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ABSTRACT 

Architecture and Performance of Runtime Environments for  

Data Intensive Scalable Computing 

By 

Jaliya Ekanayake 

Doctor of Philosophy in Computer Science 

Indiana University, Bloomington 

Prof. Geoffrey C. Fox, Chair 

In a world of data deluge, considerable computational power is necessary to derive knowledge 

from the mountains of raw data which surround us. This trend mandates the use of various 

parallelization techniques and runtimes to perform such analyses in a meaningful period of time. 

The information retrieval community has introduced a programming model and associated 

runtime architecture under the name of MapReduce, and it has demonstrated its applicability to 

several major operations performed by and within this community. Our initial research 

demonstrated that, although the applicability of MapReduce is limited to applications with fairly 

simple parallel topologies, with a careful set of extensions, the programming model can be 

extended to support more classes of parallel applications; in particular, this holds true for the 

class of Composable Applications. 

This thesis presents our experiences in identifying a set of extensions for the MapReduce 

programming model, which expands its applicability to more classes of applications, including 

the iterative MapReduce computations; we have also developed an efficient runtime architecture, 

named Twister, that supports this new programming model. The thesis also includes a detailed 

discussion about mapping applications and their algorithms to MapReduce and its extensions, as 
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well as performance analyses of those applications which compare different MapReduce 

runtimes. The discussions of applications demonstrates the applicability of the Twister runtime 

for large scale data analyses, while the empirical evaluations prove the scalability and the 

performance advantages one can gain from using Twister.  
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Chapter 1.                                                    Introduction 

1.1. Introduction 

With the advancements that have been made in relation to scientific instruments and various 

sensor networks, the spread of the World Wide Web, and the widespread use of digital media a 

data deluge has been created in many domains. In some domains such as astronomy, particle 

physics, and information retrieval, the volumes of data are already in the peta-scale. For example, 

High Energy Physics (HEP) experiments such as CMS and Atlas in the Large Hadron Collider 

(LHC) are expected to produce tens of Petabytes of data annually even after trimming the data 

via multiple layers of filtrations. In astronomy, the Large Synoptic Survey Telescope produces 

data at a nightly rate of about 20 Terabytes. Although not in the same range as particle physics or 
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astronomy, instruments in biology, especially those related to genes and gnomes, produce 

millions of gene data ensuring biology a place among data intensive domains.  

The increase in the volume of data also increases the amount of computing power necessary to 

transform the raw data into meaningful information. Although the relationship between the size 

of the data and the amount of computation can vary drastically depending on the type of the 

analysis performed, most data analysis functions with asymptotic time complexities beyond the 

simplest 𝑂(𝑛) can require considerable processing power. In many such situations, the required 

processing power far exceeds the processing capabilities of individual computers, and this reality 

mandates the use of efficient parallel and distributed computing strategies to meet the scalability 

and performance requirements inherent in such data analyses. 

A careful analysis on applications performed on these large data sets revealed that most such 

applications are composed of pipelines of data/compute intensive stages or filters. For some 

applications such as converting a large collection of documents to another format, a single filter 

stage is sufficient, whereas an application such as pagerank [1] require iterative application of the 

pagerank computation stage until a convergence in results is obtained. Most of these applications 

can be parallelized by applying a high level parallel construct such as MapReduce[2] to the above 

mentioned stages. As the volume of data increases or the amount of computation performed at 

each such stage increases, the overhead in applying a higher level parallel constructs to these 

individual stages diminishes making the overall computation parallelizable using higher level 

parallel constructs. We named such applications “composable” and make the prime focus in this 

thesis.  

The advancements made in computing and communication technology of the last decade also 

favor parallel and distributed processing. Multi-core and many-core computer chips are 

becoming the norm after the classical mechanism of increasing the performance of computer 
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processors by increasing the clock frequency has met its peak governed by the quantum physics. 

These powerful multi-core chips allow many programs otherwise executed in sequential fashion 

to exploit the benefits of parallelism and pack thousands of CPU cores into computation clusters 

and millions of cores into data centers[3]. Similarly, the advancements in communication 

technology have reduced the latencies involved in data transfers, which also favor distributed 

processing. 

To support data intensive scalable computing, the information retrieval industry has introduced 

several new distributed runtimes and associated programming models to the spectrum of 

parallel and distributed processing runtimes.  MapReduce[2] and Dryad[4] are two such 

prominent technologies. As many data analyses become more and more data intensive, the ratio 

of CPU instructions to I/O instruction becomes reduced. According to [5], in many of these 

applications, the CPU: I/O ratios are well below 10000:1. The above runtimes have adopted a 

more data centered approach: they support moving computation to data favoring local data 

reads, simple programming models, and various quality of services. Initial results from the 

information retrieval industry show that they can be deployed in large computation 

infrastructures built using commodity hardware and that they provide high-throughput 

computing capabilities amidst various types of failures in computation units. 

Although the above technologies have shown promising results in information retrieval, their 

applicability to a wide variety of parallel computing has not been studied well. This thesis 

focuses on MapReduce technologies and its related programming model. Here, we try to 

understand the  following foci: the applicability of the MapReduce programming model to 

different classes of parallel applications, especially for the composable applications; how the 

existing MapReduce runtimes support these applications; and how the programming model 

could be extended to design an efficient MapReduce runtime to support more classes of parallel 
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applications by incorporating knowledge and experience from classical approaches to parallel 

processing such as MPI[6, 7]. The thesis also presents a detailed performance analysis of different 

MapReduce runtimes in terms of performance, scalability and quality of services. 

1.2. The MapReduce Programming Model 

MapReduce is a distributed programming technique proposed by Google for large-scale data 

processing in distributed computing environments. Jeffrey Dean and Sanjay Ghemawat describe 

the MapReduce programming model as follows: 

• The computation takes a set of input (key,value) pairs, and produces a set of output 

(key,value) pairs. The user of the MapReduce library expresses the computation as two 

functions: Map and Reduce. 

• Map, written by the user, takes an input pair and produces a set of intermediate (key,value) 

pairs. The MapReduce library groups together all intermediate values associated with the 

same intermediate key I and passes them to the Reduce function.  

• The Reduce function, also written by the user, accepts an intermediate key I and a set of 

values for that key. It merges together these values to form a possibly smaller set of values. 

Typically, just zero or one output value is produced per Reduce invocation[2]. 
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Figure 1. Data Flow in MapReduce programming model 

Furthermore, because of its functional programming inheritance, MapReduce requires both map 

and reduce tasks to be “side-effect-free”. Typically, the map tasks start with a data partition and 

the reduce task performs such operations as “aggregation” or “summation”. To support these, 

MapReduce also requires that the operations being performed by the reduce task to be both 

“associative” and “commutative”.  These are common requirements for general reductions. For 

example, in MPI the default operations or user defined operations in MPI_Reduce or 

MPI_Allreduce are also required to be associative and may be commutative. 

Counting word occurrences within a large document collection is a typical example used to 

illustrate the MapReduce technique. The data set is split into smaller segments and the map 

function is executed on each of these data segments. The map function produces a (key, value) 

pair for every word it encounters. Here, the “word” is the key and the value is 1. The framework 

groups together all the pairs, which have the same key (“word”), and invokes the reduce function 
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by passing the list of values for a given key. The reduce function adds up all the values and 

produces a count for a particular key, which in this case is the number of occurrences of a 

particular word in the document set. Figure 1 shows the data flow and different phases of the 

MapReduce programming model. 

1.3. Motivation 

The increasing amount of data and the vast computing power they require to be transformed into 

knowledge have created a diverse set of problems in many domains. As a response to this 

growing need the information retrieval community has come up with new programming models 

and runtimes such as MapReduce and Dryad, that adopt more data centered approaches to 

parallel processing and provide simpler programming models. On the other hand, the parallel 

runtimes such as MPI and PVM used by the High Performance Computing (HPC) communities 

have accumulated years of experience of HPC communities into their programming models; thus 

their efficient runtimes are applicable to more classes of applications. This thesis is motivated by 

the following hypothesis: 

With the diversity of the parallel applications and the need to process large volumes of data, we 

argue that, by extending simpler, data centered programming model of MapReduce using the proven 

architectures and programming models in HPC world, we will expand its usability to more classes of 

parallel applications. 

The MapReduce programming model has attracted a great deal of enthusiasm because of its 

simplicity, as well as the improved quality of services it can provide. In classic job execution 

infrastructures, the scheduling decisions are influenced mainly by the availability of computer 

resources. Further, in many classic parallel runtimes, the movement of data to the individual 

parallel processes is typically handled via shared file systems or a master process sending data to 

slave processes. As many data analyses become more and more data intensive, the ratio of CPU 
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instructions to I/O instruction reduces. Amdahl’s IO law states that the programs complete one 

I/O per 50,000 instructions[8], and Jim Gray and Prashant Shenoy claim that, in many scientific 

applications, this rate drops well below one I/O per 10000 instructions[9].  As we build 

infrastructures to handle the data deluge, the above observations suggest that using new 

programming models such as MapReduce based on the concept of “moving computation to 

data” could be more efficient. Although the MapReduce was originated from the information 

retrieval industry, our initial evaluations show it can be applied to many Single Program 

Multiple Data (SPMD)[10] style problems in various scientific domains as well. 

Classic parallel applications that were developed by using message passing runtimes such as 

MPI[11] and PVM[12] utilize a rich set of communication and synchronization constructs offered 

by those runtimes to create diverse communication topologies within the parallel applications. 

Further, the parallel algorithms targeted for these runtimes assume the availability of a diverse 

set of communication constructs in them as well. For example, a matrix multiplication application 

which implements the Fox algorithm[13] in MPI utilizes the processes mesh construct available in 

MPI. By contrast, MapReduce and similar high-level programming models support simple 

communication topologies and synchronization constructs. Although this limits how they can be 

applied to the diverse classes of parallel algorithms, our initial analyses revealed that many 

data/compute intensive applications can be implemented by using these high level 

programming models as well. When the volume of the data is large, algorithms based on simple 

communication topologies may produce performances comparable to the algorithms that utilize 

complex communication topologies which have fine grain synchronization constructs. These 

observations also favor MapReduce, since its relaxed synchronization constraints do not impose 

much of an overhead for large data analysis tasks. Furthermore, the simplicity and robustness of 

these programming models supersede the additional overheads.  
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The emerging trend of performing data analysis on Cloud infrastructures also favors the 

MapReduce style of simple programming models. Cloud infrastructures are comprised of 

thousands of computers organized into data centers, that provide both data storage and 

computation services to the users. Most of these infrastructures are built using commodity 

hardware, and hence, the typical network bandwidth available between computation units is 

well below the typical network bandwidth available in high performance computation clusters. 

Apart from the above conditions, most cloud infrastructures utilize virtual machine technologies 

to maximize their resource utilization, and also, to isolate the user level applications (including 

the operating system) from the bare-metal systems. These characteristics introduce latencies into 

the communication medium, and are significantly higher than those of computation clusters. 

Programming models such as MapReduce rely on relaxed synchronization constraints; thus they 

operate with higher task granularities that have less susceptibility to latencies. These features 

make them an ideal match to operating on Clouds. 

Various data analysis applications show different data and compute intensity characteristics. 

Further, they also exhibit diverse communication topologies. MapReduce is typically applied to 

large scale data parallel applications with simple communication topologies. However, as more 

and more applications have become data intensive, we have noticed that the MapReduce 

programming model can be used as a parallelization construct in many other types of 

applications as well. Applications with simple iterative computations represent an important 

class that expands across domains such as data clustering, machine learning, and computer 

vision. In many of these algorithms, the computations performed inside the iterations can be 

represented as one or more MapReduce computations to exploit parallelism. This idea is also 

shown by Cheng Tao et al., in their paper demonstrating how MapReduce can be applied to 

iterative machine learning algorithms in multi-core computers[14]. However, we noticed that, to 
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support such algorithms and expand the usability envelope of MapReduce effectively, we need 

several extensions to its programming model as well as an efficient implementation.  

There are some existing implementations of MapReduce such as Hadoop[15] and Sphere[16], 

most of which adopt the initial programming model and the architecture presented by Google. 

These architectures focus on providing maximum throughput for single step MapReduce 

computations (computations that involve only one application of MapReduce) with better fault 

tolerance. To support the above goals, they incorporate various measures which can be justified 

for some of the large scale data analysis but which introduce considerable performance 

overheads for many other applications for which the MapReduce programming model can prove 

applicable. For example, in Hadoop, the intermediate data produced at the map tasks are first 

stored in the local disks of the compute node where the map task is executed. Later, reduce tasks 

download this output of the map tasks to the local disks where the reduce tasks are being 

executed. This approach greatly simplifies the fault handling mechanism of Hadoop, as the 

output of each parallel task exists in some form of file system throughout the computation. 

Hadoop also utilizes a dynamic task scheduling mechanism for its map/reduce tasks to improve 

the overall utilization of the compute resources. Although this approach allowed Hadoop to 

support features such as “dynamic flexibility” – which is a feature that allows the runtime in 

using a dynamic set of compute resources, this option can also induce higher overheads, for 

applications that execute tasks repetitively. Furthermore, in these runtimes, the repetitive 

execution of MapReduce results in new map/reduce tasks for each iteration which loads or 

accesses any static data repetitively. Although these features can be justified for single step 

MapReduce computations, they introduce considerable performance overheads for many 

iterative applications.  
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In contrast to the above characteristics of MapReduce,  we noticed that the parallel processes in 

High Performance Computing (HPC) applications based on MPI, have long lifespans in the 

applications; most of the time, they utilize high performance communication infrastructures to 

communicate fine grain messages with higher efficiencies for computation dominated workloads. 

The use of long-running processes enables the MPI processes to store any static or dynamic data 

(state information) necessary for the computation throughout the application life cycle. On the 

other hand the use of stateful processes makes it harder to support fault tolerance. The use of low 

latency communication infrastructures makes the inter-process communications highly efficient, 

as compared to the “disk->wire->disk” approach to data transfer adopted by the MapReduce 

runtimes such as Hadoop. Furthermore, by supporting low-level communication constructs, MPI 

and similar parallel runtimes allow the user to create parallel algorithms with a wide variety of 

communication topologies.  K. Asanovic et al. presents seven dwarfs capturing various 

computation and communication patterns of parallel applications into equivalence classes [17]. 

Although there are analyses like the one described above for the HPC applications, we could not 

find a detailed analysis which compares high level abstractions such as MapReduce and Dryad 

and the mapping of parallel applications to these abstractions. This knowledge would be crucial, 

and would be required in order to map parallel applications to the new programming runtimes 

so as to obtain the best possible performance and scalability for the applications. This is one of the 

areas that we will explore in this research. 

The above observations support our hypothesis of extending the MapReduce programming 

model by incorporating some of the features that are present in the HPC runtimes; in doing so we 

can provide an efficient implementation so that MapReduce can be used with more classes of 

parallel applications.  
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1.4. Problem Definition 

In a world deluged by data, high-level programming models and associated runtimes that adopt 

data centered approaches have shown promising results for data intensive computing. 

MapReduce is one such key technology that has been introduced to tackle large scale data 

analyses from the information retrieval community. However, we noticed the following gap in 

the current research concerning these high-level programming models and their architectures; 

this research strives to minimize this gap. 

• First, the applicability of MapReduce to the diverse field of parallel computing is not well 

studied. We try to fill this gap by applying MapReduce to a selected set of applications to 

represent various classes of applications that MapReduce could be applied to; we intend 

to demonstrate the mapping of parallel algorithms to the MapReduce domain while 

comparing and contrasting the characteristics of few existing high level programming 

models. 

• Second, from our preliminary research, we have identified that, although the MapReduce 

programming model is a simple yet powerful programming construct that can be used in 

many parallel algorithms, current MapReduce runtimes are inefficient for many 

applications that require repetitive application of MapReduce or applications that require 

low latency communication. On the other hand, some features of the HPC runtimes make 

them highly desirable for some of these applications, even though the programming 

models of the HPC runtimes are not simple nor are they an ideal match for the data 

deluge. By incorporating the lessons learnt from the HPC community to MapReduce, we 

wish to address the challenge of devising a new programming model and supporting it 

on an efficient runtime. 
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• Finally, a detailed performance analysis of high level programming runtimes, which 

identify their strengths and weaknesses for different classes of applications while 

comparing them with solutions from the HPC world, has not yet been performed. 

Furthermore, identifying the behaviors of these runtimes in virtualized environments 

such as Clouds certainly exist as a goal worthy of further study and research. 

1.5. Contributions 

We envision the following contributions could emerge from this research: 

• The architecture and the programming model of an efficient and scalable MapReduce 

runtime which could expand applicability of the MapReduce programming model to 

more classes of data intensive computations, especially for iterative MapReduce 

computations. 

• A prototype implementation of the proposed architecture and the programming model 

that minimizes the overheads suffered by typical MapReduce runtimes.  

• A classification of the problems that can be handled by MapReduce and algorithms for 

mapping these to the MapReduce model while minimizing overheads, followed by a 

detailed discussion of several scientific applications that could be developed using 

different runtimes including the proposed runtime. 

• A detailed performance analysis comprised of application level performance 

characteristics to micro benchmarks, which can evaluate the performance, scalability, and 

overhead of the proposed runtime against other relevant runtimes. 
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1.6. Thesis Outline 

This thesis is organized as follows:- 

We present the current state of the parallel programming models and runtimes related to this 

thesis in Chapter 2. Here, we focus on several aspects of parallel computing such as scalability, 

throughput vs. efficiency, level of abstraction, fault tolerance, and support for handling data. The 

chapter also introduces some of the technologies that we used for our performance comparisons 

with the proposed runtime. 

After classifying the MapReduce applications to several distinct classes in Chapter 3, we 

introduce the extended MapReduce programming model that we propose in this thesis in 

Chapter 4, along with an explanation of how it can be used to support different classes of 

applications. Furthermore, in this chapter, we compare the proposed programming model with 

some of the other parallel programming techniques that can be used to implement such 

applications, and we try to conclude with a set of equivalence classes of applications. 

This is followed by a detailed explanation of the architecture and the implementation of the 

proposed runtime “Twister” in Chapter 5. Here we discuss the various architectural designs we 

used in the Twister runtime and compare and contrast it with other MapReduce and HPC 

runtimes; we also discuss the feasibility of our proposed architecture. 

In Chapter 6, we present the data analysis applications we have implemented using various 

parallel runtimes in order to understand their benefits and compare them with the proposed 

architecture.  Under each application we describe the type of benchmarks we have conducted the 

results obtained followed by a discussion on results. This chapter serves as the proof of our 

hypothesis presented in the Section 1.3 of this thesis. 
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Finally we present our conclusion and outline the direction of future work in Chapter 8 after 

following a related work to this thesis in Chapter 7. 
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Chapter 2. Parallel Runtimes & Programming Models 

The discussions found in this thesis extend into many areas in parallel and distributed processing 

runtimes and their programming models. Moreover, our work is built on top of the results of 

much previous research. In this section, we discuss the state of the art in the above areas. First, 

we will present a taxonomy of parallel and distributed processing runtimes relevant to our 

research, by showing the cosmic view of the technologies and the position of the proposed 

runtime in this list of technologies. As our work is mainly centered on MapReduce technologies, 

we will next discuss the exiting MapReduce technologies and compare the other relevant 

technologies with MapReduce using six dimensions: (i) data handling, (ii) communication, (iii) 

synchronization, (iv) task granularities, (v) scalability, and (vi) Quality of Service (QoS).  We also 

extend the discussions to the cloud computing paradigm and its related technologies as well. 
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2.1. Taxonomy of Parallel/Distributed Runtimes 

Parallel/Distributed 
Runtimes 

Batch 
Queues 

Cycle 
Harvesting 

Workflow 

Message 
Passing 

Cloud 
Technologies 

Special 
Frameworks 

TORQUE, 
Moab 

Condor/ 
DAGMan 

Composition 
Tools 

Script based 
runtimes 

XBaya, 
Taverna 

Swift, 
Falkon 

MapReduce 

DAG Based 

Hadoop,  
Twister 

Dryad, 
DryadLINQ 

Private 
Domain 

Public 
Domain BOINC 

Classic Cloud Amazon Queues 

All-Pairs, 
SAGA 

Shared 
Memory 

Distributed 
Memory 

OpenMP 
CCR 

MPI 
PVM 

Threads Threading support in 
languages 

Parallel 
Languages X10, Fortress, Chapel 

Message 
Passing 

Shared 
Memory 

OpenMP 
CCR 

Threads Threading support in 
languages 

Parallel 
Languages  X10, Fortress, Chapel 
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2.2. Cloud and Cloud Technologies 

Cloud and Cloud Technologies are two distinct terms that we use throughout this thesis; hence, 

the term deserves a clear definition. By “Cloud,” we refer to a collection of infrastructure services 

such as the Infrastructure-as-a-service (IaaS) and the  Platform-as-a-Service (PaaS), etc., provided 

by various organizations where virtualization plays a key role. By “Cloud Technologies,” we 

refer to various technologies associated with clouds such as storage services like the S3[18], 

communication queues like the Simple Queue Service (SQS)  in Amazon and the Azure Queues 

in Windows Azure[19]; most importantly, we also focus on the high level runtimes such as 

Hadoop[15] and Dryad [20]. 

2.3. Existing MapReduce Architectures 

Along with the MapReduce programming model, Jeffrey Dean and Sanjay Ghemawat describe in 

their paper the architecture that they adopted at Google. Most of their decisions are based on the 

scale of the problems that they solved using MapReduce and the characteristics of the large 

computing infrastructure in which these applications were deployed. Apache Hadoop and 

several other MapReduce runtimes such as Disco [21] and Sector/Sphere also adopted most of 

these architectural decisions. Below, we will list some of the most important characteristics of 

these runtime, as it will be useful to explain and compare them with the architectural decisions 

we made in this thesis later. 

2.3.1. Handling Input and Output Data 

The key motivation behind the MapReduce programming model is to support large scale 

computations that show “pleasingly parallel” characteristics in terms of data. As applications 

become more and more data intensive, their performances are greatly determined by the 

bandwidth of the medium used to access data. In this respect, moving data to the available 
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computing resources before processing as done by many classic distributed and parallel 

computing infrastructures is not feasible. To eliminate this costly (in terms of performance) data 

movement, MapReduce architectures have introduced the concept of the “data-compute node”, 

which represents a computer that is used as both a data storage device and a computation unit.  

(Note: Please note that following this point, we will simply use the term “node” to refer to a 

“data-compute node” when we discuss MapReduce related technologies).  

