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Abstract—There are two important types of convergence that
will shape the near term future of computing sciences. The first is
the convergence between HPC and Cloud platforms for science.
The second is the integration between Simulations and Big Data
applications. We believe understanding these trends is not just
a matter of ideal speculation but is important in particular
to conceptualize and design future computing platforms for
Science. This paper presents our analysis of the convergence
between simulations and big-data applications as well as selected
research about managing the convergence between HPC and
Cloud platforms.

I. APPLICATIONS AND PLATFORMS: STATUS QUO

On the one hand, there is a march towards the exascale
computing platforms. On the other hand, there is a prolifera-
tion of software systems to support data- intensive applications
with an accompanying cloud infrastructure of well publicized
dramatic and increasing size and sophistication.

Traditional simulations involve applications of differential
equation based models that need very fine space and time
steps and this leads to numerical formulations that need the
memory and compute power of traditional HPC resources to
solve individual problems (capability computing). A big data
application does not typically need a full HPC system for
However there are different types of parallelism that can/need
to be exploited in order for data-intensive analytics to scale.

Ref. [1] was an initial attempt to try to understand the con-
vergence in high-performance computing and data-intensive
computing. It was by necessity both high-level and broad
reaching. In this paper we build upon initial work in Ref. [1]
and we revisit the convergence problem by decomposing along
two different trends: platforms (high-performance and cloud
platforms) and applications (simulations and big- data).

Understanding these trends is important: (i) to engineer the
platforms of the future, that might support both HPC and
data-intensive problems, (ii) allow efficient sharing of large
scale resources running simulations and data analytics; (iii)
the need for higher performance Big Data algorithms; (iv) a
richer software environment for research community building
on many ”big data” tools, and (v) Facilitate a sustainability
model for HPC, as it does not have resources to build and
maintain a full software stack.

II. UNDERSTANDING APPLICATIONS

Needless to say there are many similarities between between
data-intensive and simulation applications. Some high-level
differences worth a brief mention are:

• Classic Non-iterative MapReduce is major paradigm in
data-intensive sciences, but it is not a common simulation
paradigm except where ”reduce” summarizes pleasingly
parallel execution as in some Monte Carlo simulations

• Data intensive applications often have large collective
communication, whereas classic simulation has a lot of
smallish point-to-point messages which motivates the
MapCollective model

• Simulations tend to need high precision and very accurate
results (partly because of differential operators), however,
data- intensive problems often don’t need high accuracy
as seen in trend to low precision (16 or 32 bit) deep
learning networks, as there are no derivatives and the
data has inevitable errors.

In order to understand and analyze systematically these
differences we examined extensively the landscape of applica-
tions across the HPC and data- intensive spectrum. For exam-
ple in Ref. [?], [2] on examining applications with common
characteristics, we introduced the concept of Ogres, and 64
Convergence Diamonds (features). Ogres provide a means of
understanding and characterizing the most common applica-
tion characteristics found across the two paradigms. Ogres
provide a classification and structure including, (i) classic
MPI-based simulations, (ii) pleasingly parallel and workflow
systems, and (iii) data-intensive applications epitomized by
deep learning. Full details of Ogres and their facets can be
found in Ref. [2].

We introduce four Ogres views — classification dimensions
or features. These views are:

1) Problem Architecture: Related to the machine archi-
tecture needed to support application and describes
properties of problem such as Pleasing Parallel or Uses
Collective Communication.

2) Execution View: Describes issues such as I/O versus
compute rates, iterative nature and regularity of compu-
tation and the classic Vs of Big Data defining problem
size, rate of change, etc. Execution facets allow the
separation of ”Data” and ”Model” for both simulations



and data-intensive applications.
3) Data Source and Style views include specifying how

the data is collected, stored and accessed. For example:
Streaming, files versus objects, HDFS vs. Lustre

4) Processing view describe types of processing steps
including nature of algorithms and kernels used by
model e.g. Linear Programming, Learning, Maximum
Likelihood, Spectral methods, Mesh type. It incoporates
aspects of key simulation kernels and in particular
includes facets seen in NAS Parallel Benchmarks and
Berkeley Dwarfs

Of course there are other ways of looking at the Ogres and
our work should be treated as an initial suggestion for further
discussion.

