
1

SCALABLE PARALLEL COMPUTING ON CLOUDS:

EFFICIENT AND SCALABLE ARCHITECTURES TO PERFORM PLEASINGLY PARALLEL,

MAPREDUCE AND ITERATIVE DATA INTENSIVE COMPUTATIONS ON CLOUD

ENVIRONMENTS

Thilina Gunarathne

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science of School of Informatics and Computing

Indiana University

May 2014

ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

DOCTORAL COMMITTEE

GEOFFREY FOX, PH.D.

(PRINCIPAL ADVISOR)

BETH PLALE, PH.D.

DAVID LEAKE, PH.D.

JUDY QIU, PH.D.

April 21, 2014

iii

COPYRIGHT © 2014

THILINA GUNARATHNE

iv

DEDICATION

This thesis is dedicated to my dear parents, my lovely wife Bimalee and my lovely son

Kaveen.

v

ACKNOWLEDGEMENT

First and foremost, I express my sincere gratitude to my advisor, Prof. Geoffrey Fox, for his

invaluable advice, knowledge sharing and inspiration for this thesis as well as for my other research

endeavors. This thesis would have been impossible without his research insights and guidance. I

consider it an honor to have worked under him.

I would also like to thank my research committee members, Prof. Beth Plale, Prof.David Leake and

Prof. Judy Qiu for the invaluable support and guidance for my research and for their comments to

improve this thesis. I’m very grateful to my previous advisor Prof. Dennis Gannon for giving me the

opportunity to start my graduate studies and for the excellent help and advice he gave me. I would also

like to thank Prof.Beth Plale one more time for the excellent help she gave me during the transition

between the advisors and for co-advising me during that period.

I owe lot of gratitude for Dr. Sanjiva Weerawarana for encouraging me to undertake the challenge of

graduate studies and providing his help and guidance throughout the process. Thanks for being an

inspiration and a role model for myself as well as for countless number of other Sri Lankan students. I

would also like to thank Prof. Arun Chauhan for advising me in my GPU related research and spending

his valuable time to help me.

I would like to thank Persistent Systems for providing me with a fellowship to fund the last two years

of my PhD. I also would like to thank Microsoft for the Azure compute and storage grants that enabled a

major part of our research presented in this thesis.

It has been an absolute pleasure to work with my brilliant colleagues at the SALSA research group

and at the CGL lab. I would like to thank past and present SALSA and CGL group members, Tak-Lon Wu,

Saliya Ekanayaka, BingJing Zang, Jerome Michel, Ruan Yang, Xiaoming Guo, Jaliya Ekanayaka, Jong Choi,

vi

Seung-Hee Bae, Hui Li, Fei Tang, Yudou Zhou, Scott Beason and Andrew Young for their collaboration

and insightful comments to my research.

I would also like to thank Suresh Marru and the past Extreme Lab colleagues for the help and

support during first two years of my studies as well as after that. I’m really fortunate to be part of two

lab families.

I would also like to thank Milinda Pathirage, Saliya Ekanayaka and the Sri Lankan community in

Bloomington for making our time at Bloomington a wonderful experience.

My gratitude goes to my manager Dr.Chris Groer and the Customer Analytics Group at KPMG LLP

(formerly Link Analytics) for trusting me to provide me with an exciting employment opportunity and for

providing the flexibility to work on the final parts of my thesis.

I would like to thank all the professors at School of Informatics and Computing for the excellent

education I received. Also thanks goes to the administrative staff of Pervasive Technology Institute,

especially Gary Miksik and Mary Nell Shiflet, and the staff of School of Informatics and Computing for

providing continual help during my Ph.D. study. I would like to thank Grace Waitman for all her help on

proof reading this thesis.

Last but not least, I would like to thank my loving family for all the support and encouragement they

provide me throughout my life. I’m deeply indebted to my dear late parents, without whose love,

guidance and encouragement, I would not be where I am today. Thanks to my loving wife Bimalee and

my loving son Kaveen for putting up with me for all the missing family times and for providing me with

the love and encouragement throughout my research. Words cannot express what both of you have

given me!

vii

THILINA GUNARATHNE

SCALABLE PARALLEL COMPUTING ON CLOUDS:
EFFICIENT AND SCALABLE ARCHITECTURES TO PERFORM PLEASINGLY PARALLEL,

MAPREDUCE AND ITERATIVE DATA INTENSIVE COMPUTATIONS ON CLOUD

ENVIRONMENTS

Over the last decade, three major disruptive trends driven by the software industry altered the

scalable parallel computing landscape. These disruptions are the data deluge (i.e., shift to data-

intensive from compute-intensive), next generation compute and storage frameworks based on

MapReduce, and the utility computing model introduced by cloud computing environments. This

thesis focuses on the intersection of these three disruptions and evaluates the feasibility of using

cloud computing environments to perform large-scale, data-intensive computations using next-

generation programming and execution frameworks. The current key challenges for performing

scalable parallel computing in cloud environments include identifying suitable application patterns,

identifying efficient and easy-to-use programing abstractions to represent those patterns,

performing appropriate task partitioning and task scheduling, identifying suitable data storage and

staging architectures, utilizing suitable communication patterns, and identifying appropriate fault

tolerance mechanisms.

This thesis will identify three types of application patterns that are well suited for cloud

environments. Presented first are pleasingly parallel computations, including pleasingly parallel

programming frameworks for cloud environments. Secondly, MapReduce-type applications are

explored, including a decentralized architecture and a prototype implementation to develop

MapReduce frameworks using cloud infrastructure services. Third and finally, data-intensive

iterative applications, which encompass many graph processing algorithms, machine-learning

algorithms, and more, are considered. We present the Twister4Azure architecture and runtime as a

solution for implementation of data-intensive iterative applications in cloud environments.

viii

Twister4Azure architecture extends the familiar, easy-to-use MapReduce programming model with

iterative extensions and iterative specific optimizations, enabling a wide array of large-scale iterative

and non-iterative data analysis and scientific applications to utilize cloud platforms easily and

efficiently in a fault-tolerant manner.

Collective communication operations facilitate the optimized communication and coordination

between groups of nodes of distributed computations, which leads to many advantages. We also

present the applicability of collective communication operations to the iterative MapReduce

computations on cloud and cluster environments, enriching these computations with additional

application patterns without sacrificing the desirable properties of the MapReduce model. The

addition of collective communication operations enhances the iterative MapReduce model by

offering many performance improvements and ease-of-use advantages.

ix

TABLE OF CONTENTS

1. Introduction .. 1

1.1 Statement of research problem .. 4

1.2 Research Challenges ... 5

1.3 Thesis contributions .. 10

1.4 Thesis outline .. 12

2. Background ... 15

2.1 Cloud Environments .. 15

2.1.1 Microsoft Azure platform.. 15

2.1.2 Amazon AWS ... 17

2.2 MapReduce ... 19

2.2.1 MapReduce execution framework .. 20

2.3 Iterative MapReduce ... 21

2.4 Execution Frameworks .. 23

2.4.1 Apache Hadoop ... 26

2.4.2 Microsoft Dryad .. 28

2.4.3 Twister ... 29

2.4.4 Haloop ... 30

2.4.5 Spark ... 31

2.4.6 Microsoft Daytona .. 31

x

2.4.7 i-MapReduce and PrIter .. 32

2.4.8 Google Pregel and Apache Giraph .. 33

2.4.9 Other related cloud execution frameworks .. 34

2.5 Application types .. 34

2.5.1 Pleasingly Parallel Applications ... 34

2.5.2 MapReduce Type Applications .. 35

2.5.3 Data Intensive Iterative Applications .. 35

2.5.4 MPI type applications.. 36

2.6 Applications ... 36

2.6.1 Cap3 .. 37

2.6.2 Generative Topographic Mapping Interpolation .. 37

2.6.3 Blast+ sequence search ... 38

2.6.4 Sequence alignment using SmithWaterman GOTOH (SWG) .. 39

2.6.5 KMeansClustering ... 39

2.6.6 Multi-Dimensional Scaling (MDS) ... 40

2.6.7 Bio sequence analysis pipeline ... 41

3. Pleasingly parallel computing on cloud environments ... 43

3.1 Pleasingly parallel application architecture .. 44

3.1.1 Classic Cloud processing model .. 44

3.1.2 Pleasingly parallel processing using MapReduce frameworks 45

xi

3.1.3 Usability of the technologies .. 47

3.2 Evaluation Methodology ... 49

3.3 Cap3 .. 50

3.3.1 Performance with different EC2 cloud instance types ... 51

3.3.2 Scalability study... 52

3.4 BLAST ... 54

3.4.1 Performance with different cloud instance types .. 55

3.4.2 Scalability .. 57

3.5 GTM Interpolation .. 59

3.5.1 Application performance with different cloud instance types 60

3.5.2 GTM Interpolation speedup .. 60

3.6 Summary ... 62

4. MapReduce type applications on cloud environments .. 64

4.1 Challenges for MapReduce in the Clouds ... 65

4.2 MRRoles4Azure (MapReduce Roles for Azure) ... 67

4.2.1 Client API and Driver ... 69

4.2.2 Map Tasks ... 69

4.2.3 Reduce Tasks ... 70

4.2.4 Monitoring .. 71

4.2.5 Fault Tolerance.. 71

xii

4.2.6 Limitations of MRRoles4Azure .. 72

4.3 Performance evaluation .. 72

4.3.1 Methodology ... 72

4.3.2 Smith-Waterman-GOTOH (SWG) pairwise distance calculation 74

4.3.3 Sequence assembly using Cap3 .. 78

4.4 Summary ... 80

5. Data intensive iterative computations on cloud environments ... 81

5.1 Twister4Azure – Iterative MapReduce ... 83

5.1.1 Twister4Azure Programming model ... 83

5.1.2 Data Cache .. 87

5.1.3 Cache Aware Scheduling ... 88

5.1.4 Data broadcasting ... 91

5.1.5 Intermediate data communication ... 93

5.1.6 Fault Tolerance.. 95

5.1.7 Other features ... 95

5.1.8 Development and current status .. 96

5.2 Twister4Azure Scientific Application Case Studies ... 96

5.2.1 Methodology ... 96

5.2.2 Multi-Dimensional Scaling - Iterative MapReduce ... 99

5.2.3 KMeans Clustering .. 102

xiii

5.3 Summary ... 106

6. Performance Implications for Data Intensive Parallel applications on Cloud Environments ... 108

6.1 Inhomogeneous data .. 108

6.1.1 SW-G Pairwise Distance Calculation ... 108

6.1.2 CAP3 .. 112

6.2 Virtualization overhead ... 114

6.2.1 SW-G Pairwise Distance Calculation ... 115

6.2.2 CAP3 .. 116

6.3 Sustained performance of clouds ... 117

6.4 Data Caching on Azure Cloud instances for Iterative MapReduce computations 118

6.4.1 Local Storage Based Data Caching .. 119

6.4.2 In-Memory Data Caching .. 119

6.4.3 Memory Mapped File Based Data Cache .. 121

6.5 Summary ... 123

7. Collective Communications Primitives for Iterative MapReduce ... 125

7.1 Collective Communication Primitives ... 127

7.2 MapReduce-MergeBroadcast ... 130

7.2.1 API ... 130

7.2.2 Merge Task .. 130

7.2.3 Broadcast .. 131

xiv

7.2.4 MapReduceMergeBroadcast Cost Model ... 132

7.2.5 Current iterative MapReduce Frameworks and MapReduce-MergeBroadcast 133

7.3 Collective Communications Primitives for Iterative MapReduce ... 133

7.3.1 Requirements .. 134

7.3.2 Advantages .. 135

7.3.3 Programming model ... 136

7.3.4 Implementation considerations .. 137

7.4 Map-AllGather Collective .. 138

7.4.1 Model .. 138

7.4.2 Execution model ... 138

7.4.3 Data Model.. 139

7.4.4 Cost Model .. 140

7.4.5 Fault tolerance .. 141

7.4.6 Benefits ... 141

7.5 Map-AllReduce Collective ... 142

7.5.1 Model .. 142

7.5.2 Fault Tolerance.. 146

7.5.3 Benefits ... 146

7.6 Implementations ... 147

7.6.1 H-Collectives: Map-Collectives for Apache Hadoop ... 148

xv

7.6.2 Map-Collectives for Twister4Azure iterative MapReduce .. 149

7.6.3 Implementation Considerations on cloud environments ... 150

7.7 Evaluation.. 152

7.7.1 Multi-Dimensional Scaling (MDS) using Map-AllGather ... 153

7.7.2 K-KMeansClustering using Map-AllReduce ... 158

7.8 Summary ... 165

8. Conclusions and Future Works ... 167

8.1 Summary and Conclusions .. 167

8.2 Solutions to the research challenges .. 172

8.3 Future Work .. 177

8.4 Produced Software.. 179

8.4.1 Twister4Azure ... 179

8.4.2 Twister4Azure Map-Collectives .. 179

8.4.3 H-Collectives – Map-Collectives for Apache Hadoop.. 179

8.4.4 MRRoles4Azure ... 179

8.4.5 Classic Cloud Frameworks ... 179

8.5 List of publications related to this thesis .. 180

9. References .. 182

Curriculum Vitae .. 189

xvi

LIST OF FIGURES

Figure 1 A sample MapReduce execution flow ... 21

Figure 2 Steps of a typical MapReduce computation .. 21

Figure 3 Structure of a typical data-intensive iterative application. ... 22

Figure 4 Multi-Dimensional Scaling application architecture using iterative MapReduce 40

Figure 5 Bio sequence analysis pipeline .. 42

Figure 6 Classic cloud processing architecture for pleasingly parallel computations 45

Figure 7 Hadoop MapReduce based processing model for pleasingly parallel computations.............. 46

Figure 8 Cap3 application execution cost with different EC2 instance types.. 51

Figure 9 : Cap3 applciation compute time with different EC2 instance types 52

Figure 10 Parallel efficiency of Cap3 application using the pleasingly parallel frameworks 53

Figure 11 Cap3 execution time for single file per core using the pleasingly parallel frameworks 53

Figure 12 : Cost to process 64 BLAST query files on different EC2 instance types 55

Figure 13 : Time to process 64 BLAST query files on different EC2 instance types 56

Figure 14 Time to process 8 query files using BLAST application on different Azure instance

types ... 57

Figure 15 : BLAST parallel efficiency using the pleasingly parallel frameworks 58

Figure 16 : BLAST average time to process a single query file using the pleasingly parallel

frameworks .. 58

Figure 17 : Cost of using GTM interpolation application with different EC2 instance types 59

Figure 18 : GTM Interpolation compute time with different EC2 instance types 60

Figure 19: GTM Interpolation parallel efficiency using the pleasingly parallel frameworks 60

Figure 20 : GTM Interpolation performance per core using the pleasingly parallel frameworks 61

Figure 21 MapReduceRoles4Azure: Architecture for implementing MapReduce frameworks on

Cloud environments using cloud infrastructure services .. 69

xvii

Figure 22 Task decomposition mechanism of SWG pairwise distance calculation MapReduce

application ... 74

Figure 23 SWG MapReduce pure performance ... 75

Figure 24 SWG MapReduce relative parallel efficiency ... 76

Figure 25 SWG MapReduce normalized performance .. 76

Figure 26 SWG MapReduce amortized cost for clouds ... 77

Figure 27 Cap3 MapReduce scaling performance ... 78

Figure 28 Cap3 MapReduce parallel efficiency ... 79

Figure 29 Cap3 MapReduce computational cost in cloud infrastructures .. 79

Figure 30 Twister4Azure iterative MapReduce programming model ... 85

Figure 31 Cache Aware Hybrid Scheduling .. 90

Figure 32 Twister4Azure tree based broadcast over TCP with Azure Blob storage as the

persistent backup. .. 93

Figure 33 MDS weak scaling. Workload per core is constant. Ideal is a straight horizontal line 99

Figure 34 MDS data size scaling using 128 Azure small instances/cores, 20 iterations 100

Figure 35 Twister4Azure Map Task histogram for MDS .. 100

Figure 36 Number of executing Map Tasks in the cluster at a given moment. 101

Figure 37 KMeans Clustering Scalability. Relative parallel efficiency of strong scaling. 103

Figure 38 KMeansClustering Scalability. Weak scaling.. .. 103

Figure 39 Twister4Azure Map Task execution time histogram for KMeans Clustering. 105

Figure 40 Twister4Azure number of executing Map Tasks in the cluster at a given moment 105

Figure 41 Performance of SW-G for randomly distributed inhomogeneous data. 110

Figure 42 Performances of SW-G for skewed distributed inhomogeneous data. 111

Figure 43 Performance of Cap3 for random distributed inhomogeneous data. 113

Figure 44 Performance of Cap3 for skewed distributed inhomogeneous data 114

xviii

Figure 45 Virtualization overhead of Hadoop SW-G on Xen virtual machines 115

Figure 46 Virtualization overhead of Hadoop Cap3 on Xen virtual machines 116

Figure 47 Sustained performance of cloud environments for MapReduce type of applications 118

Figure 48 Execution traces of Twister4Azure MDS using in-memory caching. 123

Figure 49 Execution traces of Twister4Azure MDS using Memory-Mapped file based caching 123

Figure 50 MapReduce-MergeBroadcast computation flow .. 131

Figure 51 Map-Collective primitives .. 134

Figure 52 Map-AllGather Collective ... 139

Figure 53 Map-AllReduce collective .. 143

Figure 54 Example Map-AllReduce with Sum operation ... 144

Figure 55 MDS Hadoop using only the BC Calculation MapReduce job per iteration 154

Figure 56 MDS application implemented using Twister4Azure ………………………………… 155

Figure 57 Hadoop MapReduce MDS-BCCalc histogram .. 157

Figure 58 H-Collectives AllGather MDS-BCCalc histogram .. 157

Figure 59 H-Collectives AllGather MDS-BCCalc histogram without speculative scheduling 157

Figure 60 Hadoop K-means Clustering comparison with H-Collectives Map-AllReduce Weak

scaling. ... 161

Figure 61 Hadoop K-means Clustering comparison with H-Collectives Map-AllReduce Strong

scaling .. 161

Figure 62 Twister4Azure K-means weak scaling with Map-AllReduce .. 162

Figure 63 Twister4Azure K-means Clustering strong scaling. .. 163

Figure 64 HDInsight KMeans Clustering compared with Twister4Azure and Hadoop 164

xix

LIST OF TABLES

Table 1 Windows Azure instance types (as of July 2013) .. 15

Table 2 Sample of Amazon Web Services EC2 on-demand instance types ... 17

Table 3 Summary of MapReduce frameworks .. 24

Table 4: Summary of pleasingly parallel cloud framework features ... 47

Table 5 : Cost Comparison of Cap3 execution among different cloud environments 54

Table 6 Evaluation cluster configurations ... 98

Table 7 The execution time analysis of a MDS computation with different data caching

mechanisms ... 120

Table 8 Collective communications support in MPI, Hadoop, H-Collectives and Twister4Azure 129

Table 9 Summary of Map-Collectives patterns ... 137

1

 1. INTRODUCTION

Traditionally, High performance parallel computations using technologies like MPI have been the

dominant force of large scale distributed parallel computing. These technologies have been used to

implement a plethora of large scale scientific computations very successfully, and they have been driven

mainly by the academics. Examples of applications implemented using these technologies include many

fluid dynamics computations such as weather predictions and molecular dynamic simulations.

Applications implemented using these technologies are typically compute and/or communication

bound, as opposed to disk bound, and they have very long execution times. Usually these types of

computations are performed by physicists, meteorologists, astro-physists, etc. These technologies

typically require specialized interconnects for optimal performance.

However, over the last decade, three interconnected disruptions have happened in the large scale

distributed parallel computing landscape, mainly driven by the software industry. These are the

emergence of data intensive computing (aka big data), the emergence of the utility computing model

introduced by Cloud computing offerings and the emergence of new generation of storage,

programming and execution frameworks such as MapReduce.

A. Big Data

The emergence of “Big Data” is fueled by the massive amount of data now flowing through

virtually every field of science as well the technology industry. These massive data include the

results of massive experiments such as the Large Hadron Collider (LHC), the rapid data produced

by equipment such as new generation of sequencing machines, the data generated by the

2

overabundance of sensors, the ever increasing data set of the World Wide Web and many more.

Scientists as well as those in the technology industry are reliant more than ever on large scale

data and its analysis to uncover valuable information and observations. Jim Gray has noted that,

increasingly, scientific breakthroughs will be powered by computing capabilities that support the

ability of researchers to analyze massive data sets. Aptly, he dubbed data intensive scientific

discovery “the fourth scientific paradigm of discovery [1].” While the users of these data crave

more power and greater ease of use to store and process these large data volumes,

preprocessing, processing and analyzing these large amounts of data present unique and

challenging problems. Often, traditional HPC is not the optimal choice to implement data

intensive computations.

B. Cloud Computing

Cloud computing introduces a utility computing model combined with a rich set of cloud

infrastructure services offering a very viable environment in which to perform data intensive

computations. Cloud computing offerings by major commercial players provide on-demand

computational services over the Web, which can be purchased within a matter of minutes by

simply using a credit card. The utility computing model of these cloud computing offerings

opens up exciting new opportunities for users to perform their data intensive parallel

computations. An interesting feature of Cloud computing is the ability to increase the

throughput of the computations by horizontally scaling computing resources without incurring

any additional overhead costs. This is facilitated by the virtually unlimited resource availability of

cloud computing infrastructures, which are backed by the world’s largest data centers owned by

major commercial players such as Amazon, Google and Microsoft. We expect that the

economies of scale enjoyed by cloud providers will translate into lower costs for users. Cloud

3

computing platforms also offer a rich set of distributed cloud infrastructure services including

storage, messaging and database services with cloud-specific service guarantees. These services

can be leveraged to build and deploy scalable distributed applications on cloud environments.

While clouds offer raw computing power combined with cloud infrastructure services offering

storage and other services, there is a need for distributed computing frameworks to harness the

power of clouds both easily and effectively. At the same time, it should be noted that Clouds

offer unique reliability and sustained performance challenges to large scale computations due to

the virtualization, multi-tenancy, and non-dedicated commodity connectivity characteristics of

the cloud environments. They do not provide the high-speed interconnects needed by high

performance frameworks such as MPI. This produces the need for distributed parallel

computing frameworks specifically tailored for cloud characteristics to harness the power of

clouds both easily and effectively.

C. MapReduce

MapReduce consists of a storage framework, a programming model and an associated

execution framework for distributed processing of very large data sets. The MapReduce

distributed data analysis framework was originally introduced by Google [2], and it provides an

easy-to-use programming model that features fault tolerance, automatic parallelization,

scalability and data locality-based optimizations. These features and the simplicity of the

programming model allow users with no background or experience in distributed and parallel

computing to utilize MapReduce and the distributed infrastructures to easily process large

volumes of data. Due to the excellent fault tolerance features, MapReduce frameworks are well-

suited for the execution of large distributed jobs in brittle environments such as commodity

clusters and cloud infrastructures. MapReduce frameworks are typically not optimized for the

4

best performance or parallel efficiency of small scale applications. The main goals of MapReduce

frameworks include framework managed fault tolerance, the ability to run on commodity

hardware, the ability to process very large amounts of data and horizontal scalability of compute

resources. MapReduce frameworks like Hadoop trade off costs such as large startup overheads,

task scheduling overheads and intermediate data persistence overheads for better scalability

and reliability. Though introduced by the industry and used mainly in the information retrieval

community, it is shown [3-5] that MapReduce frameworks are capable of supporting many

scientific application use cases as well, making these frameworks good choices for scientists to

easily build large, data-intensive applications that need to be executed within cloud

infrastructures. Apache Hadoop [6] and Microsoft DryadLINQ [7] are two such distributed

parallel data processing frameworks that support MapReduce type computations.

The work of this thesis focuses on the intersection of the above three disruptions and evaluates the

feasibility of Cloud Computing environments to perform large scale data intensive computations using

new generation programming and execution frameworks such as MapReduce.

In the following subsections, we present a detailed discussion of some of the challenges to

performing scalable parallel computing on clouds and the approaches we propose to solve them. We

focus mostly on scientific use cases as the technology industry leads the way with exploring other use

cases such as web searching, various recommender systems, and targeted marketing, etc. However, the

solutions we propose are equally applicable for scientific use cases as well as for industry use cases.

1.1 Statement of research problem

5

In this thesis, we investigate whether cloud computing environments and related application

frameworks can be used to perform large-scale parallel computations efficiently with good scalability,

fault-tolerance and ease-of-use. The outcomes of this work would be:

1. Understand the challenges and bottlenecks to perform scalable parallel computing on cloud

environments

2. Propose solutions to the challenges and bottlenecks identified in 1.

3. Develop scalable parallel programming frameworks specifically designed for cloud

environments to support efficient, reliable and user friendly execution of data intensive

computations on cloud environments.

4. Develop data intensive scientific applications using the frameworks developed in 3.

Demonstrate that these applications can be executed on cloud environments in an efficient

scalable manner.

1.2 Research Challenges

In this section, we discuss the challenges to performing scalable parallel computing on Cloud

environments. These challenges ideally need to be addressed by the programming frameworks that we

design and develop. The solutions we propose to solve these challenges are summarized in section 8.2

of the summary and conclusions chapter.

1. Programming model

One of the most important components of a computational framework is the programming

model abstraction. The programming abstraction for scalable parallel computing should have the

ability to express a sufficiently large and useful subset of large-scale data intensive computations. At

6

the same time, it should be simple and easy-to-use by the end user developers. Extending a familiar

existing model, rather than inventing a new complex model, would be preferable from an end-user

perspective. Another requirement is that the programming model should be suitable for efficient

execution in cloud environments. An ideal programming abstraction to perform scalable parallel

computing on clouds should strive for a balance of the above requirements.

2. Data Storage

Typical cloud storage offerings have large bandwidth and latency limitations due to the data

that has been stored in off-instance shared storage infrastructures. Overcoming the bandwidth and

latency limitations when accessing large input data products from cloud and other storages would

be critical to the performance of data intensive computations in clouds as well as in other

environments.

Another challenge is to decide where to store and when to store (or whether to store) the

output and intermediate data products of the computation. These decisions will have an impact on

the fault tolerance and the performance of the computations.

Cloud environments offer a variety of storage options. We need to choose the storage option

best suited for the particular data product and the particular use case to get the maximum

utilization and efficiency from the cloud resources.

3. Task Scheduling

Task scheduling can have a large impact on the performance of distributed computations,

especially if the computation consists of thousands of finer grained tasks. In data intensive

distributed computations, the tasks should be scheduled efficiently with an awareness of the data

7

locality, which improves the data bandwidth and with an awareness of the data availability in

different locations (e.g., cached data), which potentially improves or eliminates the data transfer

overheads.

Task scheduling should support the dynamic load balancing of the computations to ensure

optimum usage of the compute resources by possibly avoiding the effects of task and compute

resource inhomogeneity. Task scheduling should also support the dynamic scaling of the compute

resources to take advantage of the dynamic scaling ability of the cloud environments.

4. Data Communication

Cloud infrastructures are known to exhibit inter-node I/O performance fluctuations (due to a

shared network, unknown topology), which affect the data communication performance.

Frameworks should be designed with consideration for these fluctuations. These may include

reducing the amount of communication required, overlapping communication with computation to

avoid performance bottlenecks with regards to communication, identifying communication patterns

which are better suited for the particular cloud environment, etc.

5. Fault tolerance

Fault tolerance is a very important component of a large scale computation framework. Large

scale computations should have the ability to recover from failures to the parts or tasks of the

computation without having to re-run the whole computation, preferably with excellent support

from the framework. Hence, the framework we design should ensure the eventual completion of

the computations through framework-managed fault-tolerance mechanisms. These mechanisms

also should strive to restore and complete the computations as efficiently as possible. Large scale

8

computation frameworks should also handle the stragglers (the tail of slow tasks) to optimize the

computations.

Node failures are to be expected whenever large numbers of nodes are utilized for

computations. These failures become much more prevalent when virtual instances are running on

top of non-dedicated hardware in cloud environments. Cloud programming frameworks should be

able to recover from node failures and should avoid single point of failures in the presence of node

failures.

6. Scalability

Computations should be able to scale well with the increasing amount of compute resources.

Inter-process communication and coordination overheads as well as system bottlenecks need to be

kept to a minimum to ensure scalability of the computations up to hundreds of instances or cores.

Also, computations should be able to scale well with increasing input data sizes as well.

7. Efficiency

The framework should facilitate the optimized execution of the applications by achieving good

parallel efficiencies for most of the commonly used application patterns. In order to achieve good

efficiencies, the framework overheads such as scheduling, data staging, and intermediate data

transfer need to be low relative to the compute time. In addition, the applications must be able to

utilize all the compute resources of the system, ensuring ideal amount of parallelism.

Clouds environments are implemented as shared infrastructures operating by using virtual

machines. It is possible for the performance to fluctuate based on the load of the underlying

infrastructure services, based on the load from other users on the shared physical node, based on

9

the load on the network and based on other issues which can be unique to virtual machine

environments. The frameworks should contain mechanisms to handle any tasks that take much

longer to complete than others; they should also be able to provide appropriate load balancing in

the job level.

8. Monitoring, Logging and Metadata storage *

Users should be provided with sufficient capabilities to monitor the progress of their

computations with the ability to drill down to the task level. This should also inform the users about

any errors encountered as well as an overview of the CPU and memory utilization of the system.

Cloud instance storage is preserved only for the lifetime of the instance. Hence, information

logged to the instance storage would be lost after the instance termination. On the other hand,

performing excessive logging to a bandwidth limited off-instance storage location can become a

performance bottleneck for the computations. Hence, it is important to select the granularity of

logging and the log storage location by trading off the overhead of logging and the durability of the

log location.

The frameworks need to maintain metadata information to manage and coordinate the jobs as

well as the infrastructure. This metadata needs to be stored reliably while ensuring good scalability

and accessibility to avoid a single point of failure and performance bottlenecks.

9. Cost effective *

When performing large scale computations on cloud environments, we need to keep the cost of

cloud services to an acceptable amount, while extracting the most out of the cloud services.

10

Choosing suitable instance types is one aspect of optimizing the costs. Clouds offer users several

types of instance options, with different configurations and price points. It is important to select the

best matching instance type, both in terms of performance as well as money-wise.

10. Ease of usage *

Users should be able to develop, debug and deploy programs with ease, without the need for

extensive upfront system specific knowledge.

In this thesis, we do not focus on the research issues involving monitoring, logging and metadata

storage*(9), cost effectiveness*(10) and the ease of usage*(11). However, the solutions and frameworks

we have developed as part of this thesis research provide and, in some cases, improve the industry

standard solutions for each of these issues.

1.3 Thesis contributions

The following comprise a summary of the contributions of this thesis:

 Architecture, programming model and implementations to perform pleasingly parallel

computations on cloud environments utilizing cloud infrastructure services.

 Designed and implemented an architecture and a programming model to perform

pleasingly parallel type computations on cloud environments using both cloud

infrastructure services as well as using existing MapReduce frameworks.

Implemented several large scale pleasingly parallel applications using the above

designed framework, and performed a detailed study of performance and cost of

the cloud environments to perform pleasingly parallel computations.

11

 Decentralized architecture and implementation to perform MapReduce computations on

cloud environments utilizing cloud infrastructure services.