The above approach allows MapReduce runtimes to utilize larger disk bandwidth produced by 

the local disks of the nodes. However, to manage data in these local disks and to obtain meta-

data to move computation to data, a higher level data management infrastructure is necessary. To 

support these features, most MapReduce runtimes use distributed storage infrastructures built 

using local disks to read input data and store final output data. Both Google and Hadoop utilize 

distributed fault-tolerance file systems – GFS[22]  and HDFS[15] in their MapReduce runtimes. 

Sphere MapReduce runtime utilizes a distributed file system named Sector that uses slightly 

different architecture than GFS or HDFS. Microsoft DryadLINQ[23] on the other hand, uses a 

simple meta-data construct named a “partitioned file” to process data from  local disks of the 

compute nodes that are organized as Windows shared directories. With these features, most 

MapReduce runtimes use distributed storage infrastructures to read input data and store final 

output data. In the remainder of this section, we will discuss some of the above storage 

architectures. 

2.3.2. GFS and HDFS 

The Google File System (GFS) has been developed to provide a distributed fault tolerance file 

system built by using a large number of commodity machines. Many design decisions of the GFS 

have been influenced by the type of operations they performed on large data sets as well as the 

typical applications they use. For example, they noticed that most common file access patterns for 
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large data sets is either  the initial file creation, file read, or file appends. Random updates or 

writes on large data files are rare. We also noticed similar characteristics on large scientific data 

products. Typically, most of these data sets are read from different applications (algorithms) for 

inferences and rarely modified. In both Google and Hadoop MapReduce runtimes, the 

distributed file system is used to read input data and store output data. This further simplifies the 

type of operations performed on the file system and makes it almost similar to the “write-once-

read-many” access model.  

The GFS architecture has two main components: (i) the GFS master and (ii) the GFS chunk server. 

The Hadoop Distributed File System (HDFS) is much closer to the GFS in design and in the 

HDFS; these entities are called (i) the Name Node and (ii) the Data Node respectively. The GFS 

master keeps track of the all the meta-data including the file system namespace, while the GFS 

chunk servers store data chunks assigned to them by the GFS master. Both the GFS and the HDFS 

store data as fixed size chunks or blocks within the distributed file system, and they use 

replications to recover from failures. Data which is read and is written directly to and from clients 

goes to the chunk servers (data nodes), which are located using the meta-data served by the 

master. Both file systems provide an interface with common file system operations to clients 

although they do not implement a standard file system API such as POSIX. 

The use of fixed sized blocks simplifies the design of the GFS and the HDFS since the blocks 

which belong to a file can be calculated using the record ranges. Furthermore, these file systems 

use fairly large blocks, typically megabytes in size, as compared with the classic distributed file 

systems. This feature reduces the number of blocks at the chunk servers and blocks related meta-

data that need to be stored at the master. Also, reading large files is simplified by reading blocks. 

However, we noticed that the matching block boundaries and data parallelism for various data 

types is not straightforward.  For example, most scientific data is typically stored as files and the 
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boundaries for parallel processing typically exist at the file level. If the files are fairly equal in 

size, one can group several files into a block (if the files are comparatively smaller than the typical 

best performance block sizes), or they can select an appropriately sized block to match the size of 

the files. Still, the blocks may need to be padded to match the differences in file sizes and the 

block boundaries. If the files are not similar in size, the padding will increase. Breaking a file into 

multiple blocks is an option, when the data in files are represented as records and the data 

parallelism exist at record level. For example, in text data (web pages, text documents etc..) a 

record can be a sentence, a line of text or a paragraph, and many operations performed on text 

data collections can be parallelized at this records level. 

2.3.3. Sector 

Sector is introduced as a storage cloud[16]. Similar to the GFS and the HDFS architectures, Sector 

also uses a master to hold meta-data while a set of worker nodes store files. The authors claimed 

that it can be deployed across wide area networks with high speed network connections and can 

support better upload and download capabilities. The main distinction between Sector and the 

GFS and the HDFS is that it does not store large data sets into chunks or blocks, and instead, it 

expects the user to handle data partitioning. Sector stores these files (data partitions) as is, in the 

local disks of the storage nodes and it supports replications. The main advantage of this approach 

is that, a computation infrastructure built on top of Sector (Sphere is such a computation 

infrastructure), can access files directly as native files instead of accessing them via an API 

provided by Sector. This is highly beneficial when legacy applications need to be used as data 

processing functions (as executables) in the MapReduce style processing runtimes. For example, a 

gene assembly program named CAP3 [24] that we will discuss later expects input data to be 

passed as files using command line arguments. To execute such an application using Hadoop, the 

Hadoop application first needs to copy the data from HDFS to the local machine’s file system and 
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invoke CAP3 executable passing input file names in the command line. The data copying from 

the HDFS to the local file system is required, since the HDFS does not provide a standard file 

system interface such as POSIX. In contrast,  the same application with Sector can directly execute 

the CAP3 program passing input files as command line arguments, since they exists as files (not 

as blocks) in the local file system.  However, this approach leaves the task of partitioning data to 

the user, which we think could be supported by providing a tool to perform data partitioning 

using custom partitioning schemes. 

2.3.4.  DryadLINQ and the Concept of Partitioned Table 

The academic release of Microsoft DryadLINQ [25] uses Windows shared directories to read 

input data and to store output data. Instead of providing a file system to keep track of the data 

partitions and their replications, DryadLINQ expects the user to provide a special file named the 

“Partitioned File” to the runtime, which contains the meta-data regarding the data partitions and 

their locations among the collection of local hard disks of the computations nodes. With this 

information, DryadLINQ tries to schedule data processing tasks on the nodes on which the data 

is available. It also supports replicas of data partitions so that, in the case of failure of a given 

node, the tasks could be rescheduled to run on a different node.  DryadLINQ provides 

programming constructs to partition data based on the “hash” and “range” values. However, it 

does not provide a tool for the user to distribute data partitions across computation nodes, or to 

collect the results to a shared location, which we think, is very important for these types of 

distributed runtimes.  

Overall, we also think that a distributed file system that keeps track of data partitions and their 

replications is an ideal candidate for distributed runtimes based on MapReduce. The GFS, the 

HDFS, and the Sector file systems handle fault tolerance by supporting data replications, and 

they actively maintain a given number of replications of data blocks amidst node failures, which 
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makes the overall distributed runtime more robust. However, with the capability of using 

directly accessible files as data partitions, the approach adopted by Sector is more flexible. 

2.3.5. Handling Intermediate Data 

In most MapReduce runtimes, the intermediate data produced after the map stage of the 

computation is handled using the following steps. 

1. The map outputs are first buffered in memory and continuously pushed to a file(s) in the local 

disk of the nodes the map tasks are executed.  The meta-data regarding these outputs are sent 

to the master process. 

2. The master process assigns map outputs to appropriate reduce tasks based on some form of a 

“key selector” and it notifies the reducers, which then retrieve data via some communication 

protocol such as HTTP and store them in the local disks where they are being executed. 

3.  Once all the map outputs are received for a particular reduce task, the runtime performs a 

sorting operation on the reduce inputs (map outputs) based on the “key” and invoke the 

reduce function.  

This scheme of handling intermediate data is both scalable and robust. Since the intermediate 

data is handled in files, the volume of intermediate data is limited only by the amount of local 

disk space available in all compute nodes. It is robust because it makes the fault tolerance 

functionality of the runtime simpler and straightforward. For example, if the map tasks do not 

store their outputs in the local disks first, a failed reduce task will require a re-execution of all the 

map tasks to get its portion of reduce inputs. With the above scheme, a failed reduce task only 

needs to collect data from the nodes where the map tasks stored their outputs.  

Although the above approach is robust and scalable, it adds a considerable latency to the data 

transfer between the map and the reduce tasks, especially with workloads with equal work load 
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distributions. Since the data transfer can start immediately after a map task is completed, the 

effect of latency is less significant for MapReduce computation where the work load distribution 

at the map tasks is not uniform. In these type of computations, the data transfer continues along 

with the map stage, and, at the end of the map stage of the computation, the reduce tasks need to 

wait till the data is retrieved from the slow map tasks. However, for workloads with equal load 

distribution, all the data transfers start in a close time interval and the reduce tasks need to wait 

till all the data is transferred via disk->wire->disk transfer approach. 

Classic parallel runtimes such as MPI uses in-memory communication mechanisms to transfer 

data between parallel processes, and hence, they operate with minimum latencies. On the other 

hand, the performance gain results in highly complex fault tolerance mechanisms in MPI. In our 

design, we try to incorporate the in-memory data communication approach with MapReduce. 

2.3.6. Scheduling Tasks 

Google’s MapReduce and Hadoop use a dynamic scheduling mechanism. In this approach, the 

master assigns map/reduce tasks to the available computation resources at the runtime. 

DryadLINQ, on the other hand, uses a static scheduling approach in which the parallel tasks in a 

particular stage of the DAG (Note: DryadLINQ uses a DAG as the execution flow) are assigned to 

nodes at the beginning of the computation. Both approaches have their own pros and cons.  With 

the dynamic scheduler in Hadoop, it can utilize compute resources when they become available, 

which yield a higher utilization. It also makes the re-scheduling of tasks, in the case of a failure, 

more straightforward for the master process. Furthermore, when the workload is skewed and 

there are more tasks than there are available computation resources (CPU cores or threads), this 

approach can effectively taper out the skewness of the task distribution. In contrast, a static 

scheduling with the capability of re-scheduling in the event of failures will produce minimum 

scheduling overhead. To load balance a skewed work load with this approach, one can use 
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randomization in task assignment so that tasks with different skewness are assigned to a given 

processing element. 

2.3.7. Fault Tolerance 

Failures are common in distributed runtimes that operates on thousands of computers, especially 

when the computation infrastructure is built using commodity hardware equipments. Although 

this is different from the experience we have in using high end computation clusters with better 

networking equipments, and also in using leased resources (virtual machines) from Cloud 

providers, we also identify the need for producing distributed runtimes with fault tolerance 

capabilities. 

Handling failures is one of the key considerations of Google’s MapReduce architecture, and 

similarly, this is also the case in Hadoop as well. In both Google and Hadoop MapReduce, the 

distributed file systems handle the failures of the disks or nodes using data replication. Therefore, 

applications can process input data amidst node failures, provided that the number of replicas of 

data and the replica placement can effectively handle failures. Further, their approach of writing 

intermediate data products to persistent storage simplifies the failure handling logic. 

In both Hadoop and the Google’s MapReduce, failures of map tasks are handled by rerunning 

them, while a failure of reduce tasks requires downloading the outputs of map tasks and re-

execution of the reduce task. The master process that handles the scheduling and keeps track of 

the overall computation is assumed to run on a node that is less susceptible to failures. A failure 

in this node requires a total restart of the overall runtime. 

2.4. Batch Queues 

Batch queues provide an interface to schedule jobs using computation infrastructures ranging 

from single clusters to computation grids[26]. The jobs for these schedulers could be as simple as 
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an application running on a single computer, or as complex as a parallel application that runs on 

thousands of computers. The main task of theses schedulers is to allocate resources to this wide 

variety of requirements in a fair manner while maximizing the resource utilization. Many parallel 

applications that resemble “embarrassingly parallel” characteristics, either as data parallel or task 

parallel, can be scheduled as a collection of independent tasks using job queues. These 

independent tasks typically do not require any form of inter task communication, and hence, they 

fit best with such a scheduling mechanism.  

There are several ways one can access input data in the above types of applications, including 

network file system in a cluster, shared file systems, or even the option of moving data 

dynamically to the local disks using scripts. Typically, the data is moved to computation 

resources during the execution time. MapReduce programming model reduces to a “map-only” 

mode when no reduce phase is used in the computation which resembles an embarrassingly 

parallel application executed as a collection of map tasks.  However, unlike the batch queues 

where the input data for applications are typically moved to computation resources, the data 

centered approach adopted in MapReduce allows for better data and computation affinity by 

minimizing the data movement costs. Several have suggested[27, 28] locality aware scheduling to 

minimize the data movement, as this is especially effective for data intensive applications. 

 The task granularities of such applications vary with the type of application but coarse grain 

tasks would yield lower overheads due to lower scheduling overheads. With correct task 

granularities, similar parallel applications scale almost linearly with the data and computing 

resources. When MapReduce is used as a “map-only” computation to execute a collection of 

independent tasks, the distinction between the Batch Queues and MapReduce becomes blurred 

except for the differences in the data handling.  Batch queues provide mechanisms to monitor the 

status of jobs, and mechanisms to guarantee fault tolerance, which are based on checkpoints and 
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the re-execution of task[29, 30]. Scheduling a large number of related parallel tasks using job 

queues can be required by some parallel applications to which runtimes such as SWARM[31] can 

be applied. 

Thilina et al. showed that the same concept of batch queues can be used in Clouds to schedule 

parallel applications that are embarrassingly parallel[32]. In these settings, the schedulers are 

replaced by a user developed applications that simply monitors a message queue for task 

descriptions to execute on cloud resources.  

2.5. Cycle Harvesting 

Cycle harvesting techniques such as the Berkeley Open Infrastructure for Network Computing 

(BOINC)[33] achieve massive computational power by aggregating the compute time donated by 

the voluntary participants around the globe. Condor  is a workload management system that was 

first developed as cycle harvesting technique, and later, it evolved into a fully fledge distributed 

processing infrastructure. Condor creates a pool of computational resources, to which the users 

can submit jobs. The resources in the Condor pool can be either cycle sharing or dedicated. 

Typical data access patterns in both these approaches (public and private domains) involve 

moving data to the computation resources and hence, they are more suitable for applications 

with higher computation to data access ratios. Condor provides two problem solvers (i) Master-

Worker, and (ii) Directed Acyclic Graph Manager (DAGMan) [34]- which could be used to 

execute various parallel computation tasks .The master-worker approach can be used to execute a 

set of parallel computation tasks such as parameter searches where the program performs the 

same computation on slightly different inputs. These types of computations are embarrassingly 

parallel in nature and work well with this type of infrastructures. DAGMan allows the user to 

specify the computation task as a Directed Acyclic Graph (DAG), in which the vertices represent 

the computation tasks and the edges represent the data flow between two computation tasks 
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(vertices). Although the DAG approach expands the applicability of Condor to more complex 

parallel processing algorithms, still, the expressiveness of a DAG is limited compared to a 

scripting language or a fully-fledged programming language that could be used to describe the 

problem. In addition, representing iterative computations is hard in DAG based systems. Condor 

supports task-level check pointing so that a task executing in a compute node can be stopped and 

migrated to another node for further execution in the case of the failure of the current hardware 

node.  

2.6. Work Flow 

Workflows schedule a set of related tasks to be tied up as an execution graph (workflow) on 

distributed computational resources where the tasks could be simple executables or fully-fledged 

parallel programs that use hundreds of processes. With Grid computing [26], the scientist use 

workflows to execute large scale scientific applications using many heterogeneous systems across 

the Grid. G. Fox and D. Gannon define the workflow in the context of Grid computing as follows. 

 “The automation of the processes, which involves the orchestration of a set of Grid services, agents 

and actors that must be combined together to solve a problem or to define a new service” [35] 

Workflow runtimes such as Pegasus[36] extend the resource allocation to the emerging cloud 

environments as well. Typical workflow scheduling is mainly determined by the availability of 

the resources and hence, the workflow runtimes schedule data movement jobs along with the 

tasks in the workflows. Data locality aware scheduling is used for data intensive applications.  

The granularity of the services used in the workflows is coarser than the individual computations 

in MapReduce domain. However, for many embarrassingly parallel applications that are 

composed of independent tasks, this distinction becomes blurred. G. Fox and D. Gannon further 

classify the workflows into four distinct classes depending on the complexity of the workflow 
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graphs: (i) linear workflows, (ii) acyclic graphs, (iii) cyclic graphs, and (iv) complex – too large 

and complex to effectively “program” as a graph.  

The composition of workflows can range from simple scripts to widely used  service composition 

languages to graphical interfaces such as those discussed here [37]. Supporting the quality of 

services such as fault tolerance and monitoring is an important consideration in workflow 

runtimes. J. Workflow runtimes support fault tolerance in two granularities :(i) task-level, and (ii) 

workflow-level. At the task level, individual services or tasks are supported with fault tolerance, 

whereas in the workflow level, the entire workflow graph is supported with fault tolerance. Yu 

and R. Buyya in their paper[38] present a list of major workflow runtimes and their support for 

fault tolerance. Workflow composition tools such as Xbia[39] provides graphical interface to 

compose workflows as well as to real time monitoring of running workflows. 

2.7. Parallel Languages 

Parallel languages try to minimize the complexity of programming parallel applications. There 

are a wide variety of parallel languages targeted for different styles of programming[40] 

However, as the applications become more and more data intensive, languages that supports 

coarse the grained SPMD style programming models on distributed memory architectures are 

proven to be more beneficial. In this respect, language extensions provided as libraries such as 

MPI (in various languages such as C, C++, and FORTRAN), PVM, Charm[41] provide more 

flexibility to program parallel algorithms on distributed memory infrastructures (We will discuss 

them in more detail in the next section). In contrast, as hardware resources become more and 

more multi/many core oriented, the applications can use parallel languages to exploit the fine 

grain parallelism available in programs.  

Three high level languages that came into the forefront with the emergence of MapReduce 

technologies are Sawzall[42], DryadLINQ, and PigLatin[43]; all of which provide high level 
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abstractions to develop MapReduce style programs and other extensions using basic MapReduce 

constructs. These languages are discussed in the rest of this section. 

2.7.1. Sawzall 

Sawzall is an interpreted programming language for developing MapReduce like programs using 

Google's distributed infrastructure services such as GFS and MapReduce. R. Pike et al. present its 

semantics and its usability in their paper[42]. The language supports computations with two 

distinct phases. First, a “query” phase performs an analysis on a single data record and emits an 

output to an aggregator operation specified in the program. Unlike MapReduce, each parallel 

task in the query phase emits a single value and the aggregator, written in typical sequential 

languages (C++), collects the emitted results and produces another set of outputs. Finally, the 

outputs of the aggregators are collected to a single file and stored. The programming model bears 

a strong resemblance to MapReduce and, according to R. Pike et al., both phases of the Sawzall 

programs are executed using the MapReduce infrastructure itself. Sawzall provides high level 

abstractions to define the operations in the query phase and the program flow using predefined 

aggregators. The Sawzall interpreter schedules the computations across distributed computing 

infrastructure with the use of the MapReduce infrastructure. 

Since Sawzall utilizes both the MapReduce and the GFS infrastructures, the applications 

developed using Sawzall also get the benefits of data compute affinity and the robustness of 

MapReduce. The language simplifies the development of some MapReduce applications, but the 

extra simplifications and its coupling with text processing may limit its usage for general 

MapReduce applications. 
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2.7.2. DryadLINQ 

DryadLINQ stems from the Language Integrated Query (LINQ)[44] extensions provided by 

Microsoft. LINQ provides a query interface to many data structures such as arrays and lists that 

typical programs operate on. DryadLINQ extends this concept to a distributed tables and lists 

using the underlying Microsoft Dryad[4] infrastructure. With DryadLINQ, the user can execute 

programming functions, executables on partitions of data defined via a construct named a 

“partitioned table”. The typical operation involves query operations such as “Select” and 

“SelectMany” and the aggregate operations such as “GroupBy” and “Apply”. However, unlike 

Sawzall which maps computations to MapReduce, the applications developed using DryadLINQ 

are compiled to Dryad executable DAGs, which provides more flexibility in expressing complex 

applications. Furthermore, with its coupling to PLINQ (Parallel LINQ), DryadLINQ applications 

can exploit parallelism at the machine level by using typical LINQ queries as well. For example, a 

collection of records that are assigned to a single machine in a distributed computation can be 

processed by using LINQ (underneath using PLINQ) in parallel. This is especially beneficial in 

multi-core computers. 

2.7.3. PigLatin 

PigLatin is a high-level language developed to simplify query style operations on large data sets 

using Apache Hadoop. It generates MapReduce programs necessary for query operations 

expressed using its syntaxes and it executes them using Hadoop. The data is typically consumed 

as “tuples” comprised of many “fields” and the query operations are defined on tuples. Similar to 

DryadLINQ, PigLatin also supports user defined functions for various query operations as well. 

However, unlike DryadLINQ the PigLatin queries and sequential programs cannot be 

interspersed by limiting its use for complex operations. 
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2.8. Message Passing 

MPI[6], the de-facto standard for parallel programming, is a language-independent 

communications protocol that uses a message-passing paradigm to share data and state among a 

set of cooperative processes. MPI specification defines a set of routines to support various parallel 

programming models such as point-to-point communication, collective communication, derived 

data types, and parallel I/O operations.  There were many parallel programming efforts based on 

the general principle of message passing such as Chimp[45] and PVM[12] before the wide 

acceptance of MPI, and it captures the knowledge gained from most of its predecessors. The use 

of fully-fledged programming languages allows MPI programs to express both the parallel tasks 

and the overall program logic using all of the available language constructs without being 

restricted to a particular subset such as a graph language or a script. MPI runtimes are available 

for many programming languages such as C++, Fotran, Java and C# and hence, they have 

become the de-facto standard for parallel processing 

Typical MPI deployments involve computation clusters with high-speed network connections 

between nodes. MPI processes have a direct mapping to the available processors or to the 

processor cores in the case of multi-core systems yielding a static scheduling. Applications can 

utilize these static sets of processes in various topologies such as 2D or 3D grids, graphs, and 

even no topologies using the MPI communication constructs in addition to dynamic processes 

groups. 

MPI communication constructs can consists of two forms: (i) individual process to process 

communication and (ii) collective communication. Two cooperating processes use “send” and 

“receive” constructs to perform inter-process communication which can be manifested in three 

modes: (i) standard – a message is delivered when the receive is posted; (ii) ready – the 

corresponding receive should be posted before the send operation; and (iii) synchronous – the 
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send does not return until the matching receive is executed. These three modes are then coupled 

with two client side versions - blocking and non-blocking, and these various combinations 

provide the user with six configurations. The collective communication constructs such as 

broadcast, scatter, and gather all have two forms: (i) one-to-all and (ii) all-to-all; these options 

offer another six modes of communication between processes. These flexible communication 

routines allow programs to utilize various topologies as opposed to the limited programming 

topologies supported by the higher level programming models such as MapReduce and Dryad in 

which virtually no direct process-to-process communication is supported.  

Fine-grained sub computations and small messages are characteristics common for typical MPI 

programs. By contrast, MapReduce uses coarse grained computations and messages. In MPI, the 

messages are routed in a highly efficiently manner by using the low latency communication 

channels between the computation nodes, whereas in MapReduce, the messages typically go 

through a high latency path of local disks->wire->local disk which is essential in providing 

robust runtimes. 

