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ABSTRACT 
Nowadays there is great research potential in analyzing the vast 
amount of data collected from social media and social network 
applications. In order to explore the correlations among this data 
and social activities, modeling techniques such as data mining and 
machine learning solutions have been applied in combination with 
ad hoc query and complicated post-query data analysis. Use of 
high-level platforms such as Pig, Hive, and Spark SQL to support 
this type of sophisticated analysis has become the most popular 
solution. However, the question remains: which of the available 
software building blocks can serve  users best according to their 
data needs? This question motivated us to research the execution 
flow and performance characteristics of these platforms, focusing 
on our special interests of social media data, to provide a detailed 
comparison for ad hoc queries and applications performed on top 
of them. 

1. INTRODUCTION 
Social media data and its applications have gained the attention 
from  commercial, academic and research communities. Many 
interesting research applications [1-6] that deal with  daily 
activities, events, and knowledge in human society have been 
developed. The data collected by these metrics of social media is 
vast, far exceeding constraints found in the storage substate, 
databases, and runtimes traditionally used to store and access 
historical data. In practice, social media service providers such as 
Twitter, Facebook and Instagram have accommodated their users 
with in-house solutions. However, for those research scientists 
and application developers who subscribe to public social streams 
to build their research systems and prototypes, it is challenging to 
select appropriate software building blocks that can scalably store, 
serve, and customize data schema for such immense data.  

Gao et al. [7-10] working with the Truthy [11] project illustrates 
the usefulness of Apache software stacks with IndexedHBase 
[12]. This in turn led to Truthy’s current deployment on a large-
scale and large-storage private cluster, MOE. Though 
IndexedHBase and its Java API have met the fundamental 
requirements for accessing and processing data analysis, there are 
still unfulfilled areas where further research is viable, especially 
when integrating the existing analysis pipelines with Apache high-

level language platforms such as Pig [13], Hive [14] and Spark 
SQL [15].  Other challenges include ad hoc queries and direct 
computation on top of storage and databases. 

The scope of our research is outlined here in very fine-grained 
low-level perspective such as I/O(s) consumption benchmark, 
state-of-the-art system-level building block comparison [16], and 
possible performance optimization research in regards to different 
types of data processing. Its aim is to understand the requisite 
background knowledge, perform benchmarks, and review the 
existing research. Based on benchmark results we can identify the 
execution and performance characteristics for queries and 
applications run on these high-level platforms. Using these 
categories, we might further investigate the differences between 
social media data and general data analysis to identify the 
potential customizations for social data analysis on high-level 
platforms.  

This paper focuses on understanding the requirements and 
boundaries of data systems that support various applications 
mixed with ad hoc queries and data analysis, especially social 
media data analysis. We benchmark query systems including Pig, 
Hive and Spark SQL. In particular, our previous work has 
investigated the possibility of using User Defined Functions 
(UDF) to support complicated iterative algorithms with fine-
grained data aggregation and communication patterns [17]. We 
are working to construct and research the state-of-the-art end-to-
end data pipeline for general scientific data and social media data.  

The paper is structured as follows. Section 2 introduces our target 
data and data model, system-level requirements, and baselines in 
supporting social media data. Section 3 describes the features and 
characteristics of ad hoc queries, and our research target of using 
high-level languages with NoSQL databases for query and data 
analysis. Section 4 benchmarks applications discussed in Section 
3. Lastly, we draw our conclusion and summarize the research 
directions in Section 5 and Section 6. 

2. TRUTHY - SOCIAL MEDIA 
OBSERVATORY 
Truthy is a public social media observatory developed as a 
research project at Indiana University. It analyzes and visualizes 
information diffusion on Twitter. Truthy monitors and collects 
Twitter data in real-time directly through the Twitter public 
steaming API [18]. Much of our work has been done recently with 
the help of this observatory, and researchers have yielded 
important inferences of human society by analyzing the social 
activities in cyberspace. 
One example of end-to-end social media data analysis [2] 
involved utilizing the IndexedHBase queries [12] on top of further 

 

 



data mining techniques, such as eigenvector modularity [19] and 
label propagation [20]. The analysis was carried out on two 
datasets about political discussion collected during the six weeks 
leading up to the 2010 U.S. congressional midterm elections and 
2012 U.S. presidential elections. The results shown in [2, 12] 
prove that the retweet networks exhibited a highly segregated 
partisan structure; users of those tweets are mainly split into two 
homogenous communities corresponding to the political left and 
right leanings. Figure 1 shows the execution flow for getting the 
graph of political polarization. In 2012, the average amount of 
collected tweets each month was about 1 billion tweets. Such a 
huge dataset proved problematic in terms of storage, as was 
providing a fast processing layer to handle such large amounts of 
data.  

