
Towards an Understanding of Scalable Query and Data
Analysis for Social Media Data and Analysis on High-Level

Dataflow Systems
Tak Lon (Stephen) Wu

School of Informatics and Computing
Indiana University Bloomington

taklwu@indiana.edu

Judy Qiu
School of Informatics and Computing

Indiana University Bloomington
xqiu@indiana.edu

ABSTRACT
Nowadays there is great research potential in analyzing the vast
amount of data collected from social media and social network
applications. In order to explore the correlations among this data
and social activities, modeling techniques such as data mining and
machine learning solutions have been applied in combination with
ad hoc query and complicated post-query data analysis. Use of
high-level platforms such as Pig, Hive, and Spark SQL to support
this type of sophisticated analysis has become the most popular
solution. However, the question remains: which of the available
software building blocks can serve users best according to their
data needs? This question motivated us to research the execution
flow and performance characteristics of these platforms, focusing
on our special interests of social media data, to provide a detailed
comparison for ad hoc queries and applications performed on top
of them.

1. INTRODUCTION
Social media data and its applications have gained the attention
from commercial, academic and research communities. Many
interesting research applications [1-6] that deal with daily
activities, events, and knowledge in human society have been
developed. The data collected by these metrics of social media is
vast, far exceeding constraints found in the storage substate,
databases, and runtimes traditionally used to store and access
historical data. In practice, social media service providers such as
Twitter, Facebook and Instagram have accommodated their users
with in-house solutions. However, for those research scientists
and application developers who subscribe to public social streams
to build their research systems and prototypes, it is challenging to
select appropriate software building blocks that can scalably store,
serve, and customize data schema for such immense data.

Gao et al. [7-10] working with the Truthy [11] project illustrates
the usefulness of Apache software stacks with IndexedHBase
[12]. This in turn led to Truthy’s current deployment on a large-
scale and large-storage private cluster, MOE. Though
IndexedHBase and its Java API have met the fundamental
requirements for accessing and processing data analysis, there are
still unfulfilled areas where further research is viable, especially
when integrating the existing analysis pipelines with Apache high-

level language platforms such as Pig [13], Hive [14] and Spark
SQL [15]. Other challenges include ad hoc queries and direct
computation on top of storage and databases.

The scope of our research is outlined here in very fine-grained
low-level perspective such as I/O(s) consumption benchmark,
state-of-the-art system-level building block comparison [16], and
possible performance optimization research in regards to different
types of data processing. Its aim is to understand the requisite
background knowledge, perform benchmarks, and review the
existing research. Based on benchmark results we can identify the
execution and performance characteristics for queries and
applications run on these high-level platforms. Using these
categories, we might further investigate the differences between
social media data and general data analysis to identify the
potential customizations for social data analysis on high-level
platforms.

This paper focuses on understanding the requirements and
boundaries of data systems that support various applications
mixed with ad hoc queries and data analysis, especially social
media data analysis. We benchmark query systems including Pig,
Hive and Spark SQL. In particular, our previous work has
investigated the possibility of using User Defined Functions
(UDF) to support complicated iterative algorithms with fine-
grained data aggregation and communication patterns [17]. We
are working to construct and research the state-of-the-art end-to-
end data pipeline for general scientific data and social media data.

The paper is structured as follows. Section 2 introduces our target
data and data model, system-level requirements, and baselines in
supporting social media data. Section 3 describes the features and
characteristics of ad hoc queries, and our research target of using
high-level languages with NoSQL databases for query and data
analysis. Section 4 benchmarks applications discussed in Section
3. Lastly, we draw our conclusion and summarize the research
directions in Section 5 and Section 6.

2. TRUTHY - SOCIAL MEDIA
OBSERVATORY
Truthy is a public social media observatory developed as a
research project at Indiana University. It analyzes and visualizes
information diffusion on Twitter. Truthy monitors and collects
Twitter data in real-time directly through the Twitter public
steaming API [18]. Much of our work has been done recently with
the help of this observatory, and researchers have yielded
important inferences of human society by analyzing the social
activities in cyberspace.
One example of end-to-end social media data analysis [2]
involved utilizing the IndexedHBase queries [12] on top of further

data mining techniques, such as eigenvector modularity [19] and
label propagation [20]. The analysis was carried out on two
datasets about political discussion collected during the six weeks
leading up to the 2010 U.S. congressional midterm elections and
2012 U.S. presidential elections. The results shown in [2, 12]
prove that the retweet networks exhibited a highly segregated
partisan structure; users of those tweets are mainly split into two
homogenous communities corresponding to the political left and
right leanings. Figure 1 shows the execution flow for getting the
graph of political polarization. In 2012, the average amount of
collected tweets each month was about 1 billion tweets. Such a
huge dataset proved problematic in terms of storage, as was
providing a fast processing layer to handle such large amounts of
data.