Accessing input data via shared file systems is a common approach to accessing data in MPI. An 

interface to high performance parallel I/O was introduced in MPI2 (MPI standard 2). Its 

implementations, such as ROMIO[46], minimize the effect of non-contiguous fine grained data 

accesses by accessing data in large blocks and transferring them by using the MPI interconnect 

network. However, the data centered approach adopted by MapReduce and similar runtimes, 

provides a different set of capabilities to the applications - specifically, the possibility of moving 

computation to data. Most MapReduce runtimes schedule tasks depending on data locality; this 

is acquired based on the distributed file system which serves as their foundation, and on top of 

which they are built.  
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The rich set of communication constructs available in MPI makes it highly desirable for 

implementing parallel applications. However, this feature also makes it harder to support fault 

tolerance in MPI as well. As the processes and messages both store state of the overall 

computation, complex fault tolerance strategies need to be incorporated to achieve a high degree 

of robustness. W. Gropp and E. Lusk in their survey paper[47] on fault tolerance in MPI suggest 

several approaches of establishing MPI programs fault tolerance. There are many ongoing 

research projects such as OpenMPI[48], FT-MPI[49] and MPICH-V[50], which address the fault 

tolerance in MPI as well.  

2.9. Threads 

Various thread libraries are used to exploit the parallelism in shared memory hardware, ranging 

from graphics processors to large scale SMP (Symmetric Multiprocessing) machines. Threads 

support fine grained task distributions and provide the first level of parallelism to programs in 

many applications. Implementations of the POSIX threads[51], boost[52], OpenMP[53], TPL[54] , 

and Intel TBB [55] are examples of these types of libraries. Furthermore, most languages support 

some form of threading support as well. Libraries such as CCR[56] provide more sophisticated 

parallelism based on message passing concepts while PLINQ[57] provides parallel querying 

capabilities to the .NET languages.    

Threads are used to support parallelism at the machine level by various runtimes. For example, 

OpenMP and MPI can be used in a hybrid approach to produce distributed parallel applications, 

Similarly, MapReduce runtimes utilize threading to handle parallelism at the machine level and, 

in DryadLINQ, PLINQ handles the parallelism at the node level while Dryad manages tasks 

across nodes. In most of these cases, threads are used to execute parallel tasks which utilize 

multiple processing elements of the underlying hardware platform, although the efficiency of 

these approaches depends mainly on the characteristics of the application. For example, when a 
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MapReduce runtime uses threads to execute a set of tasks, the performance depends on the 

data/compute intensive characteristics of the tasks. If they are highly compute intensive, then the 

threads will produce near liner performance with the number of processing elements. On the 

other hand, if the tasks are I/O bound, as in many cases of data intensive computing, the 

performance depends greatly on the memory and disk bandwidths of the underlying hardware 

platform. 

The paper presented by Cheng-Tao et al. discusses their experience in developing a MapReduce 

implementation for multi-core machines[14]. Although their work is one of the key motivation of 

our research, our preliminary research revealed that the performance of such a runtime is lower 

than a solution developed using pure threads. However, it can provide a simple programming 

model for the user. 

2.10. Cloud 

Among many definitions of Cloud computing, the most prominent features include: (i) providing 

infrastructure, software, and platform as services accessible over the web; (ii) use virtualization 

for many of its benefits, including isolation of operating systems from bare-hardware and better 

utilization of resources; and (iii) exploiting economies of scale to deliver these services using 

massive scale data centers. This trend has created large scale cloud deployments in many 

commercial infrastructures such as Amazon EC2, Microsoft Azure[19], GoGrid[58], and 

ElasticHosts[59]. Furthermore, the availability of open source cloud infrastructure software such 

as Nimbus[60] and Eucalyptus[61], and the open source virtualization software stacks such as 

Xen Hypervisor[62], allows organizations to build private clouds to improve the resource 

utilization of the available computation facilities. This option can provide most of the benefits 

from the commercial clouds except the virtually infinite view of the resources.  
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The introduction of commercial cloud infrastructure services has allowed users to provision 

compute clusters fairly easily and quickly, by paying a monetary value for the duration of their 

usage of the resources. The provisioning of resources happens in minutes, as opposed to the 

hours and days required in the case of traditional queue-based job scheduling systems. In 

addition, the use of such virtualized resources allows the user to completely customize the 

Virtual Machine (VM) images, and use them with root/administrative privileges; this is another 

feature that is hard to achieve with traditional infrastructures. The possibility of dynamically 

provisioning additional resources by leasing them from commercial cloud infrastructures makes 

the use of private clouds more promising. 

However, cloud infrastructures provide more services than renting virtual machines to the users. 

For example, Amazon cloud offerings include storage mechanisms such as Simple Storage 

Service (S3), Blob Storages – binary large objects stored in persistent manner, messaging services 

such as Simple Queue Service (SQS), and also computation runtimes such as Elastic MapReduce. 

Microsoft Azure provides a platform as services by offering basic requirements to develop 

applications on data centers as services. These services include blobs, queues, databases and also 

workers that are named as “roles”. All these services differ from the traditional view of 

computing in individual machines or computation clusters where the applications have access to 

a local disk, shared file systems, and fast network communications.  

The relevance of Cloud services to the data intensive computing is two folds. First, Cloud 

services represent an alternative to acquiring the computation power (and storage) necessary to 

do large scale analyses. Second, the various services provided by the Clouds can be used to 

develop new paradigms for data analyses. For example, one can develop MapReduce-like 

applications by using cloud services such as blobs, queues, and tables, which are inherently fault 

tolerance and reliable without using any runtimes such as Hadoop.  
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2.11. Summary of Features Supported by Different Runtimes 

The following table highlights the features supported by three Cloud Technologies and MPI. 

Table 1. Comparison of features supported by different parallel programming runtimes 

Feature Hadoop Dryad/DryadLINQ Sphere/Sector MPI 
Programming 
Model 

MapReduce 
and its 
variations such 
as “map-only” 

DAG based 
execution flows 
(MapReduce is a 
specific DAG) 

User defined 
functions 
(UDF) executed 
in stages. 
MapReduce 
can be 
simulated 
using UDFs 

Message Passing 
(Variety of 
topologies 
constructed 
using the rich set 
of parallel 
constructs) 

Input/Output 
data access 

HDFS  Partitioned File 
(Shared directories 
across compute 
nodes) 

Sector file 
system 

Shared file 
systems 

Intermediate 
Data 
Communication 

Local disks 
and 
Point-to-point 
via HTTP 

Files/TCP pipes/ 
Shared memory 
FIFO 

Via Sector file 
system 

Low latency 
communication 
channels  

Scheduling Supports data 
locality and 
rack aware 
scheduling  

Supports data 
locality and network 
topology based run 
time graph 
optimizations 

Data locality 
aware 
scheduling 

Based on the 
availability of the 
computation 
resources 

Failure 
Handling 

Persistence via 
HDFS 
Re-execution 
of failed or 
slow map and 
reduce tasks 

Re-execution of 
failed vertices, data 
duplication 

Re-execution of 
failed tasks, 
data 
duplication in 
Sector file 
system 

Program level 
Check pointing 
( OpenMPI[63], 
FT MPI[49]) 

Monitoring Provides 
monitoring for 
HDFS and 
MapReduce 

Monitoring support 
for execution graphs 

Monitoring 
support for 
Sector file 
system 

XMPI [64], Real 
Time Monitoring 
MPI [65] 
  

Language  
Support 

Implemented 
using Java. 
Other 
languages are 
supported via 
Hadoop 
Streaming 

Programmable via 
C#  
DryadLINQ 
provides LINQ 
programming API 
for Dryad 

C++ C, C++, Fortran, 
Java, C# 
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Chapter 3.                                       Application Classes 

The applicability of a parallel runtime to a problem at hand is mainly determined by the parallel 

topology of the application and whether the runtime can be effectively used to support such a 

topology. Moreover, the development of a parallel algorithm to a problem is also determined by 

the parallel constructs supported by the runtime used to implement such an algorithm. For 

example, an algorithm that expects direct communication between parallel processes is a better 

match for runtimes with message passing capabilities; such an algorithm may not be a suitable 

candidate for runtimes such as MapReduce. Therefore it is important to understand the various 

classes of applications that a particular runtime can support; in our context, it is the MapReduce 

runtimes in which we are interested. 
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Parallel applications can be categorized according to their mapping to hardware and software 

systems. A broader classification based on Flynn’s taxonomy[66] uses Single Program Multiple 

Data (SPMD) and Multiple Program Multiple Data (MPMD) categories to classify parallel 

applications. Fox defined five classes of applications as follows[67]. 

Table 2. Application classification 

1 Synchronous The problem can be implemented with instruction level Lockstep Operation 

as in SIMD architectures 

2 Loosely 

Synchronous 

These problems exhibit iterative Compute-Communication stages with 

independent compute (map) operations for each CPU that are synchronized 

with a communication step. This problem class covers many successful MPI 

applications including partial differential equation solution and particle 

dynamics applications. 

3 Asynchronous Compute Chess and Integer Programming; Combinatorial Search often 

supported by dynamic threads. This is rarely important in scientific 

computing but it stands at the heart of operating systems and concurrency 

in consumer applications such as Microsoft Word. 

4 Pleasingly 

Parallel 

Each component is independent. In 1988, Fox estimated this at 20% of the 

total number of applications but that percentage has grown with the use of 

Grids and data analysis applications as seen here. For example, this  

phenomenon can be seen in the LHC analysis for particle physics [68]. 

5 Metaproblems These are coarse grain (asynchronous or dataflow) combinations of classes 

1)-4). This area has also grown in importance and is well supported by 
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Grids and is described by workflow. 

The composable applications we discussed earlier contain features from classes 2, 4, and 5. Here, 

the applications are composed of one or more individually parallelizable stages.  Parallel 

runtimes as Google MapReduce, Hadoop, and Dryad can be used to parallelize stages that 

perform “pleasingly parallel” operations such as calculating Smith Waterman or calculating 

histogram of events. As we will show in this thesis, with extended MapReduce capabilities, some 

stages that require MPI style parallel constructs can also be implemented using MapReduce. 

Multiple such applications can then be executed in workflows to achieve complex processing. 

With applications involving only the simple parallel operations such as applying a computation 

function to a collection of data files, the distinction between composability by using a runtime 

such as MapReduce vs. workflows gets blurred. Figure 2 shows the structure of composable 

applications. 

 

Figure 2. Composable applications in a workflow. 
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One can classify MapReduce with its support for large scale data processing as a new addition to 

the above list of categorizations. The MapReduce programming model can support applications 

in classes 4 and 5, and with the extended programming model and the efficient runtime that we 

will propose in this thesis it can support some of the applications in class 2 as well. Therefore, the 

MapReduce class subsumes aspects of classes 2, 4, and 5. 

The types of applications that can be supported (some problems in 2, 4, and 5 above) in 

MapReduce can be categorized into four distinct sub classes: (i) map-only; (ii) map-reduce; (iii) 

iterative-map-reduce; and (iv) extended MapReduce applications.   Complex applications can be 

built by combining the first three basic execution units under the MapReduce programming 

model and additional algorithms can be supported with further extensions. We will defer the 

discussion on further extensions to a later section (Chapter 6 section 6.9) and focus on the first 

three types of basic MapReduce classes in this chapter. Although this categorization applies to 

the MapReduce model, we can use the same sub categories to classify applications that can be 

supported by the high-level runtimes such as Microsoft Dryad as well. 

3.1. Map-only Applications 

The embarrassingly parallel class of applications represents the simplest form of parallel 

computations with minimum inter-task dependencies. Converting a collection of documents to a 

different form, parametric sweeps, and brute force searches in cryptography are all examples of 

this category of applications. In the MapReduce programming model, the tasks that are being 

executed at a given phase have similar executables and similar input and output operations. With 

zero reduce tasks, the MapReduce model reduces to a map-only model which can be applied to 

many embarrassingly parallel applications.  Similarly, the DAG based execution flow of Dryad 

will also reduce to the collection of independent vertices in this category. Furthermore,  other 

runtimes such as Sphere, that uses user-defined functions, and the software systems such as 
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batch queues, Condor[34], Falkon [69], classic cloud services such as Amazon Queues, and 

SWARM [31], all provide similar functionality by scheduling large numbers of individual 

maps/jobs.  

3.2. MapReduce Applications 

In MapReduce, the map and reduce phases perform the computations in parallel while the 

combination of intermediate keys and the shuffling strategies can be used to create different 

parallel topologies according to the parallel algorithm. For example, consider a word sorting 

application implemented in MapReduce. Here, the map tasks simply perform a scatter operation 

on the input words. The intermediate keys are the words themselves, and the shuffling is done so 

that the words that start with a given letter end up in the same reduce tasks. The reduce tasks then 

sort their inputs, and one can create the complete sorted output by taking the reduce outputs in 

the order of the letters assigned to the reduce tasks. In this application, the intermediate keys and 

the shuffling mechanisms are used to simulate a bucket sort[70] algorithm. Although not 

completely independent of the above, the runtime parameters such as  (i) input data partitions, 

(ii) the number of maps, (ii) the number of reducer tasks can be used to fine tune the parallelism 

of MapReduce applications. 

The applications described in the Google paper mainly use the map stage to distribute the 

intermediate <key,value> pairs putting less weight on the map stage of the computation while the  

reduce tasks perform significant amount of the computations. However, this approach produces 

large amounts of intermediate data transfers. To minimize this, the authors introduce a local 

reduction operation, which can perform a local reduction operation on the map outputs produced 

in a given machine. From our experience in mapping various applications to the MapReduce 

model, we argue that, by making map tasks coarser grained, one can gain better performance. For 

example, in the word count program, instead of inputting a single word to a map task, one can 
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write a map task that takes a set of lines or a whole file as the input and which can then produce 

partial word counts. This will make map tasks coarser and reduce the amount of intermediate 

communications, as the map tasks can perform a local reduction by itself by accumulating counts 

of words it encounters. However, we also note that these characteristics are highly application 

dependent. For example, in an application that we will discuss in more detail later, the map tasks 

perform most of the computation and the reduce tasks simply combine results. On the other hand, 

in the matrix multiplication (“Fox algorithm using extended MapReduce”), we use map tasks to 

distribute matrix blocks while the reduce tasks perform the matrix multiplication operations. 

Selecting an appropriate key selector function is also an impotent aspect that one should consider 

in mapping applications to MapReduce domain. A creative use of key selectors will produce 

elegant MapReduce algorithms. Applications that can be implemented using MPI collective 

operations can be implemented using MapReduce, but still this does not capture all the low-level 

messaging constructs offered by the runtimes, such as MPI.  

3.3. Iterative MapReduce Applications 

Clustering, classification, pattern mining, and dimension reduction are some of the areas where 

many of the iterative algorithms are used.  For example, K-Means[71], Deterministic Annealing 

Clustering[72], pagerank[73], and dimension reduction algorithms such as SMACOF[74] are all 

examples of such algorithms. Most of these types of algorithms can be parallelized by applying 

the SPMD style to the main computations that are executed inside the iterations. Depending on 

the algorithm, there can be one or more SPMD steps inside the main iterative construct. Once 

such an algorithm is developed, applying MapReduce to parallelize the SPMD sections is a fairly 

straightforward. Cheng Tao et al. described this idea by giving ten such machine learning 

algorithms in their paper[14]. 
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However, the “side effect free”-nature of the MapReduce programming model does not fit well 

for iterative MapReduce computations in which each map and reduce tasks are considered as 

atomic execution units with no state shared in between executions. In parallel runtimes such as 

those of the MPI, the parallel execution units live throughout the entire life of the program; 

hence, the state of a parallel execution unit can be shared across invocations. On the other hand, 

the side effect free nature of MapReduce is one of the key features that makes it easier to support 

fault tolerance. We propose two strategies to extend the MapReduce programming model to suit 

this class of applications: (i)  an intermediate approach where the map/reduce tasks are still 

considered side effect-free, but the runtime allows for the configuring and the re-usage of the 

map/reduce tasks. Once configured, the runtime caches the map/reduce tasks. In this way, both the 

map and the reduce tasks can keep the static data in memory, and can be called iteratively without 

loading the static data repeatedly; (ii) allow map/reduce tasks to hold states (support 

computations with side effects) and adopt different fault tolerance strategies that suit iterative 

computations. These extensions are discussed in more detail in the next section. 

Table 3 shows the data/computation flow of these three MapReduce patterns, along with 

examples.  
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Table 3. Classes of MapReduce applications 

Map-only Map-reduce Iterative map-reduce 

 

  

• Converting a collection of 

documents to different 

formats  

• Processing a collection of 

medical images,  

• Brute force searches in 

cryptography 

• Parametric sweeps 

• HEP data analysis (more 

details will follow) 

• Histogramming operations, 

• distributed search, and 

distributed sorting 

• Information retrieval 

• Clustering 

• Classification/Regression 

• Dimension Reduction 

• Matrix Multiplication 

• Pagerank 
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Chapter 4. A Programming Model for Iterative 

MapReduce Computations 

As discussed in the previous section, there are many iterative algorithms that can be parallelized 

by applying the SPMD model to the main computations that are executed inside the iterations. 

Once such algorithms are identified MapReduce can be used as a parallelization construct to 

implement the SPMD portions of the algorithms resulting iterative MapReduce computations. In 

this section, we will discuss an extended MapReduce programming model which can be used to 

support most such computations efficiently. 

Further analysis of some of these algorithms revealed a set of common characteristics such as: 

most such algorithms utilize data products that remain static throughout the computation as well 
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as data products that change during the computations; many of them use iterations until 

convergence; many require the reduce output as a whole to make the decision to continue or stop 

iterations; and we also discovered that the iteration boundaries can be used as good fault 

tolerance checkpoints. To support such algorithms, we need an extended MapReduce 

programming model and an efficient runtime implementation, which we try to provide in 

Twister. (Note: Twister is the name given to the MapReduce runtime we developed as part of this 

research; hence, we will use it hereafter to refer to the new MapReduce runtime).  Twister adopts 

a programming model that can support the above features of iterative algorithms. A high level 

view of the programming model is shown in Figure 3 followed by a detailed discussion. 

 

Figure 3. The iterative MapReduce programming model supported by Twister. 

4.1. Static vs. Variable Data 

Many iterative applications we analyzed display the common characteristic of operating on two 

types of data products that we called static and variable data. Static data (most of the time the 

largest of the two) is used in each iteration and remain fixed throughout the computation, 

whereas variable data consists of the computed results in each iteration which become consumed 

in the next iteration, in many expectation maximization (EM) type algorithms. For example, if we 
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consider the K-means clustering algorithm[71], during the nth iteration the program uses the 

input data set and the cluster centers computed during the (n-1)th iteration to compute the next 

set of cluster centers. Similarly, in each iteration, the pagerank algorithm[73] accesses the static 

web graph and the current pageranks computed during the previous step. To support map/reduce 

tasks operating with these two types of data items, we introduced a “configure” phase for map 

and reduce tasks, which can be used to load (read) any static data to the  map and reduce tasks. 

With this improvement, a typical map phase of the computation then consumes the variable data 

specified as (key, value) pairs as well as the static data loaded during the configuration phase. This 

is different from other MapReduce runtimes where only one input data set is accessible at the 

map phase of the computation. At the same time, typical MapReduce applications (applications 

without iterative MapReduce computations), when developed using the Twister runtime, require 

the use of the configure phase to access any input data. For example, in a word-count application, 

the input data partitions are assigned to map tasks during the configure phase of the computation, 

whereas the actual word count operation happens during the map phase of the computation. 

4.2. Long Running Map/Reduce Tasks 

The above programming extension adds capabilities of handling both static and variable data in 

map/reduce tasks. However, reading static data in each execution of the MapReduce computation 

is highly inefficient. Although some of the typical MapReduce computations such as information 

retrieval consume very large data sets, many iterative applications we encounter operate on 

moderately sized data sets that can fit into the distributed memory of the computation 

infrastructures. This observation led us to explore the idea of using long-running map/reduce tasks 

similar to the parallel processes in many MPI applications that last throughout the life of the 

computation. The long running (cacheable) map/reduce tasks eliminate the necessity of reloading 

static data in each iteration. Current MapReduce implementations such as Hadoop and 
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DryadLINQ do not support this behavior, and hence, they initiate new map/reduce tasks and load 

static data in each iteration, which introduce considerable performance overheads for iterative 

MapReduce computations. Although rare among iterative applications, one can use Twister with 

extremely large data sets that cannot be fit into the distributed memory of the computation 

infrastructure by reading data directly from the disks without loading them to memory. 

4.3. Granularity of Tasks 

The applications presented in Google’s MapReduce paper[2] used fine grained map tasks. For 

example, in the word count application, the map tasks simply produce (word, 1) pairs for each 

word they encounter. However, we noticed that, by increasing the granularity of the map tasks, 

one can reduce the volume of the intermediate data that needs to be transferred between maps 

and reduce tasks. In the above example, instead of sending (word, 1) for every word, the map task 

can produce partial sums such as (word, n). With the option of configurable map tasks, the map 

task can access large blocks of data/or files. In Twister, we adopted this approach in many of our 

data analysis applications to minimize the intermediate data volumes and to allocate more 

computation weight to the map stage of the computation. Hadoop uses an intermediate combiner 

operation just after the map stage of the computation to support similar behavior. Our approach 

requires some of the functionality of the reduce tasks to be coded in the map stage of the 

computation. However, this coding effort pays off, since the overall execution happens as a single 

task which results in higher efficiency. 

4.4. Side-effect-free Programming 

At first glance, the concept of long-running map/reduce tasks seems to violate the “side-effect-free” 

nature of MapReduce by enabling users to store state information in map/reduce tasks. However, 

since the configure operation supports only the static data, the users can still develop “side-effect-
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free” MapReduce computations using Twister. Furthermore, the current fault tolerance 

mechanism in Twister only guarantees the restoring of static data that can be reloaded by using a 

data partition or any static parameters shared from the main program. This also encourages side-

effect-free computations. However, some applications can benefit from the capability of the 

storing state in map/reduce tasks which give rise to a new model of MapReduce computations. 

We will discuss this approach in section 6.9. Therefore, the users of the Twister runtime can chose 

to use the fault tolerance capabilities of Twister by storing only static configurations in long 

running map/reduce tasks, or by using the long running tasks to develop MapReduce applications 

with transient states stored in them (i.e. with side effects), but without the fault tolerance 

capabilities. 