 
Figure 1.  Sophisticated pipeline for visualizing Political 

Polarization 
This data observatory has been storing Twitter streaming data 
since July 2010; the current data size as of Aug 2015 is 
approximately 162TB. It includes raw compacted JSON files on 
HDFS, tweet fields and inverted indices stored as HBase tables. 
IndexedHBase [12] has been used to create inverted indices for 
raw tweets in JSON format. Various fields such as keywords, 
hashtags, geographical locations, user IDs, and retweet IDs have 
been stored as searchable rowkeys while the related tweet IDs are 
stored as associated (multi-column) values. Scientists and 
developers of Truthy perform ad hoc queries and post-query data 
analysis on these HBase tables, where tweet tables (JSON fields) 
and index tables are semi-structured with different amounts of 
columns.  

2.1 System Challenges for Truthy 
We have compared different NoSQL solutions to support indexing 
and fast queries on large-scale social media data. As a result, 
IndexedHBase was selected as the framework to store, serve, and 
perform data computation for data scientists [7-10] using YARN 
Hadoop and HBase as building blocks.  
Utilizing an infrastructure supported by IndexedHBase, our work 
delves into the system challenges for ad hoc queries and post-
query data analysis performed on large-scale social media data. 
Based on our studies, the three categories of challenges are data-
related, system-related, and programming and computation-
related. Data-related challenges store and serve incremental data 
on a scale of at least TB level, sustain or create indices with 
customized formats, and support flexible data schema for 
structured and semi-structured data with less disk consumption. 
System-related challenges offer multi-tenancy to query clients and 
application developers, as well as allowing commodity hardware 
failures with fast/auto recovery. Finally, programming and 
computation-related challenges support ad hoc query interface 
such as Pig, Hive, and Spark SQL, in addition to supporting 
customized programming in imperative programming languages 
such as Java and Python. They offer different levels of parallelism 
and sophisticated data mining and machine learning applications. 

3. AD HOC QUERY WITH NOSQL 
DATABASE 
A key characteristic of social media data analysis is the ad hoc 
queries that select the interested subset of data from a very large 

set of time spatial data stored in databases. Generally, each 
row/field of tweet data is stored with an associated timestamp and 
their related column values. An example query could be “Find all 
the related tweets with given hashtag #computing in the time 
range between June 15th 2015 and July 10th 2015”. This type of 
query can be rewritten as traditional Select-Project-Join (SPJ) ad 
hoc queries. These project and join the two datasets, the records 
within that specific time, and other sets of records within the 
target fields, such as hashtags. The size of projection data, amount 
of generated temporary tables, and the type of join operations 
depends on the target fields of each query within a single table. 
For instance, the execution flow of the example query given 
above firstly scans the entire raw data table and filters the required 
data by referring to the given predicates of time duration and a 
hashtag. Then it generates two temporary tables and performs a 
single shared-key join. Due to the extra overhead of generating 
two tables separately, in addition to performing a join aggregation 
and scanning  entire rows of each target record, Gao et al. [7-9] 
has shown that the overall performance does not meet our 
expectations. By comparison, the HBase solution scans the index 
and raw tables once and immediately filters the data with the 
support of built-in “create timestamp” for each stored row/column 
in a table. Even adopting NoSQL databases as backend storage, 
there are limited choices of database solutions that can efficiently 
store large datasets with fast (inverted) index access to the time 
spatial data. IndexedHBase was developed as the backend 
inverted index layer, where the data and indices are stored on top 
of HBase to support these complicated social media data queries. 

Type Query Exe. Steps 
Read-One-
Write-One 

get-tweets-with-meme, get-
tweets-with-text, get-tweets-
with-userid, get-retweets, get-
tweets-with-time, get-tweets-
with-phrase 

2 

Read-One-
Transform-
One 

get-retweet-edges, get-mention-
edges 

2 

Read-One-
Transform-
Many 

meme-post-count, text-post-
count, userid-post-count, user-
post-count, user-post-count-by-
text, meme-cooccur-count 

2 

Single-Scan meme-timestamp-count, text-
timestamp-count, userid-
timestamp-count 
 

1 

Table 1. Classification of support social queries 

 
Figure 2. Dataflow for Ad hoc queries of social media data 

Most of our support queries are HBase I/O intensive, which 
mainly perform random data access by specified row keys, e.g. 
tweet IDs to tweet table and keywords to text index tables. Each 
query must first retrieve the related tweet IDs from index tables 



by a given time range and queried keys. It then obtains the 
required columns from the tweet table and may perform a UDF to 
yield a stage-ready result output on HDFS for further data analysis 
as shown in Figure 2. This differs from SQL database procedure. 
IndexedHBase must build the indices as separate tables on HBase, 
and it considers extra overheads when loading data into HBase. 
Based on the execution flow and different type of data 
transformation of these queries, we have identified four categories 
of supported queries as shown in Table 1:  

1. Read-One-Write-One:  Obtain one related tweet ID 
from Index Table by the given queried key (e.g. 
hashtag), dump the whole tweet as result, e.g. get-
tweets-with-meme. 