 Designed a decentralized, scalable and fault tolerance architecture to perform

MapReduce computations on cloud environments using cloud infrastructure

services. Developed a prototype implementation of the framework for Microsoft

Windows Azure Cloud.

 Implemented several large scale MapReduce applications and performed a detailed

study of the performance and the challenges to perform MapReduce type

computations on cloud environments, including the effect of inhomogeneous data

and scheduling policies on the application performance.

 Decentralized architecture, programming model and implementation to perform iterative

MapReduce computations on cloud environments utilizing cloud infrastructure services.

 Designed a decentralized, scalable and fault tolerant architecture and programming

model to efficiently perform data intensive iterative MapReduce computations on

cloud environments using cloud infrastructure services. Developed a prototype

implementation for Windows Azure cloud.

 Introduced a multi-level data caching approach to solve the data bandwidth and

latency issues of cloud storage services for iterative MapReduce. Designed a high

performance low overhead cache aware task scheduling algorithm for iterative

applications on Cloud environments.

 Utilized hybrid data transfer approaches to improve data communication

performance on cloud environments without sacrificing fault tolerance capabilities.

12

 Implemented several large scale iterative MapReduce applications and performed a

detailed study of the performance and the challenges to perform iterative

MapReduce type computations on cloud environments, including the effect of

multi-level data caching and scheduling policies on the application performance.

 Map-Collectives collective communication primitives for iterative MapReduce

 Introduced All-to-All type collective communication operations to the iterative

MapReduce model, and developed prototype implementations of collective

communication primitives for Apache Hadoop MapReduce (for local clusters and

clouds) and for Twister4Azure iterative MapReduce (for the Windows Azure cloud).

 Implemented several large scale applications using the Map-Collectives and

performed a detailed study of the performance of the above mentioned collective

communication primitives in cluster and cloud environments

1.4 Thesis outline

Chapter 2 of this thesis discusses the related works of this thesis, and provides an introduction to

the cloud environments and example applications used in this thesis. Chapter 2 also provides a

classification of application that is used throughout this thesis. This includes a study of the other

MapReduce and cloud-oriented programming & execution frameworks. We also present a synthesis

summary of these frameworks based on programming abstraction, data storage & communication

mechanisms, scheduling strategies, fault tolerance and several other dimensions.

Chapter 3 presents our work on performing pleasingly parallel computations on cloud

environments. In this chapter, we introduce a set of frameworks that have been constructed using

cloud-oriented programming frameworks and cloud infrastructure services to perform pleasingly parallel

13

computations. We also present the implementations and the performance of several pleasingly parallel

applications using the frameworks that were introduced in this chapter.

Chapter 4 explores the execution of MapReduce type applications on cloud environments and

presents the MapReduceRoles4Azure MapReduce framework. MapReduceRoles4Azure is a novel

MapReduce framework for cloud environments with a decentralized architecture built using Microsoft

Windows Azure cloud infrastructure services. MapReduceRoles4Azure architecture successfully

leverages high latency, eventually consistent, yet highly scalable Azure infrastructure services to provide

an efficient, on demand alternative to traditional MapReduce clusters. We also discuss the challenges

posed by the unique characteristics of cloud environments for the efficient execution of MapReduce

applications on clouds. Further, we evaluate the use and performance of different MapReduce

frameworks in cloud environments for several scientific applications.

Chapter 5 explores the execution of data intensive iterative MapReduce type applications on cloud

environments and introduces the Twister4Azure iterative MapReduce framework. Twister4Azure is a

distributed decentralized iterative MapReduce runtime for Windows Azure Cloud, which extends the

familiar, easy-to-use MapReduce programming model with iterative extensions, enabling fault-tolerance

execution of a wide array of data mining and data analysis applications on the Azure cloud. This chapter

also presents the Twister4Azure iterative MapReduce architecture for clouds, which optimizes the

iterative computations using a multi-level caching of data, a cache aware decentralized task scheduling,

hybrid tree-based data broadcasting and hybrid intermediate data communication. This chapter also

presents the implementation and performance of several real world data-intensive iterative

applications.

14

Chapter 6 studies some performance implications for executing data intensive computations on

cloud environments. These include the study of the effect of inhomogeneous data and scheduling

mechanisms on the performance of MapReduce applications, a study of the effects of virtualization

overhead on MapReduce type applications and a study of the effect of sustained performance of cloud

environments on the performance of MapReduce type applications. We also discuss and analyze how

various data caching strategies on the Azure cloud environment affect the performance of data

intensive iterative MapReduce applications.

Chapter 7 discusses the applicability of All-to-All collective communication operations to Iterative

MapReduce without sacrificing the desirable properties of the MapReduce programming model and

execution framework such as fault tolerance, scalability, familiar API’s and the data model, etc. We

show that the addition of collective communication operations enriches the iterative MapReduce model

by providing many performance and ease of use advantages. We also present Map-AllGather primitive,

which gathers the outputs from all the map tasks and distributes the gathered data to all the workers

after a combine operation, and Map-AllReduce primitive, which combines the results of the Map Tasks

based on a reduction operation and delivers the results to all the workers. The MapReduce-

MergeBroadcast model is presented as a canonical model representative of most of the iterative

MapReduce frameworks. Prototype implementations of these primitives on Hadoop and Twister4Azure

as well as a performance comparison are studied in this chapter.

Finally, we present a summary, conclusions, and solutions to the research challenges and future

work in chapter 8.

15

 2. BACKGROUND

2.1 Cloud Environments

2.1.1 Microsoft Azure platform

The Microsoft Azure platform [16] is a cloud computing platform that offers a set of cloud

computing services. Windows Azure Compute allows the users to lease Windows virtual machine

instances according to a platform as a service (PaaS) model; it offers the .net runtime as the platform

through two programmable roles called Worker Roles and Web Roles. Azure also supports VM roles

(beta), which enables the users to deploy virtual machine instances that can support an infrastructure as

a service model as well. Azure offers a limited set of instance types (Table 1) on a linear price and

feature scale [8].

Table 1 Windows Azure instance types (as of July 2013)

Instance Name CPU Cores Memory Cost Per Hour

Extra Small Shared 768 MB $0.02

Small 1 1.75 GB $0.09

Medium 2 3.5 GB $0.18

Large 4 7 GB $0.36

Extra Large 8 14 GB $0.72

16

Memory intensive (A6) 4 28 GB $1.02

Memory intensive (A7) 8 56 GB $2.04

The Azure Storage Queue is an eventual consistent, reliable, scalable and distributed web-scale

message queue service that is ideal for small, short-lived, transient messages. The Azure queue does not

guarantee the order of the messages, the deletion of messages or the availability of all the messages for

a single request, although it guarantees eventual availability over multiple requests. Each message has a

configurable visibility timeout. Once a client reads a message, the message will be invisible for other

clients for the duration of the visibility time out. It will become visible for the other client once the

visibility time expires, unless the previous reader deletes it. The Azure Storage Table service offers a

large-scale eventually consistent structured storage. The Azure Table can contain a virtually unlimited

number of entities (aka records or rows) where a single entity can be as large as 1MB. Entities contain

properties (aka cells), that can be as large as64KB. A table can be partitioned to store the data across

many nodes for scalability. The Azure Storage Blob service provides a web-scale distributed storage

service in which users can store and retrieve any type of data through a web services interface. Azure

Blob services support two types of Blobs, Page blobs that are optimized for random read/write

operations and Block blobs that are optimized for streaming. The Windows Azure Drive allows the users

to mount a Page blob as a local NTFS volume.

Azure has a logical concept of regions that binds a particular service deployment to a particular

geographic location, or, in other words, to a data center. Azure also has an interesting concept of

‘affinity groups’ that can be specified for both services as well as for storage accounts. Azure tries its

17

best to deploy services and storage accounts of a given affinity group close to each other to ensure

optimized communication between all parties.

2.1.2 Amazon AWS

Amazon Web Services (AWS) [9] are a set of cloud computing services by Amazon, offering on-

demand computing and storage services including, but not limited to, Elastic Compute Cloud (EC2),

Simple Storage Service (S3) and Simple Queue Service (SQS).

EC2 provides users the option to lease virtual machine instances that are billed hourly and that allow

users to dynamically provision resizable virtual clusters in a matter of minutes through a web service

interface. EC2 supports both Linux and Windows virtual instances. EC2 follows an approach that uses

infrastructure as a service; it provides users with ‘root’ access to the virtual machines, thus providing the

most flexibility possible. Users can store virtual machine snapshots as Amazon Machine Images (AMIs),

which can then be used as templates for creating new instances. Amazon EC2 offers a variety of hourly

billed instance sizes with different price points, giving users a richer set of options to choose from,

depending on their requirements. One particular instance type of interest is the High-CPU-Extra-Large

instance, which costs the same as the Extra-Large (XL) instance but offers greater CPU power and less

memory than XL instances. Table 1 provides a summary of the EC2 instance types used in this thesis. The

clock speed of a single EC2 compute unit is approximately 1 GHz to 1.2 GHz. The Small instance type

with a single EC2 compute unit is only available in a 32-bit environment, while the larger instance types

also support a 64-bit environment.

Table 2 Sample of Amazon Web Services EC2 on-demand instance types

Instance Type Memory EC2 compute Actual CPU Cost per

18

units cores hour

Micro 0.615GB Variable Shared 0.02$

Large (L) 7.5 GB 4 2 X (~2Ghz) 0.24$

Extra Large (XL) 15 GB 8 4 X (~2Ghz) 0.48$

High CPU Extra Large (HCXL) 7 GB 20 8 X (~2.5Ghz) 0.58$

High Memory 4XL (HM4XL) 68.4 GB 26 8 X (~3.25Ghz) 1.64$

Cluster GPU 22.5 33.5 8 X (~2.93Ghz) 2.10$

SQS is a reliable, scalable, distributed web-scale message queue service that is eventually consistent

and ideal for small, short-lived transient messages. SQS provides a REST-based web service interface

that enables any HTTP-capable client to use it. Users can create an unlimited number of queues and

send an unlimited number of messages. SQS does not guarantee the order of the messages, the deletion

of messages or the availability of all the messages for a request, though it does guarantee eventual

availability over multiple requests. Each message has a configurable visibility timeout. Once it is read by

a client, the message will be hidden from other clients until the visibility time expires. The message

reappears upon expiration of the timeout as long as it is not deleted. The service is priced based on the

number of API requests and the amount of data transfers.

S3 provides a web-scale distributed storage service where users can store and retrieve any type of

data through a web services interface. S3 is accessible from anywhere on the web. Data objects in S3 are

19

access controllable and can be organized into buckets. S3 pricing is based on the size of the stored data,

the amount of data transferred and the number of API requests.

2.2 MapReduce

MapReduce consists of a storage framework, a programming model and an associated execution

framework for distributed processing of very large data sets. The MapReduce distributed data analysis

framework was originally introduced by Google [2], and it provides an easy-to-use programming model

that features fault tolerance, automatic parallelization, scalability and data locality-based optimizations.

Due to its excellent fault tolerance features, MapReduce frameworks are well-suited for the execution

of large distributed jobs in brittle environments such as commodity clusters and cloud infrastructures.

The MapReduce framework takes care of data partitioning, task scheduling, fault tolerance,

intermediate data communication and many other aspects of MapReduce computations for the users.

These features and the simplicity of the programming model allow users with no background or

experience in distributed and parallel computing to utilize MapReduce and the distributed

infrastructures to easily process large volumes of data.

MapReduce partitions the processing of very large input data in to a set of independent tasks. The

MapReduce data model consists mainly of key-value pairs. The MapReduce programming model

consists of map(key1, value1) function and reduce(key2, list<value2>) function, borrowed from the

functional programming concepts. The map function operates on every element in the input data set

and the reduce function combines and aggregates the output of the map function. Each map function

invocation is independent of the others; this allows for parallel executions on different data sets. This

property also enables richer fault tolerance implementations. However, users should be careful not to

have any side effects from their map functions that will violate the independence property. MapReduce

20

programs written as Map and Reduce functions will be parallelized by the framework and will be

executed in a distributed manner.

2.2.1 MapReduce execution framework

MapReduce frameworks are typically not optimized for the best performance or parallel efficiency

of small scale applications. The main goals of MapReduce frameworks include framework managed fault

tolerance, ability run on commodity hardware, the ability to process very large amounts of data and

horizontal scalability of compute resources. MapReduce frameworks like Hadoop trade off costs such as

large startup overheads, task scheduling overheads and intermediate data persistence overheads for

better scalability and reliability.

When running a computation, MapReduce frameworks first logically split the input data into

partitions, where each partition would be processed by a single Map task. When a Map Reduce

computation has more map tasks than Map slots available in the cluster, the tasks will be scheduled in

waves. For example, a computation with 100 Map tasks executing in a cluster of 200 Map slots will

execute as approximately 5 Map task waves. Figure 1 depicts a sample MapReduce execution flow with

multiple Map tasks waves. Tasks in MapReduce frameworks are scheduled dynamically by taking data

locality into consideration. Map tasks read the data from the assigned logical data partition and process

them as key value pairs using the provided map function. The output key-value pairs of a map function

are collected, partitioned, merged and transferred to the corresponding Reduce tasks. MapReduce

frameworks typically persist the Map output data in the local disks of the Map nodes.

21

Figure 1 A sample MapReduce execution flow

Reduce tasks fetch the data from the Map nodes and perform an external-merge sort on the data.

The fetching of intermediate data starts as soon as the first map task completes the execution. Reduce

task starts the reduce function processing after all of the Map tasks are finished and after all the

intermediate data are shuffled and sorted. Figure 2 depicts the steps of a typical MapReduce

computation.

 Map Task Reduce Task

Task

Scheduling
Data read Map execution Collect Spill Merge Shuffle Merge

Reduce

Execution

Write

output

Figure 2 Steps of a typical MapReduce computation

2.3 Iterative MapReduce

Many important data-intensive applications and algorithms can be implemented as iterative

computation and communication steps, where computations inside an iteration are independent and

synchronized at the end of each iteration through reduce and communication steps. Often, each

iteration is also amenable to parallelization. Many statistical applications fall into this category, including

22

graph processing, clustering algorithms, data mining applications, machine learning algorithms, data

visualization algorithms, and most of the expectation maximization algorithms. Their preeminence is a

result of scientists relying on clustering, mining, and dimension reduction to interpret the data. The

emergence of computational fields such as bioinformatics and machine learning has also contributed to

increased interest in this class of applications.

Figure 3 Structure of a typical data-intensive iterative application.

As mentioned in the section above, there exists a significant amount of data analysis, data mining

and scientific computation algorithms that rely on iterative computations with which we can easily

specify each iterative step as a MapReduce computation. Typical data-intensive iterative computations

follow the structure depicted in Figure 3.

We can identify two main types of data in these computations: the very large loop invariant input

data and the smaller loop variant delta values. The loop invariant input data would be the set of input

data points. Single iterations of these computations are easy to parallelize by processing the data points

(or blocks of data points) independently in parallel while performing synchronization between the

iterations through communication steps. In a K-means Clustering computation, the loop invariant input

data would be the set input data vectors, while in a PageRank calculation, the loop invariant input data

would be a representation of the link graph. The loop invariant nature of these input data points gives

rise to several optimization possibilities.

23

Delta values are the result of processing the input data in each iteration. Often, these delta values

are needed for the computation of the next iteration. In a K-means Clustering computation, the loop

variant delta values are the centroid values. In PageRank calculations, the delta values conform to the

page rank vector.

Other general properties of the data-intensive iterative MapReduce calculations include relatively

finer-grained tasks resulting in more prominent intermediate I/O overheads and a very large number of

tasks due to multiple iterations giving more significance to the scheduling overheads.

Fault Tolerance for iterative MapReduce can be implemented either in the iteration-level or in the

task-level. In the case of iteration-level fault tolerance, the check pointing will happen on a per iteration

basis, and the frameworks can avoid check pointing the individual task outputs. Due to the finer grained

nature of the tasks along with a high number of iterations, some users may opt for higher performance

by selecting iteration level fault tolerance. When iteration level fault tolerance is used, the whole

iteration would need to be re-executed in case of a task failure. Task-level fault tolerance is similar to

the typical MapReduce fault tolerance, and the fault-recovery is performed by execution of failed Map

or Reduce tasks.

2.4 Execution Frameworks

24

Table 3 Summary of MapReduce frameworks

 Google

MapReduce[2]

Apache Hadoop[6] Twister [10] Microsoft Dryad[11] Twister4Azure[12]

Parallel Model MapReduce MapReduce MapReduce, Iterative

MapReduce

DAG execution,

Extensible to

MapReduce and

other patterns

MapReduce, iterative

MapReduce

Data Storage GFS (Google File

System)

HDFS (Hadoop

Distributed File

System)

Local disks Shared Directories &

local disks

Azure Blob Storage

Data

Communication

Files Files over HTTP Publish/subscribe

messaging

Framework, TCP,

Optimized broadcasts

Files, TCP Pipes,

Shared Memory FIFO

Files, Optimized TCP

intermediate data transfer

and broadcasts, Collective

Communication operations

25

Scheduling Data/rack Locality Data/rack Locality,

Dynamic task

scheduling through

global queue

Data Locality, Map

task reuse with data

caching

Data locality;

Topology based, run

time graph

optimizations

Dynamic task scheduling

through global queue, Cache

aware scheduling, Collective

communication based

scheduling

Fault Tolerance Re-execution of

failed tasks;

Duplicate execution

of slow tasks

Re-execution of

failed tasks;

Duplicate execution

of slow tasks

Re-execution of

Iterations

Re-execution of failed

tasks; Duplicate

execution of slow

tasks

Re-execution of failed tasks;

Duplicate execution of slow

tasks, Re-execution of

iterations

Language

Support

C++, Sawzall Java, Hive,Pig Latin,

Scalding

Java C#, DryadLINQ [55] C#

Runtime

Environment

Linux Cluster. Linux Clusters,

Amazon EMR, Azure

HDInsights

Linux Cluster Windows HPCS

cluster

Window Azure Compute,

Windows Azure Local

Development Fabric

26

2.4.1 Apache Hadoop

Apache Hadoop [6] MapReduce is a widely used open-source implementation of the Google

MapReduce [2] distributed data processing framework.

Apache Hadoop MapReduce uses the Hadoop distributed parallel file system (HDFS) [13] for data

storage, which stores the data across the local disks of the computing nodes while presenting a single

file system view through the HDFS API. The HDFS is designed for deployment on commodity clusters and

achieves reliability through replication of data across nodes. The HDFS partitions the data files into

coarser grained blocks of 10s or 100s of Megabytes; it stores these blocks on the native file system of

the nodes. The block size and the replication factor are configurable as cluster wide as well as for

individual data sets. With this HDFS data partitioning and storage strategy, a very large data set or a very

large file would effectively get stored in a distributed manner across all or most of the nodes of the

cluster, providing very large aggregate read bandwidth when processing the data. The HDFS central

NameNode store manages the Meta data of the files stored in HDFS.

When executing Map Reduce programs, Hadoop optimizes data communication by scheduling

computations near the data by using the block data locality information provided by the HDFS file

system. Hadoop has an architecture consisting of a master node with many client workers, and it uses a

global queue for task scheduling, thus achieving natural load balancing among the tasks. Hadoop

performs data distribution and automatic task partitioning based on the information provided in the

master program and based on the structure of the data stored in HDFS. The Map Reduce model reduces

the data transfer overheads by overlapping data communication with computations when reduce steps

27

are involved. Hadoop performs duplicate executions of slower tasks and handles failures by rerunning

the failed tasks using different workers.

Over the years, Hadoop has grown into a large eco system of projects providing functionalities on

top of Hadoop MapReduce and HDFS. These include high level data processing languages such as

Apache Hive [14] and Apache Pig [15], Google BigTable [16] like tabular data storage solutions such as

Apache HBase [17] and Apache Accumulo [18], large scale machine learning libraries such as Apache

Mahout [19], graph processing libraries such as Giraph [20], and data ingesting projects such as Apache

Flume [21], Apache Sqoop [22], etc.

2.4.1.1 Amazon Elastic Map Reduce

Amazon Elastic MapReduce (EMR) [23] provides MapReduce as an on-demand service hosted within

the Amazon infrastructure. EMR is a hosted Apache Hadoop MapReduce framework, which utilizes

Amazon EC2 for computing power and Amazon S3 for data storage. It allows the users to perform

Hadoop MapReduce computations in the cloud with the use of a web application interface, as well as a

command line API, without worrying about installing and configuring a Hadoop cluster. Users can run

their existing Hadoop MapReduce program on EMR with minimal changes.

EMR supports the concept of JobFlows, which can be used to support multiple steps of Map &

Reduce on a particular data set. Users can specify the number and the type of instances that are

required for their Hadoop cluster. Intermediate data and temporary data are stored in the local HDFS

file system while the job is executing. Users can use either the S3 native (s3n) file system or the legacy

S3 block file system to specify input and output locations on Amazon S3. Use of s3n is recommended, as

it allows files to be saved in native formats in S3.

28

The pricing for the use of EMR consists of the cost for the EC2 computing instances, the S3 storage

cost, an optional fee for the usage of SimpleDB to store job debugging information, and a separate cost

per instance hour for the EMR service.

2.4.1.2 Azure HDInsight

HDInsight is an Apache Hadoop as service offering hosted within the Microsoft Windows Azure

cloud. Similar to Amazon EMR, HDInsight uses Windows Azure instances for computing power and Azure

blob storage for long term data storage. Hadoop jobs can be submitted to HDInsights through a web

interface or by using the command line of the master node or programmatically through Windows

PowerShell. Windows Azure blob storage can be accessed from Hadoop MapReduce computations using

a HDFS compatible file system layer (WASBS). Alternatively, users can use the HDFS deployed over the

instance storage for data storage as well, but the data in this HDFS would be lost after the termination

of the HDInsight cluster.

HDInsight is a community technology preview (beta) as of January 2014.

2.4.2 Microsoft Dryad

Dryad [11] is a framework developed by Microsoft Research as a general-purpose distributed

execution engine for coarse-grain parallel applications. Dryad applications are expressed as directed

acyclic data-flow graphs (DAG), where vertices represent computations and edges represent

communication channels between the computations. DAGs can be used to represent MapReduce type

computations, and they can be extended to represent many other parallel abstractions as well. Similar

to MapReduce frameworks, the Dryad scheduler optimizes the data transfer overheads by scheduling

the computations near data and handles failures through the rerunning of tasks and duplicate task

execution. In the Dryad version we used, data for the computations need to be partitioned manually and

29

stored beforehand in the local disks of the computational nodes via Windows shared directories. Dryad

is available for academic usage through the DryadLINQ [7] API, which is a high level declarative language

layer on top of Dryad. DryadLINQ queries get translated into distributed Dryad computational graphs in

the run time. DryadLINQ can be used only with Microsoft Windows HPC clusters. The DryadLINQ

implementation of the framework uses the DryadLINQ “select” operator on the data partitions to

perform the distributed computations. The resulting computation graph looks much similar to the figure

2, where instead of using HDFS, Dryad will use the Windows shared local directories for data storage.

Data partitioning, distribution and the generation of metadata files for the data partitions is

implemented as part of our pleasingly parallel application framework.

2.4.3 Twister

The Twister [10] iterative MapReduce framework is an expansion of the traditional MapReduce

programming model, which supports traditional as well as iterative MapReduce data-intensive

computations. Twister supports MapReduce in the manner of “configure once, and run many times”.

Twister configures and loads static data into Map or Reduce tasks during the configuration stage, and

then reuses the loaded data through the iterations. In each iteration, the data is first mapped in the

compute nodes, and reduced, then combined back to the driver node (control node). Twister supports

direct intermediate data communication, using direct TCP as well as using messaging middleware, across

the workers without persisting the intermediate data products to the disks. With these features, Twister

supports iterative MapReduce computations efficiently when compared to other traditional MapReduce

runtimes such as Hadoop [24]. Fault detection and recovery are supported between the iterations.

Java Twister uses a master driver node for management and controlling of the computations. The

Map and Reduce tasks are implemented as worker threads managed by daemon processes on each

worker node. Daemons communicate with the driver node and with each other through messages. For

30

command, communication and data transfers, Twister uses a Publish/Subscribe messaging middleware

system and ActiveMQ [25] is used for the current experiments. Twister performs optimized broadcasting

operations by using the chain method [26] and uses the minimum spanning tree method [27] for

efficiently sending Map data from the driver node to the daemon nodes. Twister supports data

distribution and management through a set of scripts as well as through the HDFS [13].

2.4.4 Haloop

Haloop [28] extends Apache Hadoop to support iterative applications and supports the caching of

loop-invariant data as well as loop-aware scheduling. Similar to Java HPC Twister and Twister4Azure,

Haloop also provides a new programming model, which includes several APIs that can be used for

expressing iteration related operations in the application code.

However, Haloop doesn’t have an explicit Combine operation to get the output to the master node,

and it also uses a separate MapReduce job to do the calculation (called Fix point evaluation) for terminal

condition evaluation. HaLoop provides a high-level query language, which is not available in either Java

HPC Twister or Twister4Azure.

HaLoop performs loop aware task scheduling to accelerate iterative MapReduce executions. Haloop

enables data reuse across iterations, by physically co-locating tasks that process the same data in

different iterations. In HaLoop, the first iteration is scheduled similar to traditional Hadoop. After that,

the master node remembers the association between the data and the node, and the scheduler tries to

retain previous data-node associations in the following iterations. If the associations can no longer hold

due to the load, the master node will associate the data with another node. HaLoop also provides

several mechanisms of on disk data caching such as a reducer input cache and a mapper input cache. In

addition to these two, there is another cache called the reducer output cache, which is specially

31

designed to support Fix point Evaluations. HaLoop can also cache intermediate data (reducer

input/output cache) generated by the first iteration.

2.4.5 Spark

Spark [29] is an open source large data analytics framework that supports in-memory caching and

interactive querying of data. Spark addressed some of the bottlenecks of the MapReduce model, while

retaining the scalability and fault tolerance features of MapReduce. Spark provides better performance

than Hadoop for many types of computations. Spark is implemented using Scala and builds on top of

Hadoop Distributed File System (HDFS).

Spark introduces an abstraction called Resilient Distributed Datasets (RDDs) [30], which are

distributed data sets partitioned across the cluster. RDD’s can be created by performing deterministic

operations on raw data or on other RDD’s. RDD’s are a form of intermediate data structures, and can be

cached in memory for fast in-memory computations such as iterative computations and interactive

queries. RDD’s contain lineage information, and can be rebuilt in case a partition is lost due to some

reason. Spark uses the RDD lineage information to provide fault tolerance support similar to

MapReduce. Spark supports parallel computations on RDD’s and provides a set of operators that can be

applied on RDD’s.

There are several projects that are building functionalities on top of Spark. These include an Apache

Hive compatible data processing language layer called Shark[31], a large scale machine learning library

named MLib, Spark-Streaming[32] stream data processing project and the GraphX[33] graph processing

library.

2.4.6 Microsoft Daytona

32

Microsoft Daytona [26] is a recently announced iterative MapReduce runtime developed by

Microsoft Research for Microsoft Azure Cloud Platform. It builds on some of the ideas of the earlier

Twister system. Daytona utilizes Azure Blob Storage for storing intermediate data and final output data

which enables data backup and easier failure recovery. Daytona supports the caching of static data

between iterations. Daytona combines the output data of the Reducers to form the output of each

iteration. Once the application has completed, the output can be retrieved from Azure Blob storage or

can be continually processed by using other applications. In addition to the above features, which are

similar to Twister4Azure, Daytona also provides automatic environment deployment and data splitting

for MapReduce computations; it also claims to support a variety of data broadcast patterns between the

iterations. However, as opposed to Twister4Azure, Daytona uses a single master node based controller

to drive and manage the computation. This centralized controller substitutes for the ‘Merge’ step of

Twister4Azure, but makes Daytona prone to single point failures.

Currently, Excel DataScope is presented as an application of Daytona. Users can upload data in their

Excel spreadsheet to the DataScope service or select a data set already in the cloud, and then select an

analysis model from our Excel DataScope research ribbon to run against the selected data. The results

can be returned to the Excel client or they can remain in the cloud for further processing and/or

visualization. Daytona is available as a “Community Technology Preview” for academic and non-

commercial usage.

2.4.7 i-MapReduce and PrIter

i-MapReduce [34] is another iterative MapReduce framework built on top of Hadoop. i-MapReduce

reduces the startup overhead of creating new tasks in each iteration by supporting persistent Map and

Reduce tasks. Persistent Map and Reduce tasks keep running until all the iterations are done. However,

this requires that the cluster has enough free task slots to execute all the tasks of the computation at

33

the same time. Similar to Twister and Twister4Azure, i-MapReduce improves the data shuffling by

shuffling only the loop-variant data. It also partitions the data in such a way that the Map and Reduce

tasks will have a one to one correspondence, and it uses this property to support the asynchronous

execution of tasks. PrIter[35] improves i-MapReduce by introducing prioritized iterations, where it can

prioritize the computations that provide the most help in terms of the convergence of the iterative

algorithm.

2.4.8 Google Pregel and Apache Giraph

Pregel [36] is a large scale graph processing framework developed at Google. The Pregel

programming model consists of vertices and edges, and it can be programmed by using iterations.

Pregel follows the Bulk Synchronize Parallel (BSP) [37] model of computations, in which each iteration

consists of independent computations at the vertices followed by communication and barrier

synchronization. In a Pregel iteration, vertices receive messages sent to them in the previous iteration,

perform the vertex computation independent of other vertices, and finally, send messages to the other

vertices that will be received in the next iteration. The vertex computation can alter the state of that

vertex, alter the state of the outgoing edges of that vertex and can change the graph topology as well.

Pregel claims scalability up to thousands of computers and claims the ability to process billions of

vertices and edges. Pregel achieves fault tolerance by check pointing the vertex and edge states at the

beginning of each iteration.

Apache Giraph is an open source implementation of the Pregel model. Apache Giraph is built on top

of Hadoop and translates the graph processing to a series of MapReduce computations. However,

Giraph supports keeping the graph state in-memory throughout the computation, which improves the

performance of the computations.

34

2.4.9 Other related cloud execution frameworks

CloudMapReduce [38] for Amazon Web Services (AWS) and Google AppEngine MapReduce [39]

follow an architecture similar to MRRoles4Azure, in which they utilize the cloud services as the building

blocks. Windows Azure HPC scheduler enables the users to launch and manage high-performance

computing (HPC) and other parallel applications in the Windows Azure environment. Azure HPC

scheduler supports parametric sweeps, Message Passing Interface (MPI) and LINQ to HPC applications

together with a web-based job submission interface. AzureBlast [40] is an implementation of a parallel

BLAST on the Azure environment that uses Azure cloud services with an architecture similar to the

Classic Cloud model described in section 3. CloudClustering [41] is a prototype KMeansClustering

implementation that uses Azure infrastructure services. CloudClustering uses multiple queues (single

queue per worker) for job scheduling and supports the caching of loop-invariant data.

2.5 Application types

For the purposes of this dissertation, we classify parallel applications into the following four

categories based on their execution patterns.

2.5.1 Pleasingly Parallel Applications

A pleasingly (also called embarrassingly) parallel application is an application that can be

parallelized, thus requiring minimal effort to divide the application into independent parallel parts. Each

independent parallel part has very minimal or no data, synchronization or ordering dependencies with

the others. These applications are good candidates for computing clouds and compute clusters with no

specialized interconnections. A sizable number of scientific applications fall under this category.