4.5. Combine Operation 

In Google’s MapReduce architecture, the outputs of the reduce tasks are stored in the distributed 

file system (GFS) as a collection files. A similar architecture is adopted in Hadoop as well. 

However, most iterative MapReduce computations require accessing the “combined” output of 

the reduce tasks to determine whether to proceed with another iteration or not. With Twister, we 

have introduced a new phase to MapReduce named “Combine” that acts as another level of 

reduction (Note: this is different from the local combine operation that runs just after the map 

tasks in Hadoop). One can use the combine operation to produce a collective output from all the 

reduce outputs. In Twister MapReduce, the combine operation is executed by the main program, 

which contains the iterative construct that enables it to access the reduce output as a whole. 

However, since this option requires the reduce output to be transferred to the main program, it is 

only feasible with applications which produce comparatively smaller reduce outputs, or 

applications which only require meta-data about the reduce output in order to proceed with 

iterations. For most iterative applications we analyzed, a significant reduction in data volume 
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occurs when the computation transitions from map to reduce. This is not the case in typical non-

iterative MapReduce computations such as sorting, where all the input is available as the reduce 

output. However, most such applications do not require iterative computations and they can 

simply ignore the combine phase of Twister. 

4.6. Programming Extensions 

We have also incorporated a set of programming extensions to MapReduce in Twister. One of the 

most useful extensions is mapReduceBCast(Value value). As the name implies, this extension 

facilitates the process of sending a single Value (Note: MapReduce uses (key,value) pairs) to all 

map tasks. For example, the “Value” can be a set of parameters, a resource (file or executable) 

name, or even a block of data. Apart from the above options, the “configure” option described in 

section 4.1 is supported in Twister in multiple ways. Map tasks can be configured using a 

“partition-file” – a file containing the meta-data about data partitions and their locations. In 

addition, one can configure map/reduce tasks from a set of values. For example 

configureMaps(Value[]values) and configureReduce(Value[]values) are two programming 

extensions that Twister provides. Twister also provides broadcast style operation between the 

map and reduce phases using which a map task can send a single (key,value) pair to multiple reduce 

tasks, allowing it to support complex parallel algorithms. We will discuss how these extensions 

are supported in the coming section. 



51 

 

Chapter 5.                                       Twister Architecture 

Twister is a distributed in-memory MapReduce runtime optimized for iterative MapReduce 

computations. It reads data from local disks of the worker nodes and handles the intermediate 

data in distributed memory of the worker nodes. Twister utilizes a publish-subscribe (pub-sub) 

messaging infrastructure for communication and data. In this section, we will explain the 

architecture of the Twister MapReduce runtime. 

The Twister architecture consists of three main entities: (i) client side driver (Twister Driver) that 

drives the MapReduce computation; (ii) Twister Daemon running on every worker node; and (iii) 

the broker network (Note: we will simply use the term “broker network” to refer to the 

messaging infrastructure throughout the discussion). Figure 4 shows the architecture of the 

Twister runtime.  
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Figure 4. Architecture of Twister MapReduce runtime. 

A Twister Daemon runs on every compute node of the computation infrastructure and acts on 

the commands issued by the Twister Driver. During the initialization of the runtime, Twister 

starts a daemon process in each worker node, which then establishes a connection with the 

broker network to receive commands and data. The daemon is responsible for executing 

map/reduce tasks assigned to it, maintaining a worker pool (thread pool) to execute map and 

reduce tasks, notifying status to the Twister Driver, and finally responding to control events.  

The client side driver provides the programming API to the user, and converts these Twister API 

calls to control commands and input data messages sent to the daemons running on worker 

nodes via the broker network. It also handles the recovery of MapReduce computations in an 

event of a failure.  
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Twister uses a publish/subscribe messaging infrastructure to handle four types of 

communication needs :(i) the sending/receiving control events; (ii) sending data from the client 

side driver to the Twister daemons; (iii) handling intermediate data transfer between the map and 

reduce tasks; and (iv) sending the outputs of the reduce tasks back to the client side driver to 

invoke the combine operation.  Currently, it supports the NaradaBrokering[75] and the 

ActiveMQ[76] messaging infrastructures. However, the Twister architecture clearly separates the 

communication functionalities from the implementation of the other components so that it 

becomes very straightforward to use other messaging infrastructures, such as those are based on 

persistent queues. 

5.1. Handling Input and Output Data 

Twister provides two mechanisms to access input data for map tasks: (i) reading data from the 

local disks of worker nodes; and (ii) receiving data directly via the broker network. The first 

option allows Twister to start the MapReduce computations by using large data sets spread 

across the worker nodes of the computing infrastructure. Twister assumes that the data read 

from the local disks are maintained as files, and hence, it supports file based input format, which 

simplifies the implementation of the runtime. The use of the native files allows Twister to pass 

data directly to any executable (for example a script or compiled program running as a map or 

reduce computation) as command line arguments; this feature is not possible with file systems 

such as HDFS.  

Both Sector and DryadLINQ adopted the same file based input data partitioning strategy as well. 

A possible disadvantage of this approach is that it does require the user to break up large data 

sets into multiple files. However, our experience is that it is better to leave the input data 

partitioning to the user, rather than providing a standard block based approach. For example, in 

some applications, the input data may already be stored as a collection of files; this situation does 
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not require any partitioning. In some applications such as BLAST, the data is available in 

databases which require specific portioning strategies be adopted. Furthermore, the fixed size 

block based approach adopted by both Google and Hadoop imposes another restriction as well; 

the block size is fixed in the runtime but not per application. Therefore, if one needs to run 

applications with different input data partition sizes, the runtime needs to be reconfigured to 

achieve optimal performance. For example, in Hadoop, if the block size defined for the HDFS is 

64MB, a file inserted to it which is only a few kilobytes in size would require an entire 64MB 

block. When data is accessed it will retrieve this entire block as well. This optimization issue is 

not present in the file based approach used in Twister. 

In Twister, the meta-data regarding the input file distribution across the worker nodes is read 

from a file called “partition-file”. Currently, the partition file contains a list of tuples consisting of 

(file_id, node_id, file_path, replication_no) fields in them. The concept of the partition-file in Twister 

is inspired by the DryadLINQ’s partitioned-file mechanism. Twister provides a tool which can 

perform typical file system operations across the worker nodes such as: (i) creating directories; 

(ii) deleting directories; (iii) distributing input files across worker nodes; (iv) copying a set of 

resources/input files to all worker nodes; (v) collecting output files from the worker nodes to a 

given location; and (vi) creating a partition-file for a given set of data that is distributed across the 

worker nodes. Although these features do not provide the full capabilities that one can achieve 

via a distributed file system such as GFS or HDFS, the above features try to capture the key 

requirements of running MapReduce computations using the data read from local disks to 

support the concept of “moving computation to data”. Integrating a distributed file system such 

as HDFS or Sector with Twister will serve as interesting possibilities for future research work. 

Twister also supports sending input data for map task directly from the main program via the 

broker network as well. It will be inefficient to send large volumes of input data via the broker 
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network for map tasks. However, this approach is very useful for sending small variable data 

(Note: please refer to the discussion of static vs. variable data in section 4.1) to map tasks. For 

example, a set of parameters, a set of rows of a matrix, or a set of cluster centers represents such 

data items.  

5.2. Handling Intermediate Data 

To achieve better performance, Twister handles the intermediate data in the distributed memory 

of the worker nodes. The results of the map tasks are directly sent to the appropriate reduce tasks 

where they get buffered until the execution of the reduce computation. Therefore, Twister 

assumes that the intermediate data produced after the map stage of the computation will fit in to 

the distributed memory of the computation infrastructure. This is generally the case for many 

iterative MapReduce computations. As we have mentioned earlier, this option is not feasible for 

computations that produce intermediate data that is larger than the available total memory of the 

computation nodes. To support such applications, one can extend the Twister runtime to store 

the reduce inputs in local disks instead of buffering in memory and provides and iterator 

construct which reads data from disk.  

The use of memory->wire->memory data transfer in Twister gives it a considerable performance 

gain compared to disk->wire->disk approach adopted by many other MapReduce runtimes. 

Twister uses two mechanisms for transferring intermediate data: (i) via the broker network; and 

(ii) via direct node to node TCP links. As explained earlier, each Twister daemon maintains a 

connection with one of the pub-sub brokers from the broker network. In addition to above, each 

daemon also starts a TCP sever as well. When an intermediate data item (a (key,value) pair) is 

produced at a Twister daemon, it identifies the pub-sub topic to which the data item needs to be 

sent based on the key of the (key,value) pair. Then if the size of the data is smaller than 1KB the 

daemon publishes a message containing the data item to a topic in the broker network. A 
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daemon subscribed to that topic directly receives the message containing the data item via the 

broker network. If the data item is lager in size, the first daemon simply adds the data item to an 

internal cache, maintained by the daemon, and publishes a message containing a key to locate the 

data item in this daemon’s cache. The message also carries the hosting daemon’s IP and port 

information as well. Once the message is received by a daemon that are subscribed that topic, it 

contact the TCP server of the first daemon and retrieves the data item. This approach eliminates 

the overloading of the broker network by large data transfers and also adds a considerable 

parallelism to the intermediate data transfer phase of MapReduce. Twister uses this mechanism 

for map-to -reduce data transfer as well as to reduce-to-combine data transfer phases of the 

MapReduce computation. Figure 5 these two approaches. 

 

Figure 5. Two approaches used by the Twister to transfer intermediate data. 

Note: Please not that the TCP based direct data transfer mechanism described above is added to 

the Twister to at later phase of this research work, and hence, it is used in the benchmarks 

discussed in section 6.9 and 6.10 only. 
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5.3. Use of Pub/Sub Messaging 

The use of the publish-subscribe messaging infrastructure improves the efficiency of the Twister 

runtime. However, to make the runtime scalable, the communication infrastructure should also 

be scalable. Both the NaradaBrokering and the ActiveMQ pub-sub messaging infrastructures we 

used in Twister can be configured as broker networks (as shown in Figure 4), so that the Twister 

daemons can connect to different brokers in the network reducing the load on a given broker. 

This is especially useful when the application uses mapReduceBcast() with large data sets. A 

benchmark performed using 624 Twister daemons revealed that by using 5 brokers (connected 

hierarchically with 1 root broker and 4 leaf brokers) rather than 1 broker, the broadcast time can 

improve by 4 folds for 20MB broadcast messages.  

5.4. Scheduling Tasks 

The cacheable map/reduce tasks used in Twister are only beneficial if the cached locations remain 

fixed. Therefore, Twister schedules map/reduce tasks statically. However, in an event of a failure 

of worker nodes, it will reschedule the computation on different set of nodes. The static 

scheduling may lead to un-optimized resource utilization with skewed input data or execution 

times of the map tasks. However, one can minimize this effect by randomizing the input data 

assignment to the map tasks. Ideally, Twister should support multiple scheduling strategies to 

support various classes of applications, but these improvements are left as future work in the 

current implementation. 

5.5. Fault Tolerance 

Twister supports fault tolerance for iterative MapReduce computations.  Our approach is 

designed to save the application state of the computation between iterations so that, in the case of 

a failure, the entire computation can be rolled back to the previous iteration. Supporting 
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individual map or reduce failures in each iteration requires adopting an architecture similar to 

Google, which will eliminate most of the efficiencies that we have gained using Twister for 

iterative MapReduce computations. Therefore, we decided to provide fault tolerance support 

only for iterative MapReduce computations in the current implementation of Twister, based on 

the following three assumptions: (i) Similar to Google and Hadoop implementations, we also 

assume that the master node (where the Twister Driver would be executed) failures are rare; and 

(ii) the communication infrastructure can be made fault tolerance independent of the Twister 

runtime; and (iii) the data is replicated among the nodes of the computation infrastructure. Based 

on these assumptions, we try to handle failures of map/reduce tasks, daemons, and worker nodes 

failures.  

The combine operation is an implicit global barrier in iterative MapReduce computations. This 

feature simplifies the amount of state Twister needs to remember in case of a failure to recover. 

To enable fault tolerance, Twister saves the configurations (information about the static data) 

used to configure map/reduce tasks before starting the MapReduce iterations. In most MapReduce 

computations, these simply mean only the partition file which contains the meta-data regarding 

the data distribution. Then it also saves the input data (if any) that is sent directly from the main 

program to the map tasks. In the case of a failure Twister Driver executes the following sequence 

of actions to recover from the failure: 

(i) Discards the existing map/reduce tasks in the given iteration and instructs them to 

terminate. 

(ii) Polls the Twister Daemons to identify the available (running) Twister Daemons 

(iii) Reconfigures the map/reduce tasks and assigns them to the available daemons 

according to the data locality. In this respect, Twister groups tasks depending on the 
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available data replications to the available daemons as evenly as possible while 

maintaining data locality. 

(iv) Executes the current iteration. 

As this description demonstrates, the current fault tolerance strategy does not support the 

recovery of individual tasks. This implies that any state stored in map/reduce tasks will be lost in 

the case of a failure under the current implementation.  As we have mentioned above, for side-

effect-free MapReduce computations, this does not impose a limitation because the tasks are 

naturally considered as stateless. Furthermore, when considering the number of iterations 

executed in an iterative MapReduce computations, (typically hundreds of iterations) re-executing 

a few failed iterations do not impose a considerable overhead. 

Although we left as a future work, one can implement the following fault tolerance strategy with 

Twister by incorporating a distributed fault tolerance file system such as HDFS. Each Twister 

daemon can store the state of the map/reduce tasks under its control in each nth iteration into the 

distributed file system where n is specified by the user depending on the application 

(1<=n<=max iterations). We need a distributed file system to recover from hardware crashes such 

as disk failures or machine failures, but for software failures such as daemon failures, the saving 

can be done on local disks. This approach will allow tasks with states to be recovered in the case 

of a failure. However, still to recover individual task without rolling back entire iterations all the 

outputs (map/reduce) need to be saved to some form of persistent storage as in Google or 

Hadoop. 
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5.6. Twister Implementation 

5.6.1. Software Requirements 

Twister is implemented in Java programming language. For starting, stopping, and file 

manipulation operations, Twister uses a set of shell scripts which internally invoke remote 

commands by using secure shell (SSH) protocol. To communicate between nodes, these scripts 

expect certificate based login between the nodes of the computation infrastructure, which is a 

common requirement in many distributed runtimes such as MPI and Hadoop. The Java language 

supports execution of any compiled program as a separate executable, and hence, in addition to 

pure java functions the user can invoke any script or executables inside the map or reduce 

functions using Twister. The use of shell scripts and the SSH limits the usage of Twister to Unix 

like operating systems. 

5.6.2. Twister Daemon 

 

Figure 6. Components of Twister Daemon 

Twister daemon is a standalone Java program that is comprised of several software components 

such as: a thread pool; a TCP server, a task scheduler, internal cache, a class loader, and a broker 

connection manager. Figure 6 shows these components. 
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The broker connection manager maintains a connection with a particular broker in the broker 

network. When Twister is used with ActiveMQ, it establishes a connection to one of the available 

brokers and it maintains an active connection to one of the available brokers in the network. Since 

the TCPserver is the bulk data transfer point of the daemon, it is implemented with the support 

of concurrent connections. Task scheduler maintains a mapper queue and a reducer queue. A 

mapper holds a single map task, and executes it passing the input data and collects any output 

data produced by the map function. It then sends this data to the appropriate reducer. The 

reducer is a wrapper for a single reduce task. It collects intermediate data targeted for that reduce 

task and executes it when the Twister Driver instruct it via the broker network. The reducer also 

sends the reduce outputs to the combine function. Task scheduler assigns map/reduce tasks to the 

thread pool for execution. Twister Driver assigns individual tasks to Twister Daemons 

(processes) while internally the daemons use threads to execute individual map/reduce tasks. 

Therefore, the Twister runtime supports a hybrid task scheduling approach, which is especially 

effective for computation nodes with multiple processor cores. 

Twister does not require the user defined map/reduce functions to be available during the 

deployment of the runtime. The user can upload jar files containing the implementations of 

MapReduce computations at any time of the Twister’s life cycle.  It loads these jars dynamically 

using a custom class loader which is initiated per each job by the runtime. This enables the user 

to develop MapReduce applications incrementally without needing to restart the Twister 

runtime. 

5.6.3. Twister Driver 

Twister Driver is a library that needs to be used in the main program of the MapReduce 

computation. The user program invokes Twister Driver passing it a job description. The driver 

then assigns map/reduce tasks to Twister daemons and waits for their responses. When all map 
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tasks are completed, the Twister Driver notifies all reducers to invoke their corresponding reduce 

tasks. When reducers send reduce outputs, the driver collects them and invoke the combine 

function. Although the reduce tasks are executed once all map tasks are completed, the data 

transfer between map and reduce tasks happens immediately after the completion of the 

individual map tasks. Therefore, in typical MapReduce computations, one can expect the data 

transfer to be interspersed with computation. 

5.6.4. Pub-sub Brokers 

Current Twister implementation supports the NaradaBrokering and the ActiveMQ pub-sub 

brokers. The deployment of the broker network is left to the users to manage as it is highly 

specific to the individual broker network used. Information regarding the broker network is 

passed to Twister via a configuration file.  
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5.6.5. File Manipulation Tool 

Twister provides a simple tool to manipulate files and executable programs across computation 

nodes. The interface is provided in a shell script, which supports the following set of commands. 

Table 4. Commands supported by the Twister’s file manipulation tool. 

Command Parameters Description 

initdir  

 

[Directory to create - complete path to 
the directory] 

Create a directory in all compute nodes 
(let's call this data_dir). 

mkdir    [sub directory to create - relative to 
data_dir specified] 

Create a sub directory inside data 
directory in all compute nodes. 

 

rmdir    [sub directory to delete - - relative to 
data_dir] 

Remove a sub directory inside data 
directory in all compute nodes. 

 

put      [src directory(local)] 

[destination directory (remote) - 
relative to data_dir ] 

[file filter pattern] 

[number of duplicates (optional)] 

Distribute input data across compute 
nodes. This command evenly 
distributes the available files in the 
input directory to all compute nodes. It 
utilizes multiple threads to speed up 
the process.  

 

putall   [input data directory (local)] 

[destination directory (remote) - 
relative to data_dir] 

Copy data or any resources in the 
input directory to all compute nodes. 

 

cpj      [resource to copy to the apps 
directory] 

Copy any user defined application jar 
files to all compute nodes.  

 

ls [-a][directory | sub directory relative 
to data_dir] 

List files/directories inside the data_dir. 

create_partit
ion_file 

[common directory – relative to 
data_dir] 

[file filter pattern][partition file name] 

Creates a partition file containing all 
data files available in a particular 
directory of all compute nodes. 
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5.7. Twister API 

Twister Application Program Interface allows users to develop MapReduce computations that 

can be executed using Twister. Following table lists the individual API construct along with a 

small description. 

Table 5. The Application program interface of Twister. 

Type of 
function 

Application Program Interface 

Map /* Configure the map task */ 

void configure(JobConf jobConf, MapperConf mapConf) 

 

/* The map function */  

void map(MapOutputCollector collector, Key key, Value val) 
 
/* Any clean up necessary to map task */ 

void close()   

Reduce /* Configure the reduce task */ 

void configure(JobConf jobConf, ReducerConf reducerConf) 

 

/* The reduce function */ 
void reduce(ReduceOutputCollector collector, Key key, 

   List<Value> values) 

/* Any clean up necessary to reduce task */ 

void close() 

Combine /* Configure the combine task */ 

void configure(JobConf jobConf) 

 

/* The combine function */ 

void combine(Map<Key, Value> keyValues) 

 
/* Any clean up necessary to reduce task */ 

void close() 
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Configure 

Maps 

/* Configure map tasks using a partition file */ 

void configureMaps(String partitionFile) 

 

/* Configure map tasks using a set of Value objects */ 

void configureMaps(Value[] values) 

Configure 

Reduce 

/* Configure reduce tasks using a set of Value objects */ 

void configureMaps(Value[] values) 

Run 

MapReduce 

/* Execute MapReduce using already configured map and reduce tasks */ 

TwisterMonitor runMapReduce() 

/* Execute MapReduce using a set of (key,value) pairs sent from the main program 
*/ 

TwisterMonitor runMapReduce(List<KeyValuePair> pairs) 

/* Execute MapReduce passing one Value sent from the main program. Each map 
will get a Key is similar to its map task number. */ 

TwisterMonitor runMapReduceBCast(Value val) 

 

In the next section we will discuss some of the applications that we have implemented in Twister 

and how these architectural features enable better efficiencies in them. 
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Chapter 6.          Applications and their Performances 

One motivation of this research is to understand the applicability of different parallel runtimes to 

various classes of applications and analyze their performance characteristics.  To achieve this 

goal, we have implemented a series of data analysis programs using several available parallel 

runtimes such as Apache Hadoop, Microsoft DryadLINQ, MPI, and Twister.  We selected these 

applications to represent the different classes of applications that are described in Chapter 3. This 

way, by analyzing their parallel implementations, we can predict the suitability of the above 

runtimes to applications of similar nature. Some of these are implemented using all the above 

runtimes whereas some are implemented using few runtimes depending on the s suitability. 

 The easiness in implementing a parallel algorithm using a given runtime and its parallel 

constructs, gives us an idea about the suitability of the runtime to the class of applications that we 
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are interested. Also, the selection of real applications to implement gives us an in-depth 

understanding of various challenges that one may face in developing data analysis programs 

using the above runtimes. This analysis also serves as a proof to the programming extensions that 

we have introduced in Twister. Rest of this section is organized as follows. First, it gives a brief 

introduction to different performance measures that we have used and the calculations 

performed to understand the various parallelization characteristics. Next, it will give detailed 

information regarding the hardware and software environments we used in our evaluations. 

Finally, the section moves into describing the applications and their different implementations. 

We present performance evaluations under each application followed by a discussion. 

6.1. Performance Measures and Calculations 

Performance, scalability, overhead, and efficiency are the most common measurements we used 

in this analysis. Bellow we will give a brief introduction to these measures. 

6.1.1. Performance and Scalability 

Performance of an application is typically measured as the average execution time, and it is a key 

measurement that one can use to compare different algorithms and implementations at a higher 

level. In parallel and distributed applications, this is a collective measure of the performance of 

the computation units (CPU), the memory, the input/output subsystems, the network, and even 

the efficiency of the parallel algorithm. Furthermore, the execution time of an algorithm also 

varies with the size of the problem, i.e. the amount of data, used for the computation. Therefore, 

in most of our applications, we measure the average execution time by varying the amount of 

data to understand its effect on performance. For an efficient parallel algorithm, the performance 

should vary with data according to the computation complexity of the underlying algorithm. For 

example, the performance of a matrix multiplication typically has a quadratic relation to the 
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input data. However, it can deviate from the expected relationship due to the effects of parallel 

overhead, the cache effects, and other runtime overheads. 