Figure 1. Sophisticated pipeline for visualizing Political

Polarization
This data observatory has been storing Twitter streaming data
since July 2010; the current data size as of Aug 2015 is
approximately 162TB. It includes raw compacted JSON files on
HDFS, tweet fields and inverted indices stored as HBase tables.
IndexedHBase [12] has been used to create inverted indices for
raw tweets in JSON format. Various fields such as keywords,
hashtags, geographical locations, user IDs, and retweet IDs have
been stored as searchable rowkeys while the related tweet IDs are
stored as associated (multi-column) values. Scientists and
developers of Truthy perform ad hoc queries and post-query data
analysis on these HBase tables, where tweet tables (JSON fields)
and index tables are semi-structured with different amounts of
columns.

2.1 System Challenges for Truthy
We have compared different NoSQL solutions to support indexing
and fast queries on large-scale social media data. As a result,
IndexedHBase was selected as the framework to store, serve, and
perform data computation for data scientists [7-10] using YARN
Hadoop and HBase as building blocks.
Utilizing an infrastructure supported by IndexedHBase, our work
delves into the system challenges for ad hoc queries and post-
query data analysis performed on large-scale social media data.
Based on our studies, the three categories of challenges are data-
related, system-related, and programming and computation-
related. Data-related challenges store and serve incremental data
on a scale of at least TB level, sustain or create indices with
customized formats, and support flexible data schema for
structured and semi-structured data with less disk consumption.
System-related challenges offer multi-tenancy to query clients and
application developers, as well as allowing commodity hardware
failures with fast/auto recovery. Finally, programming and
computation-related challenges support ad hoc query interface
such as Pig, Hive, and Spark SQL, in addition to supporting
customized programming in imperative programming languages
such as Java and Python. They offer different levels of parallelism
and sophisticated data mining and machine learning applications.

3. AD HOC QUERY WITH NOSQL
DATABASE
A key characteristic of social media data analysis is the ad hoc
queries that select the interested subset of data from a very large

set of time spatial data stored in databases. Generally, each
row/field of tweet data is stored with an associated timestamp and
their related column values. An example query could be “Find all
the related tweets with given hashtag #computing in the time
range between June 15th 2015 and July 10th 2015”. This type of
query can be rewritten as traditional Select-Project-Join (SPJ) ad
hoc queries. These project and join the two datasets, the records
within that specific time, and other sets of records within the
target fields, such as hashtags. The size of projection data, amount
of generated temporary tables, and the type of join operations
depends on the target fields of each query within a single table.
For instance, the execution flow of the example query given
above firstly scans the entire raw data table and filters the required
data by referring to the given predicates of time duration and a
hashtag. Then it generates two temporary tables and performs a
single shared-key join. Due to the extra overhead of generating
two tables separately, in addition to performing a join aggregation
and scanning entire rows of each target record, Gao et al. [7-9]
has shown that the overall performance does not meet our
expectations. By comparison, the HBase solution scans the index
and raw tables once and immediately filters the data with the
support of built-in “create timestamp” for each stored row/column
in a table. Even adopting NoSQL databases as backend storage,
there are limited choices of database solutions that can efficiently
store large datasets with fast (inverted) index access to the time
spatial data. IndexedHBase was developed as the backend
inverted index layer, where the data and indices are stored on top
of HBase to support these complicated social media data queries.