Examples of pleasingly parallel applications include Monte Carlo simulations and BLAST [42] searches, as

well as parametric studies and image processing applications such as ray tracing. Most of the data

35

cleansing and pre-processing applications can also be classified as pleasingly parallel applications. These

types of applications can be mapped to the MapReduce programming model as Map only applications

or MapReduce applications with trivial reduce phases such as simple aggregation or collection of data.

Chapter 3 of this thesis focuses on providing solutions to executing pleasingly parallel applications

on cloud environments and using cloud oriented applications frameworks. The pleasingly parallel

applications discussed in this thesis include BLAST sequence searching (section 2.6.3), Cap3 sequence

assembly (section 2.6.1) and GTM interpolation (section 2.6.2).

2.5.2 MapReduce Type Applications

We define MapReduce type applications as the set of applications that consist of a pleasingly

parallel step (Map) followed by a non-trivial reduction step. The non-trivial reduction can take

advantage of the combining, sorting and partitioning functionalities provided by the MapReduce

frameworks. Examples of MapReduce type applications include Smith-Watermann-GOTOH sequence

distance calculation [43] and WordCount applications.

Chapter 4 of this thesis focuses on providing solutions to executing the MapReduce type of

applications on cloud environments; it also introduces the MapReduceRoles4Azure decentralized cloud

MapReduce framework for Azure cloud. MapReduce type applications discussed in this thesis include

Smith-Watermann-GOTOH sequence distance calculation (section 2.6.4) application.

2.5.3 Data Intensive Iterative Applications

Many important scientific applications and algorithms can be implemented as iterative computation

and communication steps, where computations inside an iteration are independent and are

synchronized at the end of each iteration through reduce and communication steps. Often, each

iteration is also amenable to parallelization. Many statistical applications fall into this category.

36

Examples include clustering algorithms, data mining applications, machine learning algorithms, data

visualization algorithms, and most of the expectation maximization algorithms. The growth of such

iterative statistical applications, in importance and number, is driven partly by the need to process

massive amounts of data, for which scientists rely on clustering, mining, and dimension-reduction to

interpret the data. The emergence of computational fields, such as bioinformatics, and machine

learning, has also contributed to an increased interest in this class of applications.

Chapter 5 of this thesis focuses on providing solutions to executing data intensive iterative

applications on cloud environments; it also introduces the Twister4Azure iterative MapReduce

framework for Azure cloud. Also chapter 7 of this thesis introduces the collective communication

primitives for iterative MapReduce type applications. Data intensive iterative type applications discussed

in this thesis includes KMeansClustering (section 2.6.5) and Multi-Dimensional-Scaling (section 2.6.6)

applications.

2.5.4 MPI type applications

Applications with more complex inter-process communication and coordination requirements than

the data intensive iterative applications fall into this category. These applications often require the

usage of technologies such as MPI or OpenMP together with special communications interconnects. We

do not explore MPI type applications in this thesis.

2.6 Applications

Described below are some of applications that we implemented and/or parallelized, benchmarked

and analyzed in the later chapters of this thesis.

37

2.6.1 Cap3

Cap3 [44] is a sequence assembly program which assembles DNA sequences by aligning and

merging sequence fragments to construct whole genome sequences. Sequence assembly is an integral

part of genomics, as the current DNA sequencing technology, such as shotgun sequencing, is capable of

reading only parts of genomes at once. The Cap3 algorithm operates on a collection of gene sequence

fragments presented as FASTA-formatted files. It removes the poor regions of the DNA fragments,

calculates the overlaps between the fragments, identifies and removes the false overlaps, joins the

fragments to form contigs of one or more overlapping DNA segments and finally, through multiple

sequence alignment, generates consensus sequences.

The increased availability of DNA sequencers are generating massive amounts of sequencing data

that need to be assembled. The Cap3 program is often used in parallel with lots of input files due to the

pleasingly parallel nature of the application. The run time of the Cap3 application depends on the

contents of the input file. The Cap3 is less memory intensive than the GTM Interpolation and BLAST

applications we discuss below. The size of a typical data input file for the Cap3 program and the result

data file range from hundreds of kilobytes to few megabytes. The output files resulting from the input

data files can be collected independently and do not need any combining steps.

2.6.2 Generative Topographic Mapping Interpolation

Generative Topographic Mapping (GTM) [45] is an algorithm for finding an optimal user-defined

low-dimensional representation of high-dimensional data. This process is known as dimension

reduction, which plays a key role in scientific data visualization. In a nutshell, GTM is an unsupervised

learning method for modeling the density of data and finding a non-linear mapping of high-dimensional

data in a low-dimensional space. To reduce the high computational costs and memory requirements in

the conventional GTM process for large and high-dimensional datasets, GTM Interpolation [46, 47] has

38

been developed as an out-of-sample extension to process much larger data points with a minor trade-

off of approximation. GTM Interpolation takes only a part of the full dataset, known as samples, for a

compute-intensive training process, and it applies the trained result to the rest of the dataset, known as

out-of-samples. With this interpolation approach in GTM, one can visualize millions of data points with

modest amount of computations and memory requirement.

The size of the input data for the interpolation algorithm consists of millions of data points and

usually ranges in gigabytes, while the size of the output data in lower dimensions are orders of

magnitude smaller than the input data. Input data can be partitioned arbitrarily on the data point

boundaries in order to generate computational sub tasks. The output data from the sub tasks can be

collected using a simple merging operation and do not require any special combining functions. The

GTM Interpolation application is highly memory intensive and requires a large amount of memory

proportional to the size of the input data.

2.6.3 Blast+ sequence search

NCBI BLAST+ [42] is a very popular bioinformatics application that is used to handle sequence

similarity searching. It is the latest version of BLAST [48], a multi-letter command line tool developed

using the NCBI C++ toolkit, to translate a FASTA formatted nucleotide query and to compare it to a

protein database. Queries are processed independently and have no dependencies between them. This

makes it possible to use multiple BLAST instances to process queries in a pleasingly parallel manner. We

used a sub-set of a real-world protein sequence data set as the input BLAST queries and used NCBI’s

non-redundant (NR) protein sequence database (8.7 GB), updated on 6/23/2010, as the BLAST database.

In order to make the tasks coarser granular, we bundled 100 queries into each data input file resulting in

files with sizes in the range of 7-8 KB. The output files for these input data range from a few bytes to a

few Megabytes.

39

2.6.4 Sequence alignment using SmithWaterman GOTOH (SWG)

The SmithWaterman [49] algorithm with GOTOH [50] (SWG) improvement is used to perform

pairwise sequence alignment on two FASTA sequences. We used the SWG application kernel in parallel

to calculate the all-pairs dissimilarity of a set of n sequences resulting in n*n distance matrix. A set of

map tasks for a particular job are generated using the blocked decomposition of the strictly upper

triangular matrix of the resultant space. Reduce tasks aggregate the output from a row block. In this

application, the size of the input data set is relatively small, while the size of the intermediate and the

output data are significantly larger due to the n2 result space; this stresses the performance of inter-

node communication and output data storage. The SWG can be considered as a memory-intensive

application.

We used open source implementations, named JAligner and NAligner[11], of the Smith Waterman –

Gotoh algorithm SW-G modified to ensure low start up effects by each thread, processing a large

number (above a few hundred) of sequence calculations at a time. The memory bandwidth needed was

reduced by storing data items in as few bytes as possible.

More details about the Hadoop-SWG application implementation can be found in [43].

2.6.5 KMeansClustering

Clustering is the process of partitioning a given data set into disjoint clusters. The use of clustering

and other data mining techniques to interpret very large data sets has become increasingly popular,

with petabytes of data becoming commonplace. The K-Means Clustering [20] algorithm has been widely

used in many scientific and industrial application areas due to its simplicity and applicability to large data

sets. We are currently working on a scientific project that requires the clustering of several Terabytes of

data using KMeansClustering and millions of centroids.

40

K-Means clustering is often implemented using an iterative refinement technique, in which the

algorithm iterates until the difference between cluster centers in subsequent iterations, i.e. the error,

falls below a predetermined threshold. Each iteration performs two main steps, the cluster assignment

step, and the centroids update step. In the MapReduce implementation, the assignment step is

performed in the Map Task and the update step is performed in the Reduce task. Centroid data is

broadcast at the beginning of each iteration. Intermediate data communication is relatively costly in

KMeansClustering, as each Map Task outputs data are equivalent to the size of the centroids in each

iteration.

2.6.6 Multi-Dimensional Scaling (MDS)

The objective of multi-dimensional scaling (MDS) is to map a data set in a high-dimensional space to

a user-defined lower dimensional space with respect to the pairwise proximity of the data points [51].

Dimensional scaling is used mainly in the visualizing of high-dimensional data by mapping them into a

two or three-dimensional space. MDS has been used to visualize data in diverse domains, including but

not limited to bio-informatics, geology, information sciences, and marketing. We use MDS to visualize

dissimilarity distances for hundreds of thousands of DNA and protein sequences to identify

relationships.

Figure 4 Multi-Dimensional Scaling SMACOF application architecture using iterative MapReduce

For the purposes of this dissertation, we use Scaling by MAjorizing a COmplicated Function

(SMACOF) [52], an iterative majorization algorithm. The input for MDS is an N*N matrix of pairwise

BC: Calculate BX

Map Reduce Merge

X: Calculate invV
(BX)Map Reduce Merge

Calculate Stress

Map Reduce Merge

New Iteration

Optional Step

41

proximity values, where N is the number of data points in the high-dimensional space. The resultant

lower dimensional mapping in D dimensions, called the X values, is an N*D matrix.

The limits of MDS are more bounded by memory size than by CPU power. The main objective of

parallelizing MDS is to leverage the distributed memory to support processing of larger data sets. In this

thesis, we implement the parallel SMACOF algorithm described by Bae et al [46]. This results in iterating

a chain of three MapReduce jobs, as depicted in Figure 4. For the purposes of this dissertation, we

performed an unweighted mapping that results in two MapReduce jobs steps per iteration, BCCalc and

StressCalc. Each BCCalc Map task generates a portion of the total X matrix. MDS is challenging for

MapReduce frameworks due to its relatively finer grained task sizes and multiple MapReduce

applications per iteration.

2.6.7 Bio sequence analysis pipeline

The bio-informatics genome processing and visualizing pipeline [14] shown in Figure 5 inspired some

of the application use cases analyzed in this thesis. This pipeline uses the SmithWatermann-GOTOH

application, described in section 2.6.4, or the BLAST+ application, described in section 2.6.3, for

sequence alignment, Pairwise clustering for sequence clustering and the Multi-Dimensional Scaling

application, described in section 2.6.6, are used to reduce the dimensions of the distance matrix to

generate 3D coordinates for visualization purposes. This pipeline is currently in use to process and

visualize hundreds of thousands of genomes with the ultimate goal of visualizing millions of genome

sequences.

42

Figure 5 Bio sequence analysis pipeline [14]

43

 3. PLEASINGLY PARALLEL COMPUTING ON CLOUD ENVIRONMENTS

A pleasingly parallel application is an application that can be parallelized, and thus requires minimal

effort to divide the application into independent parallel parts. Each independent parallel part has very

minimal or no data, synchronization or ordering dependencies with the others. These applications are

good candidates for computing clouds and compute clusters with no specialized interconnections. There

are many scientific applications that fall under this category. Examples of pleasingly parallel applications

include Monte Carlo simulations, BLAST searches, parametric studies and image processing applications

such as ray tracing. Most of the data cleansing and pre-processing applications can also be classified as

pleasingly parallel applications. Recently, the relative number of pleasingly parallel scientific workloads

has grown due to the emergence of data-intensive computational fields such as bioinformatics.

In this chapter, we introduce a set of frameworks that have been constructed using cloud-oriented

programming models to perform pleasingly parallel computations. Using these frameworks, we present

distributed parallel implementations of biomedical applications such as the Cap3 [44] sequence

assembly, the BLAST sequence search and GTM Interpolation. We analyze the performance, cost and

usability of different cloud-oriented programming models using the above-mentioned implementations.

We use Amazon Web Services [9] and Microsoft Windows Azure [53] cloud computing platforms, and

Apache Hadoop [6] MapReduce and Microsoft DryadLINQ [7], as the distributed parallel computing

frameworks.

The work of this chapter have been presented and published as a workshop paper [54] and as a

journal paper [55].

44

3.1 Pleasingly parallel application architecture

Processing large data sets using existing sequential executables is a common use case encountered

in many scientific applications. Many of these applications exhibit pleasingly parallel characteristics in

which the data can be independently processed in parts. In the following sections, we explore cloud

programming models and the frameworks that we developed to perform pleasingly parallel

computations

3.1.1 Classic Cloud processing model

Figure 6 depicts the Classic Cloud processing model. Varia [56] and Chappell [57] describe similar

architectures that are implemented using the Amazon and Azure processing models, respectively. The

Classic Cloud processing model follows a task processing pipeline approach with independent workers. It

uses cloud instances (EC2/Azure Compute) for data processing, and it uses Amazon S3/Windows Azure

Storage for data storage. For the task scheduling pipeline, it uses an Amazon SQS or an Azure queue as a

queue of tasks where every message in the queue describes a single task. The client populates the

scheduling queue with tasks, while the worker-processes running in the cloud instances pick tasks from

the scheduling queue. The configurable visibility timeout feature of the Amazon SQS and the Azure

Queue services is used to provide a simple fault tolerance capability to the system. The workers delete

the task (message) in the queue only after the completion of the task. Hence, a task (message) will get

processed by some worker if the task does not get completed with the initial reader (worker) within the

given time limit. Rare occurrences of multiple instances processing the same task, or another worker re-

executing a failed task, will not affect the result due to the idempotent nature of the independent tasks.

45

Figure 6 Classic cloud processing architecture for pleasingly parallel computations

For the applications discussed in this chapter, a single task is comprised of a single input file and a

single output file. The worker processes will retrieve the input files from the cloud storage through the

web service interface using HTTP; they will then process them using an executable program before

uploading the results back to the cloud storage. In this implementation, the user can configure the

workers to use any executable program in the virtual machine to process the tasks, provided that it

takes input in the form of a file. Our implementation uses a monitoring message queue to monitor the

progress of the computation. One interesting feature of the Classic Cloud framework is the ability to

extend it to use the local machines and clusters side-by-side with the clouds. Although it might not be

the best option due to the data being stored in the cloud, one can start workers in computers outside of

the cloud to augment the compute capacity.

3.1.2 Pleasingly parallel processing using MapReduce frameworks

46

We implemented similar pleasingly parallel processing frameworks using Apache Hadoop [6] and

Microsoft DryadLINQ [7].

Figure 7 Hadoop MapReduce based processing model for pleasingly parallel computations

As shown in Figure 7, the pleasingly parallel application framework on Hadoop is developed as a set

of map tasks which process the given data splits (files) using the configured executable program. Input

to a map task comprises of key, value pairs, where by default Hadoop parses the contents of the data

split to read them. Most of the legacy data processing applications expect a file path as the input instead

of the contents of the file, which is not possible with the Hadoop built-in input formats and record

readers. We implemented a custom InputFormat and a RecordReader for Hadoop to provide the file

name and the HDFS path of the data split respectively as the key and the value for the map function,

while preserving the Hadoop data locality based scheduling.

The DryadLINQ [7] implementation of the framework uses the DryadLINQ “select” operator on the

data partitions to perform the distributed computations. The resulting computation graph looks much

47

similar to the Figure 7, where instead of using HDFS, Dryad will use the Windows shared local directories

for data storage. Data partitioning, distribution and the generation of metadata files for the data

partitions is implemented as part of our pleasingly parallel application framework.

3.1.3 Usability of the technologies

Table 4: Summary of pleasingly parallel cloud framework features

 AWS/ Azure Hadoop DryadLINQ

Programming

patterns

Independent job

execution, More structure

possible using client side

driver program.

MapReduce DAG execution, Extensible

to MapReduce and other

patterns

Fault Tolerance Task re-execution based

on a configurable time

out

Re-execution of failed and

slow tasks.

Re-execution of failed and

slow tasks.

Data Storage and

Communication

S3/Azure Storage. Data

retrieved through HTTP.

HDFS parallel file system.

TCP based

Communication

Local files

Environments EC2/Azure virtual

instances, local compute

resources

Linux cluster, Amazon

Elastic MapReduce

Windows HPCS cluster

Scheduling and

Load Balancing

Dynamic scheduling

through a global queue,

providing natural load

balancing

Data locality, rack aware

dynamic task scheduling

through a global queue,

providing natural load

balancing

Data locality, network

topology aware

scheduling. Static task

partitions at the node

level, suboptimal load

48

balancing

Implementing the above-mentioned application framework using the Hadoop and DryadLINQ data

processing frameworks was easier than implementing them from the scratch using cloud infrastructure

services as the building blocks. Hadoop and DryadLINQ take care of scheduling, monitoring and fault

tolerance. With Hadoop, we had to implement a Map function, which copy the input file from HDFS to

the working directory, execute the external program as a process and finally upload the result file to the

HDFS. It was also necessary to implement a custom InputFormat and a RecordReader to support file

inputs to the map tasks. With DryadLINQ, we had to implement a side effect-free function to execute

the program on the given data and copy the result to the output-shared directory. But significant effort

had to be spent on implementing the data partition and the distribution programs to support

DryadLINQ.

EC2 and Azure Classic Cloud implementations involved more effort than the Hadoop and DryadLINQ

implementations, as all the scheduling, monitoring and fault tolerance had to be implemented from

scratch using the cloud infrastructure services’ features. The deployment process was easier with Azure

as opposed to EC2, in which we had to manually create instances, install software and start the worker

instances. On the other hand the EC2 infrastructure gives developers more flexibility and control. Azure

SDK provides better development, testing and deployment support through Visual Studio integration.

The local development compute fabric and the local development storage of the Azure SDK make it

much easier to test and debug Azure applications. While the Azure platform is heading towards

providing a more developer-friendly environment, it still lags behind in terms of the infrastructure

maturity Amazon AWS has accrued over the years.

49

3.2 Evaluation Methodology

In the performance studies, we use parallel efficiency as the measure by which to evaluate the

different frameworks. Parallel efficiency is a relatively good measure for evaluating the different

approaches we use in our studies, as we do not have the option of using identical configurations across

the different environments. At the same time, we cannot use efficiency to directly compare the different

technologies. Even though parallel efficiency accounts for the system dissimilarities that affect the

sequential and the parallel run time, it does not reflect other dissimilarities, such as memory size,

memory bandwidth and network bandwidth. Parallel efficiency for a parallel application on P number of

cores can be calculated using the following formula:

 --- Equation 1[58]

In this equation, Tp is the parallel run time for the application. T1 is the best sequential run time for

the application using the same data set or a representative subset. In this chapter, the sequential run

time for the applications was measured in each of the different environments, having the input files

present in the local disks, avoiding the data transfers.

The average run time for a single computation in a single core is calculated for each of the

performance tests using the following formula. The objective of this calculation is to give readers an idea

of the actual performance they can obtain from a given environment for the applications considered in

this chapter.

 --- Equation 2

Due to the richness of the instance type choices Amazon EC2 provides, it is important to select an

instance type that optimizes the balance between performance and cost. We present instance type

50

studies for each of our applications for the EC2 instance types mentioned in Table 2 using 16 CPU cores

for each study. EC2 Small instances were not included in our study because they do not support 64-bit

operating systems. We do not present results for Azure Cap3 and GTM Interpolation applications, as the

performance of the Azure instance types for those applications scaled linearly with the price. However,

the total size of memory affected the performance of BLAST application across Azure instance types;

hence we perform an instance type study for BLAST on Azure.

Cloud virtual machine instances are billed hourly. When presenting the results, the ‘Compute Cost

(hour units)’ assumes that particular instances are used only for the particular computation and that no

useful work is done for the remainder of the hour, effectively making the computation responsible for

the entire hourly charge. The ‘Amortized Cost’ assumes that the instance will be used for useful work for

the remainder of the hour, making the computation responsible only for the actual fraction of time

during which it was executed. The horizontal axes of the EC2 cost figures (Figure 3 and 7) and the

vertical axis labeling of the EC2 compute time figures (Figures 4 and 8) are labeled in the format

‘Instance Type’ – ‘Number of Instances’ X ‘Number of Workers per Instance’. For an example, HCXL – 2 X

8 means two High-CPU-Extra-Large instances were used with 8 workers per instance.

When presenting the results used in this section, we considered a single EC2 Extra-Large instance,

with 20 EC2 compute units as 8 actual CPU cores while an Azure Small instance was considered as a

single CPU core. In all of the test cases, it is assumed that the data was already present in the

framework’s preferred storage location. We used Apache Hadoop version 0.20.2 and DryadLINQ version

1.0.1411.2 (November 2009) for our studies.

3.3 Cap3

51

We implemented a distributed parallel version of Cap3[44] sequence assembly application for

Amazon EC2, Microsoft Azure, DryadLINQ and for Apache Hadoop using the frameworks that were

presented in section 3.1. Cap3 program is a pleasingly parallel application that is often used in parallel

with lots of input files. More details on Cap3 are given in section 2.6.1.

3.3.1 Performance with different EC2 cloud instance types

Figure 8 and Figure 9 present benchmark results for the Cap3 application on different EC2 instance

types. These experiments processed 200 FASTA files, each containing 200 reads using 16 compute cores.

According to these results, we can infer that memory is not a bottleneck for the Cap3 program and that

performance depends primarily on computational power. While the EC2 High-Memory-Quadruple-Extra-

Large instances show the best performance due to the higher clock-rated processors, the most cost

effective performance for the Cap3 EC2 ClassicCloud application is gained using the EC2 High-CPU-Extra-

Large instances.

Figure 8 Cap3 application execution cost with different EC2 instance types

52

Figure 9 : Cap3 applciation compute time with different EC2 instance types

3.3.2 Scalability study

We benchmarked the Cap3 Classic Cloud implementation performance using a replicated set of

FASTA-formatted data files, each file containing 458 reads, and compared this to our previous

performance results [43] for Cap3 DryadLINQ and Cap3 Hadoop. 16 High-CPU-Extra-Large instances

were used for the EC2 testing and 128 small Azure instances were used for the Azure Cap3 testing. The

DryadLINQ and Hadoop bare metal results were obtained using a 32 node X 8 core (2.5 GHz) cluster with

16 GB of memory on each node.

Load balancing across the different sub tasks does not pose a significant overhead in the Cap3

performance studies, as we used a replicated set of input data files making each sub task identical. We

performed a detailed study of the performance of Hadoop and DryadLINQ in the face of inhomogeneous

data in one of our previous studies [43]. In this study, we noticed better natural load balancing in

Hadoop than in DryadLINQ due to Hadoop’s dynamic global level scheduling as opposed to DryadLINQ’s

static task partitioning. We assume that cloud frameworks will be able perform better load balancing

similar to Hadoop because they share the same dynamic scheduling global queue-based architecture.

0

500

1000

1500

2000

C
o
m

p
u
te

 T
im

e
(s

)

Cap3 Compute Time

53

Figure 10 Parallel efficiency of Cap3 application using the pleasingly parallel frameworks

Figure 11 Cap3 execution time for single file per core using the pleasingly parallel frameworks

Based on Figure 10 and Figure 11, we can conclude that all four implementations exhibit

comparable parallel efficiency (within 20%) with low parallelization overheads. When interpreting Figure

11, it should be noted that the Cap3 program performs ~12.5% faster on Windows environment than on

the Linux environment. As mentioned earlier, we cannot use these results to claim that a given

framework performs better than another, as only approximations are possible, given that the underlying

infrastructure configurations of the cloud environments are unknown.

54

3.3.2.1 Cost comparison

Table 5 : Cost Comparison of Cap3 execution among different cloud environments

Amazon Web Services Azure

Compute Cost 10.88 $ (0.68$ X 16 HCXL) 15.36$ (0.12$ X 128 Azure Small)

Queue messages (~10,000) 0.01 $ 0.01 $

Storage (1GB, 1 month) 0.14 $ 0.15 $

Data transfer in/out (1 GB) 0.10 $ (in) 0.10$ (in) + 0.15$ (out)

Total Cost 11.13 $ 15.77 $

In Table 5, we estimate the cost of assembling 4096 FASTA files using Classic Cloud frameworks on

EC2 and on Azure. For the sake of comparison, we also approximate the cost of the computation using

one of our internal compute clusters (32 node 24 core, 48 GB memory per node with Infiniband

interconnects), with the cluster purchase cost (~500,000$) depreciated over the course of 3 years plus

the yearly maintenance cost (~150,000$), which include power, cooling and administration costs. We

executed the Hadoop-Cap3 application in our internal cluster for this purpose. The cost for computation

using the internal cluster was approximated to 8.25$ US for 80% utilization, 9.43$ US for 70% utilization

and 11.01$ US for 60% utilization. For the sake of simplicity, we did not consider other factors such as

the opportunity costs of the upfront investment, equipment failures and upgradability. There would also

be additional costs in the cloud environments for the instance time required for environment

preparation and minor miscellaneous platform-specific charges, such as the number of storage requests.

3.4 BLAST

55

NCBI BLAST+ [42] is a very popular bioinformatics application that is used to handle sequence

similarity searching described in section 2.6.3. We implemented distributed parallel versions of BLAST

application for Amazon EC2, Microsoft Azure, DryadLINQ and for Apache Hadoop using the frameworks

that were presented in section 3.1. All of the implementations download and extract the compressed

BLAST database (2.9GB compressed) to a local disk partition of each worker prior to beginning

processing of the tasks. Hadoop-BLAST uses the Hadoop-distributed cache feature to distribute the

database. We added a similar data preloading feature to the Classic Cloud frameworks, in which each

worker will download the specified file from the cloud storage at the time of startup. In the case of

DryadLINQ, we manually distributed the database to each node using Windows-shared directories. The

performance results presented in this chapter do not include the database distribution times.

3.4.1 Performance with different cloud instance types

Figure 12 : Cost to process 64 BLAST query files on different EC2 instance types

56

Figure 13 : Time to process 64 BLAST query files on different EC2 instance types

Figure 12 and Figure 13 present the benchmark results for BLAST Classic Cloud application on

different EC2 instance types. These experiments processed 64 query files, each containing 100

sequences using 16 compute cores. While we expected the memory size to have a strong correlation to

the BLAST performance, due to the querying of a large database, the performance results do not show a

significant effect related to the memory size, as High-CPU-Extra-Large (HCXL) instances with less than

1GB of memory per CPU core were able to perform comparatively to Large and Extra-Large instances

with 3.75GB per CPU core. However, it should be noted that there exists a slight correlation with

memory size, as the lower clock rated Extra-Large (~2.0Ghz) instances with more memory per core

performed similarly to the HCXL (~2.5Ghz) instances. The High-Memory-Quadruple-Large (HM4XL)

instances (~3.25Ghz) have a higher clock rate, which partially explains the faster processing time. Once

again, the EC2 HCXL instances gave the most cost-effective performance, thus offsetting the

performance advantages demonstrated by other instance types.

Figure 14 presents the benchmark results for BLAST Classic-Cloud application on different Azure

instance types. These experiments processed 8 query files, each containing 100 sequences using 8 small,

4 medium, 2 large and 1 Extra-Large instances respectively. Although the features of Azure instance

types scale linearly, the BLAST application performed better with larger total memory sizes. When

0

500

1000

1500

2000

2500

C
o
m

p
u
te

 T
im

e
(s

)

BLAST Compute Time

57

sufficient memory is available, BLAST can load and reuse the whole BLAST database (~8GB) in to the

memory. BLAST application has the ability to parallelize the computations using threads. The horizontal

axis of Figure 14 depicts ‘Number of workers (processes) per instance’ X ‘Number of BLAST threads per

worker’. The ‘N’ stands for the number of cores per instance in that particular instance type. According

to the results, Azure Large and Extra-Large instances deliver the best performance for BLAST. Using pure

BLAST threads to parallelize inside the instances delivered slightly lesser performance than using

multiple workers (processes). The costs to process 8 query files are directly proportional to the run time,

due to the linear pricing of Azure instance types.

Figure 14 Time to process 8 query files using BLAST application on different Azure instance types

3.4.2 Scalability

For the scalability experiment, we replicated a query data set of 128 files (with 100 sequences in

each file), one to six times to create input data sets for the experiments, ensuring the linear scalability of

the workload across data sets. Even though the larger data sets are replicated, the base 128-file data set

is inhomogeneous. The Hadoop-BLAST tests were performed on an iDataplex cluster, in which each

node had two 4-core CPUs (Intel Xeon CPU E5410 2.33GHz) and 16 GB memory and was inter-connected

using Gigabit Ethernet. DryadLINQ tests were performed on a Windows HPC cluster with 16 cores (AMD

58

Opteron 2.3 Ghz) and 16 GB of memory per node. 16 High-CPU-Extra-Large instances were used for the

EC2 testing and 16 Extra-Large instances were used for the Azure testing.

Figure 15 : BLAST parallel efficiency using the pleasingly parallel frameworks

Figure 16 : BLAST average time to process a single query file using the pleasingly parallel frameworks

Figure 15 depicts the absolute parallel efficiency of the distributed BLAST implementations, while

Figure 16 depicts the average time to process a single query file in a single core. From those figures, we

can conclude that all four implementations exhibit near-linear scalability with comparable performance

(within 20% efficiency), while BLAST on Windows environments (Azure and DryadLINQ) exhibit the

better overall efficiency. The limited memory of the High-CPU-Extra-Large (HCXL) instances shared

across 8 workers performing different BLAST computations may have contributed to the relatively low

59

efficiency of EC2 BLAST implementation. According to figure 8, use of EC2 High-Memory-Quadruple-

Extra-Large instances would have given better performance than HCXL instances, but at a much higher

cost. The amortized cost to process 768*100 queries using Classic Cloud-BLAST was ~10$ using EC2 and

~12.50$ using Azure.

3.5 GTM Interpolation

We implemented distributed parallel versions of GTM interpolations application described in section

2.6.2 for Amazon EC2, Microsoft Azure, DryadLINQ and for Apache Hadoop using the frameworks that

were presented in section 3.1.

Figure 17 : Cost of using GTM interpolation application with different EC2 instance types

60

Figure 18 : GTM Interpolation compute time with different EC2 instance types

3.5.1 Application performance with different cloud instance types

According to Figure 18, we can infer that memory (size and bandwidth) is a bottleneck for the GTM

Interpolation application. The GTM Interpolation application performs better in the presence of more

memory and a smaller number of processor cores sharing the memory. The high memory quadruple

Extra-Large instances give the best performance overall, but the High-CPU-Extra-Large instances still

appear to be the most economical choice.

3.5.2 GTM Interpolation speedup

Figure 19: GTM Interpolation parallel efficiency using the pleasingly parallel frameworks

0

100

200

300

400

500

600

C
o
m

p
u
te

 T
im

e
(s

)

GTM Compute Time

61

Figure 20 : GTM Interpolation performance per core using the pleasingly parallel frameworks

We used the PubChem data set of 26 million data points with 166 dimensions to analyze the GTM

Interpolation applications. PubChem is an NIH funded repository of over 60 million chemical molecules,

their chemical structures and their biological activities. A pre-processed subset of 100,000 data points

were used as the seed for the GTM Interpolation. We partitioned the input data into 264 files, with each

file containing 100,000 data points. Figure 19 and Figure 20 depict the performance of the GTM

Interpolation implementations.