Scalability in parallel applications is measured by using two approaches. The “strong scalability” 

is the measure of execution times by keeping the total problem size fixed while increasing the 

amount of processors. The “weak scalability” is the measure of execution times by keeping the 

problem size per processor fixed while increasing the number of processors. In most of our 

performance measures we use the first approach.  

6.1.2. Speedup 

Speedup is used to understand how well a parallel application performs compared to a 

sequential version of the same problem, and is calculated using the following formula. 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
T(1)
T(p)                    (1) 

In this formula T(1) is the execution time of a sequential program whereas  T(p) denotes the 

execution time of the parallel program when p processors are used. When T(1) is measured using 

a sequential program, the formula gives the absolute speedup. Also, a variation of this formula 

can be used with parallel applications, in which T(1) is obtained by running the parallel 

application itself on a single processor. The speedup is governed by the Amdahl law[77] and 

therefore most programs produce sub linear speedups. However, in some applications, one can 

notice super linear speedups due to cache effects. 

6.1.3. Parallel Overhead 

Parallel overhead of an application is a measure of the extra work that the program performs 

compared to its sequential counterpart. This comprises of, the overheads introduced by the 

communication and synchronization. Also, in some applications, the duplicate work performed 
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in parallel tasks may add up to this value. The overhead is calculated using the following formula 

in which p is the number of parallel processors used, T(p) is the execution time when p 

processors are used, and T(1) is the sequential execution time. 

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
p. T(p) − T(1)

p. T(1)                     (2) 

In this thesis, we use the overhead calculation extensively to compare the parallelization 

characteristics of different implementations of a given algorithm. In such situations, for T(1) we 

use sequential execution time of the best performing implementation. In some applications, we 

use estimations for the sequential time when evaluating sequential time is not possible due to 

extremely long execution times.  

6.1.4. Parallel Efficiency 

Parallel efficiency is another measure we use for evaluating the performance of parallel 

applications. It identifies the efficiency in which the computation resources are used by the 

parallel programs and is calculated using the formula shown below. Here, p is the number of 

parallel units, T(p) is the running time with p parallel units, and T(1) is the sequential execution 

time. 

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
T(1)

p. T(p)                    (3) 

Estimating serial execution times for some applications is not straightforward and, hence, we 

calculated parallel efficiency using the formula (4) below in which α = p1/p2 where p2 is the 

smallest number parallel units (CPU cores) used for the experiment, so alpha ≥ 1. This calculates 

the parallel efficiency with respect to the minimum number of parallel units used for the 

experiment. 

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
T(p2)

α. T(p1)                    (4) 
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6.2. Hardware Software Environments 

We have carried out a series of performance evaluations for the different applications by using 

several computation clusters. This is mainly to facilitate the operating system requirements 

imposed by the different parallel runtimes. For example, DryadLINQ runs only on Windows 

Server 2008 operating system whereas Apache Hadoop and Twister run only on Linux operating 

systems. In most cases, the cluster are installed with one operating system, therefore we had to 

use multiple computation clusters to obtain the measurements. Although we use different 

hardware resources, for most of the evaluations, we make sure that the different runtimes run on 

earthier on the same hardware (with different operating systems depending the runtime 

requirements) or at least in nearly similar hardware environments.  

Apart from hardware differences, depending on the runtime used, the applications are 

implemented with the best suitable features available in the selected runtime. For example, in 

DryadLINQ the files are accessed from shared directories while Hadoop uses HDFS. These 

variations add different performance characteristics to the underlying application, and therefore, 

the performance comparisons will not be identical in every situation. However, our motivation in 

this research is to develop and deploy applications using the best strategy for each runtime and 

analyze their performances to see what benefits one can gain from these different technologies 

and runtimes. For performance analysis, we used several computation clusters as follows. 
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Table 6. Details of the computation clusters used.  

Cluster ID Cluster-I Cluster-II Cluster-III Cluster-IV 

# nodes 32 230 32 32 

# CPUs in each  node 6 2 2 2 

# Cores in each CPU 8 4 4 4 

Total CPU cores 768 1840 256 256 

CPU Intel(R) Xeon(R) 
E7450 2.40GHz 

Intel(R) Xeon(R)           
E5410   2.33GHz 

Intel(R) Xeon(R) 
 L5420 2.50GHz 

Intel(R) Xeon(R) 
L5420  2.50GHz 

Memory Per Node 48GB 16GB 32GB 16GB 

Network Gigabit 
Infiniband 

Gigabit Gigabit Gigabit 

Operating Systems Red Hat 
Enterprise Linux 
Server release 
5.4 -64 bit 

Windows Server 
2008 Enterprise - 
64 bit 

Red Hat 
Enterprise 
Linux Server 
release 5.4 -64 
bit 

 

Red Hat 
Enterprise Linux 
Server release 
5.3 -64 bit 

Windows Server 
2008 Enterprise 
(Service Pack 1) - 
64 bit 

 

We use the academic release of DryadLINQ, Apache Hadoop version 0.20.2, MPI.NET, OpenMPI, 

and Twister for our performance comparisons. Both Twister and Hadoop use JDK (64 bit) version 

1.6.0_18, while DryadLINQ and MPI.NET uses Microsoft .NET version 3.5. We use OpenMPI 

version 1.0. 
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6.3. CAP3 Data Analysis 

An EST (Expressed Sequence Tag) corresponds to messenger RNAs (mRNAs) transcribed from 

the genes residing on chromosomes. Each individual EST sequence represents a fragment of 

mRNA, and the EST assembly aims to re-construct full-length mRNA sequences for each 

expressed gene. Because ESTs correspond to the gene regions of a genome, EST sequencing has 

become a standard practice for gene discovery, especially for the genomes of many organisms 

that may be too complex for whole-genome sequencing. EST is addressed by the software CAP3 

which is a DNA sequence assembly program developed by Huang and Madan[24]. CAP3 

performs several major assembly steps including computation of overlaps, construction of 

contigs, construction of multiple sequence alignments, and generation of consensus sequences to 

a given set of gene sequences. The program reads a collection of gene sequences from an input 

file (FASTA file format) and writes its output, including the standard output, to several output 

files. During an analysis, the CAP3 program is invoked repeatedly to process a large collection of 

input FASTA files.  

Input.fasta -> Cap3.exe -> Stdout + Other output files 

Processing a collection of input files using CAP3 can easily be parallelized by performing each 

invocation in a different processing unit. Since there is no inter task dependencies, it resembles a 

typical embarrassingly parallel application, i.e. according to our classification; it represents the 

“map-only” class of applications. We have developed parallel CAP3 programs by using Hadoop, 

DryadLINQ, and Twister runtimes. The details are presented below. 

6.3.1. Hadoop Implementation 

The Hadoop version of CAP3 is implemented by developing a map task that executes the CAP3 

program as a separate process on a given input FASTA file. The CAP3 application is 

implemented in C and it expects the inputs as native files. However, the Hadoop file system only 
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provides an interface accessible via its APIs. This forced us to use a network file system available 

in the computation cluster to store and access input data for the CAP3 program. This limitation 

arises in Hadoop when a parallel application uses an executable, most probably a legacy 

application that needs to access input as files via the command line arguments, as map or reduce 

tasks. Since HDFS stores data as blocks on the host file system, the stored data can only be 

accessed via an APIs provided by the HDFS. Currently HDFS provides both Java and C++ APIs 

to access data. However, to use these APIs one need to change the existing programs, which is 

not possible when the source code of an application is not available. One alternative approach is 

to store input files in HDFS and alter the map task to move the input file from the HDFS to the 

local file system before invoking the executable program. Since Hadoop schedules tasks based on 

the data locality, the data movement between HDFS and the local file system typically requires 

only a local data copying operation and hence may not incur network overheads. However, for 

large data sets, this approach produces considerable overheads and large temporary storage 

space. 

6.3.2. DryadLINQ Implementation 

To implement a parallel CAP3 application using DryadLINQ, we adopted the following 

approach: (i) the input files are partitioned among the nodes of the cluster so that each node  

stores roughly the same number of input files; (ii) a “data-partition” (A text file for this 

application) is created in each node containing the names of the input files available in that node; 

(iii) a DryadLINQ “partitioned-file” (a meta-data file understood by DryadLINQ) is created to 

point to the individual data-partitions located in the nodes of the cluster. These three steps enable 

DryadLINQ programs to execute queries against all the input data files. After these steps,  the 

DryadLINQ program which performs the parallel CAP3 execution becomes just a single line 

program contacting a “Select” query which select each input file name from the list of file names 
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and executes a user defined function on that. In our case, the user defined function calls the CAP3 

program passing the input file name as program arguments. The function also captures the 

standard output of the CAP3 program and saves it to a file. Then it moves all the output files 

generated by CAP3 to a predefined location. Figure 7 shows the method we have adopted to 

process input as files using DryadLINQ. 

 

Figure 7. Processing data as files using DryadLINQ. 

Although we use this program specifically for the CAP3 application, the same pattern can be 

used to execute other programs, scripts, or analysis functions written using frameworks such as R 

and Matlab, on a collection of data files. (Note: In this application, we rely on DryadLINQ to 

process the input data on the same compute nodes where they are located. If the nodes 

containing the data are free during the execution of the program, the DryadLINQ runtime will 

schedule the parallel tasks to the appropriate nodes to ensure co-location of process and data; 

otherwise, the data will be accessed via the shared directories.) Unlike in Hadoop, in DryadLINQ 

the user is expected to handle the data partitioning. Also, it stores input data on the local disks of 

the compute nodes directly as files. Therefore, the locally stored data files are directly accessible 

to the computation vertices that are schedule to run on that particular computation node. 

Dryad  
Partitioned File 

Dryad  
Data File 

FASTA 
Files 

Dryad  
Data File 

FASTA 
Files 

Dryad  
Data File 
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6.3.3. Twister Implementation 

Similar to Hadoop, in Twister, the user can create a map-only application by not specifying a 

particular reduce task. Twister adopts DryadLINQ’s approach to input data storage where it 

stores input files on the local disks of the compute nodes. The input FASTA files are distributed 

using the data distribution tool provided by Twister before executing the application. The meta-

data regarding the file distribution is stored in a partition file, which is used by the Twister for 

scheduling computation tasks.  

6.3.4. Performance Evaluation 

We measured both the performance and the scalability of the three implementations of CAP3 by 

using a data set containing FASTA files each with roughly 460 short sequences. The results of 

these benchmarks are shown in Figure 8 and Figure 9. 

 

Figure 8. Speedups of different implementations of CAP3 application measured using 256 
CPU cores of Cluster-III (Hadoop and Twister) and Cluster-IV (DryadLINQ). 
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Figure 9. Scalability of different implementations of CAP3 application measured using 256 
CPU cores of Cluster-III (Hadoop and Twister) and Cluster-IV (DryadLINQ). 

6.3.5. Discussion 

Although the main processing section of the CAP3 represents a “map-only” operation, all the 

above implementations used the corresponding parallel runtime to collect the outputs generated 

to a single computer. This reduces the overall speedup achievable for the parallel applications. 

However, the speedups in Figure 8 show that all three runtimes works equally well for CAP3. 

We also expect them to behave in the same way for similar applications with simple parallel 

topologies. Figure 9 indicates that for the data set we selected, the different implementations scale 

up to 16 computation nodes before producing diminishing returns. We expect better scalability 

characteristics for larger problem sizes. As we have explained in section 6.3.1 in the Hadoop 

implementation, we stored the input files in a network file system shared across the computation 

nodes rather than the HDFS. This prevented Hadoop implementation from exploiting data 

locality in scheduling computation task, and hence, produced lower speedups compared to the 

other two runtimes. This behavior may prevail in parallel applications developed using Hadoop 
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that uses legacy applications or unmodifiable executables in map/reduce tasks. Integrating 

Hadoop with a distributed file system that implements POSIX standard file system interfaces 

with the capability of providing data locality information would solve this issue. 

6.4. High Energy Physics (HEP) Data Analysis 

Most experiments in high energy physics produce large volumes of data. With the advancements 

in particle accelerators and detectors the physicist are getting closer and closer to uncovering 

some of the unsolved mysteries in the universe. Hedron colliders such as LHC (Large Hedron 

Collider) and its several detectors are expected to produce peta-bytes of data per year. Most of 

the data (the events generated as results of particle collisions) that exit from the initial stages of 

online filtration needs to be analyzed using some rigorous analysis functions to extract the 

information hidden in them. High Energy Physics group at Caltech provided us with such an 

analysis application with a large data set so that we can explore the new programming 

technologies to implement a parallel version of their application. 

The input data for this application consists of a large number of binary files each taking roughly 

33MB of disk space. The program is composed of two stages. First, the input files are processed 

by complex analysis function written using a language named ROOT [78], which is an 

interpreted C++ like language that can be used for rapid prototyping. The output of this stage of 

the computation is a histogram of identified features per given input file. During the next step, all 

the histograms produced in the previous stage is merged to form a single histogram representing 

the entire data analysis. This clearly resembles a perfect MapReduce application in which the map 

task perform the first stage of the computation while a set of reduce tasks can be used to merge 

the partial histograms to form next level of partial histograms. Finally, these partial histograms 

can be merged to produce the final histogram representing the entire analysis. This process is 

shown in Figure 10 
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Figure 10. MapReduce for the HEP data analysis. 

Although the characteristics of the application fits directly with the MapReduce model, its 

dependency to the ROOT analysis framework makes it challenging to implement using existing 

MapReduce runtimes. We were able to solve some of these challenges and were able to 

implement parallel applications for the above problem using Hadoop, DryadLINQ and the 

Twister runtimes. 

6.4.1. Hadoop Implementation 

In Hadoop implementation, the map and reduce tasks invoke ROOT interpretable analysis 

programs directly as executables. However, as shown in the CAP3 analysis, since the executables 

are expecting input data as files via the command line arguments, we could not use the HDFS 

effectively to store data. Therefore, we stored the input data in a high performance parallel file 

system (Lustre) and programmed the map tasks to download input files to local disk of the 

compute nodes during the runtime. In this approach, each map task first, copy an input file from 

the shared parallel file system to the local disk where it has been scheduled to run, and then 

executes the first stage of the computation that produces a histogram in the local file system. 

Next, the map task reads the resulting histogram back to the memory and “emits” (produces an 

output to the runtime) it to the Hadoop runtime so that Hadoop can send this data to an 

appropriate reduce task. The reduce tasks save the data objects received from the map tasks to files 

in the local file system and then execute another ROOT interpreted script which merges 
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histograms. Finally, the main program collects the partial histograms produced at the end of the 

each reduce task and combines them together to form a final output of the computation. As we 

will show in Figure 12 the online data movement introduced a significant performance penalty 

for the Hadoop implementation of this application. 

6.4.2. DryadLINQ Implementation 

MapReduce is a subset of the DAG based execution model that the Dryad/DryadLINQ support. 

We can simulate the three main phases of MapReduce; map, shuffle and group by, and reduce, using 

three queries in DryadLINQ. According to the authors of DryadLINQ MapReduce can be 

simulated in DryadLINQ as follows. 

 

Figure 11. Simulating MapReduce using DryadLINQ. 

In the above code segment, the first “SelectMany” query applies a function – mapper – to all 

inputs which produces one or more (key,value) pairs at each invocation. These pairs are then 

grouped according to their keys by a GroupBy operation which accepts a KeySelctor function that 

determines the grouping behavior. Finally, the reduce function is applied to each group using 

another “SelectMany” query. According to the MapReduce model, the reduce function produces 

only a single output per each group of values corresponding to a particular key. Therefore, the 

last query in the above code segment can be replaced by a “Select” operation as well. (Note: In 

DryadLINQ, the “Select” operation applies a user defined function to an input and returns a 
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single output whereas “SelectMany” performs the same functionality but can return one or more 

outputs at each invocation). 

For DryadLINQ implementation, we first distribute input data to local disks of the compute 

nodes and created a partitioned-file comprising of meta-data about the data distribution using a 

similar approach described in section 6.3.2. The first phase of the program produces a collection 

of vertices in DryadLINQ’s DAG based execution flow. Each of these vertices executes a ROOT 

interpreted function as a separate executable, which processes the input data files passed in as 

command line arguments. Next, each vertex reads the output histogram and returns it to the 

DryadLINQ runtime as an object with an “id” field generated using a random number that lies in 

the range of zero and the number of reduce tasks specified by the user.  During the next step of 

the program, a “GroupBy” operation is performed on these data objects grouping them according 

to their id field. A “Select” operation is used next to combine the grouped histograms together to 

produce new partial histograms. Finally, the main program collects these partial histograms and 

combines them together to produce the final histogram. 

6.4.3. Twister Implementation 

The Twister implementation of the HEP analysis uses map and reduce tasks similar to that of 

Hadoop implementation. However, there are few notable differences in the two implementations. 

Unlike in Hadoop, in the Twister version, the input data is distributed to the local disks of the 

compute nodes and the map tasks directly access them as files. This eliminates the requirements 

of using a separate parallel file system to hold input data or to use two levels of indirections as in 

DryadLINQ. Furthermore, in Twister the histograms produced after the map stage of the 

computation is directly transferred to the reduce tasks via the publish/subscribe messaging 

infrastructure where as in both Hadoop and DryadLINQA the data transfer happens via file 

systems. In Hadoop, reduce outputs are written to the distributed file system (HDFS) and a 
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combine operation on these outputs needs to be done manually. Twister’s combine phase 

represents another level of reduce operation which can be used to combine the results of the 

reduce stage of the computation. Therefore the final merging of histograms is handled in the 

combine stage of Twister. 

6.4.4. Performance Evaluation 

We measure the performance of this application using two computation clusters each with 256 

CPU cores. The performance is measured by increasing the input sizes up to 1TB, and the results  

are shown in Figure 12. 

 

Figure 12. Performance of different implementations of HEP data analysis applications 
measured using 256 CPU cores of Cluster-III (Hadoop and Twister) and Cluster-IV 

(DryadLINQ). 

6.4.5. Discussion 

The results in Figure 12 highlight that the Hadoop implementation has a considerable overhead 

compared to the DryadLINQ and the Twister implementations. This is mainly due to the 

differences in storage mechanisms used in these frameworks. DryadLINQ and Twister access the 
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input from local disks where the data is partitioned and distributed before the computation. As 

we have explained, the Hadoop implementation moves input data from IU Data Capacitor – a 

high performance parallel file system based on Lustre file system – to the local disks during the 

execution time. The dynamic data movement in the Hadoop implementation incurred a 

considerable overhead to the overall computation. In contrast, the ability to read input from the 

local disks gives significant performance improvements to both DryadLINQ and Twister 

implementations. 

Histogramming is a natural match to the MapReduce programming model and such applications 

can be implemented in similar fashion as above. The moving-computation-data  support in 

MapReduce improves performance of many data intensive applications. We expect Hadoop to 

show similar performance characteristics to applications where the data can be utilized from its 

distributed file system –HDFS. 

6.5. Pairwise Similarity Calculation 

Calculating similarity or dissimilarity between each element of a data set with each element in 

another data set is a common problem and is generally known as an All-pairs[79] problem. This 

section discusses one such application in gene sequencing. The application we have selected 

calculates the Smith Waterman Gotoh(SW-G)[80] distance (say 𝛿𝑖𝑗  –distance between sequence i 

and sequence j) between each pair of sequences in a given gene sequence collection. 

6.5.1. Introduction to Smith-Waterman-Gotoh (SWG) 

Smith-Waterman [81] is a widely used local sequence alignment algorithm for determining 

similar regions between two DNA or protein sequences. In our studies we use Smith-Waterman 

algorithm with Gotoh’s improvement for Alu sequencing. The Alu clustering problem [82] is one 

of the most challenging problems for sequencing clustering because Alus represent the largest 
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repeat families in human genome. As in metagenomics, this problem scales like O(N2) as given a 

set of sequences we need to compute the similarity between all possible pairs of sequences.  

We adopted the following algorithm to map this application to the MapReduce domain. To 

clarify our algorithm, let’s consider an example where N gene sequences produces a pairwise 

distance matrix of size NxN. We decompose the overall computation by considering the resultant 

matrix and group the overall computation into a block matrix of size DxD. Due to the similarities 

of distances 𝛿𝑖𝑗   and 𝛿𝑗𝑖   we only calculate the distances in the blocks of the upper triangle of the 

block matrix as shown in Figure 13. Each of these blocks is assigned to a map task which 

calculates SW-G distances for each pair of sequences within that block. Moreover, each map task 

that calculates a non-diagonal block produces a transpose block of the calculated distances as 

well. This allows us to construct the full NxN distance matrix by computing only the half of the 

actual distances. The row number of a given block is used as the input key for the reduce tasks, 

which simply collect the data blocks corresponding to a row and write to output files after 

organizing them in their correct order. At the end of the computation all the blocks 

corresponding to a single row block will be written to a file by the reduce tasks. 
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Figure 13. MapReduce algorithm for SW-G distance calculation program 

6.5.2. Hadoop Implementation 

We used JAligner[83] library to calculate SW-G distances in the Hadoop implementation of the 

above algorithm, where it is used in the map task to compute a block of distances.  The block size 

(D) can be specified via an argument to the program. Also, it needs to be specified in such a way 

that there will be much more map tasks than the number of processing elements in the 

computation cluster. This way the Apache Hadoop can schedule map tasks as a pipeline, which 

results a global load balancing of the application.  The input data is distributed to the worker 

nodes through the Hadoop distributed cache, which makes them available in the local disk of 

each compute node. 

6.5.3. DryadLINQ Implementation 

The DryadLINQ version of the above application is developed by simulating MapReduce 

programming model using DryadLINQ queries as explained in the HEP data analysis 

application. For this implementation we have used NAligner library (C# version of the JAligner 

library) to calculate Smith Waterman distances. First, the main program computes the block 

boundaries and assigns them to vertices. DryadLINQ replicates the input sequence file to every 

vertex automatically. This approach is possible, because the size of the sequence file, even with 

large number of sequences, is not considerably large when compared to the size of the output 

matrix. Each vertex computes Smith Waterman distances in a given block and produces two 

blocks as output. The output blocks are indexed based on their corresponding row numbers 

where they will fit in to the resultant distance matrix. Next a “GroupBy” operation is performed 

on all the output blocks to group them according to their row numbers, followed by another 

stage of “Select” operation to combine blocks in a particular row to a single output file. The 
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overall computation produces D (refer to Figure 13) output files corresponding to the D row 

blocks in the resultant matrix. 