2. Read-One-Transform-One: Obtain one related tweet ID 
from Index Table by the given queried key (e.g. 
hashtag), generate single output entry (e.g. user pair) 
from the obtained tweet, e.g. get-retweet-edges. 

3. Read-One-Transform-Many: Obtain one related tweet 
ID from Index Table by the given queried key (e.g. 
hashtag), generate multiple output entries as ArrayList, 
e.g. meme-cooccur-count. 

4. Single-Scan: read the statistic information directly from 
HBase table. 

3.1 Query Execution with High-level 
Languages 
IndexedHBase includes Java MapReduce implementations driven 
by a wrapper bash shell. Despite this, it is not easy to add new 
queries or UDF without understanding the background of Hadoop 
MapReduce. Specifically, all the supported social media data 
queries are very straightforward ad hoc queries executed with 
common database operations such as FILTER, GROUP BY, JOIN, 
and FOR EACH with built-in or UDF functions. This motivated 
us to investigate the integration with high-level abstractions such 
as Pig [13], Hive [14], and Spark SQL [15] for day-to-day query 
and data analysis. 

Most of these systems are considered as Dataflow system or  
Dataflow programming model, which is a paradigm that models a 
program as a directed graph of data [21]. In both cases, data flows 
among a series of components such as operators and functions 
which serve as a “black-box” unit (the detailed implementations 
are already defined) to transform the incoming data from its 
original format into another. Data in the execution flow is clearly 
defined as either being input or output to every atomic 
component, independently handled on each and inherently run in 
parallel. 

Pig [13] is a dataflow system built on top of Hadoop MapReduce, 
which aims to serve as a high level abstraction interfacing with 
SQL database and MapReduce computation systems. Pig itself is 
a declarative DAG-flow system, but it uses Pig-Latin [22], a 
procedural language. This makes it flexible and allows users to 
choose different implementations of the same relational operator 
(e.g. JOIN and GROUPBY) in execution. Other than the built-in 
operators, a developer can apply their own sophisticated algorithm 
to the dataflow in Pig via its UDFs. Hive [14] is another high-
level platform, but it differs from Pig by supporting data 
warehouse ad hoc queries and simple MapReduce applications for 
structured data stored on HDFS [23]. It provides a SQL-like 
language, HiveQL, to execute on top of Hadoop. Most of the 
implementation concepts of Hive derive from SQL RDBMS. 
Spark SQL [15] is another open source project inspired by Hive. 
Instead of being tightly coupled with the Hadoop MapReduce 

engine, it uses Spark as its low-level runtime, with DataFrame 
schema RDD as its major in-memory data structure embedded 
with named column (table-like) schema. The extensible query 
optimizer Catalyst is written in Scala, a  different model from 
Hive and its predecessor Shark [24].  

We will discuss the overhead of using these high-level platforms 
for the target ad hoc queries in Section 4. In addition, although we 
have not yet linked the ad hoc query with the post-query analysis, 
we recognize the need for chaining this intermediate data to next-
generation compute resources and fulfilling the dataflow of the 
entire analysis pipeline. Our previous work [17] has demonstrated 
the importance of in-memory computation and resource reuse for 
sophisticated machine learning applications with iterations. We 
not only incorporate the Hadoop plugin Harp, but allow general 
ETL queries to continue the sophisticated application immediately 
afterward [15]. This would save significant job restart overhead 
and enable fast resource allocation and reusability. Furthermore, it 
enables intuitive development writing prototypes of end-to-end 
pipelines in a single environment. Spark SQL has proposed a 
similar idea that uses the same platform and data abstractions for 
both queries and analysis, yielding meaningful results for 
sophisticated algorithms. Meanwhile, Apache Tez [25] shows the 
importance of resource reusability for complex DAG tasks on top 
of high-level platforms run on YARN Hadoop. 

4. PERFORMANCE RESULT 
Our experiments run on MOE, a large-storage, large-memory and 
high-performance private cluster at Indiana University devoted to 
the Truthy project [26, 11]. It consists of 3 login nodes and 10 
compute nodes, where each login node is set up with two Intel(R) 
Xeon(R) CPU E5-2620 v2 CPUs, 64 GB memory, and each 
compute node has five Intel(R) Xeon(R) CPU E5-2660 v2 CPUs, 
128 GB memory, 48TB HDD and 120GB SSD. All nodes are 
interconnected with a 10Gb Ethernet. We perform our tests on top 
of a Hadoop 2.5.1 cluster with different high-level platforms such 
as Pig 0.14.0, Hive 1.0.0, and Spark SQL 1.5.0. Meanwhile, 
IndexedHBase 0.2.0 is the Java MapReduce baseline.  