DryadLINQ tests were performed on a 16 core (AMD Opteron 2.3 Ghz) per node, 16GB memory per

node cluster. Hadoop tests were performed on a 24 core (Intel Xeon 2.4 Ghz) per node, 48 GB memory

per node cluster which was configured to use only 8 cores per node. Classic Cloud Azure tests we

performed on Azure Small instances (single core). Classic Cloud EC2 tests were performed on EC2 Large,

High-CPU-Extra-Large (HCXL) as well as on High-Memory-Quadruple-Extra-Large (HM4XL) instances

separately. HM4XL and HCXL instances were considered 8 cores per instance while ‘Large’ instances

were considered 2 cores per instance.

Characteristics of the GTM Interpolation application are different from the Cap3 application as GTM

is more memory-intensive and the memory bandwidth becomes the bottleneck, which we assume to be

62

the cause of the lower efficiency numbers. Among the different EC2 instances, Large instances achieved

the best parallel efficiency and High-Memory-Quadruple-Extra-Large instances gave the best

performance while High-CPU-Extra-Large instances were the most economical. Azure small instances

achieved the overall best efficiency. The efficiency numbers highlight the memory-bound nature of the

GTM Interpolation computation, while platforms with less memory contention (fewer CPU cores sharing

a single memory) performed better. As noted, the DryadLINQ GTM Interpolation efficiency is lower than

the others. One reason for the lower efficiency would be the usage of 16 core machines for the

computation, which puts more contention on the memory.

The computational tasks of GTM Interpolation applications were much finer grain than those in the

Cap3 or BLAST applications. Compressed data splits, which were unzipped before handing over to the

executable, were used due to the large size of the input data. When the input data size is larger, Hadoop

and DryadLINQ applications have an advantage of data locality-based scheduling over EC2. The Hadoop

and DryadLINQ models bring computation to the data optimizing the I/O load, while the Classic Cloud

model brings data to the computations.

3.6 Summary

We have demonstrated the feasibility of Cloud infrastructures for three loosely-coupled scientific

computation applications by implementing them using cloud infrastructure services as well as cloud-

oriented programming models, such as Hadoop MapReduce and DryadLINQ.

Cloud infrastructure services provide users with scalable, highly-available alternatives to their

traditional counterparts, but without the burden of managing them. While the use of high latency,

eventually consistent cloud services together with off-instance cloud storage has the potential to cause

63

significant overheads, our work in this chapter has shown that it is possible to build efficient, low

overhead applications utilizing them. Given sufficiently coarser grain task decompositions, Cloud

infrastructure service-based frameworks as well as the MapReduce-based frameworks offer good

parallel efficiencies in almost all of the cases we considered. Computing Clouds offer different instance

types at different price points. We showed that selecting an instance type that is best suited to the

user’s specific application can lead to significant time and monetary advantages.

While models like Classic Cloud bring in both quality of services and operational advantages, it

should be noted that the simpler programming models of existing cloud-oriented frameworks like

MapReduce and DryadLINQ are more convenient for the users. Motivated by the positive results

presented in this chapter, in the next couple of chapters, we present a fully-fledged MapReduce

framework with iterative-MapReduce support for the Windows Azure Cloud infrastructure by using

Azure infrastructure services as building blocks, which will provide users the best of both worlds. The

cost effectiveness of cloud data centers, combined with the comparable performance reported here,

suggests that loosely-coupled science applications will be increasingly implemented on clouds, and that

using MapReduce frameworks will offer convenient user interfaces with little overhead.

64

 4. MAPREDUCE TYPE APPLICATIONS ON CLOUD ENVIRONMENTS

The MapReduce distributed data analysis framework model introduced by Google [2] provides an

easy-to-use programming model that features fault tolerance, automatic parallelization, scalability and

data locality-based optimizations. Due to their excellent fault tolerance features, MapReduce

frameworks are well-suited for the execution of large distributed jobs in brittle environments such as

commodity clusters and cloud infrastructures. Though introduced by the industry and used mainly in the

information retrieval community, it is shown [3-5] that MapReduce frameworks are capable of

supporting many scientific application use cases, making these frameworks good choices for scientists to

easily build large, data-intensive applications that need to be executed within cloud infrastructures.

The lack of a distributed computing framework on the Azure platform at the time (circa 2010)

motivated us to implement MRRoles4Azure (MapReduce Roles for Azure), which is a decentralized novel

MapReduce run time built using Azure cloud infrastructure services. MRRoles4Azure implementation

takes advantage of the scalability, high availability and the distributed nature of cloud infrastructure

services, guaranteed by cloud service providers, to deliver a fault tolerant, dynamically scalable runtime

with a familiar programming model for users.

Several options exist for executing MapReduce jobs on cloud environments, such as manually

setting up a MapReduce (e.g.: Hadoop[6]) cluster on a leased set of computing instances, using an on-

demand MapReduce-as-service offering such as Amazon ElasticMapReduce (EMR) [23]or using a cloud

MapReduce runtime such as MRRoles4Azure or CloudMapReduce[38]. In this chapter, we explore and

evaluate each of these different options for two well-known bioinformatics applications: Smith-

Waterman GOTOH pairwise distance alignment (SWG) [49, 50] and Cap3 [59] sequence assembly. We

65

have performed experiments to gain insights about the performance of MapReduce in the clouds for the

selected applications, and we compare its performance to MapReduce on traditional clusters. For this

study, we use an experimental version of MRRoles4Azure.

Our work was further motivated by an experience we had in early 2010, in which we evaluated the

use of Amazon EMR for our scientific applications. To our surprise, we observed subpar performance in

EMR compared to using a manually-built cluster on EC2 (which is not the case anymore); this experience

prompted us to perform the current analyses. In this chapter, we show that MapReduce computations

performed in cloud environments, including MRRoles4Azure, have the ability to perform comparably to

MapReduce computations on dedicated private clusters.

The work of this chapter has been presented and published as a conference paper [60].

4.1 Challenges for MapReduce in the Clouds

As mentioned above, MapReduce frameworks perform much better in brittle environments than

other tightly coupled distributed programming frameworks, such as MPI [61], due to their excellent fault

tolerance capabilities. However, cloud environments provide several challenges for MapReduce

frameworks to harness the best performance.

 Data storage: Clouds typically provide a variety of storage options, such as off-instance

cloud storage (e.g.: Amazon S3), mountable off-instance block storage (e.g.: Amazon EBS) as

well as virtualized instance storage (persistent for the lifetime of the instance), which can be

used to set up a file system similar to HDFS [13]. The choice of the storage best-suited to

the particular MapReduce deployment plays a crucial role as the performance of data

intensive applications rely a lot on the storage location and on the storage bandwidth.

66

 Metadata storage: MapReduce frameworks need to maintain metadata information to

manage the jobs as well as the infrastructure. This metadata needs to be stored reliability

ensuring good scalability and the accessibility to avoid single point of failures and

performance bottlenecks to the MapReduce computation.

 Communication consistency and scalability: Cloud infrastructures are known to exhibit

inter-node I/O performance fluctuations (due to shared network, unknown topology), which

affect the intermediate data transfer performance of MapReduce applications.

 Performance consistency (sustained performance): Clouds are implemented as shared

infrastructures operating using virtual machines. It is possible for the performance to

fluctuate based the load of the underlying infrastructure services as well as based on the

load from other users on the shared physical node which hosts the virtual machine (see

Section 6.3).

 Reliability (Node failures): Node failures are to be expected whenever large numbers of

nodes are utilized for computations. But they become more prevalent when virtual

instances are running on top of non-dedicated hardware. While MapReduce frameworks

can recover jobs from worker node failures, master node (nodes which store meta-data,

which handle job scheduling queue, etc.) failures can become disastrous.

 Choosing a suitable instance type: Clouds offer users several types of instance options, with

different configurations and price points (See Table 1 and Table 2). It is important to select

the best matching instance type, both in terms of performance as well as monetary wise, for

a particular MapReduce job.

 Logging: Cloud instance storage is preserved only for the lifetime of the instance. Hence,

information logged to the instance storage would be lost after the instance termination.

67

This can be crucial if one needs to process the logs afterwards, for an example to identify a

software-caused instance failure. On the other hand, performing excessive logging to a

bandwidth limited off-instance storage location can become a performance bottleneck for

the MapReduce computation.

4.2 MRRoles4Azure (MapReduce Roles for Azure)

MRRoles4Azure is a distributed decentralized MapReduce runtime for Windows Azure that was

developed using Azure cloud infrastructure services. The usage of the cloud infrastructure services

allows the MRRoles4Azure implementation to take advantage of the scalability, high availability and the

distributed nature of such services guaranteed by the cloud service providers to avoid single point of

failures, bandwidth bottlenecks (network as well as storage bottlenecks) and management overheads.

The usage of cloud services usually introduces latencies larger than their optimized non-cloud

counterparts and often does not guarantee the time for the data’s first availability. These overheads can

be conquered, however, by using a sufficiently coarser grained map and reduce tasks. MRRoles4Azure

overcomes the availability issues by retrying and by designing the system so it does not rely on the

immediate availability of data to all the workers. The MRRoles4Azure implementation uses Azure

Queues for Map and Reduce task scheduling, Azure tables for metadata & monitoring data storage,

Azure blob storage for input, output and intermediate data storage and the Window Azure Compute

worker roles to perform the computations.

Google MapReduce [2], Hadoop [62] as well as Twister [63] MapReduce computations are centrally

controlled using a master node and assume master node failures to be rare. In those run times, the

master node handles the task assignment, fault tolerance and monitoring for the completion of Map

68

and Reduce tasks, in addition to other responsibilities. By design, cloud environments are more brittle

than the traditional computing clusters are. Thus, cloud applications should be developed to anticipate

and withstand these failures. Because of this, it is not possible for MRRoles4Azure to make the same

assumptions of reliability about a master node as in the above-mentioned runtimes. Due to these

reasons, MRRoles4Azure is designed around a decentralized control model without a master node, thus

avoiding the possible single point of failure. MRRoles4Azure also provides users with the capability to

dynamically scale up or down the number of computing instances, even in the middle of a MapReduce

computation, as and when it is needed. The map and reduce tasks of the MRRoles4Azure runtime are

dynamically scheduled using a global queue. In a previous study [43], we experimentally showed that

dynamic scheduling through a global queue achieves better load balancing across all tasks, resulting in

better performance and throughput than statically scheduled runtimes, especially when used with real-

world inhomogeneous data distributions.

69

Figure 21 MapReduceRoles4Azure: Architecture for implementing MapReduce frameworks on Cloud

environments using cloud infrastructure services

4.2.1 Client API and Driver

Client driver is used to submit the Map and Reduce tasks to the worker nodes using Azure Queues.

Users can utilize the client API to generate a set of map tasks that are either automatically based on a

data set present in the Azure Blob storage or manually based on custom criteria, which we find to be a

very useful feature when implementing science applications using MapReduce. Client driver uses the

.net task parallel library to dispatch tasks in parallel overcoming the latencies of the Azure queue and

the Azure table services. It is possible to use the client driver to monitor the progress and completion of

the MapReduce jobs.

4.2.2 Map Tasks

70

Users have the ability to configure the number of Map workers per Azure instance. Map workers

running on the Azure compute instances poll and dequeue map task scheduling messages from the

scheduling queue, which were enqueued by the client API. The scheduling messages contain the meta-

data needed for the Map task execution, such as input data file location, program parameters, map task

ID, and so forth. Map tasks upload the generated intermediate data to the Azure Blob Storage and put

the key-value pair meta-data information to the correct reduce task table. At this time, we are actively

working on investigating other approaches for performing the intermediate data transfer.

4.2.3 Reduce Tasks

Reduce task scheduling is similar to map task scheduling. Users have the ability to configure the

number of Reduce tasks per Azure Compute instance. Each reduce task has an associated Azure Table

containing the input key-value pair meta-data information generated by the map tasks. Reduce tasks

fetch intermediate data from the Azure Blob storage based on the information present in the above-

mentioned reduce task table. This data transfer begins as soon as the first Map task is completed,

overlapping the data transfer with the computation. This overlapping of data transfer with computation

minimizes the data transfer overhead of the MapReduce computations, as found in our testing. Each

Reduce task starts processing the reduce phase; when all the map tasks are completed, and after all the

intermediate data products bound for that particular reduce task is fetched. In the MRRoles4Azure, each

reduce task will independently determine the completion of map tasks based on the information in the

map task meta-data table and in the reduce task meta-data table. After completion of the processing,

reduce tasks upload the results to the Azure Blob Storage and update status in the reduce task meta-

data table.

Azure table does not support transactions across tables or guarantee the immediate availability of

data, but rather guarantees the eventual availability data. Due to that, it is possible for a worker to

71

notice a map task completion update, before seeing a reduce task intermediate meta-data record added

by that particular map task. Even though rare, this can result in an inconsistent state where a reduce

task decides all the map tasks have been completed and all the intermediate data bound for that task

have been transferred successfully, while in reality it is missing some intermediate data items. In order

to remedy this, map tasks store the number of intermediate data products it generated in the map task

meta-data table while doing the task completion status update. Before proceeding with the execution,

reduce tasks perform a global count of intermediate data products in all reduce task tables and tally it

with the total of intermediate data products generated by the map tasks. This process ensures all the

intermediate data products are transferred before starting the reduce task processing.

4.2.4 Monitoring

We use Azure tables for the monitoring of the map and reduce task meta-data and status

information. Each job has two separate Azure tables for Map and Reduce tasks. Both the meta-data

tables are used by the reduce tasks to determine the completion of Map task phase. Other than the

above two tables, it is possible to monitor the intermediate data transfer progress using the tables for

each reduce task.

4.2.5 Fault Tolerance

Fault tolerance is achieved using the fault tolerance features of the Azure queue. When fetching a

message from an Azure queue, a visibility timeout can be specified, which will keep the message hidden

until the timeout expires. In MRRoles4Azure, map and reduce tasks delete messages from the queue

only after successful completion of the tasks. If a task fails or is too slow processing, then the message

will reappear in the queue after the timeout. In this case, it would be fetched and re-executed by a

different worker. This is made possible by the side effect-free nature of the MapReduce computations as

72

well as the fact that MRRoles4Azure stores each generated data product in persistent storage, which

allows it to ignore the data communication failures. In the current implementation, we retry each task

three times before declaring the job a failure. We use the Map & Reduce task meta-data tables to

coordinate the task status and completion. Over the course of our testing, we were able to witness few

instances of jobs being recovered by the fault tolerance.

4.2.6 Limitations of MRRoles4Azure

Currently Azure allows a maximum of 2 hours for queue message timeout, which is not enough for

Reduce tasks of larger MapReduce jobs, as the Reduce tasks typically execute from the beginning of the

job till the end of the job. In our current experiments, we disabled the reduce tasks fault tolerance when

it is probable for MapReduce job to execute for more than 2 hours. Also in contrast to Amazon Simple

Queue Service, Azure Queue service currently doesn’t allow for dynamic changes of visibility timeouts,

which would allow for richer fault tolerance patterns.

4.3 Performance evaluation

4.3.1 Methodology

We performed scalability tests using the selected applications to evaluate the performance of the

MapReduce implementations in the cloud environments, as well as in the local clusters. For the

scalability test, we decided to increase the workload and the number of nodes proportionally (weak

scaling), so that the workload per node remained constant.

73

All of the MRRoles4Azure tests were performed using Azure small instances (one CPU core). The

Hadoop-Bare Metal tests were performed on an iDataplex cluster, in which each node had two 4-core

CPUs (Intel Xeon CPU E5410 2.33GHz) and 16 GB memory, and was inter-connected using Gigabit

Ethernet network interface. The Hadoop-EC2 and EMR tests for Cap3 application were performed using

Amazon High CPU extra-large instances, as they are the most economical per CPU core. Each high CPU

extra-large instance was considered as 8 physical cores, even though they are billed as 20 Amazon

compute units. The EC2 and EMR tests for SWG MapReduce applications were performed using Amazon

extra-large instances as the more economical high CPU extra instances showed memory limitations for

the SWG calculations. Each extra-large instance was considered as 4 physical cores, even though they

are billed as 8 Amazon computing units. In all the Hadoop-based experiments (EC2, EMR and Hadoop

bare metal), only the cores of the Hadoop slave nodes were considered for the number of cores

calculation, despite the fact that an extra computing node was used as the Hadoop master node.

Below are the defined parallel efficiency (

 --- Equation 1) and relative

parallel efficiency calculations used to present results in this chapter.

T(1) is the best sequential execution time for the application in a particular environment using the

same data set or a representative subset. In all the cases, the sequential time was measured with no

data transfers, i.e. the input files were present in the local disks. T(ρ) is the parallel run time for the

application while “p” is the number of processor cores used.

We calculate that the relative parallel efficiency when estimating the sequential run time for an

application is not straightforward. α = p/p1, where p1 is the smallest number of CPU cores for the experiment.

74

 --- Equation 3

4.3.2 Smith-Waterman-GOTOH (SWG) pairwise distance calculation

Figure 22 Task decomposition mechanism of SWG pairwise distance calculation MapReduce application

In this application, we use the Smith-Waterman [49] algorithm with GOTOH [50] (SWG)

improvement to perform pairwise sequence alignment on FASTA sequences. Given a sequence set we

calculate the all-pairs dissimilarity for all the sequences. When calculating the all-pairs dissimilarity for a

data set, calculating only the strictly upper or lower triangular matrix in the solution space is sufficient,

as the transpose of the computed triangular matrix gives the dissimilarity values for the other triangular

matrix. As shown in Figure 22, this property, together with blocked decomposition, is used when

calculating the set of map tasks for a given job. Reduce tasks aggregate the output from a row block. In

this application, the size of the input data set is relatively small, while the size of the intermediate and

the output data are significantly larger due to the n2 result space, stressing the performance of inter-

node communication and output data storage. SWG can be considered as a memory-intensive

application.

75

More details about the Hadoop-SWG application implementation are given in [43]. The

MRRoles4Azure implementation also follows the same architecture and blocking strategy as in the

Hadoop-SWG implementation. Hadoop-SWG uses the open source JAligner [64] as the computational

kernel, while MRRoles4Azure SWG uses the C# implementation, NAligner [64] as the computational

kernel. The results of the SWG MapReduce computation get stored in HDFS for Hadoop-SWG in bare

metal and EC2 environments, while the results get stored in Amazon S3 and Azure Block Storage for

Hadoop-SWG on EMR and SWG on MRRoles4Azure, respectively.

Figure 23 SWG MapReduce pure performance

76

Figure 24 SWG MapReduce relative parallel efficiency

Figure 25 SWG MapReduce normalized performance

Due to the all-pairs nature and the block-based task decomposition of the SWG MapReduce

implementations, it is hard to increase the workload linearly by simply replicating the number of input

sequences for the scalability test. Hence, we modified the program to artificially reuse the

computational blocks of the smallest test case in the larger test cases, so that the workload scaling

occurs linearly. The raw performance results of the SWG MapReduce scalability test are given in Figure

23. A block size of 200 * 200 sequences is used in the performance experiments resulting in 40,000

sequence alignments per block, which resulted in ~123 million sequence comparisons in the 3072 block

77

test case. The MRRoles4Azure SWG performance in Figure 23 is significantly lesser than the others. This

is due to the performance of NAligner core executing in windows environment being slower than the

JAligner core executing in Linux environment.

Due to the sheer size of even the smallest computation in our SWG scaling test cases, we found it

impossible to calculate the sequential execution time for the SWG test cases. Also, due to the all-pairs

nature of SWG, it is not possible to calculate the sequential execution time using a subset of data. In

order to compensate for the lack of absolute efficiency (which would have negated most of the platform

and hardware differences across different environments), we performed a moderately-sized sequential

SWG calculation in all of the environments and used that result to normalize the performance using the

Hadoop-bare metal performance as the baseline. The normalized performance is depicted in Figure 25,

where we can observe that all four environments show comparable performance and good scalability

for the SWG application. Figure 24 depicts the relative parallel efficiency of SWG MapReduce

implementations using the 64 core, 1024 block test case as p1 (see section V-A).

Figure 26 SWG MapReduce amortized cost for clouds

78

In Figure 26 we present the approximate computational costs for the experiments performed using

cloud infrastructures. Even though the cloud instances are hourly billed, costs presented in Figure 26 are

amortized for the actual execution time (time / 3600 * num_instances * instance price per hour),

assuming the remaining time of the instance hour has been put to useful work. In addition to the

depicted charges, there will be additional minor charges for the data storage for EMR & MRRoles4Azure.

There will also be additional minor charges for the queue service and table service for MRRoles4Azure.

We notice that the costs for Hadoop on EC2 and MRRoles4Azure are in a similar range, while EMR costs

a fraction more. We consider the ability to perform a large computation, such as ~123 million sequence

alignments, for under 30$ with zero up front hardware cost, as a great enabler for the scientists, who

don’t have access to in house compute clusters.

4.3.3 Sequence assembly using Cap3

Cap3 [59] is a sequence assembly program which assembles DNA sequences by aligning and merging

sequence fragments to construct whole genome sequences. More details about the Cap3 are given in

section 2.6.1 and more details about Cap3 Hadoop implementation are given in section 3.3.

Figure 27 Cap3 MapReduce scaling performance

79

Figure 28 Cap3 MapReduce parallel efficiency

Figure 29 Cap3 MapReduce computational cost in cloud infrastructures

We used a replicated set of Fasta files as the input data in our experiments. Every file contained 458

reads. The input/output data was stored in HDFS in the Hadoop Bare Metal and Hadoop-EC2

experiments, while they were stored in Amazon S3 and Azure Blob storage for EMR and MRRoles4Azure

experiments respectively. Figure 27 presents the pure performance of the Cap3 MapReduce

applications, while Figure 28 presents the absolute parallel efficiency for the Cap3 MapReduce

applications. As we can see, all of the cloud Cap3 applications displayed performance comparative to the

bare metal clusters and good scalability, while MRRoles4Azure and Hadoop Bare metal showed a slight

edge over the Amazon counterparts in terms of the efficiency. Figure 29 depicts the approximate

80

amortized computing cost for the Cloud MapReduce applications, with MRRoles4Azure showing an

advantage.

4.4 Summary

We introduced the novel decentralized controlled MRRoles4Azure framework, which fulfills the

much-needed requirement of a distributed programming framework for Azure users. MRRoles4Azure is

built by using Azure cloud infrastructure services that take advantage of the quality of service

guarantees provided by the cloud service providers. Even though cloud services have higher latencies

than their traditional counter parts, scientific applications implemented using MRRoles4Azure were able

to perform comparably to the other MapReduce implementations; thus, these results prove the

feasibility of the MRRoles4Azure architecture. We also explored the challenges presented by cloud

environments to execute MapReduce computations and we discussed how we overcame them by using

the MRRoles4Azure architecture.

We also presented and analyzed the performance of two scientific MapReduce applications on two

popular cloud infrastructures. In our experiments, scientific MapReduce applications executed in the

cloud infrastructures exhibited performance and efficiency comparable to the MapReduce applications

executed using traditional clusters. Performance comparable to in-house clusters and no upfront costs,

coupled together with the features of on demand availability, horizontal scalability and the easy to use

programming model make using MapReduce in cloud environments a very viable option and an enabler

for computational scientists, especially in scenarios where in-house compute clusters are not readily

available. From an economical and maintenance perspective, it even makes sense not to procure in-

house clusters if the utilization would be low.

81

 5. DATA INTENSIVE ITERATIVE COMPUTATIONS ON CLOUD

ENVIRONMENTS

Iterative computations are at the core of the vast majority of large-scale data intensive

computations. Many important data intensive iterative scientific computations can be implemented as

iterative computation and communication steps, in which computations inside an iteration are

independent and are synchronized at the end of each iteration through reduce and communication

steps; this makes it possible for individual iterations to be parallelized using technologies such as

MapReduce. Examples of such applications include dimensional scaling, many clustering algorithms,

many machine learning algorithms, and expectation maximization applications, among others. The

growth of such data intensive iterative computations, in number as well as in importance, is driven

partly by the need to process massive amounts of data, and partly by the emergence of data intensive

computational fields, such as bioinformatics, chemical informatics and web mining.

Twister4Azure is a distributed decentralized iterative MapReduce runtime for the Windows Azure

Cloud that has been developed utilizing Azure cloud infrastructure services. Twister4Azure extends the

familiar, easy-to-use MapReduce programming model with iterative extensions; this thus enables a wide

array of large-scale iterative data analysis and scientific applications to utilize the Azure platform easily

and efficiently in a fault-tolerant manner. Twister4Azure effectively utilizes the eventually consistent,

high-latency Azure cloud services to deliver performance that is comparable to traditional MapReduce

runtimes for non-iterative MapReduce, while outperforming traditional MapReduce runtimes for

iterative MapReduce computations. Twister4Azure has minimal management and maintenance

overheads, and it provides users with the capability to dynamically scale up or down the amount of

82

computing resources. Twister4Azure takes care of almost all the Azure infrastructure (service failures,

load balancing, etc.) and coordination challenges, and frees users from having to deal with the

complexity of the cloud services. Window Azure claims to allow users to “focus on your applications, not

the infrastructure.” Twister4Azure takes that claim one step further, and lets users focus only on the

application logic without worrying about the application architecture.

The applications of Twister4Azure can be categorized according to three classes of application

patterns. The first of these are the Map only applications, described in section 2.5.1, which are also

called pleasingly (or embarrassingly) parallel applications. Examples of this type of application include

Monte Carlo simulations, BLAST+ sequence searches, parametric studies and most of the data cleansing

and pre-processing applications. Twister4Azure contains sample implementations of the BLAST+ and

Cap3 as pleasingly parallel applications.

The second type of applications includes the traditional MapReduce type applications, described in

section 2.5.2, which utilize the reduction phase and other features of MapReduce. Twister4Azure

contains sample implementations of the SmithWatermann-GOTOH (SWG) [43] pairwise sequence

alignment and Word Count as traditional MapReduce type applications.

The third and most important type of applications Twister4Azure supports is the iterative

MapReduce type of applications. As mentioned above, there exist many data-intensive scientific

computation algorithms that rely on iterative computations, wherein each iterative step can be easily

specified as a MapReduce computation. Section 5.2.2 and 5.2.3 present detailed analyses of Multi-

Dimensional Scaling and KMeans Clustering iterative MapReduce implementations.

The work of this chapter has been presented and published as a conference paper [65] and as a

journal paper [12].

83

5.1 Twister4Azure – Iterative MapReduce

Twister4Azure is an iterative MapReduce framework for the Azure cloud that extends the

MapReduce programming model to support data intensive iterative computations. Twister4Azure

enables a wide array of large-scale iterative data analysis and data mining applications to utilize the

Azure cloud platform in an easy, efficient and fault-tolerant manner. Twister4Azure extends the

MRRoles4Azure architecture by utilizing the scalable, distributed and highly available Azure cloud

services as the underlying building blocks. Twister4Azure employing a decentralized control architecture

that avoids single point failures.

5.1.1 Twister4Azure Programming model

We identified the following requirements for choosing or designing a suitable programming model

for scalable parallel computing in cloud environments.

1) The ability to express a sufficiently large and useful subset of large-scale data intensive and

parallel computations,

2) That it should be simple, easy-to-use and familiar to the users,

3) That it should be suitable for efficient execution in the cloud environments.

We selected the data-intensive iterative computations as a suitable and sufficiently large subset of

parallel computations that could be executed in the cloud environments efficiently, while using iterative

MapReduce as the programming model.

5.1.1.1 Data intensive iterative computations

There exists a significant amount of data analysis, data mining and scientific computation algorithms

that rely on iterative computations, where we can easily specify each iterative step as a MapReduce

computation. Typical data-intensive iterative computations follow the structure given in Code 1 and

84

Figure 3. We can identify two main types of data in these computations, the loop invariant input data

and the loop variant delta values. Loop variant delta values are the result, or a representation of the

result, of processing the input data in each iteration. Computations of an iteration use the delta values

from the previous iteration as an input. Hence, these delta values need to be communicated to the

computational components of the subsequent iteration. One example of such delta values would be the

centroids in a KMeans Clustering computation (section 2.6.5). Single iterations of such computations are

easy to parallelize by processing the data points or blocks of data points independently in parallel, and

performing synchronization between the iterations through communication steps. Section 2.3 provides

more information on iterative MapReduce and iterative data intensive computations.

Code 1 Typical data-intensive iterative computation

1: k ← 0;
2: MAX ← maximum iterations
3: δ

[0]
← initial delta value

4: while (k< MAX_ITER || f(δ
[k]

, δ
[k-1]

))
5: foreach datum in data
6: β[datum] ← process (datum, δ

[k]
)

7: end foreach
8: δ

[k+1]
 ← combine(β[])

9: k ← k+1
10: end while

Twister4Azure extends the MapReduce programming model to support the easy parallelization of

the iterative computations by adding a Merge step to the MapReduce model, and also, by adding an

extra input parameter for the Map and Reduce APIs to support the loop-variant delta inputs. Code 1

depicts the structure of a typical data-intensive iterative application, while Code 2 depicts the

corresponding Twister4Azure MapReduce representation. Twister4Azure will generate map tasks (line

85

5-7 in Code 1, line 8-12 in Code 2) for each data block, and each map task will calculate a partial result,

which will be communicated to the respective reduce tasks. The typical number of reduce tasks will be

orders of magnitude less than the number of map tasks. Reduce tasks (line 8 in Code 1, line 13-15 in

Code2) will perform any necessary computations, combine the partial results received and emit parts of

the total reduce output. A single merge task (line 16-19 in Code 2) will merge the results emitted by the

reduce tasks, and will evaluate the loop conditional function (line 8 and 4 in Code1), often comparing the

new delta results with the older delta results. Finally, the new delta output of the iteration will be

broadcast or scattered to the map tasks of the next iteration (line 7 Code2). Figure 30 presents the flow

of the Twister4Azure programming model.

Figure 30 Twister4Azure iterative MapReduce programming model

Code 2 Data-intensive iterative computation using Twister4Azure programming model

1: k ← 0;
2: MAX ← maximum iterations
3: δ

[0]
← initial delta value

4: α ← true

5: while (k< MAX_ITER || α)
6: distribute datablocks
7: broadcast δ

[k]

Reduce

Reduce

Merge
Add

Iteration? No

Map Combine

Map Combine

Map Combine

Data Cache

Yes

Hybrid scheduling of the new iteration

Job Start

Job Finish

Broadcast

86

8: map (datablock, δ
[k]

)
9: foreach datum in datablock
10: β[datum] ← process (datum, δ

[k]
)

11: end foreach
12: emit (β)

13: reduce (list of β)
14: β’ ← combine (list of β)
15: emit (β’)

16: merge (list of β’, δ

[k]
)

17: δ
[k+1]

 ← combine (list of β)
18: α ← f(δ

[k]
, δ

[k-1]
)

19: emit (α, δ
[k+1]

)

20: k ←k+1
end while

5.1.1.2 Map and Reduce API

Twister4Azure extends the map and reduce functions of traditional MapReduce to include the loop

variant delta values as an input parameter. This additional input parameter is a list of key, value pairs.