6.5.4. Twister Implementation 

We also developed a Twister counterpart of the above algorithm by adopting a similar approach  

to the Hadoop implementation. Apart from minor differences in the programs, the map and 

reduce functions for the Twister implementation are very similar to that of Hadoop. In all three 

implementations we expect the input sequence file to be available in all the compute nodes while 

we use block indices and block boundaries as input (key,value) for map tasks. In Hadoop 

implementation the (key,values) are assigned to maps by writing them to individual files in HDFS, 

whereas in Twister the main program can directly send them to map tasks using the 

runMapReduce(KeyValue[]) API call. Twister also uses JAligner as the alignment engine. 

6.5.5. Performance Evaluations 

We identified samples of human and Chimpanzee Alu gene sequences using Repeatmasker[84] 

with Repbase Update [85] and produced a data set of 50000 sequences by replicating a random 

sample of 10000 sequences from the original data. We used this data to measure parallel 

performance of DryadLINQ, Hadoop, and Twister runtimes. Figure 14 shows the parallel 

efficiency (η) of each runtime under varying data sizes. 
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Figure 14. Parallel Efficiency of the different parallel runtimes for the SW-G program 
(Using 744 CPU cores in Cluster-I). 

6.5.6. Discussion 

Due to the sheer volume of SW-G comparisons, we did measure the sequential execution times of 

the above programs. Instead, we estimated serial running time by simply summing up the times 

spent on each map and reduce tasks. The results clearly show that all three runtimes achieve 

maximum efficiencies and maintains them with the increase of data. Although the absolute 

efficiency is not correctly reflected by the estimated serial time, it provides a valuable base point 

for our comparisons. Since this is a typical MapReduce computation, we expect all runtimes to 

achieve higher absolute efficiencies. Twister outperforms Hadoop, because of its faster data 

communication mechanism, and the lower overhead in the static task scheduling. Moreover, in 

Hadoop each map/reduce task is executed as a separate process (a Java Virtual Machine - JVM) 

whereas in Twister they are executed using threads. The Lower efficiency in DryadLINQ was 

mainly due to an inefficient task scheduling mechanism used in the initial academic release[86].  
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To evaluate the scalability of the Twister runtime further, we performed another benchmark 

using 1632 CPU cores of Cluster-II. In this evaluation, the Twister runtime is configured to use a 

daemon in each CPU core simulating a cluster of 1632 single core nodes. The efficiencies 

calculated for this evolution shows a value of 79% indicating that the runtime is scalable to such 

number of nodes. These results also prove that the Twister is capable of running typical 

MapReduce computations although we have added enhancements focusing on iterative 

MapReduce computations.  

6.6. K-Means Clustering 

K-Means clustering [71] is a well-known data clustering algorithm that performs an iterative 

computation to find a given number of cluster centers in a given input data set starting from a 

random set of cluster centers. In each iteration, the algorithm computes the distance (typically 

Euclidean distance) between the current cluster centers and all the input data points, and assigns 

each data point to a nearest cluster center. Then, it computes the new cluster centers by 

calculating the average distances of points assigned to a given cluster center. To check the 

convergence, the algorithm performs a comparison between the cluster centers produced during 

the nth iteration and the cluster centers produced from (n-1)th iteration. If this difference is greater 

than a given threshold the iterations will continue.  

In this algorithm, the major computation is the calculation of distances between the cluster 

centers and the data points.  Therefore, a parallel algorithm can be developed by performing this 

computation in parallel. A MapReduce version of the above algorithm is shown below. 
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K-means Clustering Algorithm for MapReduce 

Do 

Broadcast Cn  

[Perform in parallel] –the map() operation 

for each Vi 

 for each Cn,j 

Dij <= Euclidian (Vi,Cn,j) 

Assign point Vi to Cn,j with minimum Dij 

for each Cn,j 

 Cn,j <=∑ (𝑉𝑖)
𝐾𝑗
𝑖  

        Emit (j,[Cn,j , Kj])  

 

[Perform Sequentially] –the reduce() operation 

Collect all [Cn,j , Kj] 

for each Cn,j 

       Cn,j <=� �C𝑛,𝑗,𝑚�
𝑚
𝑖  

       Kj <=� �K𝑗,𝑚�
𝑚
𝑖  

Cn,j = Cn,j/Kj 

Calculate new cluster centers Cn+1 

Diff<= Euclidian (Cn, Cn+1) 

while (Diff <THRESHOLD) 

 

Assume that the input is already partitioned and available in the compute nodes. In this 

algorithm, Vi refers to the ith vector, Cn,j refers to the jth  cluster center in nth iteration, Dij refers to 

the Euclidian distance between ith vector and jth cluster center, and K is the number of cluster 

centers. The number of map tasks is defined by m. We implement the above algorithm using four 

parallel runtimes, Hadoop, DryadLINQ, Twister, and MPI. 



89 

 

6.6.1. Hadoop Implementation 

In Hadoop implementation, depending on the number of map tasks to be used, the main program 

partitions the input data into a collection of files and stores them in HDFS. Each map task reads a 

data partition from HDFS and the current cluster centers from Hadoop’s distributed cache. Then 

the map task assigns points to cluster centers and calculates a sum of points for each cluster 

center. Finally, it “emits” these partial sums along with the number of points in each cluster 

center to reduce tasks. The reduce task collects this information, combines the partial cluster 

centers, produces the new cluster centers, and  writes them to a file in HDFS. The main program 

reads the new cluster centers from HDFS and calculates the difference between the new cluster 

centers and the previous cluster centers, and determines whether to proceed to with new 

iteration. 

As we have discussed in Chapter 2, Hadoop considers each iteration as a new MapReduce 

computation, and hence, the input data partitions are read from files in every iteration. Also the 

communication between map and reduce tasks, and the reduce task and the main program happen 

via some form of file system. These communication paths add higher overheads compared to an 

approach of sending them directly via network connections. 

6.6.2. DryadLINQ Implementation 

DryadLINQ implementation uses an Apply operation to perform the map phase of the 

computation, in which the data vectors are assigned to cluster centers. The apply operation 

works on a collection of inputs (in this case, a set of input vectors) and produces a single output. 

Similar to a map task in Hadoop implementation, each vertex outputs an object comprising of all 

the partial cluster centers and the number of points assigned to each cluster center.  Another 

Apply operation, which runs sequentially, calculates the new cluster centers for the nth iteration. 

Finally, the main program calculates the distance between the previous cluster centers and the 
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new cluster centers using a Join operation to compute the Euclidian distance between the 

corresponding cluster centers. DryadLINQ supports a feature known as “loop unrolling” which 

can be used to build a single DryadLINQ query to represent multiple iterations of some set of 

query operations. Deferred query evaluation is a feature of LINQ, whereby a query is not 

evaluated until the program accesses the query results. Thus, in the K-means program, we 

accumulate the computations performed in several iterations (we used 4 as our unrolling factor) 

into one query and only “materialize” the value of the new cluster centers in every 4th iteration. 

6.6.3. Twister Implementation 

Twister runtime is optimized to handle iterative MapReduce computations. As in Hadoop, the 

input data is first partitioned into a collection of files and then distributed to the local disks of the 

compute nodes. Following this, a “partitioned file” is created containing the meta-data of the file 

partitions. Twister provides a tool to support these operations. Map tasks are then configured 

using “configureMaps()” method passing the above partitioned file. Twister also supports a 

broadcast style operation to start MapReduce computations - “mapReduceBCast()”. The program 

uses this method to send the current cluster centers to all map tasks in each iteration. Unlike 

Hadoop, Twister’s combine phase collects the outputs produce after the reduce stage to a single 

location accessible to the main program and the data transfer between phases happens via TCP 

based connections. This approach minimizes the overhead in overall data transfers, which starts 

from the main program and return back to it after following map and reduce phases. 

6.6.4. MPI Implementation 

We implemented the above parallel K-Means algorithm using MPI as well. This is mainly to 

evaluate the performance of the MapReduce runtimes comparing to MPI. We use a data 

portioning scheme similar to MapReduce but kept all the data partitions in a network file system 
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of the computation cluster. MPI processes are inherently long running, so the input data is loaded 

only once during the execution. 

6.6.5. Performance Evaluation 

To evaluate the performance of the K-means clustering applications, we selected a data set 

comprising of 2D vector points distributed around a known set of cluster centers. Then we use 

the K-Means clustering implementations to identify those clusters and verify the results using the 

earlier known cluster centers. To compare performances, we used only a fixed number of 

iterations in each implementation. Figure 15 below shows the performance of four 

implementations of K-Means clustering algorithm. 

 

Figure 15. Performance of different implementations of  K-Means clustering algorithm 
performed using 256 CPU cores of Cluster-III (Hadoop, Twister, and MPI) and Cluster-IV 

(DryadLINQ) 

6.6.6. Discussion 

Although we used a fixed number of iterations, we changed the number of data points from 500 

thousand to 20 millions. In K-means clustering, increase in the number of data points increases 
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the amount of computation. However, it was not sufficient to ameliorate the overheads 

introduced by Hadoop and DryadLINQ runtimes. As a result, the graph in Figure 15 mainly 

shows the overhead of the different runtimes. The use of file system based communication 

mechanisms and the loading of static input data at each iteration in Hadoop and in each unrolled 

loop in DryadLINQ resulted considerably higher overheads in these runtimes compared to 

Twister and MPI. Iterative applications that perform more complex computations or access larger 

volumes of data may produce better results for Hadoop and DryadLINQ, as the higher 

overheads induced by these runtimes becomes relatively less significant. However, the 

aforementioned inefficiencies of these runtimes produce considerable overheads making them 

less useful for this class of applications. 

A straightforward way to implement the above algorithm in MapReduce and DryadLINQ is by 

using the map phase to assign points to cluster centers and send (cluster center, point) pairs to the 

reduce stage. This approach results intermediate data transfers in the orders of input data and 

produce considerable overheads when every iteration performs the same data transfer. One can 

use a “combine” operation in Hadoop – a reduce operation that runs locally just after the map 

tasks to accumulate results before sending them to reduce tasks.  Similarly in DryadLINQ one can 

re-partition data after an assignment and performs a local combine operation using “Apply” query 

in DryadLINQ. In all our implementations, we merged this combine stage to the map task so that it 

outputs only the partial cluster centers and their counts as the output after operating on a 

collection of points. This minimizes the additional overhead in data transferring and scheduling 

of tasks by the runtimes. 

6.7. PageRank  

PageRank algorithm calculates numerical value to each web page in World Wide Web, which 

reflects the probability that the random surfer will access that page. The process of PageRank can 
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be understood as a Markov Chain which needs recursive calculation to converge.  An iteration of 

the algorithm calculates the new access probability for each web page based on values calculated 

in the previous iteration. The iterating will stop when the difference (δ) is less than a predefined 

threshold, where δ is the vector distance between the page access probabilities in Nth iteration 

and those in (N-1)th iteration. 

There already exist many published work optimizing PageRank algorithm, like some of them 

accelerate computation by exploring the block structure of hyperlinks[87, 88]. In this research, we 

did not create any new PageRank algorithm, but implemented the most general PageRank 

algorithm [1] in MapReduce programming model. The web graph is stored as an adjacency 

matrix (AM) and is partitioned to use as static data in map tasks. The variable input for a map task 

is the initial page rank score. The output of reduce tasks is the current PageRanks which will be 

used by the map tasks in the next iteration. 

6.7.1. Hadoop Implementation 

We implemented the above algorithm by using Hadoop similar to the approach we used in  K-

means clustering. The adjacency matrix is partitioned and stored as a collection of files in HDFS, 

so that each file is processed by a map task. The current PageRank scores are transferred using 

Hadoop’s distributed cache. The map tasks update the ranks in its data partition using the current 

PageRank and send the updated ranks to a collection of reduce tasks, which then compute partial 

set of PageRanks. Finally the main program calculates the next set of page ranks for the input. 

The iterations continue until the difference between the current PageRanks and the previous 

PageRanks reach a certain threshold. 
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6.7.2. Twister Implementation 

By leveraging the features of Twister, we were able to implement PageRank in an efficient 

manner. Some of these improvements are: (i) the partial adjacency matrices are only loaded once 

per map task because they can be configured as static data in Twister; (ii) current PageRanks are 

directly sent to the map tasks using the broadcast feature. Further optimizations that are 

independent of Twister include: (i) increasing the map task granularity by wrapping certain 

number of URLs entries together and (ii) merging all the tangling nodes as one node to save the 

communication and computation cost.  

6.7.3. Performance Evaluation 

We investigated the performance of Hadoop and Twister implementations of the PageRank using 

ClueWeb data set [89] collected in January 2009. We built the adjacency matrix using this data set 

and tested the page rank application using 32 computer nodes of Cluster-II. Table 7 summarizes 

the characteristic of three ClueWeb data sets we used in our tests.  

Table 7. Characteristics of data sets (B = Billions, AM = Adjacency Matrix) 

ClueWeb data set CWDS1 CWDS3 CWDS5 

Number of AM partitions 4000 2400 800 

Number of web pages 49.5M 31.2M 11.7M 

Number of links 1.40B 0.83B 0.27B 

Average out-degree 28.3 26.8 22.9 
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Figure 16. Elapsed time for 16 iterations of the Hadoop and Twister PageRank 
implementations (Using 256 CPU cores in Cluster-II). 

6.7.4. Discussion 

Figure 16 shows the performance of PageRank applications under different data sizes. Both 

Hadoop and Twister show similar performance characteristics with the increasing data sizes. 

However, it also reveals that Hadoop takes considerably longer time than Twister (Notice the log 

scale in y axis). We also calculated the efficiency of the PageRank application using formula (4) 

above with p1 and p2 times taken from runs on 128 and 256 CPU cores respectively for the 

CWDS3 data set. The results revealed that the Twister version of the application can maintain 

above 80% efficiency at 256 CPU cores. As we have mentioned above, Twister’s support for long 

running map/reduce tasks gives it a considerable performance advantage over Hadoop, as the 

static data is only loaded once for the computation. Furthermore, the direct transfer of 

intermediate data and the current PageRanks enables it to perform better as well. Although 

Twister broadcasts current PageRanks to all map tasks using the publish/subscribe broker 

network, the actual data movement only occurs from the broker network to each Twister daemon 
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(typically one per compute node), which internally shares this data among the map tasks it owns 

without copying. This approach improves the overall performance of similar algorithms 

significantly. 

6.8. Multi-Dimensional Scaling (MDS) Application 

Multidimensional scaling (MDS) is a general term used for the techniques to configure low 

dimensional mappings of given high-dimensional data with respect to the pairwise proximity 

information, while the pairwise Euclidean distance within the target dimension of each pair is 

approximated to the corresponding original proximity value.  In other words, it is a non-linear 

optimization problem to find low-dimensional configuration which minimizes the objective 

function, called STRESS[90] or SSTRESS [91]. 

Among many MDS solutions, we are using a well-known expectation maximization (EM) like 

method called SMACOF (Scaling by Majorizing of COmplicated Function)[74].  SMACOF is 

based on iterative majorization approach and is calculated by iterative matrix multiplication.  For 

the stop condition, SMACOF algorithm measures the STRESS value of current mapping and 

compares it to the STRESS value of the previous mapping result.  If the difference of STRESS 

values between previous one and the current one is smaller than threshold value, then it stops 

iteration.  For details of the SMACOF algorithm, please refer to[92]. 

6.8.1. Twister Implementation 

At a very high level the computation performed in SMACOF algorithm can be viewed as a set of 

matrix and vector multiplications. More precisely, in the nth iteration the current lower 

dimensional mapping Xn is derived using the formula: 

Xn= D x B x Xn-1    
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In this formula D is the distance matrix given as the input to the algorithm, B represents a 

derived matrix similar in size to D, and Xn-1 is the mapping to the lower dimension found in the 

previous iteration. To determine the condition for proceeding with iterations, the algorithm also 

computes a STESS value based on the Xn. In the above equation, the D and B are square matrices 

while the Xn is a vector (2D or 3D depending on the dimension the high dimensional data is 

reduced). This feature can be used to convert the above equation to a matrix-vector multiplication 

instead of matrix-matrix multiplication that minimizes the computational complexity of the entire 

algorithm. Therefore, the Twister implementation calculates Xn using two matrix-vector 

multiplications. The following pseudo code segment shows the Twister version of the MDS 

program. 

Pseudo Code: Multi Dimensional Scaling using MapReduce 

//Load static data to map tasks 

configureBXMaps() 

configureDCMaps() 

configureSTRESSMaps() 

 

//Start main iteration 

while(diff<THREASHOLD){ 

Cn=calculateBXMapReduce(Xn-1) 

Xn =calculateDCMapReduce(Cn) 

STRESSn=calculateSRESSMapReduce(Xn) 

diff=STRESSn-STRESSn-1 

} 

 

In the above pseudo code, “calculateBXMapReduce(Xn-1)”  calculates the vector Cn resulting 

from matrix-vector multiplication B x Xn-1 in the above formula. The 

“calculateDCMapReduce(Cn)” calculates the matrix-vector multiplication D x Cn. This application 
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demonstrates the programming model we envisioned in Twister in which the MapReduce is used 

as a programming construct to parallelize sections of iterative applications. Furthermore, it also 

shows how complex iterative applications can be developed using Twister runtime as well. 

6.8.2. Performance Analysis 

To evaluate the performance of our implementation, we used a data set comprising of 35339 gene 

sequences that produce a 1.24 billion pair-wise distances in matrix D. Estimating the serial 

running time for MDS application is not straightforward and hence we calculated the parallel 

efficiency using the formula (4).  The outcome of this benchmark is shown in Figure 17. 

 

Figure 17. Efficiency of the MDS application (in Cluster–II). 

6.8.3. Discussion 

For the selected data set, Twister maintains higher efficiencies (>80%) for considerable number of 

CPU cores. With large data, we expect it to maintain similar efficiencies for even higher number 

of CPU cores. As we have shown in [86, 93-95]  both Hadoop and DryadLINQ showed extremely 

high overheads for iterative applications such as K-Means clustering or matrix multiplication. 
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The MDS uses three MapReduce computations in a single iteration involving two matrix- vector 

multiplications and one STRESS calculation. Thus we expect both Hadoop and DryadLINQ to be 

highly inefficient for this application and hence did not implement MDS using those runtimes. 

6.9. Matrix Multiplication  

In this section, we discuss two parallel matrix multiplication algorithms that can be used with 

Twister. For simplicity of the explanation, we assume that the matrices have square dimensions. 

Let’s consider a matrix multiplication where A and B matrices produce a result matrix of C. We 

also assume that the multiplication uses n parallel processes. 

6.9.1. Row-Column Decomposition Approach 

In this algorithm, the first matrix (A) is partitioned into a collection of row blocks. The height of a 

row block is determined by the dimension of the matrix (N) and the number of iterations (r). The 

second matrix (B) is partitioned to a set of column blocks. In MapReduce implementation, each 

map task holds a column block of matrix B, and in each iteration it receives a row block of matrix 

A from the main program. During the ith iteration, jth map task calculates the (i,j)th block of matrix 

C, while the reduce task collects these output blocks and merges them to form a row block of 

matrix C. For this algorithm, we used the Twister’s long running map/reduce tasks with configure 

option, so that the column blocks of matrix B is loaded only once for the entire computation. 

Figure 18 illustrates this approach. 
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Figure 18. Matrix multiplication Row-Column decomposition (top). Twister MapReduce 
implementation (bottom). 

Since the amount of communication determines the scalability characteristics of an algorithm, in 

the following table we list the amount of communication performed in each step of the above 

algorithm. 

Table 8. Breakdown of the amount of communication in various stages of the Row-column 

based matrix multiplication algorithm. 

Operation Amount of communication Total for r iterations 

ConfigureMaps()  (N*b)*n = N2 N2 

mapReduceBcast () (N/r)*N*n = N2n/r N2n 

In between map and reduce (b*N/r)*n = N2/r N2 

Collecting results (b*N)*n=N2 N2 

 

Total communication = N2n+3N2  = O(N2n) 
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6.9.2.  Fox Algorithm for Matrix Multiplication 

The Fox algorithm[13] uses 2D block based approach with a square processes mesh. Similar to the 

above analysis let’s also assume that the total number of processes available is n. This leads to a 

processes mesh of qxq where q=√n. Although the process mesh is a logical arrangement, parallel 

runtimes such as MPI provide optimized communication constructs for processes arranged in 2D 

meshes. 

 

Figure 19. 2D block decomposition in Fox algorithm and the process mesh. 

In the Fox algorithm, each process holds a block of matrix A and a block of matrix B and 

computes a block of matrix C. In kth iteration every process executes the following 

communication and computation operations. 

1. The process that holds A(i, (i+k) mod q) broadcasts it to all the process in the row i 
2. All the processes in row i receive the above element (say D) 
3. Every process calculates C(i,j) =C(i,j) + D x B(i,j) 
4. Every process sends the block B(i,j) to the process that holds B( (i+1) mod q, j) 

In the previous algorithm, each iteration completes a one row block of the resultant matrix C. Int 

contrast, in this algorithm, each process keeps accumulating the final value for a block of matrix 

C throughout the computation until it terminates in q iterations. 

Similar to the row-column approach, we can also calculate the amount of communication the Fox 

algorithm performs as follows. To make the analysis similar to the previous algorithm, we use q= 

√n property in the equations. 
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Table 9. Breakdown of the amount of communication in various stages of the Fox 

algorithm. 

Operation Amount of communication Total for q= √n iterations 

Initial data distribution 2*N2 2*N2 

Broadcast  (N/q)*(N/q)*q*q = N2 N2√n 

Shift operation (N/q)*(N/q)*q*q = N2 N2√n 

Collecting results N2 N2 

 

Total communication = 2N2√n +3N2  = O(N2√n) 

The above analysis shows that the Fox algorithm performs far less communication than the row-

column based decomposition approach discussed earlier. Further, in the Fox algorithm, each 

process only requires memory to hold three blocks of matrices while the previous approach 

requires memory for more than two row blocks at a time. Therefore it is interesting to see if one 

can implement Fox algorithm using MapReduce. 

6.9.3. Fox Algorithm using Twister’s Extended MapReduce 

We have come up with a MapReduce algorithm that can simulate Fox matrix multiplication. 

Unlike MPI which supports mesh configuration of processes, MapReduce provides only map 

followed by reduce communication pattern. However, we can simulate a square arrangement of 

processes using MapReduce as follows. 