Comparison between Data Intensive and Simulation Problems

It is useful to understand the aspects of data-intensive appli-
cations that are unique and those that are similar to traditional
compute-intensive simulations. In general, data-intensive ap-
plications are generally more heterogeneous than compute-
intensive simulation problems. Typically a data pipeline (or
workflows) comprises of multiple steps: data ingest, transfer,
pre-processing, several rounds of processing (e. g. for cleaning,
fusing, computation of summary statistics) and advanced ana-
lytics. Each step of the pipeline can be characterized according
to computational characteristics facet: (i) by the size of the
input, intermediate and output data, (ii) data access pattern
(sequential, random) and (iii) computational characteristics
(e.g. the parallelisms deployed).

The analytics part of the pipeline is compute-intensive and
thus, resemble many characteristics of traditional simulations
problems. For example, many analytics and machine learning
problems can be formulated with linear algebra or n-body (see
seven giants [3]). Thus, analytical kernels (e. g. linear algebra
libraries, such as BLAS, SCALAPACK) provide the basis
for data analytics. For example, machine learning algorithm,
such as SVM or principal component analysis (PCA) rely
on dense and sparse linear algebra. Often these analytical
kernels are implemented using low-level libraries using fine-
grained, tightly coupled parallelism often implemented with
MPI, which yield into better performance than shoehorning
the problem into a rigid MapReduce programming model.
However, there is also a lack of scalable analytics algorithms
that are able to operate on high-dimensional, sparse datasets.

We use Ogres (facets) to facilitate this comparision. There
are some clear similarities: Embarassingly parallel, BSP and
SPMD are common in both arenas. However, the Classic
MapReduce architecture is a major Big Data paradigm, but
has much less common in simulations with one example
between the execution of multiple simulations (as in Quantum
Monte Carlo) followed by a reduce operation to collect the
results of different simulations. The Iterative Map-Collective
architecture is common in Big Data analytics, such as in
clustering where there is no local graph structure and the
parallel algorithms involve large-scale collectives but no point
to point communication. The same structure is seen in N-body

(long range force) or other “all-pairs” simulations without the
locality typical from discretizing differential operators.

Many simulation problems have the Map-Communication
architecture with numerous small point-to-point messages
coming from local interactions between points defining system
to be simulated. The importance of sparse data structures and
algorithms is well understood in simulations and is seen in
some Big Data problems such as PageRank, which calculates
the leading eigenvector of the sparse matrix formed by internet
site links. Other Big Data sparse data structures are seen in
user-item ratings and bags of words problems. Most items
are rated by few users and many documents contain a small
fraction of the word vocabulary. However important data
analytics involve full matrix algorithms; for example recent
papers [4], [5] on a new Multi- Dimensional Scaling method
use conjugate gradient solvers with full matrices.

Note that there are similarities between some Big Data
graph problems and particle simulations with an unusual
potential defined by the graph node connectivity. Both use
the Map-Communication architecture and the links in a Big
Data graph are equivalent to strength of force between the
graph nodes considered as particles. In this analogy, many
Big Data problems are “long range force” corresponding to
a graph where all nodes are linked to each other. As in
simulation cases, these O(N2) problems are typically very
compute intense but straightforward to parallelize efficiently.
It is interesting to consider the analogue of the “fast multipole”
methods for the fully connected Big Data problems which can
dramatically improve the performance to O(N) or O(N log N).
Finally note the network connections used in deep learning
are sparse but in recent image interpretation studies [?], the
network weights are block sparse (corresponding to links to
pixel blocks) and can be formulated as full matrix operations
with GPUs and MPI running efficiently with these blocks.

The above discussion focuses on a qualitative comparison
of Big Data applications with traditional simulation (HPC)
applications visualization, comparing the structure. As shown
here there are similarities as well as points of distinction. It
is likely however, that there will be significant differences
in the “computational feature” facet of the two application
classes, viz., the distribution of the values of different ratios
(e.g., ratio of computing to I/O, ratio of memory to I/O etc.)
characterizing the computational feature will be different. We
will investigate both quantitative and qualitative differences in
future work.

III. UNDERSTANDING COMPUTING PLATFORMS TRENDS

There are at least three trends that we see represented in
any Future Platform for science research:

• The increasing power and complexity of modern HPC
systems as exemplified by those involved in drive to build
exascale class machines.

• The increasing use and sophistication of commercial and
open cloud infrastructure (that can be used as IaaS, PaaS,
SaaS, FaaS etc.)



• The increasing functionality and use of Big Data software
systems in conjunction with HPC.

In addition, there is growing interest in streaming data and
event based computing models such Amazon Lambda, IBM
OpenWhisk and Function-as-a-Service (serverless computing).
These general trends are likely to continue independent of
specific technology trends which we classify as micro and
macro architectural trends: Microscopic Architecture: The
three primary microscopic architecture are: (i) Continuation of
X86 systems, (ii) Many core systems (e.g., KNL) and (iii) non-
traditional architectures (e.g., GPU, FPGA) etc. Macroscopic
Architecture: The three primary macroscopic architectures are:
(i) Data Center Model, (ii) Traditional supercomputers and,
(iii) Clusters (with virtualization) such as those represented
by NSF Comet.