Type Query Exe. Steps
Read-One-
Write-One

get-tweets-with-meme, get-
tweets-with-text, get-tweets-
with-userid, get-retweets, get-
tweets-with-time, get-tweets-
with-phrase

2

Read-One-
Transform-
One

get-retweet-edges, get-mention-
edges

2

Read-One-
Transform-
Many

meme-post-count, text-post-
count, userid-post-count, user-
post-count, user-post-count-by-
text, meme-cooccur-count

2

Single-Scan meme-timestamp-count, text-
timestamp-count, userid-
timestamp-count

1

Table 1. Classification of support social queries

Figure 2. Dataflow for Ad hoc queries of social media data

Most of our support queries are HBase I/O intensive, which
mainly perform random data access by specified row keys, e.g.
tweet IDs to tweet table and keywords to text index tables. Each
query must first retrieve the related tweet IDs from index tables

by a given time range and queried keys. It then obtains the
required columns from the tweet table and may perform a UDF to
yield a stage-ready result output on HDFS for further data analysis
as shown in Figure 2. This differs from SQL database procedure.
IndexedHBase must build the indices as separate tables on HBase,
and it considers extra overheads when loading data into HBase.
Based on the execution flow and different type of data
transformation of these queries, we have identified four categories
of supported queries as shown in Table 1:

1. Read-One-Write-One: Obtain one related tweet ID
from Index Table by the given queried key (e.g.
hashtag), dump the whole tweet as result, e.g. get-
tweets-with-meme.

2. Read-One-Transform-One: Obtain one related tweet ID
from Index Table by the given queried key (e.g.
hashtag), generate single output entry (e.g. user pair)
from the obtained tweet, e.g. get-retweet-edges.

3. Read-One-Transform-Many: Obtain one related tweet
ID from Index Table by the given queried key (e.g.
hashtag), generate multiple output entries as ArrayList,
e.g. meme-cooccur-count.

4. Single-Scan: read the statistic information directly from
HBase table.

3.1 Query Execution with High-level
Languages
IndexedHBase includes Java MapReduce implementations driven
by a wrapper bash shell. Despite this, it is not easy to add new
queries or UDF without understanding the background of Hadoop
MapReduce. Specifically, all the supported social media data
queries are very straightforward ad hoc queries executed with
common database operations such as FILTER, GROUP BY, JOIN,
and FOR EACH with built-in or UDF functions. This motivated
us to investigate the integration with high-level abstractions such
as Pig [13], Hive [14], and Spark SQL [15] for day-to-day query
and data analysis.

Most of these systems are considered as Dataflow system or
Dataflow programming model, which is a paradigm that models a
program as a directed graph of data [21]. In both cases, data flows
among a series of components such as operators and functions
which serve as a “black-box” unit (the detailed implementations
are already defined) to transform the incoming data from its
original format into another. Data in the execution flow is clearly
defined as either being input or output to every atomic
component, independently handled on each and inherently run in
parallel.

Pig [13] is a dataflow system built on top of Hadoop MapReduce,
which aims to serve as a high level abstraction interfacing with
SQL database and MapReduce computation systems. Pig itself is
a declarative DAG-flow system, but it uses Pig-Latin [22], a
procedural language. This makes it flexible and allows users to
choose different implementations of the same relational operator
(e.g. JOIN and GROUPBY) in execution. Other than the built-in
operators, a developer can apply their own sophisticated algorithm
to the dataflow in Pig via its UDFs. Hive [14] is another high-
level platform, but it differs from Pig by supporting data
warehouse ad hoc queries and simple MapReduce applications for
structured data stored on HDFS [23]. It provides a SQL-like
language, HiveQL, to execute on top of Hadoop. Most of the
implementation concepts of Hive derive from SQL RDBMS.
Spark SQL [15] is another open source project inspired by Hive.
Instead of being tightly coupled with the Hadoop MapReduce

engine, it uses Spark as its low-level runtime, with DataFrame
schema RDD as its major in-memory data structure embedded
with named column (table-like) schema. The extensible query
optimizer Catalyst is written in Scala, a different model from
Hive and its predecessor Shark [24].

We will discuss the overhead of using these high-level platforms
for the target ad hoc queries in Section 4. In addition, although we
have not yet linked the ad hoc query with the post-query analysis,
we recognize the need for chaining this intermediate data to next-
generation compute resources and fulfilling the dataflow of the
entire analysis pipeline. Our previous work [17] has demonstrated
the importance of in-memory computation and resource reuse for
sophisticated machine learning applications with iterations. We
not only incorporate the Hadoop plugin Harp, but allow general
ETL queries to continue the sophisticated application immediately
afterward [15]. This would save significant job restart overhead
and enable fast resource allocation and reusability. Furthermore, it
enables intuitive development writing prototypes of end-to-end
pipelines in a single environment. Spark SQL has proposed a
similar idea that uses the same platform and data abstractions for
both queries and analysis, yielding meaningful results for
sophisticated algorithms. Meanwhile, Apache Tez [25] shows the
importance of resource reusability for complex DAG tasks on top
of high-level platforms run on YARN Hadoop.