Let’s assume that we use n map tasks and n reduce tasks and each type is arranged to form a 

square mesh with dimension q = √n  as shown in Figure 20.  Typically, in MapReduce the keys 

generated as the map outputs are matched to different reduce tasks using a hash function. Here, 

we use an identify function as the “Key Shuffler”. Also we use integer keys between 1 and n as 

map output keys, so that a map output can be send to a particular reduce task depending on the 



103 

 

output key. For example, if map task 2 needs to send a message to reduce task 5 it can do so by 

producing a (key,value) pair with key equal to 5 and the message as the value. 

m1 m2 mq

mq+1 mq+2 m2q

mn-q+1 mn-q+2 mn

r1 r2 rq

rq+1 rq+2 r2q

rn-q+1 rn-q+2 rn

n map tasks n reduce tasks  

Figure 20. Virtual topology of map and reduce tasks arranged in a square matrix of size 
qxq 

As explained before, in Fox matrix multiplication, at some point of execution each process needs 

to send its block of matrix A to all the processes (row wise broadcast) in the same row and sends 

its block of matrix B to the process right above in the process mesh (shift). For this algorithm, we 

assume n parallel processes executed as map and reduce computations in two phases of the 

MapReduce computation. Although we use 2n tasks, at a given time, only one set of tasks (map 

or reduce) will be executed, therefore we can safely assume that there are only n processes. Each 

map task holds a block of matrix A and a block of matrix B while each reduce task computes a 

block of matrix C. In each iteration, the main program, map, and reduce tasks performs the 

following operations. 
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1. Main program sends the iteration number k to all map tasks 
2. The map tasks that meet the following condition send its A block (say Ab)to a set of 

reduce tasks 
a. Condition for map => (( mapNo div q) + k ) mod q == mapNo mod q 
b.  Selected reduce tasks => (( mapNo div q) * q) to (( mapNo div q) * q +q) 

3. Each map task sends its B block (say Bb) to a reduce task that satisfy the following 
condition 

a. Reduce key => ((q-k)*q + mapNo) mod (q*q) 
4. Each  reduce task performs the following computation 

a. Ci = Ci + Ab x Bi    (0<i<n) 
b. If (last iteration) send Ci to the  main program 

The communication pattern for the second iteration of this algorithm is shown in Figure 21 using 

a 3x3 processes mesh. 

m1 m2 m3 m4 m5 m6 m7 m8 m9

Each map task holds a block of matrix A and a block of matrix  B and sends 
them selectively to reduce task in each iteration

B1

A1

B2

A2

B3

A3

B4

A4

B5

A5

B6

A6

B7

A7

B8

A8

B9

A9

r1 r2 r3 r4 r5 r6 r7 r8 r9

configureMaps(ABBlocks[])
for(i<=q){
   result=mapReduceBcast(i)
   if(i=q){
     appendResultsToC(result)
   }
}

Each reduce task accumulates the results of a block of matrix C

C2 C3 C4 C5 C6 C7 C8 C9C1

 

Figure 21. Communication pattern of the second iteration of the Fox - MapReduce 
algorithm shown using 3x3 processes mesh. Thick arrows between map and reduce tasks 

show the broadcast operation while dash arrows show the shift operation. 

In this algorithm, we assume that the reduce tasks are long running so that they can accumulate 

the result of a blocks of matrix C, which makes the reduce tasks no longer side effect free. That is, 

we will not be able to recover these states with the current fault tolerance strategy of Twister. 

However, it is possible to recover the state of these types of computations by saving state of each 

reduce task to a distributed file system in every X number of iterations, where X defines the 
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number of roll-back iterations necessary in an event of a failure. We will discuss this hybrid 

approach to fault tolerance in the future work section of this thesis. Apart from the above, the 

row-wise broadcast is implemented as a selective broadcast operation using Twister’s row-wise 

broadcast option for a logical mesh of reduce tasks, which utilizes the underneath pub-sub 

infrastructure to handle the broadcast operation. Furthermore, for larger blocks Twister 

automatically uses direct TCP channels between daemons, which eliminates the loading of the 

broker network with large data transfers.  Table 10 highlights the amount of communication 

performed in each step of the above algorithm. 

Table 10. Breakdown of the amount of communication in various stages of the Twister 

MapReduce version of Fox algorithm. 

Operation Amount of communication Total for q= √n iterations 

configureMaps 2*N2 2*N2 

Selective Broadcast  (N/q)*(N/q)*q*q = N2 N2√n 

Shift operation N2 N2√n 

Collecting results N2 N2 

Total communication = 2N2√n +3N2  = O(N2√n) 

6.9.4. Performance Evaluation 

According to the analysis, the amount of communication in both implementations of the Fox 

algorithm is the same, and it is lower than that of the row-column approach. To compare these 

implementations, we performed a set of matrix multiplications using each implementation on the 

same set of hardware nodes. We used 256 CPU cores of Cluster II and evaluated each algorithm 

using different sizes of matrices. We also evaluated the performance of an OpenMPI based 

implementation of the Fox Matrix Multiplication algorithm on the same hardware setting.  
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Since Twister programs are implemented in Java and the MPI program is implemented in C++, 

first, we evaluate two sequential programs written in Java and C++ and compare their 

performances. Figure 22 shows these performances. 

 

Figure 22. Sequential time for performing one block of matrix multiplication - Java vs. C++ 

The above measurements are made by using almost identical Java and C++ programs on the 

same hardware. Here we used matrices similar in size to the blocks that are assigned to 

individual processing cores in a parallel version of the program.  The results show that there is a 

significant performance difference between Java and C++ for the matrix multiplication operation. 

Next we compared the performance of the two Twister implementations against increasing 

matrix dimensions. In this evaluation, both Twister implementations use pub-sub brokers for 

intermediate data transfers (Note: We have not used the TCP based direct data transfers as 

explained in section 5.2). The following figure shows these performance characteristics. 
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Figure 23. Performance of Row-Column and Fox algorithm based implementations by 
using 64 CPU cores of Cluster II. (Note: In this evaluation, we have not used Twister’s TCP 

based direct data transfers as explained in section 5.2). 

Next, we evaluated the Twister and the MPI implementations of the Fox algorithm. In this 

evaluation, we used Twister’s TCP based direct data transfer mechanism. The following graph 

shows the overall matrix multiplication time of both Twister (Java) and OpenMPI (C++) 

applications.  We measured only the time for matrix multiplication iterations (Initial data 

distribution and final data collection is ignored). The graph also shows the ideal compute times 

for each runtime based on the graph above as follows:    

Compute time = time per one block * number of iterations 
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Figure 24. Performance of Twister and MPI matrix multiplication (Fox Algorithm) 
implementations by using 256 CPU cores of Cluster II. The figure also shows the projected 

compute-only time for both Java and C++. 

According to Figure 24, Twister version of the matrix multiplication application is about three 

times slower than the OpenMPI counterpart. However, as shown in Figure 22, a multiplication of 

a block of matrix in Java is roughly three times slower than a C++ implementation. Therefore, if 

we normalize for these differences, both Twister and MPI would have similar performance 

characteristics. To understand this better, we performed an overhead calculation for the two 

implementations. Since there is a considerable difference between the sequential running times of 

Java and C++, when calculating overheads we used Java sequential times for Twister and C++ 

sequential times for MPI. 
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Figure 25. Parallel overhead of three matrix multiplication implementations by using 256 
CPU cores of Cluster II 

6.9.5. Discussion 

The results in Figure 23 clearly indicate that the Twister versions of the Fox algorithm perform 

much better than the row-column decomposition approach. As we have explained, the Row-

Column algorithm performs more data transfer than the Fox algorithm. Also, the broadcast 

operation in row-column algorithm depends heavily on the performance of the pub-sub brokers. 

These factors contribute to the higher running time of the row-column approach. 

 The parallel overheads shown in Figure 25 indicate that both MPI and Twister shows similar 

overhead characteristics and they both show negative overheads due better utilization of cache in 

the parallel application than the sequential application. For larger matrices i.e. smaller 

1/SQRT(grain size), both Twister and MPI implementations give highly desirable overhead 

characteristics.   The Fox matrix multiplication is has a complex communication pattern 

compared to typical MapReduce applications. Twister runtime enables the development of such 
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algorithms in MapReduce programming model and as we have seen in matrix multiplication we 

expect it to produce better performance characteristics for large problem sizes. 

Twister supports long running map/reduce tasks to improve the performance of many iterative 

MapReduce computations. It also allows theses tasks to be configured with static data. Since the 

tasks only store static data, the map and reduce functions in Twister can still be considered “side 

effect free”, a feature that simplify the fault handling mechanism of the runtime. With side-effect 

free tasks, Twister runtime can restart a failed iteration by simply re-configuring the tasks with 

the static data and re-executing the failed iteration. Similar to its MPI counterpart, in the Twister 

implementation of the Fox algorithm, we use reduce tasks to accumulate results of blocks of 

matrix C introducing side-effects. Therefore, under the current Twister implementation, this 

computation will not tolerate failures. To support fault tolerance with stateful map and reduce 

tasks, the runtime needs save the state of individual tasks to a fault tolerance file system such as 

HDFS. This is an interesting future work. 

6.10. Twister Benchmark Application and Micro Benchmarks 

So far in this chapter, we discussed the real data analysis applications and their performances. To 

understand performance of the Twister runtime better we developed a MapReduce application 

that can simulate various application patterns.  This section discusses some of the micro 

benchmarks that we performed and our findings. 

6.10.1. Structure of the Benchmark Application 

In the MapReduce model, the main communication occurs between map and reduce stages.  Apart 

from this, Twister’s extended programming model supports broadcasting data to all map tasks as 

well as configuring map and reduce tasks by sending data directly from the main program (a 

scatter operation). The benchmark application supports variable message sizes to be used in all 
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the above three communication phases and variable sleep times, simulating computation times, 

at the map and reduce phases. This behavior allows us to use the benchmark application to 

evaluate Twister runtime under different communication loads or computation loads. The 

structure of this application is shown in Figure 26 below. 

reduce

mapmap
Main 

Program map

reduce

BroadCast

Scatter

map -> reduce 
communicationVariable message sizes for 

communication
Variable sleep times for map/

reduce tasks
 

Figure 26. The structure of the micro benchmark program. 

6.10.2. Micro Benchmarks 

We evaluated the Twister runtime for the above three communication phases using 32 nodes of 

Cluster II. With each of these tests we used two broker settings; (i)  single broker and  (ii) 5 

brokers connected in mesh configuration. To evaluate the effect of different message brokers we 

used both NaradaBrokering and ActiveMQ separately for each test setting. However, we could 

not test NaradaBrokering in full mesh configuration with multiple brokers due to a problem in 

NaradaBrokering. Therefore, for tests with NaradaBrokering we used a tree configuration for the 

broker network. Following set of figures shows the performance characteristics of these 

benchmarks. 
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Figure 27. Time to send a single data item from the main program to all map tasks against 
the size of the data item.  

 

Figure 28. Time to scatter a set of data items to map/reduce tasks against scatter message 
size. 
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Figure 29. Total time for the map to reduce data transfer against <Key,Value> message 
size. 

According to Figure 27, ActiveMQ broker performs the broadcast operation faster than the 

NaradaBrokering and more brokers in both types speedup the broadcast operation. In Twister, 

the broadcast operation is used when the main program (Twister Driver) sends some data 

directly to all map tasks. For example, in K-Means clustering, the main program sends the current 

cluster centers to all map tasks in each iteration. In the above benchmark, we used broadcast 

messages up to 20 megabytes in size which can represents roughly 2.5 million double values in 

each message proving that the brokered approach we adopted in Twister is capable of such large 

broadcasts. However, in real applications the broadcasts are typically used to send smaller data 

items such as parameters to all map tasks. 

We performed a similar benchmark for the operation that configure map and reduce tasks. In this 

operation the data originates from the main program and scattered to individual map and reduce 

tasks. However, unlike the broadcast operation where the broker handles the actual broadcasting, 

in this operation each piece of data needs to travel from the originator to the destination via the 
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broker network. That is, all the data needs to go through the connection between the main 

program and the first broker. This implies that the multiple brokers will not provide much 

benefit for this operation as observed in the performance results in Figure 28. For message sizes 

up to about 10 megabytes NaradaBrokering is faster than the ActiveMQ broker. However, for 

larger messages ActiveMQ handles the scatter operation better than NaradaBrokering. 

Finally, we performed a benchmark to evaluate the performance of map to reduce data transfer. 

This is a crucial operation in MapReduce programming model.  The amount of data transfer from 

map to reduce stages varies depending on the application. For example, in applications such as 

data clustering only the cluster centers need to be sent from map task to the reduce tasks. In 

contrast, a sorting operation transfers the entire data set through the map reduce pipeline. Snice 

brokers are optimized for dispersing large number of small messages (or events), sending data 

via the broker network is acceptable only when the individual messages are considerably small. 

Larger messages cause considerable delays when sending via a broker network. As it can be seen 

in Figure 29, the TCP based direct data transfer mechanism solves this issue and it scales well 

with larger message sizes as well.  

6.11. Conclusion 

In this section, we discussed a series of data analysis applications that we have developed using 

Twister. Also, we discussed their respective performance by comparing them with the 

performance of several other implementations which performs the same algorithms. In each 

application, we discussed the mapping of the problem to the MapReduce programming model 

and its different implementations, by explaining the different ways that one can utilize these 

runtimes, especially the Twister runtime. We believe that the selected set of applications fairly 

represents the three application classes: (i) the map-only, (ii) the map-reduce, and (iii) the 

iterative map-reduce that we discussed earlier; therefore, the techniques we applied to these 
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applications can be reused to support other similar problems in these categories. We also 

discussed the applicability of Twister to the Fox matrix multiplication algorithm. 

We also performed an extensive set of performance analyses to identify the performance 

characteristics of Twister under different problem categories. For all applications we tested, 

implementations based on Twister demonstrate the best performances compared to the 

DryadLINQ and the Hadoop implementations. The use of long running tasks and the faster 

communication mechanism utilized in Twister make it highly efficient for iterative MapReduce 

applications for which both DryadLINQ and Hadoop show considerable overheads.  Although 

MPI outperforms Twister in iterative applications, our results indicate that the performance gap 

between MPI and Twister becomes reduced for large problem sizes. We performed several non-

iterative applications such as CAP3 (section 6.3), HEP (section 6.4), and SW-G (section 6.5) which 

demonstrate the applicability of Twister to typical MapReduce applications. However, unlike 

Hadoop and DryadLINQ, in the current Twister implementation, we have not implemented fault 

tolerance support for non-iterative applications.  We will discuss some of the possible approaches 

to make Twister fault tolerant for typical MapReduce applications in the section which discusses 

potential future research avenues. 
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Chapter 7.                                                  Related Work 

The research work related to this thesis can be divided into two categories. First, this work could 

be classified with the broadly relevant parallel processing runtimes, including several 

MapReduce implementations that we discussed in Chapter 2, and second, the work could be 

categorized with the other parallel runtimes, which support some forms of parallel iterative 

algorithms. In this section we will discuss some of the approaches adopted by others for the 

second category. 

7.1. Apache Mahout 

Apache Mahout is a sub-project of the Hadoop, which provides scalable machine learning 

libraries based on Hadoop’s MapReduce programming model. Currently, they support several 

categories of machine learning applications such as clustering, classification, and 
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recommendation mining. Although most of these algorithms perform iterative MapReduce 

computations, since they are based on Hadoop, each iteration is executed as a new MapReduce 

computation by Hadoop. For example, consider the following pseudo code extracted from the K-

Means clustering implementation of the latest Apache Mahout (version 0.3) implementation. 

 K-Means Clustering – Apache Mahout 

 

1 

2 

3 

4 

5 

6 

7 

8 

 

 

9 

10 
 

 

11 

12 

13 

14 

15 

 

 

16 

17 

18 

19 

[Perform sequentially]  the main program 

while(! converged && (iteration<MAX_ITERATIONs) 

JobConf jobConf = new JobCon() 

jobConf.setXXX() 

.. 

JobClient.runJob(jobConf) 

converged=isConverged() 

iteration++ 

end while 
 

 [Perform in parallel] –the map(Key = id, Value = point)  

Cluster = findNearestClusterForTheInputPoint(point) 

Emit(cluster,point) 
 

[Perform in parallel] – the local combine (Key=cluster,List<Value =point>)  

for each point Pi 

        count++ 

        sum= sum + Pi 

end for 

Emit(cluster, [count,sum]) 

 

[Perform Sequentially] –the reduce(Key=cluster, List<Value=[count,sum])  

for each value Vi 

        totalCount= totalCount +Vi.count 

        totalSum= totalSum + Vi.sum 

end for 
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20 

21 

newCluster = calculateCluster(totalCount,totalSum) 

WriteToFileSystem (clusterId,newCluster)        

 

According to this implementation, the main program creates a new Hadoop MapReduce job per 

each iteration (line number 2) and executes these jobs until convergence of cluster centers or the 

maximum number of iterations has been reached.  During an iteration, at each map task, a worker 

in Hadoop reads the input data and calls the user defined map function (line number 9), by 

passing it point by point, which then calculates the nearest cluster center for the input data point 

and emits a (cluster, point) pair. The local combine function calculates the count and the sum for a 

group of points assigned to a single cluster center and produces a (cluster, (count, sum)) key-value 

pairs as output. The reduce function performs a similar operation to the combine function. It 

calculates the new cluster centers from a collection of combine outputs. To analyze the overhead of 

this, we can write the total running time of this computation for n iterations using P processors as 

follows:- (Note: for this analysis we assume that there are a large enough number of map and 

reduce tasks to process on P processors). 

Time for K-Means on P processors =  

T(P) = n *[ T(job submission)+T(read input) + T(map()) + T(map to reduce data transfer) + T(reduce()) + 

T(write output)] 

In the above formula, the T(read-input) and T(write-output) represent times for reading an input 

data partition and writing a reduce output, respectively. If we assume uniform map and reduce 

running times, we can estimate the sequential running time of the K-Means clustering program 

as follows:- 

Time for K-Means on 1 processor =  

T(1) = P* T(read input) +n* P* T(map()) + n* P* T(reduce()) + P* T(write output) 
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If we calculate the overhead of the MapReduce implementation using formula (2) of section 

Chapter 6, it will be as follows: 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑃(𝑇(𝑃) –𝑇(1)

𝑇(1)
 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =

𝑃 ∗  𝑛 [ 𝑇(𝑗𝑜𝑏 𝑠𝑢𝑏: )  +   𝑇(𝑟𝑒𝑎𝑑 𝑖𝑛𝑝𝑢𝑡)  +   𝑇(𝑚𝑎𝑝()) 
+ 𝑇(𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟)  +  𝑇(𝑟𝑒𝑑𝑢𝑐𝑒())  +  𝑇(𝑤𝑟𝑖𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡) ]  −  

𝑃 ∗  𝑇(𝑟𝑒𝑎𝑑 𝑖𝑛𝑝𝑢𝑡) + 𝑛 ∗  𝑃 ∗  𝑇(𝑚𝑎𝑝()) +
 𝑛 ∗  𝑃 ∗  𝑇(𝑟𝑒𝑑𝑢𝑐𝑒())  +  𝑃 ∗  𝑇(𝑤𝑟𝑖𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡) 

P ∗  T(read input) + n ∗  P ∗  T(map()) +
 n ∗  P ∗  T(reduce())  +  P ∗  T(write output)

 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =

𝑛[𝑇(𝑗𝑜𝑏 𝑠𝑢𝑏: ) + 𝑇(𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟)]
+ (𝑛 − 1)[𝑇(𝑟𝑒𝑎𝑑 𝑖𝑛𝑝𝑢𝑡) + 𝑇(𝑤𝑟𝑖𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡)]

 T(read input) + T(write output) +
n[ T(map()) +  T(reduce())]

 

 

With the support for long running tasks, as in Twister, the above overhead reduces to: 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑇(𝑗𝑜𝑏 𝑠𝑢𝑏: ) + 𝑛𝑇(𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟)
 T(read input) + T(write output) +

n[ T(map()) +  T(reduce())]
 

 

This is much smaller than that of Apache Mahout, because it does not include the additional job 

submission, data reading, and writing times per each iteration. Furthermore, as we have 

explained in section 2.3, the data transfer in Hadoop goes through the file system twice, a step 

which incurs considerable data transfer overhead. The overhead of reading input data multiple 

times increases dramatically in runtimes that read data from remote locations such as Cloud 

MapReduce[96]. 

Apache Mahout provides implementations for a set of commonly used machine learning 

algorithms. However, as we have shown above, irrespective of the algorithm, the 

implementations incur considerable overheads when they are executed on the Hadoop runtime. 
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In contrast, most these algorithms will experience minimum overheads on Twister due to the 

enhanced architecture and the programming model we used.  

7.2. Pregel 

Pregel[97] is a runtime developed for processing large graphs in which  the programs are  

expressed as a sequence of iterations. A user defined function is evaluated at each vertex of the 

graph during an iteration, and between iterations, the vertices send messages to each other. The 

authors describe the programming model as follows: 

“Pregel computations consist of a sequence of iterations, called supersteps. During a superstep the 

framework invokes a user defined function for each vertex, conceptually in parallel. The function specifies 

behavior at a single vertex V and a single superstep S. It can read messages sent to V in superstep S + 1, 

send messages to other vertices that will be received at superstep S + 1, and modify the state of V and its 

outgoing edges. Messages are typically sent along outgoing edges, but a message may be sent to any vertex 

whose identifier is known.” 

Although the programming model of Pregel is different than Twister’s MapReduce based 

programming model, there exist some similarities between the two runtimes. Most notably, 

unlike other MapReduce runtimes such as Hadoop and Dryad, both Twister and Pregel use long 

running tasks.  A Vertex in Pregel holds a user defined value corresponding to the node of the 

graph that it represents, and it keeps changing this value depending on the computation 

performed by the user defined function, which is executed at each vertex.  Twister also uses long 

running map/reduce tasks, and it supports configuring them with any static data once per 

computation; this possibility allows for the elimination of the need to re-load static data in each 

iteration. Although the functional view of MapReduce does not encourage the use of stateful 

map/reduce tasks, as we have shown in the Fox matrix multiplication described in section 6.9, one 

can use stateful map/reduce tasks in Twister to implement complex applications.  
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The possibility in supporting fault tolerance easily is one of the key benefits of the MapReduce 

programming model. However, with the use of stateful tasks, this possibility will no longer be in 

effect, because the tasks cannot be re-executed without losing their current state. The runtime 

needs to be able to preserve the state of every task in order to recover from failures. Furthermore, 

the runtime cannot simply save the current state of tasks to the local disks of the computers 

where they are executed, because a disk failure could result in a complete re-execution of the 

entire program. In typical MapReduce, a disk failure could results in the  re-execution of the 

failed tasks in order to produce the missing intermediate data, however with stateful, tasks this 

proves impossible. Therefore, the task state must be preserved in a fault tolerant distributed file 

system such as GFS or HDFS. From the Pregel paper, it is not clear which mechanism the system 

uses to save the state of the vertices in every super-step. However, it could most likely be stored 

in the Google File System so as to support fault tolerance.  Serializing the entire graph to a 

distributed file system in each iteration is a costly checkpointing mechanism; therefore, we 

believe that a checkpoint at every few iterations will be a more practical approach.  Currently, we 

do not support fault tolerance for stateful map/reduce tasks in Twister, as it is not coupled with a 

distributed file system such as HDFS or GFS. The development of this type of failure handling 

mechanism should emerge in interesting future research. 