 
Figure 3. Performance breakdown for get-tweets 

We have implemented a total of 17 ad hoc queries [12] written in 
all the platforms mentioned above. Other than the initial stage of 
searching related tweet IDs from index tables, we compare these 
three query implementations on different platforms and examine 
their runtime behaviors as shown in Figure 3, Figure 4, and Figure 
5. Each submitted query runs with a total of 587858 tweet IDs 
obtained from meme index tables by being given the most 
common hashtag, “Follow Friday” #ff and are equally assigned to 
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9 workers; the default parallelism (the amount of reducers) is set 
to 4.  

 
Figure 4. Performance breakdown for get-retweet-edges 

 
Figure 5. Performance breakdown for meme-cooccur-

count 
Since all of these are HBase I/O intensive queries, the main brunt 
of overhead is the data retrieval time communicated with the 
HBase tweet table which stores the original tweet fields. Other 
than get-tweets query, which dumps the entire tweet to HDFS, 
every implemented UDF only scans a subset of columns and 
yields a specified format such as edge pair (user ID and retweet 
user ID) and a list of mentioned hashtags in the related tweet. 
These transformed data are collected and accumulated by using 
the standard data aggregation operations, e.g. GROUP BY and 
reduceByKey. Compared with traditional row-based databases, we 
save significant I/O overhead with the help of the columnar 
scanning provided by HBase. Note that the computation time of 
Spark SQL takes longer as Spark performs “map-only” worker 
execution; it includes the UDF transformation time (from 
DataFrame RDD to Java RDD) and cross-worker data 
aggregation/communication time, along with the output to HDFS 
time. 
In addition, since all these queries are compiled and run as YARN 
or Hadoop jobs, we also evaluate the local write bytes (except 
Spark SQL which does not have a reduce stage) and investigate 
the data aggregation overhead. As shown in Figure 6, for queries 
with reduce stages (get-retweet-edges and meme-cooccur-count), 
Pig and Hive implementations have more intermediate data and 
match the trend of overall execution time. This is due to these 
high level abstractions using tuple-based computation and 

emitting each processed tuple to the output buffer. There 
IndexedHBase is pure Java MapReduce implementation with 
which the output of the mapper is optimized, combining the 
emitted values that shared the same output key. We also observe 
this behavior from the intermediate record sizes as shown in Table 
2. 

 
Figure 6. Intermediate Local write in bytes 

Query Pig Hive IndexedHBase 
get-tweets 587858 587858 587858 

get-retweet-edges 179486 179463 167740 
meme-cooccur-

count 90216 90125 63524 

Table 2. Mapper output (combined if any) record sizes 

5. CONCLUSION 
This paper compares social media data query performance on a 
large-scale data observatory. By addressing the challenges in 
various levels of this observatory, we proposed the use of inverted 
indices generated by IndexedHBase with different high-level 
abstractions to perform query analysis and post-query data 
analysis. Our argument here and in future work is that the simplest 
solution offers the greatest potential. By this we mean 
programming interface, computation extension, and data linkage 
should be constructed within a single platform. Doing so could 
achieve better resource utilization by reducing the resource 
allocation overhead, fast data access with in-memory caches for 
frequently used data within a pipeline, and even better query 
execution flow by referring to the real-time and statistical data 
metrics of the processing data.  
As may have been observed, our research does not investigate the 
query optimization of databases [27-30] with optimization 
strategies such as predicates move-around [29], which have been 
implemented in many database [31-33, 14] and dataflow [13] 
systems, especially for Select-Project-Join (SPJ) ad hoc queries. 
However, as mentioned above, the social media data queries can 
prove challenging for traditional SPJ database systems. Our 
implementation therefore bypasses the SPJ complexity by using 
inverted indices with associated timestamps within the same cell 
of data. 

6. FUTURE WORK 
We have integrated Harp with Pig [17] to show the advantages of 
using customized data aggregation and in-memory computation 
for iterative applications. We also wrote a high-level comparison 
survey [16] to qualify the basic features and fundamental 
differences among Pig, Hive and Spark SQL. Based on these 
efforts, we plan to extend our research direction with a 
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quantitative understanding of the state-of-the-art Apache high-
level language platforms for end-to-end solutions that link 
multiple compute components into a single development and 
platform. We will also revisit the behaviors of running the 
computations on these high-level platforms versus domain-
specific languages such as R and Matlab.   
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