4. PERFORMANCE RESULT
Our experiments run on MOE, a large-storage, large-memory and
high-performance private cluster at Indiana University devoted to
the Truthy project [26, 11]. It consists of 3 login nodes and 10
compute nodes, where each login node is set up with two Intel(R)
Xeon(R) CPU E5-2620 v2 CPUs, 64 GB memory, and each
compute node has five Intel(R) Xeon(R) CPU E5-2660 v2 CPUs,
128 GB memory, 48TB HDD and 120GB SSD. All nodes are
interconnected with a 10Gb Ethernet. We perform our tests on top
of a Hadoop 2.5.1 cluster with different high-level platforms such
as Pig 0.14.0, Hive 1.0.0, and Spark SQL 1.5.0. Meanwhile,
IndexedHBase 0.2.0 is the Java MapReduce baseline.

Figure 3. Performance breakdown for get-tweets

We have implemented a total of 17 ad hoc queries [12] written in
all the platforms mentioned above. Other than the initial stage of
searching related tweet IDs from index tables, we compare these
three query implementations on different platforms and examine
their runtime behaviors as shown in Figure 3, Figure 4, and Figure
5. Each submitted query runs with a total of 587858 tweet IDs
obtained from meme index tables by being given the most
common hashtag, “Follow Friday” #ff and are equally assigned to

0

50

100

150

200

250

300

Pig Hive IndexedHBase Spark SQL

E
xe

cu
tio

n
Ti

m
e

in
 S

ec
on

ds

Job Startup Time Map Setup Time Data Loading Time
HBaseIO Time Map Computation Time Map Cleanup Time
Shuffle Time Red. Setup Time Red. Computation Time
Red. Output Time

9 workers; the default parallelism (the amount of reducers) is set
to 4.

Figure 4. Performance breakdown for get-retweet-edges

Figure 5. Performance breakdown for meme-cooccur-

count
Since all of these are HBase I/O intensive queries, the main brunt
of overhead is the data retrieval time communicated with the
HBase tweet table which stores the original tweet fields. Other
than get-tweets query, which dumps the entire tweet to HDFS,
every implemented UDF only scans a subset of columns and
yields a specified format such as edge pair (user ID and retweet
user ID) and a list of mentioned hashtags in the related tweet.
These transformed data are collected and accumulated by using
the standard data aggregation operations, e.g. GROUP BY and
reduceByKey. Compared with traditional row-based databases, we
save significant I/O overhead with the help of the columnar
scanning provided by HBase. Note that the computation time of
Spark SQL takes longer as Spark performs “map-only” worker
execution; it includes the UDF transformation time (from
DataFrame RDD to Java RDD) and cross-worker data
aggregation/communication time, along with the output to HDFS
time.
In addition, since all these queries are compiled and run as YARN
or Hadoop jobs, we also evaluate the local write bytes (except
Spark SQL which does not have a reduce stage) and investigate
the data aggregation overhead. As shown in Figure 6, for queries
with reduce stages (get-retweet-edges and meme-cooccur-count),
Pig and Hive implementations have more intermediate data and
match the trend of overall execution time. This is due to these
high level abstractions using tuple-based computation and

emitting each processed tuple to the output buffer. There
IndexedHBase is pure Java MapReduce implementation with
which the output of the mapper is optimized, combining the
emitted values that shared the same output key. We also observe
this behavior from the intermediate record sizes as shown in Table
2.

Figure 6. Intermediate Local write in bytes

Query Pig Hive IndexedHBase
get-tweets 587858 587858 587858

get-retweet-edges 179486 179463 167740
meme-cooccur-

count 90216 90125 63524

Table 2. Mapper output (combined if any) record sizes

5. CONCLUSION
This paper compares social media data query performance on a
large-scale data observatory. By addressing the challenges in
various levels of this observatory, we proposed the use of inverted
indices generated by IndexedHBase with different high-level
abstractions to perform query analysis and post-query data
analysis. Our argument here and in future work is that the simplest
solution offers the greatest potential. By this we mean
programming interface, computation extension, and data linkage
should be constructed within a single platform. Doing so could
achieve better resource utilization by reducing the resource
allocation overhead, fast data access with in-memory caches for
frequently used data within a pipeline, and even better query
execution flow by referring to the real-time and statistical data
metrics of the processing data.
As may have been observed, our research does not investigate the
query optimization of databases [27-30] with optimization
strategies such as predicates move-around [29], which have been
implemented in many database [31-33, 14] and dataflow [13]
systems, especially for Select-Project-Join (SPJ) ad hoc queries.
However, as mentioned above, the social media data queries can
prove challenging for traditional SPJ database systems. Our
implementation therefore bypasses the SPJ complexity by using
inverted indices with associated timestamps within the same cell
of data.