Under the MapReduce model, there is no direct communication path from the reduce stage back 

to the map stage of the computation. However, such a communication can be simulated by 

writing the output of the reduce stage to a distributed file system, and then reading the output 

back in map tasks during the next iteration.  To illustrate this approach, let’s consider a 

MapReduce implementation of a PageRank algorithm. For this analysis, we assume that the link 

graph is presented as an adjacency matrix in the format <<page_1, <link_1, .. ,link_m1>>, <<page_2, 

<link_1 ,.. ,link_m2>, …, <<page_n, <link_1 ,.. ,link_mn>>. The following algorithm shows a possible 

approach in implementing PageRank in MapReduce. 
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 Pagerank Algorithm for MapReduce  

1 

 

2 

3 

4 

5 

6 

 

 

7 

8 

9 

10 

11 

 

12 

do 

 [Perform in parallel] –the map() operation 

for each page Pi 

        PR(Pi)=ReadPageRankFromFileSystem(Pi) 

        r=PR(Pi) / num_out_links 

 for each link Lj 

Emit(Lj,Pi, r) 

 

[Perform Sequentially] –the reduce() operation 

Collect all (Lj,Pi, r) 

for each Lj 

for each page Pi 

                     PR(Li) =PR(Li) + r 

                     WriteOutPutToFileSystem(Li,r) 

        

while (num_iterations<MAX_ITERATIONS) 

 

As can be seen in the above algorithm, steps 3 and 12 use a distributed file system to share the 

current PageRank values between the reduce and the map stages of the computations. In Twister, 

we used the combine operation to collect these current PageRank vectord to the main program. 

Then we broadcasted it to all map tasks again. However, in both these implementations, the 

above steps are responsible for the majority of the running time of the PageRank computation. In 

Pregel, the above steps are represented by direct messages transferred between super steps. 

Further, the communication between vertices does not introduce additional overheads. 

Therefore, the messaging-based approach adopted by Pregel provides a natural programming 

model for graph based algorithms. 
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7.3. Other Runtimes  

Hoefler et al. discuss an efficient MapReduce implementation using MPI [98]. Their approach 

take advantage of the built in collective communication routines such as MPI_Scatter and 

MPI_Reduce to implement map and reduce operations, respectively. The use of the MPI_Reduce 

pushes the reduce operation to the MPI library itself and this process involves some limitations: 

for example, the number of intermediate keys needs to be known beforehand by all processing 

elements. Furthermore, this approach requires every map task to send a message for every key, 

irrespective of whether it has any data to send for that key.  As we have demonstrated in Chapter 

6, in MapReduce, the intermediate keys play the role of defining the communication topology 

between the map and reduce tasks. In addition, there are no limitations to the number of 

intermediate <key, value> pairs a map task can generate in a given iteration as well. While their 

approach can be used to simulate MapReduce on MPI, it will be highly efficient for some of the 

applications; however, it does not cover some of the key issues that MapReduce solves such as 

moving computation data, distributed input reading, and fault tolerance. 

One of our key motivations in this research is to develop an efficient architecture and a 

programming model for MapReduce by incorporating best practices in terms of the  HPC 

runtimes to MapReduce, but  while still keeping the benefits of MapReduce intact. In this respect, 

the two specific features we have incorporated into Twister include: (i) long running tasks; and 

(ii) a faster communication mechanism. (With the improvement discussed in section 5.2, the 

bottleneck of brokers is also eliminated.) The results obtained from several benchmark 

applications indicate that we have successfully achieved the above objective with Twister. One of 

the key insights we have demonstrated is that, when the amount of data increases, a runtime 

with coarser grained tasks yet which utilizes sub optimal data transfer constructs, can achieve 

efficiencies in the same order as many HPC runtimes. 
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Ying Yu Bu et al. present LaHoop[99] runtime that extends the Apache Hadoop for iterative 

MapReduce computations. They also adopt long running tasks and allow tasks to retain static 

data across iterations. Furthermore, they optimize Hadoop’s scheduler to assign tasks to the same 

location so as to support the process of reusing configured tasks. These optimizations are very 

similar to what we proposed concerning Twister in our initial paper [95] a few years ago; 

therefore, we are glad to see others adopting our recommended strategies about supporting 

iterative MapReduce applications. 

The paper presented by Cheng-Tao et al. discusses their experience in developing a MapReduce 

implementation for multi-core machines[14]. They used the MapReduce runtime to implement 

several machine learning algorithms, and they demonstrate that MapReduce is especially 

effective for many algorithms that can be expressible in certain “summation form”. Phoenix 

runtime, presented by Colby Ranger et al., is a MapReduce implementation for multi-core 

systems and multiprocessor systems [100]. The evaluations used by Ranger et al. is comprised of 

typical use cases found in Google's MapReduce paper such as word count, reverse index and also 

iterative computations such as Kmeans. Some of our design decisions in Twister were inspired by 

the benefits obtained in these shared memory runtimes. For example, in the above runtimes, the 

data transfer simply requires sharing memory references; in Twister, we use distributed memory 

transfers. Sending some data values to all map tasks is a trivial operation with shared memory, in 

Twister we introduced mapReduceBcast() to handle such requirements.  
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Chapter 8.         CONCLUSIONS AND FUTURE WORK 

8.1. Summary of Work 

In this dissertation, we presented the architecture and the programming model of an efficient 

parallel programming runtime, named Twister which is based on MapReduce that can be applied 

to many data intensive applications. We identified the composable class of applications to which 

the MapReduce can be effectively applied. We analyzed the domain of MapReduce applications 

and categorized them into several prominent classes including: (i) map-only; (ii) map-reduce; (iii) 

iterative map-reduce; and (iv) complex map-reduce; and through this process, we discussed the 

mapping of the algorithms to the parallel runtime constructs in order to demonstrate how 

different parallel runtimes, including  Twister, could be used to parallelize these applications. We 

presented a detailed performance analysis of Twister and compared it to other runtimes using a 
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series real of data analysis applications to demonstrate how it could be used to achieve 

considerable efficiencies in comparison with typical MapReduce runtimes. Finally, we discussed 

research related to this thesis, along with a discussion about the current state of the art. 

8.2. Conclusions 

Large scale data analyses are becoming the norm in many areas of research and in numerous 

industries, a development that mandates the use of parallel and distribute processing. 

MapReduce extends the map-fold semantics offered in many functional languages to the 

distributed processing world; it also adds the support of moving computation to data by the use of 

distributed file systems. The simplified programming model of MapReduce allows the 

underlying runtimes to better support fault tolerance. However, this simplicity also limits its 

applicability to algorithms with fairly simple communication topologies. We proposed several 

extensions to the programming model which can potentially improve its overall applicability to 

more classes of applications. 

The programming model proposed in this thesis uses three user defined functions and a main 

program: (i) map; (ii) reduce; (iii) combine; as well as (iv) a main program containing one or more 

MapReduce invocations, or, most importantly, an iterative construct (e.g. while or for loop) 

which invokes one or more MapReduce computations. It uses long running map and reduce tasks, 

inspired by classical parallel runtimes such as MPI. Furthermore, the programming model 

distinguishes between the static and variable data consumed by the map and reduce tasks which 

yield a behavior of configure once and invoke many times; this feature greatly simplifies the 

programming logic of many iterative MapReduce applications, and also reduces the overhead of 

loading static data in each iteration.  We also introduced an additional phase called combine after 

the reduce phase of MapReduce, so as to collect all the reduce outputs to a single location for 

decision making. Sending a set of data items to individual map tasks (a scatter type operation) 
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and sending one data item to all map tasks (a broadcast type operation) prove to be very useful 

programming constructs that we support in the extended programming model as well.  

The architecture presented in the introductory paper of MapReduce[2] exhibits a considerable 

coupling of the runtime to the infrastructure used in Google and to the type of operations that 

they perform. One of their recent papers [97], mentioned that preemption is one of the main 

reasons that they need fault tolerance rather than the hardware failures. These characteristics 

motivate them to develop their runtime with tight fault tolerance capabilities in which every 

piece of data produced was retained in some form of file system. We architected Twister to 

support iterative applications with a relaxed fault tolerance mechanism which achieved 

considerably higher efficiencies, especially in comparison with runtimes such as Hadoop that 

share a similar architecture to Google. Performance and efficiency are especially beneficial when 

running applications on the infrastructures acquired from Cloud on a pay per use basis or from 

resources allocated via job queues as well. 

Our architecture comprises of three main entities: (i) A MRDriver, which is used as a  library in 

the main program mentioned above; (ii) a daemon process that manages invocations of map and 

reduce tasks in a given computing node; and (iii) a publish/subscribe broker network.  MRDriver 

manages a MapReduce computation during its life cycle while the daemons keep invoking 

map/reduce tasks, depending on the instructions relayed by the MRDriver. The architecture uses 

the broker network for transferring data as well as events related to the runtime. Depending on 

the size of data produced, the daemons either use the broker network or direct TCP links to send 

intermediate data between to one other. This is highly efficient compared to the disk->network-

>disk based communication mechanisms adopted by other MapReduce runtimes. The runtime 

also supports computation units with multi-core processors by using configurable thread pools 
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and employing a process which directly transfers data via memory for tasks residing in the same 

computation unit.  

We implemented a series of data analysis applications representing different classes of 

MapReduce computations and discussed their algorithms. Most of these applications are 

implemented using several parallel runtimes such as Hadoop, DryadLINQ, and, in some cases, in 

MPI, to compare the performance of these runtimes with Twister. To evaluate performance, 

scalability, and efficiency, we performed a series of benchmarks using these applications; we also 

used a micro benchmark developed to simulate various application scenarios. These evaluations 

allowed us to derive the following conclusions regarding the applicability, performance and 

scalability of the proposed architecture and the programming model.  

8.2.1. Applicability 

In Chapter 6 of this thesis, we demonstrated the applicability of the proposed programming 

model to various classes of applications. Although it mainly focused on iterative applications, it 

does not lose the capability of supporting map-only or map-reduce classes of computations, as 

we have shown in sections 6.3, 6.4, and 6.5.  

The map tasks in Twister can be programmed to access data loaded to memory via the configure 

option, or they can also access data directly from files in local disks. If the first option is used, the 

total amount of data that can be processed is limited to the total memory available in the 

computation infrastructure. This is typically enough for many iterative MapReduce 

computations. However, the latter option can be used to process large volumes of data and 

remains limited only by the total hard disk space available in the computation infrastructure, as 

we have shown in section 6.4. 

Twister sends intermediate data directly from map tasks to reduce tasks either via pub-sub 

brokers or via TCP links. This does not impose a restriction to the volume intermediate data 
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transfer. However, since Twister stores the reduce inputs in memory, with the current 

implementation of Twister, the total intermediate data transfer (in a single iteration) should be 

limited to the total memory available in the computation infrastructure.  In most MapReduce 

computations, a significant reduction of data volume occurs after the map phase of the 

computation; therefore, we expect that for most applications, this will not impose a restriction.  

Twister provides fault tolerance to iterative computations by automatically unrolling and re-

executing failed iterations. It does not support fault tolerance at the individual map and reduce 

tasks as in Hadoop, and therefore, it does not provide fault tolerance to typical MapReduce 

computations. As our experience indicates, the failures are less common in computation 

resources in academic, environments and also, in resources leased from infrastructure services 

such as Amazon EC2. Therefore, we expect Twister to be an alternate for typical MapReduce 

computations in these environments as well. 

The partition-file based data partitioning mechanism used in Twister allows users to access data 

directly as files in the local file system. This makes the use of executables or legacy applications in 

map or reduce functions fairly easy compared to the block based data partitioning strategies 

adopted in other runtimes. 

8.2.2. Performance and Scalability 

Twister significantly outperforms both DryadLINQ and Hadoop for all the iterative MapReduce 

computations that we have evaluated. For example, in both K-Means clustering and PageRank 

(section 6.7) computations, Twister performs ten times faster than its closest competitor. In matrix 

multiplication (section 6.9), Twister shows negative overheads due to super linear speedups, a 

characteristic that we have seen before only in MPI based runtimes. After normalizing for the 

performance differences in C++ versus Java, the performance of Twister become very close with 

the performance of MPI for this application. In the MDS application (section 6.8) we noticed 
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efficiencies above 80% even though the algorithm performs three MapReduce invocations in each 

iteration. In map-only and map-reduce applications (sections 6.3, 6.4, and 6.5) the performance of 

Twister and the other runtimes are in the same order of magnitude; however, in many of them 

Twister out performs the others. 

In Chapter 6, we applied Twister to various MapReduce applications and ran it on moderately 

sized computation resources. We have performed SW-G (section) on 1629 CPU cores using 1629 

Twister daemons and it showed a linearly scalability. Similarly, for many other evaluations, it 

showed desirable scalability characteristics as well. As we have explored in section 6.10, with 

micro benchmarks, there are several operations we can consider that can effectively evaluate the 

scalability of Twister. These include the following: (i) broadcast from main program; (ii) scatter 

from main program; (iii) intermediate data transfer; and (iv) collection of output to combine 

operation. In the first operation, the data is broadcasted to all daemons via a broker network and 

therefore the scalability of twister is governed by the scalability of the broker network used. As 

we have shown, more brokers can reduce the load on a single broker for this type of operation. 

In the second operation, every piece of data goes from the MRDriver to a particular broker and 

then to the target daemon. This operation is not performed in parallel to minimize the load on the 

initial broker and may hinder the scalability of the application. However, typically, it is not 

advisable to use this operation for larger data items. 

Intermediate data transfer is a significant factor in deciding the scalability of Twister. When 

intermediate data is transferred only using the broker network, the scalability suffers due to the 

loading of the brokers. Therefore, Twister adopts the TCP based direct communication for large 

intermediate data transfers. As discussed in section 6.10.2, this mechanism can transfer arbitrary 

large data items in parallel without suffering from scalability issues. 
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Finally, having the combine operation to collect the reduce output is a sequential activity, as there 

is only one combine function execution per iteration. Twister uses the TCP based data transfer 

strategy for large data items here as well. In addition, the downloading of data happens using 

multiple threads. For large deployments, transferring significant data to the combiner and 

processing them at the main program will hinder the scalability of the runtime. Furthermore, 

depending on the algorithm used, any computation performed in the main program will be 

sequential and will contribute to scalability degradation. 

8.3.  Contributions 

In section 1.5, we proposed the contribution of this thesis. Here, we will discuss how we achieved 

them. 

• Architecture and the programming model of an efficient and scalable MapReduce 

runtime that extends the applicability of MapReduce programming model to more 

classes of data intensive computing. This proves effective especially, for the iterative 

MapReduce computations. 

We introduced a MapReduce programming model based on long running tasks with 

cacheable static data. We also introduced a combine operation and its semantics to 

MapReduce. As we have discussed above, these changes extends MapReduce to iterative 

and complex classes of applications. 

• A prototype implementation of the proposed architecture and the programming model 

that minimizes the overheads suffered by typical MapReduce runtimes.  

After realizing the benefits of the novel MapReduce runtime, we developed a release 

version of the software including a cluster deployment mechanism and a set of scripts to 

manipulate data across the local nodes of the computations clusters. We released Twister 

as an open source project under Indiana University’s Academic License to the public via 
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www.iterativemapreduce.org. We also developed a detailed user guide and examples 

demonstrating the use of this runtime along with the source codes. The work in this 

thesis was showcased at the doctoral symposium of the annual Super Computing 

conference in 2009 (SC-09 in Portland) and a lengthy tutorial of Twister was given during 

the National Center for Supercomputing Applications (NCSA)’s Virtual School Summer 

Courses in September 2010. 

• The classification of problems that can be handled by MapReduce and algorithms for 

mapping these to the MapReduce model while minimizing overheads, followed by a 

detail discussion on different implementations using the proposed runtime as well as 

two other relevant runtimes. 

We classify the MapReduce domain into four classes and discuss their characteristics, as 

well as how to map algorithms in different categories to the MapReduce programming 

model while incurring minimum overheads. Chapter 6 of this thesis discusses these 

aspects in greater detail. 

• A detailed performance analysis comprised of application level performance 

characteristics to micro benchmarks and which evaluates the performance, scalability, 

and overhead of the proposed runtime against relevant runtimes. 

We performed a series of benchmarks using large data sets and considerable processing 

infrastructures on different versions of applications we have developed using 

DryadLINQ, Hadoop, and Twister, and in several cases, in MPI. Although we used these 

evaluations to understand the performance characteristics of Twister, they also served as 

comparisons of Twister with other runtimes; further, this highlights their strengths and 

weaknesses. Furthermore, we used a set of micro benchmarks to simulate various 

application scenarios which demonstrated the performance characteristics of Twister 

under such scenarios.  

http://www.iterativemapreduce.org/�
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Overall, we have successfully extended the MapReduce programming model to iterative class of 

applications and we have demonstrated how to get the most benefits possible from it for more 

complex applications as well. The prototype we developed, Twister, was released as an open 

source project so that others could explore and benefit from and improve the scalable software 

architecture we discussed in this thesis. The related discussion concerning relevant research and 

the current state of the art, in combination with the extensive set of performance analyses we 

have included in this thesis, may help readers to gain an overall understanding of the different 

MapReduce runtimes and their applicability.   

8.4. Future Work 

In this research, we focused on an efficient runtime to support iterative MapReduce 

computations. We extended MapReduce programming model and introduces several 

improvements to its architecture. However, there are several areas which future work could do to 

build on this model: 

Fault tolerance is one of the key features in MapReduce. Current Twister implementation 

supports fault tolerance for iterative MapReduce computations by re-executing failed iterations 

entirely. It does not support fault tolerance for typical MapReduce computations, which require 

saving the intermediate data in some form of file system that hinders the performance of iterative 

applications. One can research these issues and devise a methodology to checkpoint applications 

after a certain number (say n) of iterations. Then for typical MapReduce applications, we can use 

the same strategy with n as one.  

Although we can store intermediate outputs in local disks of the compute nodes to achieve fault 

tolerance for typical and iterative MapReduce computations, this process does not solve the fault 

tolerance requirements of complex applications such as the Fox matrix multiplication in which 
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the map and reduce tasks accumulate state of the computation. A fault tolerance distributed file 

system is required to support such applications. 

As in other MapReduce runtimes, Twister also assumes that the failures of the Master node is 

rare, i.e. if the Master node, where the Twister Driver runs fails, then the entire computation fails 

in Twister as well. There can be multiple ways to support Master failures: (i) a check pointing 

mechanism that can save the state of the Twister Driver and the “main program” which uses the 

Twister Driver; (ii) a duplicate master based approach; or even a (iii) master election based 

approach. These potential research avenues will prove fascinating for future developments which 

could prove common to many runtimes 

Running multiple MapReduce applications in a workflow fashion is another common usage of 

MapReduce. In many such cases, one MapReduce application consumes the output of one or 

more previous MapReduce applications. In the current Twister runtime, the output of reduce 

tasks are stored in the local disk of the compute nodes, a process which does not guarantee fault 

tolerance with disk failures. A distributed file system or a simple data replication mechanism 

with a meta-data catalog needs to be integrated with Twister to support fault tolerance to such 

applications.  

Incorporating the above type of file systems with Twister and understanding the effects in 

relation to the overall architecture and performance proves to be another interesting area for 

future research. There are multiple choices to adopt in this regard: (i) a block based file system 

such as HDFS, (ii) a distributed file storage such as Sector, and (iii) a distributed high 

performance file system such as Lustre. All these options provide different capabilities and could 

be well suited to different applications. 

Current Twister implementation uses a static set of hardware nodes that are configured during 

the initialization of the runtime. Dynamic scaling of processing resources is a very important 
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property that a runtime should support. This is especially useful when applications are executed 

using Cloud resources. For example, an application may have several phases of computations in 

which only a few of these phases have higher processing requirements. The ability of a runtime 

to dynamically scale its processing units will save money when used in such scenarios. To 

support dynamic scalability with Twister, one needs to improve its task scheduling mechanism 

as well as add capabilities to dynamically move input data between processing units. For 

example, the addition of processing units requires Twister to re-distribute data and start 

computations on the newly added nodes. 

Current Twister architecture uses a pubsub broker network as well as direct TCP links for data 

communication. The use of publish/subscribe infrastructure enables the runtime to connect data 

producers and consumers using virtualized topics, whereas direct TCP links are used to avoid 

the broker network from getting flooded with large data transfers.  A separate communication 

layer that provides both these functionalities would be a definite improvement to the architecture 

of Twister. 

The programming extensions we have introduced in Twister enable it to be used with iterative 

MapReduce applications. One can introduce more programming extensions by analyzing more 

classes of applications, especially complex applications, so as to extend its applicability further. 

8.5. List of Publications Related to This Thesis 

Following is a list of publications directly related to this thesis: 

• Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy Qiu, 

Geoffrey Fox, Twister: A Runtime for Iterative MapReduce," The First International 

Workshop on MapReduce and its Applications (MAPREDUCE'10) - HPDC2010 

http://www.iterativemapreduce.org/hpdc-camera-ready-submission.pdf�
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• Jaliya Ekanayake, (Advisor: Geoffrey Fox) Architecture and Performance of Runtime 

Environments for Data Intensive Scalable Computing, Doctoral Showcase, 

SuperComputing2009. (Presentation) 

• Jaliya Ekanayake, Atilla Soner Balkir, Thilina Gunarathne, Geoffrey Fox, Christophe 

Poulain, Nelson Araujo, Roger Barga, DryadLINQ for Scientific Analyses, Fifth IEEE 

International Conference on e-Science (eScience2009), Oxford, UK. 

• Jaliya Ekanayake, Geoffrey Fox, High Performance Parallel Computing with Clouds and 

Cloud Technologies, First International Conference on Cloud Computing 

(CloudComp09) Munich, Germany, 2009.  
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