Furthermore, any Future Platform must satisfy the following
constraints:

• It must allow easy integration of public and private clouds
and allow HPC and cloud approaches to run well and run
together,

• It must allow the powerful features of modern clouds such
as ABDS, XaaS to be usable on HPC hardware,

• It must support distributed data sources and repositories,
• It should support modern workflows and Pythonesque

front ends; an area where simulations and Big Data have
similar requirements.

We call such platforms HPC Cloud platforms. Independent
of whether we consider ”cloudification” of HPC, or the
”HPCfication of Clouds”. Independent of the directionality,
the future platform will be a software- defined system that
works across different types of macroscopic and microscopic
architectures as well as for different applications systems.
This requires the selective integration of the Apache Big-
Data Stack (ABDS) capabilities appropriately implemented for
supercomputing platforms.

Future platforms must support the analytics requirements
from both ends of the spectrum: traditional simulation applica-
tions that need Big Data ( ”All exascale applications are data-
intensive problems”), as well as data-intensive applications
that will increasingly need high-performance capabilities (e.g.,
Deep Learning with HPC capabilities).

Given the current separation of characteristics of simulations
and data-intensive applications this requires a convergence
of capabilities: (i) there must be a richer set of analysis-
as-a-service than currently available, (ii) future analysis and
associated middleware must provide traditional performance
capabilities, yet expose fundamentally new capabilities.

IV. HPC-ABDS: SUPPORTING THE CONVERGENCE OF
APPLICATIONS AND PLATFORMS

Armed with an understanding of the spectrum of applica-
tions and platform trends, we will now discuss HPC-ABDS
software stack that will support the high- performance analysis
requirements on platforms resulting from the convergence of
high-performance and cloud platforms [6], [7], [8].

In spite of many arguments, technology for data-processing
like Spark, Flink, Hadoop, Storm, Heron are not designed to
support parallel computing well and tend to get poor perfor-
mance on those workloads that need tight task synchronization
and/or use high performance hardware. A corollary of the huge
success of unmodified Apache software results in a statement
about the lack of classic parallel computing in commercial
workloads. We know however, that such is not the case for
scientific computing workloads, and thus without refactoring
data-processing systems for parallelism they will not be very
effective for scientific computing workloads.

In addition to using the rich functionality and usability of
ABDS (Apache Big Data Stack) for HPC applications, the
adoption of community open source sustainability models are
also worthy. Further most ABDS components are optimized
for fault-tolerance and usability and not performance ABDS
run naturally on clouds and not HPC platforms where the
cloud is logically centralized (even if physically distributed)
but science data typically distributed.

Thus we have propose HPC-ABDS which uses HPC run-
time and tools to enhance commercial data systems (ABDS).
HPC-ABDS developed by the SPIDAL Project implements
the High Performance Computing (HPC) enhanced Apache
Big Data Stack (ABDS) uses the major open source Big Data
software environment but develops the principles allowing use
of HPC software and hardware to achieve good performance.

We have examined High-Performance Computing Enhanced
Big Data Stack (HPC-ABDS) where we examined the addition
of high performance runtime and components to Apache
systems. We have highlighted the importance of the Big Data
systems associated with Apache Foundation, such as Hbase,
Hadoop, Spark, Storm etc., which we term the Apache Big
Data Stack (ABDS), even though important components such
as MongoDB and Tensorflow are not Apache projects. We
note that most of these technologies are in principle usable
on both HPC and Cloud IaaS systems, though in practice
many challenges remain. Independent of the hardware infras-
tructure, there are even stronger forces driving the adoption
of ABDS technologies. They offer usability, functionality and
sustainability that is not available in the HPC ecosystem. A
realization of the HPC-ABDS concept is provided by the
SPIDAL project [9], [10] and discussed in publications [11],
[2].

Some machine learning like topic modeling (LDA), clus-
tering, deep learning, dimension reduction, graph algorithms
involve Map-Collective or Map-Point to Point iterative struc-
ture and already benefit from HPC. However, in general, deep
learning doesn’t exhibit massive parallelism due to stochastic
gradient descent using small mini-batches of training data,
but deep learning does use small accelerator enhanced HPC
clusters. If this were to change, this would have important
implications for Deep learning and other data-intensive appli-
cations uptake on HPC platforms.
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