. MapReduce is 

currently available on Amazon systems, and we have developed a prototype 

MapReduce for Azure.  

Results  

Metagenomics - A Data Intensive Application Vignette 

The study of microbial genomes is complicated by the fact that only small number of 

species can be isolated successfully and the current way forward is metagenomic 

studies of culture-independent, collective sets of genomes in their natural 

environments. This requires identification of as many as millions of genes and 

thousands of species from individual samples. New sequencing technology can 

provide the required data samples with a throughput of 1 trillion base pairs per day 

and this rate will increase. A typical observation and data pipeline [22] is shown in 

Figure 1 with sequencers producing DNA samples that are assembled and subject to 

further analysis including BLAST-like comparison with existing datasets as well as 

clustering and visualization to identify new gene families. Figure 2 shows initial 

results from analysis of 30,000 sequences with clusters identified and visualized using 

dimension reduction to map to three dimensions with Multi-dimensional scaling MDS 

[23]. The initial parts of the pipeline fit the MapReduce or many-task Cloud model 

but the latter stages involve parallel linear algebra. 
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State of the art MDS and clustering algorithms scale like O(N2) for N sequences; the 

total runtime for MDS and clustering is about 2 hours each on a 768 core commodity 

cluster obtaining a speedup of about 500 using a hybrid MPI-threading 

implementation on 24 core nodes. The initial steps can be run on clouds and include 

the calculation of a distance matrix of N(N-1)/2 independent elements. Million 

sequence problems of this type will challenge the largest clouds and the largest 

TeraGrid resources. Figure 3 looks at a related sequence assembly problem and 

compares performance of MapReduce (Hadoop, DryadLINQ) with and without 

virtual machines and the basic Amazon and Microsoft clouds. The execution times are 

similar (range is 30%) showing that this class of algorithm can be effectively run on 

many different infrastructures and it makes sense to consider the intrinsic advantages 

of clouds described above. In recent work we have looked hierarchical methods to 

reduce O(N2) execution time to O(NlogN) or O(N) and allow loosely-coupled cloud 

implementation with initial results on interpolation methods presented in [23]. 

 

One can study in [22, 25, 26] which applications run well on MapReduce and relate 

this to an old classification of Fox [27]. One finds that Pleasingly Parallel and a subset 

of what was called “Loosely Synchronous” applications run on MapReduce. 

However, current MapReduce addresses problems with only a single (or a “few”) 

MapReduce iterations, whereas there are a large set of data parallel applications that 

involve many iterations and are not suitable for basic MapReduce. Such iterative 

algorithms include linear algebra and many data mining algorithms [28], and here we 

introduce the open source Twister to address these problems. Twister [25, 29] 

supports applications needing either a few iterations or many iterations using a subset 
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of MPI – reduction and broadcast operations and not the latency sensitive MPI point-

to-point operations.  

Twister [29] supports iterative computations of the type needed in clustering and 

MDS [23]. This programming paradigm is attractive as Twister supports all phases of 

the pipeline in Figure 1 with performance that is better or comparable to the basic 

MapReduce and on large enough problems similar to MPI for the iterative cases 

where basic MapReduce is inadequate. The current Twister system is just a prototype 

and further research will focus on scalability and fault tolerance. The key idea is to 

combine the fault tolerance and flexibility of MapReduce with the performance of 

MPI. 

 

The current Twister, shown in Figure 4, is a distributed in-memory MapReduce 

runtime optimized for iterative MapReduce computations. It reads data from local 

disks of the worker nodes and handles the intermediate data in distributed memory of 

the worker nodes. All communication and data transfers are handled via a 

Publish/Subscribe messaging infrastructure. Twister comprises three main entities: (i) 

Twister Driver or Client that drives the entire MapReduce computation, (ii) Twister 

Daemon running on every worker node, and (iii) the broker network. 

We present two representative results of our initial analysis of Twister [25, 29] in 

Figure 5 and 6. 
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We showed “doubly data parallel” (all pairs) application like pairwise distance 

calculation using Smith Waterman Gotoh algorithm can be implemented with 

Hadoop, Dyrad, and MPI [30].  Further, Figure 5 shows a classic MapReduce 

application already studied in Figure 2 and demonstrates that Twister will perform 

well in this limit, although its iterative extensions are not needed. We use the 

conventional efficiency defined as T(1)/(pT(p)), where T(p) is runtime on p cores.  

The results shown in Figure 5 were obtained using 744 cores (31 24-core nodes). 

Twister outperforms Hadoop because of its faster data communication mechanism 

and the lower overhead in the static task scheduling. Moreover, in Hadoop each 

map/reduce task is executed as a separate process, whereas Twister uses a hybrid 

approach in which the map/reduce tasks assigned to a given daemon are executed 

within one Java Virtual Machine (JVM). The lower efficiency in DryadLINQ shown 

in Figure 5 was mainly due to an inefficient task scheduling mechanism used in the 

initial academic release [21]. We also investigated Twister PageRank performance 

using a ClueWeb data set [31] collected in January 2009. We built the adjacency 

matrix using this data set and tested the page rank application using 32 8-core nodes.  

Figure 6 shows that Twister performs much better than Hadoop on this algorithm 

[32], which has the iterative structure, for which Twister was designed. 

Conclusions  
We have shown that MapReduce gives good performance for several applications and 

is comparable in performance to but easier to use [33] (from its high level support of 

parallelism) than conventional master-worker approaches, which are automated in 

Azure with its concept of roles. However many data mining steps cannot efficiently 

use MapReduce and we propose a hybrid cloud-cluster architecture to link MPI and 
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MapReduce components. We introduced the MapReduce extension Twister [25, 29] 

to allow a uniform programming paradigm across all processing steps in a pipeline 

typified by Figure 1. 

Methods  
We used three major computational infrastructures: Azure, Amazon and FutureGrid. 

FutureGrid offers a flexible environment for our rigorous benchmarking of virtual 

machine and "bare-metal" (non-VM) based approaches, and an early prototype of 

FutureGrid software was used in our initial work. We used four distinct parallel 

computing paradigms: the master-worker model, MPI, MapReduce and Twister. 
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Figure 1  - Pipeline for analysis of metagenomics Data 

 

Figure 2  - Results of 17 clusters for full sample using Sammon’s version of 
MDS for visualization [24] 

 

Figure 3  - Time to process a single biology sequence file (458 reads) per core 
with different frameworks[24] 

 

Figure 4  - Current Twister Prototype 

 

Figure 5  - Parallel Efficiency of the different parallel runtimes for the Smith 
Waterman Gotoh algorithm for distance computation 
 

Figure 6  - Total running time for 20 iterations of PageRank algorithm on 
ClueWeb data with Twister and Hadoop on 256 cores 
 

 