This parameter can be used to provide an additional input through a broadcast operation or through a

scatter operation. Having this extra input allows the MapReduce programs to perform Map side joins,

avoiding the significant data transfer and performance costs of reduce side joins[27], and avoiding the

often unnecessary MapReduce jobs to perform reduce side joins. The PageRank computation presented

by Bu, Howe, et.al. [28] demonstrates the inefficiencies of using Map side joins for iterative

computations. The Twister4Azure non-iterative computations can also use this extra input to receive

broadcasts or scatter data to the Map & Reduce tasks.

Map(<key>, <value>, list_of <key,value>)

Reduce(<key>, list_of <value>, list_of <key,value>)

87

5.1.1.3 Merge

Twister4Azure introduces Merge as a new step to the MapReduce programming model to support

iterative MapReduce computations. The Merge task executes after the Reduce step. The Merge Task

receives all the Reduce outputs and the broadcast data for the current iteration as the inputs. There can

only be one merge task for a MapReduce job. With Merge, the overall flow of the iterative MapReduce

computation would look like the following sequence:

Map -> Combine -> Shuffle -> Sort -> Reduce -> Merge -> Broadcast

Since Twister4Azure does not have a centralized driver to make control decisions, the Merge step

serves as the “loop-test” in the Twister4Azure decentralized architecture. Users can add a new iteration,

finish the job or schedule a new MapReduce job from the Merge task. These decisions can be made

based on the number of iterations, or by comparing the results from the previous iteration with the

current iteration, such as the k-value difference between iterations for KMeans Clustering. Users can

use the results of the current iteration and the broadcast data to make these decisions. It is possible to

specify the output of the merge task as the broadcast data of the next iteration.

Merge(list_of <key,list_of<value>>,list_of <key,value>)

5.1.2 Data Cache

Twister4Azure locally caches the loop-invariant (static) input data across iterations in the memory

and instance storage (disk) of worker roles. Data caching avoids the download, loading and parsing cost

of loop invariant input data, which are reused in the iterations. These data products are comparatively

larger sized, and consist of traditional MapReduce key-value pairs. The caching of loop-invariant data

provides significant speedups for the data-intensive iterative MapReduce applications. These speedups

88

are even more significant in cloud environments, as the caching and reusing of data helps to overcome

the bandwidth and latency limitations of cloud data storage.

Twister4Azure supports three levels of data caching:

1. Instance storage (disk) based caching

2. Direct in-memory caching

3. Memory-mapped-file based caching

For the disk-based caching, Twister4Azure stores all the files it downloads from the Blob storage in

the local instance storage. The local disk cache automatically serves all the requests for previously

downloaded data products. Currently, Twister4Azure does not support the eviction of the disk cached

data products, and it assumes that the input data blobs do not change during the course of a

computation.

The selection of data for in-memory and memory-mapped-file based caching needs to be specified

in the form of InputFormats. Twister4Azure provides several built-in InputFormat types that support

both in-memory as well as memory-mapped-file based caching. Currently Twister4Azure performs the

least recently used (LRU) based cache eviction for these two types of caches.

Twister4Azure maintains a single instance of each data cache per worker-role shared across map,

reduce and merge workers, allowing the reuse of cached data across different tasks, as well as across

any MapReduce application within the same job. Section 6.4 presents a more detailed discussion about

the performance trade-offs and implementation strategies of the different caching mechanisms.

5.1.3 Cache Aware Scheduling

89

In order to take maximum advantage of the data caching for iterative computations, Map tasks of

the subsequent iterations need to be scheduled with an awareness of the data products that are cached

in the worker-roles. If the loop-invariant data for a map task is present in the DataCache of a certain

worker-role, then Twister4Azure should assign that particular map task to that particular worker-role.

The decentralized architecture of Twister4Azure presents a challenge in this situation, as Twister4Azure

does not have either a central entity that has a global view of the data products cached in the worker-

roles, nor does it have the ability to push the tasks to a specific worker-role.

As a solution to the above issue, Twister4Azure opted for a model in which the workers pick tasks to

execute based on the data products they have in their DataCache, and based on the information that is

published on a central bulletin board (an Azure table). Naïve implementation of this model requires all

the tasks for a particular job to be advertised, making the bulletin board a bottleneck. We avoid this by

locally storing the Map task execution histories (meta-data required for execution of a map task) from

the previous iterations. With this optimization, the bulletin board only advertises information about the

new iterations. This allows the workers to start the execution of the map tasks for a new iteration as

soon as the workers get the information about a new iteration through the bulletin board, after the

previous iteration is completed. A high-level pseudo-code for the cache aware scheduling algorithm is

given in Code 3. Every free map worker executes this algorithm. As shown in Figure 31, Twister4Azure

schedules new MapReduce jobs (non-iterative and the first iteration of the iterative) through Azure

queues. Twister4Azure hybrid cache aware scheduling algorithm is currently configured to give priority

for the iterations of the already executing iterative MapReduce computations over new computations,

to get the maximum value out of the cached data.

Any tasks for an iteration that were not scheduled in the above manner will be added back in to the

task-scheduling queue and will be executed by the first available free worker ensuring the completion of

90

that iteration. This ensures the eventual completion of the job and the fault tolerance of the tasks in the

event of a worker failure; it also ensures the dynamic scalability of the system when new workers are

added to the virtual cluster. Duplicate task execution can happen on very rare occasions due to the

eventual consistency nature of the Azure Table storage. However, these duplicate executed tasks do not

affect the accuracy of the computations due to the side effect free nature of the MapReduce

programming model.

There are efforts that use multiple queues together to increase the throughput of the Azure Queues.

However, queue latency is not a significant bottleneck for Twister4Azure iterative computations as only

the scheduling of the first iteration depends on Azure queues.

Figure 31 Cache Aware Hybrid Scheduling

91

Code 3 Cache aware hybrid decentralized scheduling algorithm. (Executed by all the map workers)

1: while (mapworker)

2: foreach jobiter in bulletinboard

3: cachedtasks[]← select tasks from taskhistories where

 ((task.iteration == jobiter.baseiteration) and

 (memcache[] contains task.inputdata))

4: foreach task in cachedtasks

5: newtask ← new Task

 (task.metadata, jobiter.iteration, …)

6: if (newtask.duplicate()) continue;

7: taskhistories.add(newTask)

8: newTask.execute()

9: end foreach

10: // perform steps 3 to 8 for disk cache

11: if (no task executed from cache)

12: addTasksToQueue (jobiter)

13: end foreach

14: msg ← queue.getMessage())

15: if (msg !=null)

16: newTask ← new Task(msg.metadata, msg.iter, ….)

17: if (newTask.duplicate()) continue;

18: taskhistories.add(newTask)

19: newTask.execute()

20: else sleep()

21: end while

5.1.4 Data broadcasting

The loop variant data (δ values in Code 1) needs to be broadcasted or scattered to all the tasks in an

iteration. With Twister4Azure, users can specify broadcast data for iterative as well as for non-iterative

computations. In typical data-intensive iterative computations, the loop-variant data (δ) is orders of

magnitude smaller than the loop-invariant data.

92

Twister4Azure supports two types of data broadcasting methods: 1) using a combination of Azure

blob storage and Azure tables; and 2) Using a combination of direct TCP and Azure blob storage. The

first method broadcasts smaller data products using Azure tables and the larger data products using the

blob storage. Hybrid broadcasting improves the latency and the performance when broadcasting smaller

data products. This method works well for smaller number of instances and does not scale well for large

number of instances.

The second method implements a tree-based broadcasting algorithm that uses the Windows

Communication Foundation (WCF) based Azure TCP inter-role communication mechanism for the data

communication, as shown in Figure 3. This method supports a configurable number of parallel outgoing

TCP transfers per instance (three parallel transfers in Figure 3) , enabling the users and the framework to

customize the number of parallel transfers based on the I/O performance of the instance type, the scale

of the computation and the size of the broadcast data. Since the direct communication is relatively

unreliable in cloud environments, this method also supports an optional persistent backup that uses the

Azure Blob storage. The broadcast data will get uploaded to the Azure Blob storage in the background,

and any instances that did not receive the TCP based broadcast data will be able to fetch the broadcast

data from this persistent backup. This persistent backup also ensures that the output of each iteration

will be stored persistently, making it possible to roll back iterations if needed.

Twister4Azure supports the caching of broadcast data, ensuring that only a single retrieval or

transmission of Broadcast data occurs per node per iteration, as shown by N3 in the Figure 3. This

increases the efficiency of broadcasting when there exists more than one map/reduce/merge worker

per worker-role, and also, when there are multiple waves of map tasks per iteration. Some of our

experiments contained up to 64 such tasks per worker-role per iteration.

93

Figure 32 Twister4Azure tree based broadcast over TCP with Azure Blob storage as the persistent backup.

5.1.5 Intermediate data communication

Twister4Azure supports two types of intermediate data communication. The first is the legacy Azure

Blob storage based transfer model of the MRRoles4Azure, where the Azure Blob storage is used to store

the intermediate data products and the Azure tables are used to store the meta-data about the

intermediate data products. The data is always persisted in the Blob storage before it declares the Map

task a success. Reducers can fetch data any time from the Blob storage even in the cases where there

are multiple waves of reduce tasks or any re-execution of reduce tasks due to failures. This mechanism

performed well for non-iterative applications. Based on our experience, the tasks in the iterative

MapReduce computations are of a relatively finer granular, making the intermediate data

communication overhead more prominent. They produce a large number of smaller intermediate data

products causing the Blob storage based intermediate data transfer model to under-perform. Hence,

Blob Storage

N1N1

N2

N6

N10

N3

N4

N5

N3

Workers

94

we optimized this method by utilizing the Azure tables to transfer smaller data products up to a certain

size (currently 64kb that is the limit for a single item in an Azure table entry) and so we could use the

blob storage for the data products that are larger than that limit.

The second method is a TCP-based streaming mechanism where the data products are pushed

directly from the Mapper memory to the Reducers similar to the MapReduce Online [66] approach,

rather than Reducers fetching the data products, as is the case in traditional MapReduce frameworks

such as Apache Hadoop. This mechanism performs a best effort transfer of intermediate data products

to the available Reduce tasks using the Windows Communications Foundation (WCF) based Azure direct

TCP communication. A separate Thread performs this TCP data transfer, freeing up the Map worker

thread to start processing a new Map task. With this mechanism, when the Reduce task input data size

is manageable, Twister4Azure can perform the computation completely in the memory of Map and

Reduce workers without any intermediate data products touching the disks offering significant

performance benefits to the computations. These intermediate data products are uploaded to the

persistent Blob store in the background as well. Twister4Azure declares a Map task a success only after

all the data is uploaded to the Blob store. Reduce tasks will fetch the persisted intermediate data from

the Blob store if a Reduce task does not receive the data product via the TCP transfer. These reasons for

not receiving data products via TCP transfer include I/O failures in the TCP transfers, the Reduce task not

being in an execution or ready state while the Map worker is attempting the transfer, or the rare case of

having multiple Reduce task waves. Twister4Azure users the intermediate data from the Blob store

when a Reduce task is re-executed due to failures as well. Users of Twister4Azure have the ability to

disable the above-mentioned data persistence in Blob storage and to rely solely in the streaming direct

TCP transfers to optimize the performance and data-storage costs. This is possible when there exists

only one wave of Reduce tasks per computation, and it comes with the risk of a coarser grained fault-

95

tolerance in the case of failures. In this scenario, Twister4Azure falls back to providing an iteration level

fault tolerance for the computations, where the current iteration will be rolled back and re-executed in

case of any task failures.

5.1.6 Fault Tolerance

Twister4Azure supports typical MapReduce fault tolerance through re-execution of failed tasks,

ensuring the eventual completion of the iterative computations. Twister4Azure stores all the

intermediate output data products from Map/Reduce tasks, as well as the intermediate output data

products of the iterations persistently in the Azure Blob storage or in Azure tables, enabling fault-

tolerant in task level as well as in iteration level. The only exception to this is when a direct TCP only

intermediate data transfer is used, in which case Twister4Azure performs fault-tolerance through the re-

execution of iterations.

5.1.7 Other features

 Twister4Azure supports the deployment of multiple MapReduce applications in a single

deployment, making it possible to utilize more than one MapReduce application inside an iteration of a

single computation. This also enables Twister4Azure to support workflow scenarios without

redeployment. Twiser4Azure also supports the capacity to have multiple MapReduce jobs inside a

single iteration of an iterative MapReduce computation, enabling the users to more easily specify

computations that are complex, and to share cached data between these individual computations. The

Multi-Dimensional Scaling iterative MapReduce application described in section 2.6.6 uses this feature

to perform multiple computations inside an iteration.

Twister4Azure also provides users with a web-based monitoring console from which they can

monitor the progress of their jobs as well as any error traces. Twister4Azure provides users with CPU

96

and memory utilization information for their jobs and currently, we are working on displaying this

information graphically from the monitoring console as well. Users can develop, test and debug the

Twister4Azure MapReduce programs in the comfort of using their local machines with the use of the

Azure local development fabric. Twister4Azure programs can be deployed directly from the Visual

Studio development environment or through the Azure web interface, similar to any other Azure

Worker Role project.

5.1.8 Development and current status

Developing Twister4Azure was an incremental process, which began with the development of

pleasingly parallel cloud programming frameworks [55] (section 3) for bioinformatics applications

utilizing cloud infrastructure services. MRRoles4Azure [60] (section 4) MapReduce framework for Azure

cloud was developed based on the success of pleasingly parallel cloud frameworks and was released in

late 2010. We started working on Twister4Azure to fill the void of distributed parallel programming

frameworks in the Azure environment (as of June 2010) and the first public beta release of

Twister4Azure was made available in mid-2011.

In August 2012, we open sourced Twister4Azure under Apache License 2.0 at

http://twister4azure.codeplex.com/. We performed Twister4Azure 0.9 release on September 2012 as

the first open source release. Currently all the developments of Twister4Azure are performed in an open

source manner.

5.2 Twister4Azure Scientific Application Case Studies

5.2.1 Methodology

http://twister4azure.codeplex.com/

97

In this section, we present and analyze four real-world data intensive scientific applications that

were implemented using Twister4Azure. Two of these applications, Multi-Dimensional Scaling and

KMeans Clustering, are iterative MapReduce applications, while the other two applications, sequence

alignment and sequence search, are pleasingly parallel MapReduce applications.

We compare the performance of the Twister4Azure implementations of these applications with the

Twister [10] and Hadoop [6] implementations of these applications, where applicable. The

Twister4Azure applications were implemented using C#.Net, while the Twister and Hadoop applications

were implemented using Java. We performed the Twister4Azure performance experiments in the

Windows Azure Cloud using the Azure instances types mentioned in Table 1. We performed the Twister

and Hadoop experiments in the local clusters mentioned in Table 2. Azure cloud instances are virtual

machines running on shared hardware nodes with the network shared with other users; the local

clusters were dedicated bare metal nodes with dedicated networks (each local cluster had a dedicated

switch and network not shared with other users during our experiments). Twister had all the input data

pre-distributed to the compute nodes with 100% data locality, while Hadoop used HDFS [13] to store the

input data, achieving more than 90% data locality in each of the experiments. Twister4Azure input data

were stored in the high-latency off-the-instance Azure Blob Storage. A much better raw performance is

expected from the Hadoop and Twister experiments on local clusters than from the Twister4Azure

experiments using the Azure instances, due to the above stated differences. Our objective is to highlight

the scalability comparison across these frameworks and demonstrate that Twister4Azure has less

overheads and scales as well as Twister and Hadoop, even when executed on an environment with the

above overheads and complexities.

Equal numbers of compute cores from the local cluster and from the Azure Cloud were used in each

experiment, even though the raw compute powers of the cores differed. For example, the performance

98

of a Twister4Azure application on 128 Azure small instances was compared with the performance of a

Twister application on 16 HighMem (Table 6) cluster nodes.

Table 6 Evaluation cluster configurations

Cluster/

Instance

Type

CPU cores Memory I/O Performance Compute Resource OS

Azure Small 1 X 1.6 GHz 1.75 GB 100 MBPS, shared network

infrastructure

Virtual instances on

shared hardware

Windows

Server

Azure Large 4 X 1.6 GHz 7 GB 400 MBPS, shared network

infrastructure

Virtual instances on

shared hardware

Windows

Server

Azure Extra

Large

8 X 1.6 GHz 14 GB 800 MBPS, shared network

infrastructure

Virtual instances on

shared hardware

Windows

Server

HighMem 8 X 2.4 GHz

(Intel®Xeon® CPU

E5620)

192 GB Gigabit ethernet, dedicated

switch

Dedicated bare metal

hardware

Linux

iDataPlex 8 X 2.33 GHz

 (Intel®Xeon® CPU
E5410)

16 GB Gigabit ethernet, dedicated

switch

Dedicated bare metal

hardware

Linux

We use the custom defined metric “adjusted performance” to compare the performance of an

application running on two different environments. The objective of this metric is to negate the

performance differences introduced by some of the underlying hardware differences. The Twister4Azure

adjusted (ta) line in some of the graphs depicts the performance of Twister4Azure for a certain

application normalized according to the sequential performance difference for that application between

the Azure(tsa) instances and the nodes in Cluster(tsc) environment used for Twister and Hadoop. We

estimate the Twister4Azure “adjusted performance” for an application using ta x (tsc/tsa), where tsc is the

sequence performance of that application on a local cluster node, and tsa is the sequence performance

of that application on a given Azure instance when the input data is present locally. This estimation,

however, does not account for the framework overheads that remain constant irrespective of the

computation time, the network difference or the data locality differences.

99

5.2.2 Multi-Dimensional Scaling - Iterative MapReduce

We implemented the SMACOF algorithm for Multi-Dimensional Scaling (MDS) described in section

2.6.6 using Twister4Azure. The limits of MDS are more bounded by memory size than by CPU power.

The main objective of parallelizing MDS is to leverage the distributed memory to support the processing

of larger data sets. MDS application results in iterating a chain of three MapReduce jobs, as depicted in

Figure 4. For the purposes of this chapter, we perform an unweighted mapping that results in two

MapReduce jobs steps per iteration, BCCalc and StressCalc. MDS is challenging for Twister4Azure due to

its relatively finer grained task sizes and multiple MapReduce applications per iteration.

Figure 33 MDS weak scaling. Workload per core is constant. Ideal is a straight horizontal line

100

Figure 34 MDS Data size scaling using 128 Azure small instances/cores, 20 iterations

Figure 35 Twister4Azure Map Task histogram for MDS of 204800 data points on 32 Azure Large Instances

(graphed only 10 iterations out of 20). Two adjoining bars represent an iteration (2048 tasks per iteration),

where each bar represent the different applications inside the iteration.

101

Figure 36 Number of executing Map Tasks in the cluster at a given moment. Two adjoining bars represent an

iteration.

We compared the Twister4Azure MDS performance with Java HPC Twister MDS implementation.

The Java HPC Twister experiment was performed in the HighMem cluster (Table 6). The Twister4Azure

tests were performed on Azure Large instances using the Memory-Mapped file based (section 6.4.3)

data caching. Java HPC Twister results do not include the initial data distribution time. Figure 33

presents the execution time for weak scaling, where we increase the number of compute resources

while keeping the work per core constant (work ~ number of cores). We notice that Twister4Azure

exhibits encouraging performance and scales similar to the Java HPC Twister. Figure 34 shows that the

MDS performance scales well with increasing data sizes.

The HighMem cluster is a bare metal cluster with a dedicated network, very large memory and with

faster processors. It is expected to be significantly faster than the cloud environment for the same

number of CPU cores. The Twister4Azure adjusted (ta) lines in Figure 8 depicts the performance of the

Twister4Azure normalized according to the sequential performance difference of the MDS BC

calculation, and the Stress calculation between the Azure instances and the nodes in the HighMem

102

cluster. In the above testing, the total number of tasks per job ranged from 10240 to 40960, proving

Twister4Azure’s ability to support large number of tasks effectively.

Figure 35 depicts the execution time of individual Map tasks for 10 iterations of Multi-Dimensional

Scaling of 204800 data points on 32 Azure large instances. The higher execution time of the tasks in the

first iteration is due to the overhead of initial data downloading, parsing and loading. This overhead is

overcome in the subsequent iterations through the use of data caching, enabling Twister4Azure to

provide large performance gains relative to a non-data-cached implementation. The performance gain

achieved by data caching for this specific computation can be estimated as more than 150% per

iteration, as a non-data cached implementation would perform two data downloads (one download per

application) per iteration. Figure 36 presents the number of map tasks executing at a given moment for

10 iterations for the above MDS computation. The gaps between the bars represent the overheads of

our framework. The gaps between the iterations (gaps between red and subsequent blue bars) are

small, which depicts that the between-iteration overheads that include Map to Reduce data transfer

time, Reduce and Merge task execution time, data broadcasting cost and new iteration scheduling cost,

are relatively smaller for MDS. Gaps between applications (gaps between blue and subsequent red bars)

of an iteration are almost non-noticeable in this computation.

5.2.3 KMeans Clustering

The K-Means Clustering [67] algorithm described in section 2.6.5 has been widely used in many

scientific and industrial application areas due to its simplicity and applicability to large data sets. In this

section we compare the performance of Twister4Azure, Hadoop and Twister KMeansClustering iterative

MapReduce implementations.

103

Figure 37 KMeans Clustering Scalability. Relative parallel efficiency of strong scaling using 128 million data

points.

Figure 38 KMeansClustering Scalability. Weak scaling. Workload per core is kept constant (ideal is a straight

horizontal line).

We compared the Twister4Azure KMeans Clustering performance with implementations of the Java

HPC Twister and Hadoop. The Java HPC Twister and Hadoop experiments were performed in a dedicated

iDataPlex cluster (Table 6). The Twister4Azure tests were performed using the Azure small instances that

104

contain a single CPU core. The Java HPC Twister results do not include the initial data distribution time.

Figure 37 presents the relative (relative to the smallest parallel test with 32 cores/instances) parallel

efficiency of KMeans Clustering for strong scaling, in which we keep the amount of data constant and

increase the number of instances/cores. Figure 38 presents the execution time for weak scaling, wherein

we increase the number of compute resources while keeping the work per core constant (work ~

number of nodes). We notice that Twister4Azure performance scales well up to 256 instances in both

experiments. In Figure 37, the relative parallel efficiency of Java HPC Twister for 64 cores is greater than

one. We believe the memory load was a bottleneck in the 32 core experiment, whereas this is not the

case for the 64 core experiment. We used a direct TCP intermediate data transfer and Tree-based TCP

broadcasting when performing these experiments. Tree-based TCP broadcasting scaled well up to the

256 Azure small instances. Using this result, we can hypothesis that our Tree-based broadcasting

algorithm will scale well for 256 Azure Extra Large instances (2048 total number of CPU cores) as well,

since the workload, communication pattern and other properties remain the same, irrespective of the

instance type.

The Twister4Azure adjusted line in Figure 38 depicts the KMeans Clustering performance of

Twister4Azure normalized according to the ratio of the sequential performance difference between the

Azure instances and the iDataPlex cluster nodes. All tests were performed using 20 dimensional data

and 500 centroids.

105

Figure 39 Twister4Azure Map Task execution time histogram for KMeans Clustering 128 million data points

on 128 Azure small instances.

Figure 40 Twister4Azure number of executing Map Tasks in the cluster at a given moment

Figure 39 depicts the execution time of Map Tasks across the whole job. The higher execution time

of the tasks in the first iteration is due to the overhead of initial data downloading, parsing and loading,

which is an indication of the performance improvement we get in subsequent iterations due to the data

caching. Figure 40 presents the number of map tasks executing at a given moment throughout the job.

The job consisted of 256 map tasks per iteration, generating two waves of map tasks per iteration. The

106

dips represent the synchronization at the end of the iterations. The gaps between the bars represent the

total overhead of the intermediate data communication, reduce task execution, merge task execution,

data broadcasting and the new iteration scheduling that happens between iterations. According to the

graph, such overheads are relatively small for the KMeans Clustering application.

5.3 Summary

We presented Twister4Azure, a novel iterative MapReduce distributed computing runtime for

Windows Azure Cloud. Twiser4Azure enables users to perform large-scale data intensive parallel

computations efficiently on the Windows Azure Cloud, by hiding the complexity of scalability and fault

tolerance when using Clouds. The key features of Twiser4Azure presented in this chapter include the

novel programming model for iterative MapReduce computations, the multi-level data caching

mechanisms to overcome the latencies of cloud services, the decentralized cache aware task scheduling

utilized to avoid a single point of failures and the framework managed fault tolerance drawn upon to

ensure the eventual completion of the computations. We also presented optimized data broadcasting

and intermediate data communication strategies that sped up the computations. Users can perform

debugging and testing operations for the Twister4Azure computations in their local machines with the

use of the Azure local development fabric.

We discussed four real world data intensive scientific applications which were implemented using

Twister4Azure so as to show the applicability of Twister4Azure; we compared the performance of those

applications with that of the Java HPC Twister and the Hadoop MapReduce frameworks. We presented

Multi-Dimensional Scaling (MDS) and KMeans Clustering as iterative scientific applications of

Twister4Azure. Experimental evaluation showed that MDS using Twister4Azure on a shared public cloud

scaled similar to the Java HPC Twister MDS on a dedicated local cluster. Further, the KMeans Clustering

107

using Twister4Azure with shared cloud virtual instances outperformed Apache Hadoop in a local cluster

by a factor of 2 to 4, and also, exhibited performance results comparable to that of Java HPC Twister

running on a local cluster. These iterative MapReduce computations were performed on up to 256 cloud

instances with up to 40,000 tasks per computation. We also presented sequence alignment and Blast

sequence searching pleasingly parallel MapReduce applications of Twister4Azure. These applications

running on the Azure Cloud exhibited performance results comparable to the Apache Hadoop on a

dedicated local cluster.

108

 6. PERFORMANCE IMPLICATIONS FOR DATA INTENSIVE

PARALLEL APPLICATIONS ON CLOUD ENVIRONMENTS

In this section, we explore several aspects of the applications and the environments that would

affect the performance of executing data intensive parallel applications on cloud environments. These

include the investigations of the load balancing effects of inhomogeneous data, the effects of the

virtualization overhead in virtualized environments, the performance variation with time in cloud

environments and the different mechanisms to cache data in cloud instances.

6.1 Inhomogeneous data

Next generation parallel data processing frameworks such as Hadoop and DryadLINQ are designed

to perform optimally when a given job can be divided into a set of equally time consuming sub tasks.

Most of the data sets we encounter in the real world, however, are inhomogeneous in nature, making it

hard for the data analyzing programs to efficiently break down the problems into equal sub tasks. At the

same time, we noticed Hadoop & DryadLINQ exhibit different performance behaviors for some of our

real data sets. It should be noted that Hadoop and Dryad use different task scheduling techniques,

where Hadoop uses global queue based scheduling and Dryad uses static scheduling. These

observations motivated us to study the effects of data inhomogeneity in the applications implemented

using these frameworks.

6.1.1 SW-G Pairwise Distance Calculation

109

The inhomogeneity of data applies for the gene sequence sets, too, where individual sequence

lengths and their contents can vary greatly. In this section, we study the effect of inhomogeneous gene

sequence lengths for the performance of our pairwise distance calculation applications.

SWG(A,B) = O(mn)

The time complexity to align and obtain distances for two genome sequences A, B with lengths m

and n, respectively, using the Smith-Waterman-Gotoh algorithm is approximately proportional to the

product of the lengths of two sequences (O(mn)). All of the above described distributed

implementations of the Smith-Waterman similarity calculation mechanisms rely on block decomposition

to break down the larger problem space into sub-problems that can be solved using the distributed

components. Each block is assigned two sub-sets of sequences, where the Smith-Waterman pairwise

distance similarity calculation needs to be performed for all of the possible sequence pairs among the

two sub sets. According to the above mentioned time complexity of the Smith-Waterman kernel used

by these distributed components, the execution time for a particular execution block depends on the

lengths of the sequences assigned to the particular block.

Parallel execution frameworks like Dryad and Hadoop work optimally when the work is equally

partitioned among the tasks. Depending on the scheduling strategy of the framework, blocks with

different execution times can have an adverse effect on the performance of the applications, unless

proper load balancing measures have been taken in the task partitioning steps. For example, in Dryad,

vertices are scheduled at the node level, making it possible for a node to have blocks with varying

execution times. In this case, if a single block inside a vertex takes a longer amount of time than

other blocks to execute, then the entire node must wait until the large task completes, which utilizes

only a fraction of the node resources.

110

Figure 41 Performance of SW-G for randomly distributed inhomogeneous data with ‘400’ mean sequence

length.

For the inhomogeneous data study, we decided to use controlled inhomogeneous input sequence

sets with the same average length and varying standard deviation of lengths. It is hard to generate such

controlled input data sets using real sequence data, as we do not have control over the length of real

sequences. At the same time, we note that the execution time of the Smith-Waterman pairwise distance

calculation depends mainly on the lengths of the sequences and not on the actual content of the

sequences. This property of the computation makes it possible for us to ignore the content of the

sequences and focus only on the sequence lengths, thus making it possible for us to use randomly

generated gene sequence sets for this experiment. The gene sequence sets were randomly generated

for a given mean sequence length (400) with varying standard deviations following a normal distribution

of the sequence lengths. Each sequence set contained 10000 sequences leading to 100 million pairwise

distance calculations to perform. We performed two studies using such inhomogeneous data sets. In

the first study, the sequences with varying lengths were randomly distributed in the data sets. In the

111

second study, the sequences with varying lengths were distributed using a skewed distribution, where

the sequences in a set were arranged in the ascending order of sequence length.

Figure 41 presents the execution time taken for the randomly distributed inhomogeneous data sets

with the same mean length, by the two different implementations, while Figure 42 presents the

executing time taken for the skewed distributed inhomogeneous data sets. The Dryad results depict the

Dryad performance adjusted for the performance difference of the NAligner and JAligner kernel

programs. As we notice from Figure 41, both implementations perform satisfactorily for the randomly

distributed inhomogeneous data, without showing significant performance degradations with the

increase of the standard deviation. This behavior can be attributed to the fact that the sequences with

varying lengths are randomly distributed across a data set, effectively providing a natural load balancing

to the execution times of the sequence blocks.

Figure 42 Performances of SW-G for skewed distributed inhomogeneous data with ‘400’ mean sequence

length.

112

For the skewed distributed inhomogeneous data, we notice clear performance degradation in the

Dryad implementation. Once again, the Hadoop implementation performs consistently without showing

significant performance degradation, even though it does not perform as well as its randomly

distributed counterpart. The Hadoop implementations’ consistent performance can be attributed to the

global pipeline scheduling of the map tasks. In the Hadoop Smith-Waterman implementation, each block

decomposition gets assigned to a single map task. The Hadoop framework allows the administrator to

specify the number of map tasks that can be run on a particular compute node. The Hadoop global

scheduler schedules the map tasks directly onto those placeholders in a much finer granularity than in

Dryad, as and when the individual map tasks finish. This allows the Hadoop implementation to perform

natural global load balancing. In this case, it might even be advantageous to have varying task

execution times to iron out the effect of any trailing map tasks towards the end of the computation. The

Dryad implementation pre-allocates all the tasks to the compute nodes and does not perform any

dynamic scheduling across the nodes. This makes any node which gets a larger work chunk take

considerably longer than does a node which gets a smaller work chunk; this phenomenon causes the

node with a smaller work chuck to idle while the other nodes finish.