6. FUTURE WORK
We have integrated Harp with Pig [17] to show the advantages of
using customized data aggregation and in-memory computation
for iterative applications. We also wrote a high-level comparison
survey [16] to qualify the basic features and fundamental
differences among Pig, Hive and Spark SQL. Based on these
efforts, we plan to extend our research direction with a

0

20

40

60

80

100

120

Pig Hive IndexedHBase Spark SQL

E
xe

cu
tio

n
Ti

m
e

in
 S

ec
on

ds

Job Startup Time Map Setup Time Data Loading Time
HBaseIO Time Map Computation Time Map Cleanup Time
Shuffle Time Red. Setup Time Red. Computation Time
Red. Output Time

0

20

40

60

80

100

120

Pig Hive IndexedHBase Spark SQL

E
xe

cu
tio

n
Ti

m
e

in
 S

ec
on

ds

Job Startup Time Map Setup Time Data Loading Time
HBaseIO Time Map Computation Time Map Cleanup Time
Shuffle Time Red. Setup Time Red. Computation Time
Red. Output Time

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

get-tweets get-retweet-edges meme-cooccur-count

B
yt

es

Pig
Hive
IndexedHBase

quantitative understanding of the state-of-the-art Apache high-
level language platforms for end-to-end solutions that link
multiple compute components into a single development and
platform. We will also revisit the behaviors of running the
computations on these high-level platforms versus domain-
specific languages such as R and Matlab.

7. REFERENCES
[1] Joseph M Hellerstein and Michael Stonebraker, Predicate

migration: Optimizing queries with expensive predicates.
Vol. 22. 1993, ISBN: 0897915925: ACM.

[2] Michael Conover, Jacob Ratkiewicz, Matthew Francisco,
Bruno Gonçalves, Filippo Menczer, and Alessandro
Flammini. Political polarization on twitter. in ICWSM. 2011.

[3] Jacob Ratkiewicz, Michael Conover, Mark Meiss, Bruno
Gonçalves, Alessandro Flammini, and Filippo Menczer.
Detecting and Tracking Political Abuse in Social Media. in
ICWSM. 2011.

[4] Michael D Conover, Bruno Gonçalves, Alessandro
Flammini, and Filippo Menczer, Partisan asymmetries in
online political activity. EPJ Data Science, 2012. 1(1): p. 1-
19.

[5] Joseph DiGrazia, Karissa McKelvey, Johan Bollen, and
Fabio Rojas, More tweets, more votes: Social media as a
quantitative indicator of political behavior. PloS one, 2013.
8(11): p. e79449.

[6] Mohsen JafariAsbagh, Emilio Ferrara, Onur Varol, Filippo
Menczer, and Alessandro Flammini, Clustering memes in
social media streams. Social Network Analysis and Mining,
2014. 4(1): p. 1-13.

[7] Xiaoming Gao, Investigation and Comparison of Distributed
NoSQL Database Systems.

[8] Xiaoming Gao and Judy Qiu, Scalable inverted indexing on
NoSQL table storage. 2010.

[9] Xiaoming Gao, Vaibhav Nachankar, and Judy Qiu.
Experimenting lucene index on HBase in an HPC
environment. in Proceedings of the first annual workshop on
High performance computing meets databases. 2011: ACM.

[10] Xiaoming Gao, Evan Roth, Karissa McKelvey, Clayton
Davis, Andrew Younge, Emilio Ferrara, Filippo Menczer,
and Judy Qiu, Supporting a Social Media Observatory with
Customizable Index Structures: Architecture and
Performance, in Cloud Computing for Data-Intensive
Applications. 2014, Springer. p. 401-427.

[11] Karissa McKelvey and Filippo Menczer, Design and
prototyping of a social media observatory, in Proceedings of
the 22nd international conference on World Wide Web
companion. 2013, International World Wide Web
Conferences Steering Committee: Rio de Janeiro, Brazil. p.
1351-1358.