6.1.2 CAP3

Unlike in Smith-Waterman Gotoh (SW-G) implementations, the CAP3 program execution time does

not directly depend on the file size or the size of the sequences, as it depends mainly on the content of

the sequences. This made it hard for us to artificially generate inhomogeneous data sets for the CAP3

program, forcing us to use real data. When generating the data sets, first we calculated the stand-alone

CAP3 execution time for each of the files in our data set. Then, based on those timings, we created data

sets that have approximately similar mean times while the standard deviation of the stand-alone

running times is different in each data set. We performed the performance testing for randomly

113

distributed as well as skewed distributed (sorted according to individual file running time) data sets

similar to the SWG inhomogeneous study. The speedup is taken by dividing the sum of sequential

running times of the files in the data set by the parallel implementation running time.

Figure 43 Performance of Cap3 for random distributed inhomogeneous data.

Figure 43 and Figure 44 depict the CAP3 inhomogeneous performance results for the Hadoop and

Dryad implementations. The Hadoop implementation shows satisfactory scaling for both randomly

distributed as well as skewed distributed data sets, while the Dryad implementation shows satisfactory

scaling in the randomly distributed data set. Once again, we notice that the Dryad implementation does

not perform well for the skewed distributed inhomogeneous data due to its static non-global

scheduling.

114

Figure 44 Performance of Cap3 for skewed distributed inhomogeneous data

6.2 Virtualization overhead

With the popularity of the computing clouds, we can notice that data processing frameworks like

Hadoop, Map Reduce and DryadLINQ are becoming popular as cloud parallel frameworks. We measured

the performance and virtualization overhead of several MPI applications on the virtual environments in

an earlier study [68]. Here, we present the extended performance results of using Apache Hadoop

implementations of SW-G and Cap3 in a cloud environment by comparing Hadoop on Linux with Hadoop

on Linux on Xen [69] para-virtualized environment.

While the Youseff, Wolski, et al. [70] suggest that the VM’s impose very little overheads on the MPI

application, our previous study indicated that the VM overheads depend mainly on the communications

patterns of the applications. Specifically, the set of applications that is sensitive to latencies (a lower

communication to computation ration, with a large number of smaller messages) experienced higher

overheads in virtual environments. Walker [71] presents the benchmark results of the HPC application

performance on Amazon EC2, compared with a similar bare metal local cluster, where he noticed 40% to

115

1000% performance degradations on EC2. But since one cannot have complete control over and

knowledge of the EC2 infrastructure, there exist too many unknowns to directly compare these results

with the above mentioned results.

6.2.1 SW-G Pairwise Distance Calculation

Figure 45 presents the virtualization overhead of the Hadoop SW-G application comparing the

performance of the application on Linux on bare metal and on Linux on Xen virtual machines. The data

sets used is the same 10000 real sequence replicated data set used for the scalability study in section

4.1.1. The number of blocks is kept constant across the test, resulting in larger blocks for larger data

sets. According to the results, the performance degradation for the Hadoop SWG application on a virtual

environment ranges from 25% to 15%. We can notice the performance degradation gets reduced with

the increase of the problem size.

Figure 45 Virtualization overhead of Hadoop SW-G on Xen virtual machines

116

Figure 46 Virtualization overhead of Hadoop Cap3 on Xen virtual machines

In the Xen para-virtualization architecture, each guest OS (running in domU) performs its I/O

transfers through Xen (dom0). This process adds startup costs to the I/O, as it involves startup

overheads such as communication with dom0 and the scheduling of I/O operations in dom0. Xen

architecture uses shared memory buffers to transfer data between domU’s and dom0, thus reducing the

operational overheads when performing the actual I/O. We can notice the same behavior in the Xen

memory management, where page table operations need to go through Xen, while simple memory

accesses can be performed by the guest Oss without Xen involvement. According to the above points,

we can notice that doing few coarser grained I/O and memory operations would incur relatively low

overheads than doing the same work using many finer grained operations. We can conclude this as the

possible reason behind the decrease of the performance degradation with the increase of data size, as

large data sizes increase the granularity of the computational blocks.

6.2.2 CAP3

117

Figure 46 presents the virtualization overhead of the Hadoop CAP3 application. We used the

scalability data set we used in section 4.1.2 for this analysis. The performance degradation in this

application remains constant - near 20% for all the data sets. The CAP3 application does not show the

decrease of the VM overhead with the increase of the problem size, as we noticed in the SWG

application. Unlike in SWG, the I/O and memory behavior of the CAP3 program does not change based

on the data set size, as irrespective of the data set size, the granularity of the processing (single file)

remains same. Hence, the VM overheads do not get changed even with the increase of the workload.

6.3 Sustained performance of clouds

When discussing cloud performance, the sustained performance of the clouds is often questioned.

This is a valid question, since clouds are often implemented using a multi-tenant shared VM-based

architecture. We performed an experiment by running the SWG EMR and SWG MRRoles4Azure using

the same workload throughout different times of the week. In these tests, 32 cores were used to align

4000 sequences. The results of this experiment are given in Figure 5. Each of these tests was performed

at +/- 2 hours 12AM/PM. Figure 5 also includes the normalized performance for MRRoles4Azure,

calculated using the EMR as the baseline. We are happy to report that the performance variations we

observed were very minor, with standard deviations of 1.56% for EMR and 2.25% for MRRoles4Azure.

Additionally, we did not notice any noticeable trends in performance fluctuation.

118

Figure 47 Sustained performance of cloud environments for MapReduce type of applications

6.4 Data Caching on Azure Cloud instances for Iterative

MapReduce computations

In this section, we present a performance analysis of several data caching strategies that affect the

performance of large-scale parallel iterative MapReduce applications on Azure, in the context of a Multi-

Dimensional Scaling application presented in Section 5.2.2. These applications typically perform tens to

hundreds of iterations. Hence, we focus mainly on optimizing the performance of the majority of

iterations, while assigning a lower priority to optimizing the initial iteration.

In this section, we use a dimension-reduction computation of 204800 * 204800 element input

matrix, partitioned in to 1024 data blocks (number of map tasks is equal to the number of data blocks),

using 128 cores and 20 iterations as our use case. We focus mainly on the BCCalc computation, as it is

much more computationally intensive than the StressCalc computation. Table 3 presents the execution

time analysis of this computation under different mechanisms. The ‘Task Time’ in Table 3 refers to the

end-to-end execution time of the BCCalc Map Task, including the initial scheduling, data acquisition and

119

the output data processing time. The ‘Map Fn Time’ refers to the time taken to execute the Map

function of the BCCalc computation, excluding the other overheads. In order to eliminate the

skewedness of the ‘Task Time’ introduced by the data download in the first iterations, we calculated the

averages and standard deviations, excluding the first iteration. The ‘# of slow tasks’ is defined as the

number of tasks that take more than twice the average time for that particular metric. We used a single

Map worker per instance in the Azure small instances, and four Map workers per instances in the Azure

Large instances.

6.4.1 Local Storage Based Data Caching

As discussed in section 3.2, it is possible to optimize iterative MapReduce computations by caching

the loop-invariant input data across the iterations. We use the Azure Blob storage as the input data

storage for the Twister4Azure computations. Twister4Azure supports local instance (disk) storage

caching as the simplest form of data caching. Local storage caching allows the subsequent iterations (or

different applications or tasks in the same iteration) to reuse the input data from the local disk based

storage, rather than fetching them from the Azure Blob Storage. This resulted in speedups of more than

50% (estimated) over a non-cached MDS computation of the sample use case. However, local storage

caching causes the applications to read and parse data from the instances storage each time the data is

used. On the other hand, on-disk caching puts minimal strain on the instance memory.

6.4.2 In-Memory Data Caching

Twister4Azure also supports the ‘in-memory caching’ of the loop-invariant data across iterations.

With in-memory caching, Twister4Azure fetches the data from the Azure Blob storage, and parses and

loads them into the memory during the first iteration. After the first iteration, these data products

remain in memory throughout the course of the computation for reuse by the subsequent iterations,

120

eliminating the overhead of reading and parsing data from the disk. As shown in Table 3, this in-memory

caching improved the average run time of the BCCalc map task by approximately 36%, and the total run

time by approximately 22% over disk based caching. Twister4Azure performs cache-invalidation for in-

memory cache using a Least Recently Used (LRU) policy. In a typical Twister4Azure computation, the

loop-invariant input data stays in the in-memory cache for the duration of the computation, while the

Twister4Azure caching policy will evict the broadcast data for iterations from the data cache after the

particular iterations.

As mentioned in section 5.1.3, Twister4Azure supports cache-aware scheduling for in-memory

cached data as well as for local-storage cached data.

Table 7 The execution time analysis of a MDS computation with different data caching mechanisms.

(204800 * 204800 input data matrix, 128 total cores, and 20 iterations. 20480 BCCalc map tasks)

Mechanism

Instance

Type

Total

Execution

Time (s)

Task Time (BCCalc) Map Fn Time (BCCalc)

Average

(ms)

STDEV

(ms)

of slow

tasks

Average

(ms)

 STDEV

(ms)

of slow

tasks

Disk Cache only small * 1 2676 6,390 750 40 3,662 131 0

In-Memory

Cache

small * 1 2072 4,052 895 140 3,924 877 143

large * 4 2574 4,354 5,706 1025 4,039 5,710 1071

Memory

Mapped File

(MMF) Cache

small * 1 2097 4,852 486 28 4,725 469 29

large * 4 1876 5,052 371 6 4,928 357 4

121

6.4.2.1 Non-Deterministic Performance Anomalies with In-Memory Data Caching

When using in-memory caching, we started to notice occasional non-deterministic fluctuations of

the Map function execution times in some of the tasks (143 slow Map Fn time tasks in row 2 of Table 3).

These slow tasks, even though few, affect the performance of the computation significantly because the

execution time of a whole iteration is dependent on the slowest task of the iteration. Figure 48 offers an

example of an execution trace of a computation that shows this performance fluctuation, where we can

notice occasional unusual high task execution times. Even though Twister4Azure supports the duplicate

execution of the slow tasks, duplicate tasks for non-initial iterations are often more costly than the total

execution time of a slow task that uses data from a cache, as the duplicate task would have to fetch the

data from the Azure Blob Storage. With further experimentation, we were able to narrow down the

cause of this anomaly to the use of a large amount of memory, including the in-memory data cache,

within a single .NET process. One may assume that using only local storage caching would offer a better

performance, as it reduces the load on memory. We in fact found that the Map function execution times

were very stable when using local storage caching (zero slow tasks and a smaller standard deviation in

the Map Fn time in row 1 of Table 7). However, the ‘Task Time’ that includes the disk reading time is

unstable when a local-storage cache is used (40 slow ‘Task Time’ tasks in row 1 of Table 7).

6.4.3 Memory Mapped File Based Data Cache

A memory-mapped file contains the contents of a file mapped to the virtual memory and can be

read or modified directly through memory. Memory-mapped files can be shared across multiple

processes and can be used to facilitate inter-process communication. The .NET framework version 4

introduces first class support for memory-mapped files to the .NET world. The .NET memory mapped

files facilitate the creation of a memory-mapped file directly in the memory, with no associated physical

122

file, specifically to support inter-process data sharing. We exploit this feature by using these memory-

mapped files to implement the Twister4Azure in-memory data cache. In this implementation,

Twister4Azure fetches the data directly to the memory-mapped file, and the memory mapped file will

be reused across the iterations. The Map function execution times become stable with the memory-

mapped file based cache implementation (row 4 and 5 of Table 7).

With the Twister4Azure in-memory cache implementation, the performance on larger Azure

instances (with the number of workers equal to the number of cores) was very unstable (row 3 of Table

7). By contrast, when using memory-mapped caching, the execution times were more stable on the

larger instances than for the smaller instances (row 4 vs 5 in Table 7). The ability to utilize larger

instances effectively is a significant advantage, as the usage of larger instances improves the data

sharing across workers, facilitates better load balancing within the instances, provides better

deployment stability, reduces the data-broadcasting load and simplifies the cluster monitoring.

The memory-mapped file based caching requires the data to be parsed (decoded) each time the

data is used; this adds an overhead to the task execution times. In order to avoid a duplicate loading of

data products to memory, we use real time data parsing in the case of the memory-mapped files. Hence,

the parsing overhead becomes part of the Map function execution time. However, we found that the

execution time stability advantage outweighs the added cost. In Table 7, we present results using Small

and Large Azure instances. Unfortunately, we were not able to utilize Extra Large instances during the

course of our testing due to an Azure resource outage bound to our ‘affinity group’. We believe the

computations will be even more stable in Extra Large instances. Figure 49 presents an execution trace of

a job that uses Memory Mapped file based caching. The taller bars represent the MDSBCCalc

computation, while the shorter bars represent the MDSStressCalc computation. A pair of BCCalc and

StressCalc bars represents an iteration.

123

Figure 48 Execution traces of Twister4Azure MDS using in-memory caching on small instances. The taller

bars represent the MDSBCCalc computation, while the shorter bars represent the MDSStressCalc computation,

and together they represent an iteration.

Figure 49 Execution traces of Twister4Azure MDS using Memory-Mapped file based caching on Large

instances.

6.5 Summary

124

Many real world data sets and problems are inhomogeneous in nature, making it difficult to divide

those computations into equally balanced computational parts. But, at the same time, most of the

inhomogeneity problems are randomly distributed, providing a natural load balancing inside the sub

tasks of a computation. We observed that the scheduling mechanism employed by both Hadoop

(dynamic) and DryadLINQ (static) performs well when randomly distributed inhomogeneous data is

used. Also, in the above study, we observed that, given there are sufficient map tasks, the global queue

based dynamic scheduling strategy adopted by Hadoop provides load balancing even in extreme

scenarios like skewed distributed inhomogeneous data sets. The static partition based scheduling

strategy of DryadLINQ does not have the ability to load balance such extreme scenarios. It is possible,

however, for the application developers to randomize data sets such as these before using them with

DryadLINQ, which will allow these applications to achieve the natural load balancing of the randomly

distributed inhomogeneous data sets we described above.

We also observed that the fluctuation of MapReduce performance on clouds is minimal over a

week-long period, assuring consistency and predictability of application performance in the cloud

environments. We also performed tests using identical hardware for Hadoop on Linux and Hadoop on

Linux on Virtual Machines to study the effect of virtualization on the performance of our application.

These show that virtual machines give overheads of around 20%.

We also analyzed the performance anomalies of Azure instances with the use of in-memory caching;

we then proposed a novel caching solution based on Memory-Mapped Files to overcome those

performance anomalies.

125

 7. COLLECTIVE COMMUNICATIONS PRIMITIVES FOR ITERATIVE

MAPREDUCE

When performing distributed computations, often the data needs to be shared and/or consolidated

among the different nodes of the computations. Collective communication primitives are the

communication operations that involve a group of nodes simultaneously [61, 72]. Collective

communication operations facilitate the optimized communication and coordination between groups of

nodes of a distributed computations; this leads to many advantages and makes it much easier and

efficient to perform complex data communications inside the distributed parallel applications. Collective

communication primitives are very popular in the HPC community and are used heavily in the MPI type

of HPC applications. There has been much research [72] conducted to optimize the performance of

these collective communication operations, as they have a significant impact on the performance of HPC

applications. There exist many different implementations of collective communication primitives

supporting many different algorithms and topologies to suit the different environments and different

use cases.

In addition to the common characteristics of data-intensive iterative computations that we

mentioned in section 6, we noticed several common communication and computation patterns among

some of the data-intensive iterative MapReduce computations. This section highlights several Map-

Collective communication primitives to support and optimize common computation and communication

patterns in both MapReduce and iterative MapReduce computations. We present the applicability of

Map-Collective operations to enhance (Iterative) MapReduce without sacrificing desirable MapReduce

properties such as fault tolerance, scalability, familiar APIs and data model. The addition of collective

126

communication operations enriches the MapReduce model by providing many performance and ease of

use advantages. This includes providing efficient data communication operations optimized for

particular execution environments and use cases, enabling programming models that fit naturally with

application patterns, and allowing users to avoid overhead by skipping unnecessary steps of the

execution flow.

We present these patterns as high level constructs that can be adopted by any MapReduce or

iterative MapReduce runtime. We also offer proof-of-concept implementations of the primitives on

Hadoop and Twister4Azure, and we envision a future where all the MapReduce and iterative

MapReduce runtimes support a common set of Map-Collective primitives.

Our work focuses on mapping the All-to-All communication type of collective communication

operations, AllGather and AllReduce, to the MapReduce model as Map-AllGather and Map-AllReduce

patterns. Map-AllGather gathers the outputs from all the map tasks and distributes the gathered data to

all the workers after a combine operation. Map-AllReduce primitive combines the results of the Map

Tasks based on a reduction operation and delivers the result to all the workers. We also present

MapReduceMergeBroadcast as an important collective in all (iterative) MapReduce frameworks.

This chapter presents prototype implementations of Map-AllGather and Map-AllReduce primitives

for Twister4Azure and Hadoop (called H-Collectives). We achieved up to 33% improvement for

KMeansClustering and up to 50% improvement with Multi-Dimensional Scaling, in addition to the

improved user friendliness. In some cases, collective communication operations virtually eliminated

almost all the overheads of the computations.

The work of this chapter has been accepted for publication as a conference paper [73].

127

7.1 Collective Communication Primitives

Collective communication operations [61] facilitate optimized communication and coordination

between groups of nodes of a distributed computation and are used heavily in the MPI type of HPC

applications. These powerful operations make it much easier and efficient to perform complex data

communications and coordination inside the distributed parallel applications. Collective communication

also implicitly provides some form of synchronization across the participating tasks. There exist many

different implementations of HPC collective communication primitives supporting numerous algorithms

and topologies suited to different environments and use cases. The best implementation for a given

scenario depends on many factors, including message size, number of workers, topology of the system,

the computational capabilities/capacity of the nodes, etc. Oftentimes collective communication

implementations follow a poly-algorithm approach to automatically select the best algorithm and

topology for the given scenario.

There are two main categories of collective communication primitives.

 Data movement (aka data redistribution) communication primitives

These operations can be used to distribute and share data across the worker processors.

Examples of these include broadcast, scatter, gather, and allgather operations.

 Data consolidation (aka collective operations) communication primitives

This type of operations can be used to collect and consolidate data contributions from

different worker processes. Examples of these include reduce, reduce-scatter and

allreduce.

We can also categorize collective communication primitives based on the communication patterns

of the primitives as well.

128

 All-to-One: gather, reduce

 One-to-All : broadcast, scatter

 All-to-All : allgather, allreduce, reduce-scatter

 Synchronization : barrier

MapReduce model supports the All-to-One type communications through the Reduce step.

MapReduce-MergeBroadcast model we introduce in section 7.2 further extends this support through

the Merge step. Broadcast operation introduced in MapReduce-MergeBroadcast model serves as an

alternative to the One-to-All type collective communication operations. MapReduce model contains a

barrier between the Map and Reduce phases and the iterative MapReduce model introduces a barrier

between the iterations (or between the MapReduce jobs corresponding to iterations). The solutions

presented in this paper focus on introducing All-to-All type collective communication operations to the

MapReduce model. Table 8 presents a summary of the support for above collective communication

primitives in Hadoop, H-Collectives (section 7.6.1) and Twister4Azure.

We can implement All-to-All communications using pairs of existing All-to-One and One-to-All type

operations present in the MapReduce-MergeBroadcast mode. For an example, AllGather operation can

be implemented as Reduce-Merge followed by Broadcast. However, these types of implementations

would be inefficient and would be harder to use compared to dedicated optimized implementations of

All-to-All operations.

129

Table 8 Collective communications support in MPI, Hadoop, H-Collectives and Twister4Azure

 MPI Hadoop H-Collectives Twister4Azure Description [74]

All-to-One
Gather shuffle-reduce* shuffle-reduce*

shuffle-reduce-merge

[section 7.2.2]

Gathers together values from a group

of processes.

Reduce shuffle-reduce* shuffle-reduce*
shuffle-reduce-merge

[section 7.2.2]

Reduces values on all processes to a

single value.

One-to-All
Broadcast

shuffle-reduce-

distributedcache

shuffle-reduce-

distributedcache

merge-broadcast [section

7.2.3]

Broadcasts a message to all other

processes.

Scatter
shuffle-reduce-

distributedcache**

shuffle-reduce-

distributedcache**
merge-broadcast **

Scatters data from one process to all

other processes.

All-to-All

AllGather Map-AllGather Map-AllGather
Gathers data from all processes and

distribute the result to all processes.

AllReduce Map-AllReduce Map-AllReduce

Combines values from all processes

and distribute the result back to all

processes.

Reduce-

Scatter

Map-ReduceScatter

(future work)

Map-ReduceScatter (future

works)

Combines values from all the

processes and scatters the result to all

the processes.

Synchroni

zation Barrier
Barrier between

Map & Reduce

Barrier between

Map & Reduce and

between iterations

Barrier between Map,

Reduce, Merge and

between iterations

Blocks until all process have reached

the barrier.

* Use single Reduce task or by having a post processing step that will combine the output from multiple Reduce tasks.

** Workaround using Broadcast, where all the data is sent to all the processes rather than scattering the data.

130

7.2 MapReduce-MergeBroadcast

In this section we introduce MapReduce-MergeBroadcast as a generic programming model for the

data-intensive iterative MapReduce applications. Programming model of most of the current iterative

MapReduce frameworks can be specified as MapReduce-MergeBroadcast.

7.2.1 API

MapReduce-MergeBroadcast programming model extends the map and reduce functions of

traditional MapReduce to include the loop variant delta values as an input parameter. MapReduce-

MergeBroadcast provides the loop variant data (dynamicData) to the Map and Reduce tasks as a list of

key-value pairs using this additional input parameter.

Map(<key>, <value>, list_of <key,value> dynamicData)

Reduce(<key>, list_of <value>, list_of <key,value> dynamicData)

This additional input can be used to provide the broadcast data to the Map and Reduce tasks. As we

show in the later sections of this chapter, this additional input parameters can used to provide the loop

variant data distributed using other mechanisms to the map tasks. This extra input parameter can also

be used to implement additional functionalities such as performing map side joins.

7.2.2 Merge Task

We define Merge [12] as a new step to the MapReduce programming model to support iterative

applications. It is a single task, or the convergence point, that executes after the Reduce step. It can be

used to perform summarization or aggregation of the results of a single MapReduce iteration. The

Merge step can also serve as the “loop-test” that evaluates the loops condition in the iterative

MapReduce programming model. Merge tasks can be used to add a new iteration, finish the job, or

131

schedule a new MapReduce job. These decisions can be made based on the number of iterations or by

comparison of the results from previous and current iterations, such as the k-value difference between

iterations for K-means Clustering. Users can use the results of the current iteration and the broadcast

data to make these decisions. Oftentimes the output of the merge task needs to be broadcasted to tasks

of the next iteration.

Merge Task receives all the Reduce outputs and the broadcast data for the current iteration as the

inputs. There can only be one merge task for a MapReduce job. With merge, the overall flow of the

iterative MapReduce computation flow would appear as follows:

Figure 50 MapReduce-MergeBroadcast computation flow

The programming APIs of the Merge task can be where the “reduceOutputs” are the outputs of the

reduce tasks and the “broadcastData” is the loop variant broadcast data for the current iteration.

Merge(list_of <key,list_of<value>> reduceOutputs, list_of <key,value> dynamicData)

7.2.3 Broadcast

Broadcast operation broadcasts the loop variant data to all the tasks in iteration. In typical data-

intensive iterative computations, the loop-variant data is orders of magnitude smaller than the loop-

invariant data. In the MapReduce-MergeBroadcast model, the broadcast operation typically broadcasts

the output data of the Merge tasks to the tasks of the next iteration. Broadcast operation of

MapReduce-MergeBroadcast can also be thought of as executing at the beginning of the iterative

MapReduce computation. This would make the model Broadcast-MapReduce-Merge, which is

essentially similar to the MapReduce-Merge-Broadcast when iterations are present.

Map Combine Shuffle Sort Reduce Merge Broadcast

132

…MapReducen-> Mergen-> Broadcastn-> MapReducen+1-> Merge n+1-> Broadcastn+1-> MapReduce n+2-> Merge...

Broadcast can be implemented efficiently based on the environment as well as the data sizes. Well

known algorithms for data broadcasting include flat-tree, minimum spanning tree (MST), pipeline and

chaining [75]. It is possible to share broadcast data between multiple Map and/or Reduce tasks

executing on the same node, as MapReduce computations typically have more than one

map/reduce/merge worker per worker-node.

7.2.4 MapReduceMergeBroadcast Cost Model

There exist several models that are frequently used by the message passing community to model to

data communication performance [75]. We use the Hockney model [75, 76] for the simplicity. Hockney

model assumes the time to send a data set with n data items among two nodes is α+nβ, where α is the

latency and β is the transmission time per data item (1/bandwidth). Hockney model cannot model the

network congestion.

Merge is a single task that receives the outputs of all the reduce tasks. The cost of this transfer

would be , where nr is the total number of reduce outputs and r is the number of reduce tasks.

The execution time of the Merge task would be relatively small, as typically the merge would be

performing a computationally trivial task such as aggregation or summarization. The output of the

Merge task would need to be broadcasted to all the workers of the next iteration. A minimal spanning

tree based broadcast cost [72] can be modeled as following, where nv is the total number of merge

outputs (broadcast data).

133

Based on these costs, the total cost of a MapReduce-MergeBroadcast can be approximated as

follows. is the cost of the MapReduce computation and presents the cost of the

Merge task. The broadcast needs to done only once per worker node as the map tasks executing in a

single worker node can share the broadcasted data among the tasks.

7.2.5 Current iterative MapReduce Frameworks and MapReduce-

MergeBroadcast

Twister4Azure [12] supports the MapReduce-MergeBroadcast natively. In Twister, the combine step

is part of the driver program and is executed after the MapReduce computation of every iteration.

Twister [63] is a MapReduce-Combine model, where the Combine step is similar to the Merge step.

Twister MapReduce computations broadcast the loop variant data products at the beginning of each

iteration, effectively making the model Broadcast-MapReduce-Combine, which is semantically similar to

the MapReduce-MergeBroadcast.

HaLoop [28] performs an additional MapReduce computation to do the fixed point evaluation for

each iteration, effectively making this MapReduce computation equivalent to the Merge task. Data

broadcast is achieved through a MapReduce computation to perform a join operation on the loop

variant and loop invariant data.

All the above models can be generalized as Map->Reduce->Merge->Broadcast.

7.3 Collective Communications Primitives for Iterative MapReduce

While implementing iterative MapReduce applications using the MR-MB model, we started to notice

several common execution flow patterns across the different applications. Some of these applications

134

had very trivial Reduce and Merge tasks while other applications needed extra effort to map to the MR-

MB model owing to the execution patterns being slightly different than the iterative MapReduce

pattern. In order to solve such issues, we introduce Map-Collective primitives to the iterative

MapReduce programming model, inspired by the MPI collective communications primitives [61].

Figure 51 Map-Collective primitives

These primitives support higher-level communication patterns that occur frequently in data-

intensive iterative applications by substituting certain steps of the MR-MB computation. As depicted in

Figure 51, these Map-Collective primitives can be thought of as a Map phase followed by a series of

framework-defined communication and computation operations leading to the next iteration.

In this chapter we propose two collective communication primitive implementations: Map-AllGather

and Map-AllReduce. You can also identify MR-MB as another collective communication primitive as well.

7.3.1 Requirements

When designing Map-collective primitives for iterative MapReduce, we should make sure they fit

with the MapReduce data model and the MapReduce computational model, which support multiple

Map task waves, large overheads, significant execution variations and inhomogeneous tasks. Also the

135

primitives should retain scalability while keeping the programming model simple and easy to

understand. These primitives should maintain the same type of framework-managed excellent fault

tolerance supported by MapReduce.

7.3.2 Advantages

7.3.2.1 Performance improvement

Introduction of Map-Collective primitives provides 3 types of performance improvements to the

iterative MapReduce applications. Map-Collectives can reduce the overheads of the computations by

skipping or overlapping certain steps (e.g. shuffle, reduce, merge) of the iterative MapReduce

computational flow. Map-Collective patterns also fit more naturally with the application patterns,

avoiding the need for unnecessary steps.

Another advantage is the ability for the frameworks to optimize these operations transparently for

the users, even allowing the possibility of different optimizations (poly-algorithm) for different use cases

and environments. For example, a communication algorithm that’s best for smaller data sizes may not

be the best for larger ones. In such cases, the Map-Collective operations can opt to have multiple

algorithm implementations to be used for different data sizes.

These primitives also have the capability to make the applications more efficient by overlapping

communication with computation. Frameworks can start the execution of collectives as soon as the first

results are produced from the Map tasks. For example, in the Map-AllGather primitive, presented in

section 4, partial Map results are broadcasted to all the nodes as soon as they become available. It is

also possible to perform some of the computations in the data transfer layer, like the hierarchical

reduction in Map-AllReduce primitive.

136

7.3.2.2 Ease of use

These primitive operations make life easier for the application developers by presenting them with

patterns and APIs that fit more naturally with their applications. This simplifies the case when porting

new applications to the iterative MapReduce model.

In addition, by using the Map-Collective operations, the developers can avoid manually

implementing the logic of these operations (e.g. Reduce and Merge tasks) for each application and can

rely on optimized operations provided by the framework.

7.3.2.3 Scheduling with iterative primitives

In addition to providing synchronization between the iterations, Map-Collective primitives also give

us the ability to propagate the scheduling information for the next iteration to the worker nodes along

with the collective communication data. This allows the frameworks to synchronize and schedule the

tasks of a new iteration or application with minimal overheads.

For example, as mentioned in section 8.6, Twister4Azure successfully employs this strategy to

schedule new iterations with minimal overhead, while H-Collectives use this strategy to perform

speculative scheduling of tasks.

7.3.3 Programming model

Map-Collective primitives can be specified as an outside configuration option without changing the

MapReduce programming model. This permits the applications developed with Map-Collectives to be

backward compatible with frameworks that don’t support them. This also makes it easy for developers

who are already familiar with MapReduce programming to use Map-Collectives. For an example, a

KMeans Clustering MapReduce implementation with Map, Reduce and Merge tasks can be used with

137

Map-AllReduce or vice versa without doing any changes to the Map, Reduce or Merge function

implementations.

7.3.4 Implementation considerations

Map-Collectives can be add-on improvements to MapReduce frameworks. The simplest

implementation would be implementing the primitives using the current MapReduce API and

communication model on the user level, then providing the implementation as a library. This will

achieve ease of use for the users by providing a unified programming model that better matches

application patterns.

More optimized implementations can present these primitives as part of the MapReduce framework

(or as a separate library) with the ability to optimize the data transfers based on environment and use

case, using optimized group communication algorithms in the background.

Table 9 Summary of Map-Collectives patterns

Pattern Execution and communication flow Frameworks Sample applications

MapReduce MapCombineShuffleSortReduce
Hadoop, Twister,

Twister4Azure
WordCount, Grep, etc.

MapReduce-

MergeBroadcast

MapCombineShuffleSortReduce

MergeBroadcast

Twister, Haloop,

Twister4Azure

KMeansClustering,

PageRank,

Map-AllGather
MapAllGather

CommunicationAllGather Combine

H-Collectives,

Twister4Azure

MDS-BCCalc (matrix X

matrix), PageRank (matrix X

vector)

Map-AllReduce
MapAllReduce (communication & H-Collectives, KMeansClustering, MDS-

138

7.4 Map-AllGather Collective

AllGather is an all-to-all collective communication operation that gathers data from all the workers

and distributes the gathered data to all the workers [72]. We can notice the AllGather pattern in data-

intensive iterative applications where the “reduce” step is a simple aggregation operation that simply

aligns the outputs of the Map Tasks together in order, followed by “merge” and broadcast steps that

transmit the assembled output to all the workers. An example would be a Matrix-vector multiplication,

where each map task outputs part of the resultant vector. In this computation we would use the Reduce

and Merge tasks to assemble the vector together and then broadcast the assembled vector to workers.

Data-intensive iterative applications that have the AllGather pattern include

MultiDimensionalScaling (matrix-matrix multiplication) [51] and PageRank using inlinks matrix (matrix-

vector multiplication).

7.4.1 Model

We developed a Map-AllGather iterative MapReduce primitive similar to the MPI AllGather [72]

collective communication primitive. Our intention was to support applications with communication

patterns similar to the above in a more efficient manner.

7.4.2 Execution model

Map-AllGather primitive broadcasts the Map Task outputs to all computational nodes (all-to-all

communication) of the current computation, and then assembles them together in the recipient nodes

computation) Twister4Azure StressCalc

139

as depicted in Figure 52. Each Map worker will deliver its result to all other workers of the computation

once the Map task is completed.

The computation and communication pattern of a Map-AllGather computation is Map phase

followed by AllGather communication (all-to-all) followed by the AllGather combine phase. As we can

notice, this model substitute the shuffle->sort->reduce->merge->broadcast steps of the MapReduce-

MergeBroadcast with all-to-all broadcast and AllGather combine.

Figure 52 Map-AllGather Collective

7.4.3 Data Model

For Map-AllGather, the map output key should be an integer specifying the location of the output

value in the resultant gathered data product. Map output values can be vectors, sets of vectors (partial

matrix) or single values. Final output value of the Map-AllGather operation is an assembled array of Map

output values in the order of their corresponding keys. The result of AllGather-Combine will be provided

to the Map tasks of the next iteration as the loop variant data using the APIs and mechanisms suggested

in Section 8.2.2.1.

140

The final assembly of AllGather data can be performed by implementing a custom combiner or using

the default combiner of AllGather-combine. Custom combiner allows the user to specify a custom

assembling function. In this case, the input to the assembling function is a list of Map outputs key-value

pairs, ordered by the key. This assembling function gets executed in each worker node after all the data

is received.

The default combiner should work for most of the use cases, as the combining of AllGather data is

oftentimes a trivial process. The default combiner expect the Map outputs to be in <int, double[]>

format. In a matrix example, the key would represent the row index of the output matrix and the value

would contain the corresponding row vector. Map outputs with duplicate keys (same key for multiple

output values) are not supported and therefore ignored.

Users can deploy their Mapper implementations as is with Map-AllGather primitive. They need to

specify only the collective operation, after which the shuffle and reduce phases of MapReduce would be

substituted by the Map-AllGather communication and computations.

7.4.4 Cost Model

An optimized implementation of AllGather, such as a by-directional exchange based implementation

[72], we can estimate the cost of the AllGather component as following, where m is the number of map

tasks.

We present the above cost model to demonstrate the communication cost improvements

achievable using a highly optimized implementation of this primitive and not as an effort to model the

141

performance of the current implementation. This model won’t be used to performance modeling of the

current implementations.

It is also possible to further reduce this cost by performing local aggregation in the Map worker

nodes. In the case of AllGather, summation of size of all map output would be approximately equal to

the loop variant data size of the next iteration (). The variation of Map task completion times will

also help to avoid the network congestion in these implementations.

Map-AllGather substitute the Map output processing (collect, spill, merge), Reduce task (shuffle,

merge, execute, write), Merge task (shuffle, execute) and broadcast overheads with a less costly

AllGather operation. The MapReduce job startup overhead can also be significantly reduced by utilizing

the information contained in the AllGather transfers to aid in scheduling the tasks of the next iteration.

Hence Map-AllReduce per iteration overhead is significantly reduced than the traditional MapReduce

job startup overhead as well.

7.4.5 Fault tolerance

All-Gather partial data product transfers from Map to workers can fail due to communication

mishaps and other breakdowns. When task level fault tolerance (typical MapReduce fault tolerance) is

enabled, it is possible for the workers to read the missing map output data from the persistent storage

(e.g.HDFS) to successfully perform the All-Gather computation.

The fault tolerance and the speculative execution of MapReduce enable duplicate execution of

tasks. Map-AllGather can perform the duplicate data detection before the final assembly of the data at

the recipient nodes to handle any duplicate executions.

7.4.6 Benefits

142

Use of the Map-AllGather in an iterative MapReduce computation eliminates the need for reduce,

merge and broadcasting steps in that particular computation. Also the smaller-sized multiple broadcasts

of Map-AllGather primitive originating from multiple servers of the cluster would be able to use the

network more effectively than a single monolithic broadcast originating from a single server.

Oftentimes the Map task execution times are inhomogeneous [43] in typical MapReduce

computations. Implementations of Map-AllGather primitive can start broadcasting the map task result

values as soon as the first map task is completed. This mechanism ensures that almost all the data is

broadcasted by the time the last map task completes its execution, resulting in overlap of computations

with communication. This benefit will be even more significant when we have multiple waves of map

tasks.

In addition to improving the performance, this primitive also enhances usability, as it eliminates the

overhead of implementing reduce and/or merge functions. Map-AllGather can be used to efficiently

schedule the next iteration or the next application of the computational flow as well.

7.5 Map-AllReduce Collective

AllReduce is a collective pattern which combines a set of values emitted by all the workers based on

a specified operation and makes the results available to all the workers [72]. This pattern can be seen in

many iterative data mining and graph processing algorithms. Example data-intensive iterative

applications that have the Map-AllReduce pattern include KMeansClustering, Multi-dimensional Scaling

StressCalc computation and PageRank using out links matrix.

7.5.1 Model

143

We propose Map-AllReduce iterative MapReduce primitive similar to the MPI AllReduce [72]

collective communication operation, to efficiently aggregate and reduce the results of the Map Tasks.

7.5.1.1 Execution Model

The computation and communication pattern of a Map-AllReduce computation is Map phase

followed by the AllReduce communication and computation (reduction), as depicted in Figure 53. As we

can notice, this model allows us to substitute the shuffle->sort->reduce->merge->broadcast steps of the

MapReduce-MergeBroadcast with AllReduce communication in the communication layer. The

AllReduce phase can be implemented efficiently using algorithms such as bidirectional exchange (BDE)

[72] or hierarchical tree based reduction.

Figure 53 Map-AllReduce collective

Map-AllReduce allows the implementations to perform local aggregation on the worker nodes

across multiple map tasks and to perform hierarchical reduction of the Map Task outputs while

delivering them to all the workers. Map-AllReduce performs the final reduction in the recipient worker

nodes.

7.5.1.2 Data Model

144

For Map-AllReduce, the map output values should be vectors or single values of numbers. The

values belonging to each distinct map output key are processed as a separate data reduction operation.

Output of the Map-AllReduce operation is a list of key/value pairs where each key corresponds to a map

output key and the value is the combined value of the map output values that were associated with that

map output key. As shown in Figure 54, the number of records in the Map-AllReduce output is equal to

the number of unique map output keys. For example, 10 distinct Map output keys would result in 10

combined vectors or values. Map output value type should be a number.

Figure 54 Example Map-AllReduce with Sum operation

In addition to the summation, any commutative and associative operation can be performed using

this primitive. Example operations include sum, max, min, count, and product operations. Operations

such as average can be performed by using the Sum operation together with an additional element

(dimension) to count the number of data products. Due to the associative and commutative nature of

the operations, Map-AllReduce has the ability to start combining the values as soon as the first map task

completion. It also allows the Map-AllReduce implementations to use reduction trees or bidirectional

exchanges to optimize the operation.

It is also possible to allow users to specify a post process function that executes after the AllReduce

communication. This function can be used to perform a simple operation on the Map-AllReduce result

145

or to check for the iteration termination condition. It would be executed in each worker node after all

the Map-AllReduce data has been received.

list<Key, IOpRedValue> PostOpRedProcess(list<Key, IOpRedValue> opRedResult);

7.5.1.3 Cost Model

An optimized implementation of AllReduce, such as a by-directional exchange based

implementation [72], will reduce the cost of the AllReduce component to,

We present the above cost model to demonstrate the communication cost improvements

achievable using a highly optimized implementation of this primitive and not as an effort to model the

performance of the current implementation. This model won’t be used to performance modeling of the

current implementations.

It is also possible to further reduce this cost by performing local aggregation and reduction in the

Map worker nodes as the compute cost of AllReduce is very small.

 gives the average number of Map

tasks per computation that executes in a given worker node, where p is the number of worker nodes. In

the case of AllReduce, the average size of each map output would be approximately equal to the loop

variant data size of the next iteration (

). The variation of Map task completion times will also

help to avoid the network congestion in these implementations.

Map-AllReduce substitute the Map output processing (collect, spill, merge), Reduce task (shuffle,

merge, execute, write), Merge task (shuffle, execute) and broadcast overheads with a less costly

146

AllReduce operation. The MapReduce job startup overhead can also be reduced by utilizing the

information contained in the AllReduce transfers to aid in scheduling the tasks of the next iteration.

Other efficient algorithms to implement AllReduce communication include flat-tree/linear, pipeline,

binomial tree, binary tree, and k-chain trees [75].

7.5.2 Fault Tolerance

If the AllReduce communication step fails for some reason, it is possible for the workers to read the

map output data from the persistent storage to perform the All-Reduce computation.

The fault tolerance model and the speculative execution model of MapReduce make it possible to

have duplicate execution of tasks. Duplicate executions can result in incorrect Map-AllReduce results

due to the possibility of aggregating the output of the same task twice. The most trivial fault tolerance

model for Map-AllReduce would be a best-effort mechanism, where Map-AllReduce would fall back to

using the Map output results from the persistent storage (e.g. HDFS) in case duplicate results are

detected. Duplicate detection can be done by maintaining a set of map IDs with each combined data

product. It is possible for the frameworks to implement richer fault tolerance mechanisms, such as

identifying the duplicated values in localized areas of the reduction tree.

7.5.3 Benefits

Map-AllReduce reduces the work each user has to perform in implementing Reduce and Merge

tasks. It also removes the overhead of Reduce and Merge tasks from the computations and allows the

framework to perform the combine operation in the communication layer itself.

Map-AllReduce semantics allow the implementations to optimize the computation by performing

hierarchical reductions, reducing the number and the size of intermediate data communications.

147

Hierarchical reduction can be performed in as many levels as needed based on the size of the

computation and the scale of the environment. For example, first level in mappers, second level in the

node and nth level in rack level, etc. The mapper level would be similar to the “combine” operation of

vanilla MapReduce. The local node aggregation can combine the values emitted by multiple mappers

running in a single physical node. All-Reduce combine processing can be performed in real time when

the data is received.

7.6 Implementations

In this section we present two implementations of Map-Collectives on Hadoop MapReduce and

Twister4Azure iterative MapReduce.

These implementations are proofs of concept presenting sufficiently optimal implementations for

each of the primitives and the environments to show the performance efficiencies that can be gained

through using even a modest implementation of these operations. It is possible to further optimize

these implementation using more advanced communication algorithms based on the environment they

will be executing, the scale of the computations, and the data sizes as shown in MPI collective

communications literature[72]. One of the main advantages of these primitives is the flexibility to

improve primitive implementations without the need to change the user application, making it possible

to optimize these implementations in the future as future work.

It is not our objective to find the most optimal implementations for each of the environments,

especially for clouds where the most optimal implementation might end up being a moving target due

to the rapidly evolving nature and the black box nature of cloud environments. This presents an

148

interesting opportunity for cloud providers to develop optimized implementations of these primitives as

cloud infrastructure services that can be utilized by the framework developers.

7.6.1 H-Collectives: Map-Collectives for Apache Hadoop

H-Collectives is a Map-Collectives implementation for Apache Hadoop that can be used as a drop in

library with the Hadoop distributions. H-Collectives uses the Netty NIO library, node-level data

aggregations and caching to efficiently implement the collective communications and computations.

Existing Hadoop Mapper implementations can be used with these primitives with only very minimal

changes. These primitives work seamlessly with Hadoop dynamic scheduling of tasks, support for

multiple map task waves and other desirable features of Hadoop, while supporting the typical Hadoop

fault tolerance and speculative executions as well.

A single Hadoop node may run several Map workers and many more map tasks belonging to a single

computation. The H-Collectives implementation maintains a single node-level cache to store and serve

the collective results to all the tasks executing in a worker node.

H-Collectives speculatively schedules the tasks for the next iteration and the tasks are waiting to

start as soon as all the AllGather data is received, getting rid of most of the Hadoop job startup/cleanup

and task scheduling overheads. Speculative scheduling cannot be used easily with pure Hadoop

MapReduce as we need to add the loop variant data (only available after the previous iteration is

finished) to the Hadoop DistributedCache before scheduling the job.

7.6.1.1 H-Collectives Map-AllGather

This implementation performs simple TCP-based best effort broadcasts for each Map task output.

Task output data are transmitted as soon as a task is completed, taking advantage of the

inhomogeneous Map task completion times. Final aggregation of these data products are done at the

149

destination nodes only once per node. If an AllGather data product is not received through the TCP

broadcasts, then it will be fetched from the HDFS.

7.6.1.2 H-Collectives Map-AllReduce

H-Collectives Map-AllReduce use n'ary tree-based hierarchical reductions, where Map task level and

node level reductions would be followed by broadcasting of the locally aggregated values to the other

worker nodes. The final reduce combine operation is performed in each of the worker nodes and is done

after all the Map tasks are completed and the data is transferred.

7.6.2 Map-Collectives for Twister4Azure iterative MapReduce

Twister4Azure Map-Collectives are implemented using the Windows Communication Foundation

(WCF)-based Azure TCP inter-role communication mechanism, while using the Azure table storage as a

persistent backup.

Twister4Azure primitive implementations maintain a worker node-level cache to store and serve the

primitive result values to multiple Map workers and map tasks running on a single server. Twister4Azure

utilizes the collectives to perform synchronization at the end of each iteration and also to aid in the

decentralize scheduling of the tasks of the next iteration by using the collective operations to

communicate the new iteration information to the workers.

7.6.2.1 Map-AllGather

Map-AllGather performs simple TCP-based broadcasts for each Map task output, which is an all-to-

all linear implementation. Workers start transmitting the data as soon as a task is completed. The final

aggregation of the data is performed in the destination nodes and is done only once per node.

7.6.2.2 Map-AllReduce

150

Map-AllReduce uses a hierarchical processing approach where the results are first aggregated in the

local node and then final assembly is performed in the destination nodes. The iteration check happens in

the destination nodes and can be specified as a custom function or as a limit on the number of

iterations.

7.6.3 Implementation Considerations on cloud environments

As mentioned above, our goal of the above prototype implementations is to demonstrate the

viability of Collective Communication primitives for iterative MapReduce. However, here we discuss the

differences and challenges one would encounter when implementing highly optimized collective

communications primitives for clouds as oppose to for local clusters.

Cloud environments are shared virtualized environments that are known to be relatively less reliable

than the local cluster counterparts. The failures can be whole instance failures as well as individual

communication operation failures. One of the most important considerations when implementing Map-

Collectives to the cloud environments should be to ensure the fault tolerance of the communications as

well as of the whole computation. One option is to explore the ability to utilize the fault tolerant high

available cloud services to perform the optimized communication for the Map-Collectives. Another

option is to make sure the data is persisted and available, to use in case the framework has to retry a

communication operation or to facilitate the use of an alternate method of communication in case the

main algorithm fails due to some reason. Twister4Azure Map-Collectives implementation takes this

approach where the data is persisted in the background to a Cloud storage while the optimized

communication is performed. It is also important to keep in mind that any data stored to cloud instance

storage would get lost in case of an instance failure or a decommission of an instance.

151

Communications in Cloud instances have higher latencies than their bare metal counterparts due to

the virtualization overhead in the network layer and also due to the shared and commodity nature of

the network interconnect. Bandwidth available for the data communication can also be lesser due to the

shared nature and due to the usage of commodity interconnects. A balance needs to be achieved in

terms of the data communication parallelism and the number and size of the individual data messages.

Data communications should be sufficiently parallel to avoid bandwidth bottlenecks in any particular

path that may result from the shared nature of the cloud environments. At the same time, the data

transfers should result in a relatively smaller number of coarser grained messages, to avoid the high

latencies and to reduce the management and fault recovery cost of messages.

Also it is important to select proper cloud instances for the computations. If a relatively large

number of cores are needed for the computation, it is better to use the largest available instance type

that does not result in a cost overhead. In almost all the cloud environments, the usage of the largest

available instance would ensure exclusive access to a physical node without sharing it with another user.

Usage of larger instances enables meaningful local aggregations for the collective communications

across the multiple workers running in a single instance and to use a cache to share collective results

data with all the workers executing inside a single instance. We employ both local aggregations and

results cache in our prototype implementations. Larger instances would alleviate some of concerns of a

shared environment as well.

The black box nature of the network architecture of cloud environments rules out any topology

specific communication algorithms and any algorithm that requires exclusive use of the network.

Communication algorithms in cloud environments for iterative MapReduce collective communications

should take advantage of the inhomogeneous nature of the tasks in a computation to reduce and even

152

out the load in the network interconnects. Also they should be able to take advantage of the

computation and communication overlap ability provided by the multiple waves of map tasks.

7.7 Evaluation

In this section we evaluate and compare the performance of Map-Collectives with plain MapReduce

using two real world applications, Multi-Dimensional-Scaling and K-means clustering. The performance

results are presented by breaking down the total execution time in to the different phases of the

MapReduce or the Map-Collectives computations. This provides an idea of the performance model and

provides a better view of various overheads of MapReduce and the optimizations provided by Map-

Collectives to reduce some of those overheads.

In the following figures, ‘Scheduling’ is the per iteration (per MapReduce job) startup and task

scheduling time. ‘Cleanup’ is the per iteration overhead from reduce task execution completion to the

iteration end. ‘Map overhead’ is the start and cleanup overhead for each map task. ‘Map variation’ is

the overhead due to variation of data load, compute and map overhead times. ‘Comm+Red+Merge’ is

the time for map to reduce data shuffle, reduce execution, merge and broadcast. ‘Compute’ and ‘Data

load’ times are calculated using the average compute only and data load times across all the tasks of the

computation. The common components (data load, compute) are plotted at the bottom of the graphs to

highlight variable components.

Hadoop and H-Collectives experiments were conducted in the FutureGrid Alamo cluster, which has

Dual Intel Xeon X5550 (8 total cores) per node, 12 GB RAM per node and a 1Gbps network.

Twister4Azure tests were performed in Windows Azure cloud, using Azure extra-large instances. Azure

extra-large instances provide 8 compute cores and 14 GB RAM per instance.

153

7.7.1 Multi-Dimensional Scaling (MDS) using Map-AllGather

The objective of MDS, described in detail in section 2.6.6, is to map a dataset in high-dimensional

space to a lower dimensional space, with respect to the pairwise proximity of the data points [51]. In

this chapter, we use parallel SMACOF [46, 52] MDS, which is an iterative majorization algorithm. The

input for MDS is an N*N matrix of pairwise proximity values. The resultant lower dimensional mapping

in D dimensions, called the X values, is an N*D matrix.

Unweighted MDS results in two MapReduce jobs per iteration, BCCalc and StressCalc. Each BCCalc

Map task generates a portion of the total X matrix. The reduce step of MDS BCCalc computation is an

aggregation operation, which simply assembles the outputs of the Map tasks together in order. This X

value matrix is then broadcasted to be used by the StressCalc step of the current iterations, as well as by

the BCCalc step of the next iteration. MDS performs relatively smaller amount of computations for a unit

of input data. Hence MDS has larger data loading and memory overhead. Usage of the Map-AllGather

primitive in MDS BCCalc computation eliminates the need for reduce, merge and broadcasting steps in

that particular computation.

7.7.1.1 MDS BCCalculation Step Cost

For the simplicity, in this section we assume each MDS iteration contains only the BCCaculation step

and analyze the cost of MDS computation.

Map compute cost can be approximated for large n to d*n2 , where n is the number of data points

and d is the dimensionality of the lower dimensional space. Input data points in MDS are n dimensional

(n*n matrix). The total input data size for all the map tasks would be n2 and the loop invariant data size

would be n*d.

154

In MDS, the number of computations per l bytes of the input data are in the range of k*l*d, where k

is a constant and d is typically 3. Hence MDS has larger data loading and memory overheads compared

to the number of computations.

7.7.1.2 H-Collectives MDS Map-AllGather

Figure 55 MDS Hadoop using only the BC Calculation MapReduce job per iteration to highlight the overhead.

20 iterations, 51200 data points

We implemented the MDS for Hadoop using vanilla MapReduce and H-Collectives Map-AllGather

primitive. Vanilla MapReduce implementation uses the Hadoop DistributedCache to broadcast loop

variant data to the Map tasks. Figure 55 shows the MDS strong scaling performance results highlighting

the overhead of different phases on the computation. We used only the BC Calculation step of the MDS

in each iteration and skipped the stress calculation step to further highlight the AllGather component.

This test case scales a 51200*51200 matrix into a 51200*3 matrix. The number of map tasks per

computation is equal to the number of total cores of the computation. The Map-AllGather based

implementation improves the performance of MDS over MapReduce by 30% up to 50% for the current

test cases.

155

As we can notice in the Figure 55, the H-Collectives implementation gets rid of the communication,

reduce, merge, task scheduling and job cleanup overhead of the vanilla MapReduce computation.

However, we notice a slight increase of Map task overhead and Map variation in the case H-Collectives

Map-AllReduce-based implementation. We believe these increases are due to the rapid scheduling of

Map tasks across successive iterations in H-Collectives, whereas in the case of vanilla MapReduce the

map tasks of successive iterations have few seconds between the scheduling do perform housekeeping

tasks.

7.7.1.3 Twister4Azure MDS-AllGather

Figure 56 MDS application implemented using Twister4Azure. 20 iterations. 51200 data points (~5GB).

We implemented MDS for Twister4Azure using Map-AllGather primitive and MR-MB with optimized

broadcasting. Twister4Azure optimized broadcast is an improvement over simple MR-MB as it uses an

optimized tree-based algorithm to perform TCP broadcasts of in-memory data. Figure 56 shows the MDS

(with both BCCalc and StressCalc steps) strong scaling performance results comparing the Map-

AllGather based implementation with the MR-MB implementation. The number of map tasks per

computation is equal to the number of total cores of the computation. The Map-AllGather-based

156

implementation improves the performance of Twister4Azure MDS by 13%-42% over MapReduce with

optimized broadcast in the current test cases.

7.7.1.4 Detailed analysis of overheads

In this section we perform detailed analysis of overheads of the Hadoop MDS BCCalc calculation

using a histogram of executing Map Tasks. In this test, we use only the BCCalc MapReduce job and

removed the StressCalc step to show the overheads. MDS computations depicted in the graphs of this

section use 51200 *51200 data points, 6 Iterations on 64 cores using 64 Map tasks per iteration. The

total AllGather data size of this computation is 51200*3 data points. Average data load time is 10.61

seconds per map task. Average actual MDS BCCalc compute time is 1.5 seconds per map task.

These graphs plot the total number of executing Map tasks at a given moment of the computation.

Number of an executing Map tasks approximately represent the amount of useful work done in the

cluster at that given moment. The resultant graphs comprise of blue bars that represent an iteration of

the computation. The width of each blue bar represents the time spent by Map tasks in that particular

iteration. This includes the time spent loading Map input data, Map calculation time and time to process

and store Map output data. The space between the blue bars represents the overheads of the

computation.

157

Figure 57 Hadoop MapReduce MDS-BCCalc histogram

Figure 58 H-Collectives AllGather MDS-BCCalc histogram

Figure 59 H-Collectives AllGather MDS-BCCalc histogram without speculative scheduling

Figure 58 presents MDS using H-Collectives AllGather implementation. Hadoop driver program

performs speculative (overlap) scheduling of iterations by scheduling the tasks for the next iteration

158

while the previous iteration is still executing and the scheduled tasks wait for the AllGather data to start

the actual execution. Blue bars represent the map task time of each iteration, while the stripped section

on each blue bar represent the data loading time (time it takes to read input data from HDFS).

Overheads of this computation include AllGather communication and task scheduling. MapReduce job

for the next iteration is scheduled while the previous iteration is executing and the scheduled tasks wait

for the AllGather data to start the execution. As we can notice, the overheads between the iterations

virtually disappear with the use of AllGather primitive.

Figure 59 presents MDS using H-Collectives AllGather implementation without the speculative

(overlap) scheduling. In this graph, the MapReduce job for the next iteration is scheduled after the

previous iteration is finished. This figure compared to Figure 58 shows the gains that can be achieved by

enabling optimized task scheduling with the help from the information from collective communication

operations. Hadoop MapReduce implementation can’t overlap the iterations as we need to add the

loop variant data (only available after the previous iteration is finished) to the Hadoop DistributedCache

when scheduling the Job.

7.7.1.5 Twister4Azure vs Hadoop

Twister4Azure is already optimized for iterative MapReduce [12] and contains very low scheduling,

data loading and data communication overheads compared to Hadoop. Hence, the overhead reduction

we achieve by using collective communication is comparatively less in Twister4Azure compared to

Hadoop. Also a major component of Hadoop MDS Map task cost is due to the data loading, as you can

notice in Figure 58. Twister4Azure avoids this cost by using data caching and cache aware scheduling.

7.7.2 K-KMeansClustering using Map-AllReduce

159

The K-means Clustering [67] algorithm, described in detail in section 2.6.5, has been widely used in

many scientific and industrial application areas due to its simplicity and applicability to large datasets.

We are currently working on a scientific project that requires clustering of several Terabytes of data

using K-means Clustering and millions of centroids.

K-means clustering is often implemented using an iterative refinement technique in which the

algorithm iterates until the difference between cluster centers in subsequent iterations, i.e. the error,

falls below a predetermined threshold. Each iteration performs two main steps: the cluster assignment

step and the centroids update step. In a typical MapReduce implementation, the assignment step is

performed in the Map task and the update step is performed in the Reduce task. Centroid data is

broadcasted at the beginning of each iteration. Intermediate data communication is relatively costly in

K-means Clustering, as each Map Task outputs data equivalent to the size of the centroids in each

iteration.

K-means Clustering centroid update step is an AllReduce computation. In this step all the values

(data points assigned to a certain centroid) belonging to each key (centroid) needs to be combined

independently and the resultant key-value pairs (new centroids) are distributed to all the Map tasks of

the next iteration.

7.7.2.1 KMeansClustering Cost

KMeans centroid assignment step (Map tasks) cost can be approximated for large n to n*c*d, where

n is the number of data points, d is the dimensionality of the data and c is the number of centroids. The

total input data size for all the map tasks would be n*d and the loop invariant data size would be c*d.

160

KMeansClustering approximate compute and communications cost when using the AllReduce

primitive is as follows. The cost of the computation component of AllReduce is k*c*d, where k is the

number of data sets reduced at that particular step.

In KMeansClustering, the number of computations per l bytes of the input data are in the range of

k*l*c, where k is a constant and c is the number of centroids. Hence for non-trivial number of centroids,

KMeansClustering has relatively smaller data loading and memory overheads vs the number of

computations compared to the MDS application discussed above.

The compute cost difference between KMeansClustering MapReduce-MergeBroadcast and Map-

AllReduce implementations is equal or slightly in favor of the MapReduce due to the hierarchical

reduction performed in the AllReduce implementation. However, typically the compute cost of the

reduction is almost negligible. All the other overheads including the startup overhead, disk overhead

and communication overhead favors the AllReduce based implementation.

7.7.2.2 H-Collectives KMeansClustering-AllReduce

161

Figure 60 Hadoop K-means Clustering comparison with H-Collectives Map-AllReduce Weak scaling. 500

Centroids (clusters). 20 Dimensions. 10 iterations.

Figure 61 Hadoop K-means Clustering comparison with H-Collectives Map-AllReduce Strong scaling. 500

Centroids (clusters). 20 Dimensions. 10 iterations.

We implemented the K-means Clustering application for Hadoop using the Map-AllReduce and plain

MapReduce. The MapReduce implementation uses in-map combiners to perform aggregation of the

values to minimize the size of map-to-reduce intermediate data transfers.

162

Figure 60 illustrates the K-means Clustering weak scaling performance where we scaled the

computation while keeping the workload per core constant. Figure 61 presents the K-means Clustering

strong scaling performance where we scaled the computation while keeping the data size constant.

Strong scaling test cases with smaller number of nodes use more map task waves optimizing the

intermediate data communication, resulting in relatively smaller overhead for the computation

As we can see, the H-Collectives implementation gets rid of the communication, reduce, merge, task

scheduling and job cleanup overhead of the vanilla MapReduce computation. A slight increase of Map

task overhead and Map variation can be noticed in the case of Map-AllReduce based implementation,

similar to the behavior observed and explained in above MDS section.

7.7.2.3 Twister4Azure KMeansClustering-AllReduce

Figure 62 Twister4Azure K-means weak scaling with Map-AllReduce. 500 Centroids, 20 Dimensions. 10

iterations. 32 to 256 Million data points.

163

Figure 63 Twister4Azure K-means Clustering strong scaling. 500 Centroids, 20 Dimensions, 10 iterations.

128Million data points.

We implemented the K-means Clustering application for Twister4Azure using the Map-AllReduce

primitive and MapReduce-MergeBroadcast. MR-MB implementation uses in-map combiners to perform

local aggregation of the output values to minimize the size of map-to-reduce data transfers. Figure 62

shows the K-means Clustering weak scaling performance results, where we scale the computations

while keeping the workload per core constant. Figure 63 presents the K-means Clustering strong scaling

performance, where we scaled the number of cores while keeping the data size constant. As can be seen

in these figures, the Map-AllReduce implementation gets rid of the communication, reduce and merge

overheads of the MR-MB computation.

7.7.2.4 Twister4Azure vs Hadoop vs HDInsight

KMeans performs more computation per data load than MDS and the compute time dominates the

run time. The pure compute time in of C#.net based application in Azure is much slower than the java

based application executing in a Linux environment. Twister4Azure is still able to avoid lot of overheads

164

and improves the performance of the computations, but the significant lower compute time results in

lower running times for the Hadoop applications.

Figure 64 HDInsight KMeans Clustering compared with Twister4Azure and Hadoop

HDInsight offers hosted Hadoop as a service on the Windows Azure cloud. Figure 64 presents the

KMeansClustering performance on the HDInsight service using Windows Azure large instances. We

executed the same Hadoop MapReduce based KMeansClustering implementation used in section 7.2.3

on HDInsight. HDInsight currently limits the number of cores to 170, which doesn’t allow us to perform

the 256 core test on it.