[12] Xiaoming Gao and Judy Qiu. Social Media Data Analysis
with IndexedHBase and Iterative MapReduce. in Proc.
Workshop on Many-Task Computing on Clouds, Grids, and
Supercomputers (MTAGS 2013) at Super Computing. 2013.

[13] Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep
Kamath, Shravan M. Narayanamurthy, Christopher Olston,
Benjamin Reed, Santhosh Srinivasan, and Utkarsh
Srivastava, Building a high-level dataflow system on top of

Map-Reduce: the Pig experience. Proc. VLDB Endow.,
2009. 2(2): p. 1414-1425.

[14] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete
Wyckoff, and Raghotham Murthy, Hive: a warehousing
solution over a map-reduce framework. Proc. VLDB
Endow., 2009. 2(2): p. 1626-1629.

[15] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai,
Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer
Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia,
Spark SQL: Relational Data Processing in Spark, in
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. 2015, ACM:
Melbourne, Victoria, Australia. p. 1383-1394.

[16] Tak-Lon (Stephen) Wu, Bingjing Zhang, Clayton Davis,
Emilio Ferrara, Alessandro Flammini, Filippo Menczer, and
Judy Qiu, Scalable Query and Analysis for Social Networks:
An Integrated High-Level Dataflow System with Pig and
Harp, in Big Data in Complex and Social Networks, My T.
Thai, Hui Xiong, and W. Wu, Editors. 2015.

[17] Tak-Lon Wu, Abhilash Koppula, and Judy Qiu. Integrating
Pig with Harp to support iterative applications with fast
cache and customized communication. in Proceedings of the
5th International Workshop on Data-Intensive Computing in
the Clouds. 2014: IEEE Press.

[18] Twitter Inc.; Available from: https://twitter.com/.
[19] Mark EJ Newman, Finding community structure in networks

using the eigenvectors of matrices. Physical review E, 2006.
74(3): p. 036104.

[20] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara,
Near linear time algorithm to detect community structures in
large-scale networks. Physical Review E, 2007. 76(3): p.
036106.

[21] Dataflow programming; Available from:
https://en.wikipedia.org/wiki/Dataflow_programming.

[22] Christopher Olston, Benjamin Reed, Utkarsh Srivastava,
Ravi Kumar, and Andrew Tomkins, Pig latin: a not-so-
foreign language for data processing, in Proceedings of the
2008 ACM SIGMOD international conference on
Management of data. 2008, ACM: Vancouver, Canada. p.
1099-1110.

[23] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The hadoop distributed file system. in Mass
Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on. 2010: IEEE.

[24] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J.
Franklin, Scott Shenker, and Ion Stoica, Shark: SQL and rich
analytics at scale, in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data.
2013, ACM: New York, New York, USA. p. 13-24.

[25] Apache Tez, 2014; Available from:
http://tez.incubator.apache.org/.

[26] Xiaoming Gao and Judy Qiu, Supporting End-to-End Social
Media Data Analysis with the IndexedHBase Platform. 2013.

[27] Matthias Jarke and Jurgen Koch, Query optimization in
database systems. ACM Computing surveys (CsUR), 1984.
16(2): p. 111-152.

https://twitter.com/
https://en.wikipedia.org/wiki/Dataflow_programming
http://tez.incubator.apache.org/

[28] Johann Christoph Freytag, A rule-based view of query
optimization. Vol. 16. 1987, ISBN: 0897912365: ACM.

[29] Alon Y Levy, Inderpal Singh Mumick, and Yehoshua Sagiv.
Query optimization by predicate move-around. in VLDB.
1994.

[30] Surajit Chaudhuri. An overview of query optimization in
relational systems. in Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of
database systems. 1998: ACM.

[31] Spark SQL; Available from: https://spark.apache.org/sql/.
[32] PortageSQL; Available from: http://www.postgresql.org/.
[33] MySQL; Available from: https://www.mysql.com/.
[34] Something for format reference

https://spark.apache.org/sql/
http://www.postgresql.org/
https://www.mysql.com/

	1. INTRODUCTION
	2. TRUTHY - SOCIAL MEDIA OBSERVATORY
	2.1 System Challenges for Truthy

	3. AD HOC QUERY WITH NOSQL DATABASE
	3.1 Query Execution with High-level Languages

	4. PERFORMANCE RESULT
	5. CONCLUSION
	6. FUTURE WORK
	7. REFERENCES