Input data for the HDInsight computation were stored in Azure Blob Storage and were accessed

through ASV (Azure storage vault), which provides a HDFS file system interface for the Azure blob

storage. Input data for the Twister4Azure computation were also stored in Azure blob storage and were

cached in memory using the Twister4Azure caching feature.

0

200

400

600

800

1000

1200

1400

32 x 32 M 64 x 64 M 128 x 128 M 256 x 256 M

Ti
m

e
 (

s)

Num. Cores X Num. Data Points

Hadoop
AllReduce

Hadoop
MapReduce

Twister4Azure
AllReduce

Twister4Azure
Broadcast

Twister4Azure

HDInsight
(AzureHadoop)

165

The darker areas of the bars represent the approximated compute only time for the computation

based on the average map task compute only time. Rest of the area in each bars represent the

overheads, which would be the time taken for task scheduling, data loading, shuffle, sort, reduce, merge

and broadcast. The overheads are particularly high for HDInsight due to the data download from the

Azure Blob storage for each iteration. The variation of the time to download data from the Azure Blob

storage adds significant variation to the map task execution times affecting the whole iteration

execution time.

Twister4Azure computation is significantly faster than HDInsight due to the data caching and other

improvements such as hybrid TCP based data shuffling, cache aware scheduling etc. , even though the

compute only time (darker areas) is much higher in Twister4Azure (C# vs Java) than in HDInsight.

7.8 Summary

In this section, we introduced Map-Collectives, collective communication operations for MapReduce

inspired by MPI collectives, as a set of high level primitives that encapsulate some of the common

iterative MapReduce application patterns. Map-Collectives improve the communication and

computation performance of the applications by enabling highly optimized group communication across

the workers, by getting rid of unnecessary/redundant steps and by enabling the frameworks to use a

poly-algorithm approach based on the use case. Map-Collectives also improve the usability of the

MapReduce frameworks by providing abstractions that closely resemble the natural application patterns

and reduce the implementation burden of the developers by providing optimized substitutions to

certain steps of the MapReduce model. We envision a future where many MapReduce and iterative

MapReduce frameworks support a common set of portable Map-Collectives, and we consider this work

as a step towards that.

166

We defined Map-AllGather and Map-AllReduce Map-Collectives and implemented Multi-

Dimensional Scaling and K-means Clustering applications using these operations. We also presented the

H-Collectives library for Hadoop, which is a drop-in Map-Collectives library that can be used with existing

MapReduce applications with only minimal modification. We also presented a Map-Collectives

implementations for the Twister4Azure iterative MapReduce framework as well. MDS and K-means

applications were used to evaluate the performance of Map-Collectives on Hadoop and on

Twister4Azure depicting up to 33% and 50% speedups over the non-collectives implementations by

getting rid of the communication and coordination overheads.

167

 8. CONCLUSIONS AND FUTURE WORKS

8.1 Summary and Conclusions

In this thesis, we have investigated the applicability of cloud computing environments and related

application frameworks to be able to perform large-scale data intensive parallel computations efficiently

with good scalability, fault-tolerance and ease-of-use. Over the course of our work, we have acquired

greater understanding about the challenges and bottlenecks involved in performing scalable data-

intensive parallel computing on cloud environments; we have proposed solutions to overcome these

potential obstacles. We selected pleasingly parallel computations, MapReduce type computations and

iterative MapReduce type computations as the types of computations that are better suited for

execution in cloud environments. We developed scalable parallel programming and computing

frameworks specifically designed for cloud environments to support efficient, reliable and user friendly

execution of the above three types of computations on cloud environments. Further, we developed data

intensive applications using those frameworks, and demonstrated that these applications can be

executed on cloud environments in an efficient scalable manner.

In Chapter 3, we introduced a set of frameworks that have been constructed using cloud-oriented

programming models to perform pleasingly parallel computations on cloud and cluster environments.

Using these frameworks, we demonstrated the feasibility of Cloud infrastructures for the

implementation of pleasingly parallel applications such as the Cap3 sequence assembly, the BLAST

sequence search and Generative Topographic Mapping (GTM) Interpolation. We analyzed and compared

each of these frameworks by performing a comparative study among them based on performance, cost

and usability. For the applications we considered, we developed frameworks on top of high latency,

168

eventually consistent cloud infrastructure services that relied on off-the-instance cloud storage; these

frameworks were able to exhibit performance efficiencies and scalability comparable to the MapReduce

based frameworks with local disk-based storage. In Chapter 3, we also analyzed the variations in cost

among the different platform choices (e.g., EC2 instance types), by highlighting the importance of

selecting an appropriate platform based on the nature of the computation. We used Amazon Web

Services [9] and Microsoft Windows Azure [52] cloud computing platforms, in addition to Apache

Hadoop [6] MapReduce and Microsoft DryadLINQ [7] as the distributed parallel computing frameworks.

While models like Classic-Cloud, which we introduced in Chapter 3, bring in operational and quality

of services advantages, it should be noted that the simpler programming models of existing cloud-

oriented frameworks like MapReduce and DryadLINQ are more convenient for the users. Motivated by

the positive results we saw in Chapter 3, we developed a fully-fledged MapReduce framework with

iterative-MapReduce support for the Windows Azure Cloud infrastructure using Azure infrastructure

services as building blocks which provided users the best of both worlds.

In Chapter 4, we introduced a novel decentralized controlled cloud infrastructure services-based

MapReduce architecture for cloud environments as well as an implementation of that architecture for

the Windows Azure cloud environment, called MRRoles4Azure. MRRoles4Azure fulfilled the much-

needed requirement of a distributed programming framework for Windows Azure cloud users.

MRRoles4Azure was built using Azure cloud infrastructure services that take advantage of the quality of

service guarantees provided by the Azure cloud. Even though cloud services have higher latencies than

their traditional counterparts, scientific applications implemented using MRRoles4Azure were able to

perform comparatively with the other MapReduce implementations, thus proving the feasibility of the

MRRoles4Azure architecture. We also explored the challenges presented by cloud environments to

execute MapReduce computations and we discussed how we overcame them in the MRRoles4Azure

169

architecture. We also implemented and analyzed the performance of two MapReduce applications on

two popular cloud infrastructures. In our experiments, the MapReduce applications executed in the

cloud infrastructures exhibited performance and efficiency characteristics comparable to the

MapReduce applications that were executed using traditional clusters. We demonstrated that using

MapReduce in cloud environments is a very viable option, as it exhibited performance results

comparable to in house clusters, because of its on demand availability, horizontal scalability and its’ easy

to use programming model; in addition, it poses no upfront costs. This option is also an enabler for the

computational scientists, especially in scenarios where in-house compute clusters are not readily

available. From an economical and maintenance perspective, it even makes sense not to procure in-

house clusters if the utilization would be low.

In Chapter 5, we presented Twister4Azure, a novel iterative MapReduce distributed computing

runtime for Windows Azure Cloud. Twiser4Azure enables the users to perform large-scale data intensive

iterative computations efficiently on Windows Azure Cloud, by hiding the complexity of scalability and

fault tolerance typically present when using Clouds. The key features of Twiser4Azure include the novel

programming model for iterative MapReduce computations, the multi-level data caching mechanisms to

overcome the latencies of cloud services, the decentralized cache aware task scheduling utilized to avoid

single point failures and the framework managed fault tolerance drawn upon to ensure the eventual

completion of the computations. We also presented optimized data broadcasting and intermediate data

communication strategies that sped up the computations. Twister4Azure contains MRRoles4Azure

MapReduce capabilities and the Classic-Cloud pleasingly parallel framework capabilities

We presented four real world data intensive applications which were implemented using

Twister4Azure and compared the performance of those applications with that of the Twister (Java) and

the Hadoop MapReduce frameworks. We presented Multi-Dimensional Scaling (MDS) and KMeans

170

Clustering as iterative scientific applications of Twister4Azure. Experimental evaluation showed that

MDS using Twister4Azure on a shared public cloud scaled similar to the Twister (Java) MDS on a

dedicated local cluster. Further, the KMeans Clustering using Twister4Azure with shared cloud virtual

instances outperformed Apache Hadoop in a local cluster by a factor of 2 to 4, and exhibited

performance comparable to that of Twister (Java) running on a local cluster. These iterative MapReduce

computations were performed on up to 256 cloud instances with up to 40,000 tasks per computation.

We also presented sequence alignment and Blast sequence searching pleasingly parallel MapReduce

applications of Twister4Azure. These applications running on the Azure Cloud exhibited performance

comparable to the Apache Hadoop on a dedicated local cluster.

In Chapter 6, we discussed some of the performance implications of performing scalable parallel

computing on cloud environments. These include data inhomogeneity, virtualization overhead,

performance variations in clouds infrastructures and various data caching options. Many real world data

sets and problems are inhomogeneous in nature, a characteristic that makes it difficult to divide those

computations into equally balanced computational parts. But often, the inhomogeneity of problems is

randomly distributed, and this provides a natural load balancing inside the sub tasks of a computation.

We observed that the scheduling mechanism employed by both dynamic scheduling (Hadoop) and static

scheduling (DryadLINQ) performs well when randomly distributed inhomogeneous data is used. Also, in

the above study, we observed that, when there are sufficient map tasks, the global queue based

dynamic scheduling strategy adopted by Hadoop (and also by MRRoles4Azure and Twister4Azure)

provides load balancing even in extreme scenarios like skewed distributed inhomogeneous data sets.

We also observed that the fluctuation of MapReduce performance on clouds is minimal over a

week-long period, assuring consistency and predictability of application performance in the cloud

environments. We also performed experiments using identical hardware for Hadoop on Linux and

171

Hadoop on Linux on Virtual Machines to study the effect of virtualization on the performance of our

application. These test results showed that the average virtual machines overhead is around 20%. We

also analyzed the performance anomalies of Azure instances with the use of in-memory caching; we

then proposed a novel caching solution based on Memory-Mapped Files to overcome these

performance anomalies.

Finally, in Chapter 7, we introduced Map-Collectives, collective communication operations for

MapReduce inspired by MPI collectives, as a set of high level primitives that encapsulate some of the

common iterative MapReduce application patterns. Map-Collectives improve the communication and

computation performance of the applications by enabling highly optimized group communication across

the workers, by getting rid of unnecessary/redundant steps and by enabling the frameworks to use a

poly-algorithm approach based on the use case. Map-Collectives also improve the usability of the

MapReduce frameworks by providing abstractions that closely resemble the natural application patterns

and which reduces the implementation burden of the developers by providing optimized substitutions

to certain steps of the MapReduce model. We envision a future where many MapReduce and iterative

MapReduce frameworks support a common set of portable Map-Collectives, and we consider this work

as a step towards that fulfilling that goal. We defined Map-AllGather and Map-AllReduce Map-

Collectives and implemented Multi-Dimensional Scaling and K-means Clustering applications using these

operations. We also presented the H-Collectives library for Hadoop, which is a drop-in Map-Collectives

library that can be used with existing MapReduce applications with only minimal modifications. We also

presented a Map-Collectives implementation for the Twister4Azure iterative MapReduce framework as

well. MDS and K-means applications were used to evaluate the performance of Map-Collectives on

Hadoop and on Twister4Azure, depicting up to 33% and 50% speedups over the non-collectives

implementations by getting rid of the communication and coordination overheads.

172

Cloud infrastructure services provide users with scalable, highly-available alternatives to their

traditional counterparts, but without the burden of managing them. While the use of high latency,

eventually consistent cloud services together with off-instance cloud storage has the potential to cause

significant overheads, our work in this thesis has shown that it is possible to build efficient, low

overhead applications utilizing them. Cloud infrastructure service-based framework prototypes that we

developed offered good parallel efficiencies in almost all of the cases we considered. The cost

effectiveness of cloud data centers, combined with the comparable performance reported here,

suggests that large scale data intensive applications will be increasingly implemented on clouds, and

that using MapReduce frameworks will offer convenient user interfaces with little overhead.

8.2 Solutions to the research challenges

In section 1.2, we identified a set of challenges that we faced in performing scalable parallel

computing in the Cloud environments. The following section summarizes the solutions that we have

proposed to those challenges as part of this thesis.

1. Programming model

We selected the MapReduce programming model extended to support iterative applications as

the programming model abstraction to perform large scale computations on cloud environments.

The iterative MapReduce model supports pleasingly parallel, MapReduce and iterative MapReduce

type applications; this gives us the ability to express a large and a useful subset of large-scale data

intensive computations. Iterative MapReduce is simple and easy-to-use by the end user developers

who are already familiar with the MapReduce model. As mentioned in section 2.3, the loop variant

173

& loop invariant data properties and the ability to easily parallelize individual iterations make data

intensive iterative computations suitable for efficient execution in cloud environments.

We further extend the iterative MapReduce programming model by introducing the Map-

Collectives collective communications primitives (eg: Map-AllGather, Map-AllReduce). As

mentioned in section 7.3.2, Map-Collectives improve the usability of the iterative MapReduce

model.

2. Data Storage

As presented in sections 5.1.2 and 6.4, we introduced multi-level data caching to overcome the

latencies and bandwidth limitations of Cloud Storages so as to improve the performance of data

intensive computations in cloud as well as in other environments. The iterative MapReduce

architecture and the implementations we have presented in section 5 have the capability to store

intermediate data on different cloud storages, based on the size of the data, the access patterns of

the data and the performance of different cloud storage options. Also, the frameworks presented in

section 5, enable the users to configure the fault tolerance granularity to avoid finer grained check

pointing of each task output; this allows them to select a tradeoff between a finer grained fault

tolerance vs the performance of the computations.

3. Task Scheduling

Architectures and implementations presented in this thesis use a global queue based dynamic

scheduling approach to schedule the tasks, ensuring natural load balancing and dynamic scalability

of the system. As presented in section 5.1.3, we introduced a data cache aware task scheduling

algorithm to improve the aggregate data bandwidth by eliminating the data transfer overheads.

174

Further, as mentioned in section 7.3.2.3, the Map-Collectives facilitates communication primitive

based task scheduling to remove some of the overheads of the task scheduling.

4. Data Communication

The iterative MapReduce and MapReduce architectures presented in this thesis utilize hybrid

data transfers using either a combination of cloud Blob Storage, cloud Tables or direct TCP

communication to improve the data communication performance. Also, the frameworks proposed

in this thesis enable data reuse across applications which reduce the data transfer requirements.

Map-Collectives identify several commonly used communications patterns of data intensive

applications and provide communication and computation abstractions for them. In addition, Map-

Collectives improve the communication and computation performance of iterative MapReduce

applications by utilizing all-to-all group communications and hierarchical reductions. Map-

Collectives also reduce the size of data communication, overlap the communication with

computation and enable the possibility of platform specific Map-Collectives implementations suited

for the particular cloud environment.

5. Fault tolerance

The MapReduce and iterative MapReduce architectures presented in this thesis support

framework managed fault tolerance by ensuring the ability to recover from failure of the parts or

tasks of a large scale computation without having to re-run the whole computation. As mentioned in

section 5.1.6, the proposed iterative MapReduce architecture supports finer grained task level fault

tolerance as well as coarser grained iteration level fault tolerance. Also, we proposed the usage of

hybrid data communication mechanisms by utilizing a combination of faster non-persistent

175

mediums and slower persistent mediums, a combination which can enable check-pointing of the

computations in the background.

The architectures introduced in this thesis avoid single point of failures through the use of

decentralized architectures. This ensures that a single cloud instance failure won’t cause a total

computation failure. Further, the frameworks handle the stragglers (tail of slow tasks) by scheduling

duplicate executions of the slow tasks.

6. Scalability

The iterative MapReduce frameworks introduced in this thesis extend the MapReduce

programming model and inherit most of the scalability properties of MapReduce.

The decentralized architectures presented in this thesis facilitate dynamic scalability and avoid

single point bottlenecks. They also support hybrid data transfers to overcome cloud service

scalability issues by utilizing multiple services that act in parallel to transfer the data. The hybrid

scheduling, utilizing a combination of cloud queue storage and cloud table storage, reduces the

scheduling overhead even with the increase of the amount of tasks and compute resources of the

computations.

7. Efficiency

The iterative MapReduce architecture proposed in this thesis uses multi-level data caching to

improve efficiency by reducing the data transfer and staging overheads. Also, it uses direct TCP data

transfers to increase data transfer performance, and performs execution history based scheduling to

reduce the scheduling overheads. The frameworks proposed in this thesis support multiple waves of

map tasks per computation and iteration, which improves the load balancing and the utilizations of

176

the cluster. Frameworks also improve performance and efficiency by overlapping the intermediate

data communication with computations, and by performing duplicate executions of straggling tasks.

8. Monitoring, Logging and Metadata storage *

The Twister4Azure iterative MapReduce framework presented in section 5 contains a Web

based monitoring console for task and job monitoring, including the monitoring of CPU and memory

usages by the cloud instances. It also uses cloud tables for persistent meta-data and log storage.

9. Cost effective *

The frameworks presented in this thesis ensure cost effectiveness by ensuring near optimum

utilization of the cloud instances. Also, these frameworks support all the cloud instance types by

allowing users to choose the appropriate instances for their use case. The architectures presented in

this thesis can also be used with opportunistic environments, such as Amazon EC2 spot instances.

10. Ease of usage *

The frameworks presented in this thesis extend the easy-to-use familiar MapReduce

programming model and provide framework-managed fault-tolerance. The Twister4Azure

implementation presented in Chapter 5 and the Map-Collectives for Twister4Azure presented in

Chapter 7 support local debugging and testing of applications through the Azure local development

fabric.

The Map-Collective operations presented in Chapter 7 allow users to more naturally translate

applications to the iterative MapReduce programming model. Collective operations also free the

users from the burden of implementing these operations manually.

177

Note: In this thesis, we do not focus on the research issues involving monitoring, logging and metadata

storage*(9), cost effectiveness*(10) and the ease of usage*(11). However, the solutions and frameworks

we have developed as part of this thesis research provide and, in some cases, improve the industry

standard solutions for each of these issues.

8.3 Future Work

In this thesis, we presented Twister4Azure iterative MapReduce and Map-Collectives as solutions to

perform scalable parallel computing in cloud environments. Several areas and directions exist through

which we could build on f the foundation established by these frameworks.

One such area is the extension of the Twister4Azure data caching capabilities to a more general

distributed caching framework. The first step towards this would be the coordination of the data caches

across the different instances; this would allow the programs to share the cached data across the

instances. Cache sharing allows a program running in another instance to fetch the data from the

caches of other instances, if present, rather than downloading them from the cloud storage. Some use

cases for this capability include the re-executions of failed tasks and the duplicate executions of

straggling tasks. Further, we can expose a general API to the data caching layer, allowing applications

other than Twister4Azure also to utilize the data caching layer. One option is to model this API as a

distributed file system.

Another interesting research direction would be to design a domain specific language layer for

iterative MapReduce. One option is to extend one of the existing MapReduce language layers such as

Hive and Pig to support iterative MapReduce computations. We can also develop workflow layers on top

178

of iterative MapReduce to better compose the applications together; this would allow for a more richer

and efficient data sharing (eg: share data stored in cache) process to occur between the applications.

In our work, we presented Map-AllGather and Map-AllReduce implementations as part of the Map-

Collectives concept. Another possible Map-Collectives pattern is the Map-ReduceScatter. There are

iterative MapReduce applications where only a small subset of loop invariant data product is needed to

process the subset of input data in a Map task. In such cases, it is inefficient to make all the loop

invariant data available to such computations. In some of these applications, the size of the loop variant

data is too large to fit into the memory and it can introduce communication and scalability bottlenecks

as well. An example of such a computation is PageRank. The Map-ReduceScatter primitive can be

modeled after MPI ReduceScatter to support such use cases in an optimized manner.

Our Map-Collectives work focused mostly on the execution patterns and the programming API’s.

Another dimension would be to explore the ideal data models for the Map-Collectives model.

Our work mainly focused on the pleasingly parallel, MapReduce and iterative MapReduce type

applications. Another pre-dominant type of large-scale applications in the scientific community is the

MPI type of applications, which has complex inter-process communication and coordination

requirements. Another interesting research direction would be to explore the development of cloud

specific programming models to support some of the MPI type application types.

Given the relative novelty of the Big Data movement, cloud infrastructures and the MapReduce

frameworks, there exist many more exciting topics to explore for future research work. Some of these

examples include the large scale real time stream processing in cloud environments and large scale

graph processing in cloud environments.

179

8.4 Produced Software

8.4.1 Twister4Azure

Twister4Azure is a decentralized iterative MapReduce framework for Windows Azure Cloud.

Twister4Azure and sample applications are available at http://twister4azure.codeplex.com/ as an open

source project. First release of Twister4Azure was performed in May 2011.

8.4.2 Twister4Azure Map-Collectives

We contributed the Twister4Azure Map-Collective implementation to the open source

Twister4Azure project. Source codes of Twister4Azure Map-Collectives and the sample applications are

available at http://twister4azure.codeplex.com/.

8.4.3 H-Collectives – Map-Collectives for Apache Hadoop

We implemented H-Collectives as a Map-Collective implementation for Apache Hadoop. Source

codes of the H-Collectives implementation together with sample applications are available in the SALSA

group source control repository.

8.4.4 MRRoles4Azure

MRRoles4Azure is a decentralized MapReduce framework for Window Azure Cloud. MRRoles4Azure

and the sample applications are available at http://salsahpc.indiana.edu/mapreduceroles4azure/. First

release of MRRoles4Azure was performed in Dec 2010, according best of our knowledge, making it the

first MapReduce framework on Azure cloud. MRRoles4Azure was deprecated after the functionality of

MRRoles4Azure was absorbed in to Twister4Azure.

8.4.5 Classic Cloud Frameworks

180

We implemented Classic Cloud Frameworks to enable the easy processing of embarrassingly parallel

computations on Cloud environments and in local clusters. Source codes for the Classic Cloud

framework implementations for Azure Cloud, Amazon EC2 Cloud, Apache Hadoop and Microsoft

DryadLINQ are available in the SALSA group source control repository.

8.5 List of publications related to this thesis

 [1] T. Gunarathne, T.-L. Wu, J. Y. Choi, S.-H. Bae, and J. Qiu, "Cloud computing paradigms for

pleasingly parallel biomedical applications," Concurrency and Computation: Practice and

Experience, 23: 2338–2354. doi: 10.1002/cpe.1780.

[2] T. Gunarathne, T.-L. Wu, B. Zhang and J. Qiu, “Scalable Parallel Scientific Computing Using

Twister4Azure”. Future Generation Computer Systems(FGCS), 2013 Volume 29, Issue 4, pp.

1035-1048.

[3] J. Ekanayake, T. Gunarathne, and J. Qiu, "Cloud Technologies for Bioinformatics Applications"

Parallel and Distributed Systems, IEEE Transactions on, vol. 22, pp. 998-1011, 2011.

[4] T. Gunarathne, J. Qiu, and D.Gannon, “Towards a Collective Layer in the Big Data Stack”, 14th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2014).

Chicago, USA. May 2014.

[5] T. Gunarathne, T.-L. Wu, B. Zhang and J. Qiu, “Portable Parallel Programming on Cloud and HPC:

Scientific Applications of Twister4Azure”. 4th IEEE/ACM International Conference on Utility and

Cloud Computing (UCC 2011). Melbourne, Australia. Dec 2011.

[6] T. Gunarathne, T. L. Wu, J. Qiu, and G. C. Fox, "MapReduce in the Clouds for Science," presented

at the 2nd International Conference on Cloud Computing, Indianapolis, Dec 2010.

[7] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, "Cloud Computing Paradigms for Pleasingly Parallel

Biomedical Applications," In Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing (HPDC '10) - ECMLS workshop. ACM, 460-469.

DOI=10.1145/1851476.1851544

[8] T. Gunarathne (Advisor: G. C. Fox). “Scalable Parallel Computing on Clouds”. Doctoral Research

Showcase at SC11. Seattle. Nov 2011.

181

[9] J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, and G.Fox., "Twister: A Runtime for

iterative MapReduce," presented at the Proceedings of the First International Workshop on

MapReduce and its Applications of ACM HPDC 2010 conference June 20-25, 2010, Chicago,

Illinois, 2010.

[10] J. Ekanayake, A. S. Balkir, T. Gunarathne, G. Fox, C. Poulain, N. Araujo, and R. Barga, "DryadLINQ

for Scientific Analyses," in Fifth IEEE International Conference on eScience: 2009, Oxford, 2009.

[11] T. Gunarathne, B. Salpitikorala, A. Chauhan, and G. C. Fox, “Iterative Statistical Kernels on

Contemporary GPUs”. Int. J. of Computational Science and Engineering (IJCSE), 2013 Vol.8, No.1,

pp.58 - 77.

[12] T. Gunarathne, B. Salpitikorala, A. Chauhan, and G. C. Fox, “Optimizing OpenCL Kernels for

Iterative Statistical Applications on GPUs”. 2nd International Workshop on GPUs and Scientific

Applications, Oct 2011.

Other (book chapters, posters, presentations)

[13] T. Gunarathne, J. Qui, and G. Fox, "Iterative MapReduce for Azure Cloud," presented at the

Cloud Computing and Its Applications, ANL, Chicago, IL, Apr 2011.

[14] J. Ekanayake, X. Qiu, T. Gunarathne, S. Beason and G.C. Fox. “High Performance Parallel

Computing with Clouds and Cloud Technologies”. Book chapter in Cloud Computing and

Software Services: Theory and Techniques, CRC Press (Taylor and Francis), ISBN-10:

1439803153.

[15] J. Qiu and T. Gunarathne "Twister4Azure: Parallel Data Analytics on Azure" presented at the

Cloud Futures Workshop 2012, Berkeley, CA, Apr 2012.

182

 9. REFERENCES

[1] T. Hey, S. Tansley, and K. Tolle, The Fourth Paradigm: Data-Intensive Scientific Discovery, 1 ed.:

Microsoft Research, 978-0982544204, 2009.

[2] J. Dean, and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” Commun.

ACM, vol. 51, no. 1, pp. 107-113, 2008.

[3] J. Ekanayake, S. Pallickara, and G. Fox, “MapReduce for Data Intensive Scientific Analyses,” in

Fourth IEEE International Conference on eScience, 2008, pp. 277-284.

[4] C. Evangelinos, and C. N. Hill, “Cloud Computing for parallel Scientific HPC Applications:

Feasibility of running Coupled Atmosphere-Ocean Climate Models on Amazon’s EC2.,” in Cloud

computing and it's applications (CCA-08), Chicago, IL, 2008.

[5] Qiu X., Ekanayake J., Gunarathne T., Bae S.H., Choi J.Y., Beason S. et al., “Using MapReduce

Technologies in Bioinformatics and Medical Informatics,” in Using Clouds for Parallel

Computations in Systems Biology workshop at SuperComputing (SC09), Portland, Oregon, 2009.

[6] ASF, "Apache Hadoop" [Online], Available: http://hadoop.apache.org/core/. (Retrieved March 5,

2014)

[7] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda et al., “DryadLINQ: A System for

General-Purpose Distributed Data-Parallel Computing Using a High-Level Language,” in

Symposium on Operating System Design and Implementation (OSDI), San Diego, CA, 2008.

[8] "Windows Azure Compute" [Online], Available:

http://www.microsoft.com/windowsazure/features/compute/. (Retrieved July 25th 2011,

[9] Amazon Web Services, vol. 2010, Retrieved Mar. 20, 2011, from Amazon:

http://aws.amazon.com/.

[10] J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu et al., “Twister: A Runtime for iterative

MapReduce,” in First International Workshop on MapReduce and its Applications of 19th ACM

International Symposium on High Performance Distributed Computing (HPDC 2010), Chicago,

Illinois, 2010.

183

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed data-parallel programs

from sequential building blocks,” in ACM SIGOPS Operating Systems Review, 2007, pp. 59-72.

[12] T. Gunarathne, B. Zhang, T.-L. Wu, and J. Qiu, “Scalable parallel computing on clouds using

Twister4Azure iterative MapReduce,” Future Generation Computer Systems, vol. 29, no. 4, pp.

1035-1048, June 2013, 2013.

[13] ASF, "Hadoop Distributed File System (HDFS)" [Online], Available:

wiki.apache.org/hadoop/HDFS. (Retrieved March 5, 2014)

[14] Apache, "Hive" [Online], Available: http://hive.apache.org/. (Retrieved January 6, 2014)

[15] Apache, "Pig " [Online], Available: http://pig.apache.org/. (Retrieved January 6, 2014)

[16] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows

et al., “Bigtable: A Distributed Storage System for Structured Data,” ACM Trans. Comput. Syst.,

vol. 26, no. 2, pp. 1-26, 2008.

[17] Apache, "Hbase" [Online], Available: http://hbase.apache.org/. (Retrieved January 6, 2014)

[18] Apache, "Accumalo" [Online], Available: http://accumulo.apache.org/. (Retrieved January 6,

2014)

[19] Apache, "Mahout" [Online], Available: http://mahout.apache.org/. (Retrieved January 6, 2014)

[20] Apache, "Giraph" [Online], Available: http://giraph.apache.org/. (Retrieved January 6, 2014)

[21] Apache, "Flume" [Online], Available: http://flume.apache.org/. (Retrieved January 6, 2014)

[22] Apache, "Sqoop" [Online], Available: http://sqoop.apache.org/. (Retrieved January 6, 2014)

[23] Amazon, "Amazon Web Services" [Online], Available: http://aws.amazon.com/. (Retrieved

March 5, 2014)

[24] Z. Bingjing, R. Yang, W. Tak-Lon, J. Qiu, A. Hughes, and G. Fox, “Applying Twister to Scientific

Applications,” in Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second

International Conference on, 2010, pp. 25-32.

[25] ASF, "Apache ActiveMQ" [Online], Available: http://activemq.apache.org/. (Retrieved March 5,

2014)

184

[26] Microsoft, "Microsoft Daytona" [Online], Available: http://research.microsoft.com/en-

us/projects/daytona/. (Retrieved March 5, 2014)

[27] J. Lin, and C. Dyer, “Data-Intensive Text Processing with MapReduce,” Synthesis Lectures on

Human Language Technologies, vol. 3, no. 1, pp. 1-177, 2010/01/01, 2010.

[28] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Efficient Iterative Data Processing on

Large Clusters,” in The 36th International Conference on Very Large Data Bases, Singapore,

2010.

[29] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster Computing

with Working Sets,” in 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud '10),

Boston, 2010.

[30] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley et al., “Resilient distributed

datasets: a fault-tolerant abstraction for in-memory cluster computing,” in Proceedings of the

9th USENIX conference on Networked Systems Design and Implementation, San Jose, CA, 2012.

[31] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica, “Shark: SQL and rich

analytics at scale,” in Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data, New York, New York, USA, 2013, pp. 13-24.

[32] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized streams: an efficient and fault-

tolerant model for stream processing on large clusters,” in Proceedings of the 4th USENIX

conference on Hot Topics in Cloud Ccomputing, Boston, MA, 2012, pp. 10-10.

[33] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “GraphX: a resilient distributed graph system

on Spark,” in First International Workshop on Graph Data Management Experiences and

Systems, New York, New York, 2013, pp. 1-6.

[34] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “iMapReduce: A Distributed Computing Framework for

Iterative Computation,” in Proceedings of the 2011 IEEE International Symposium on Parallel

and Distributed Processing Workshops and PhD Forum, 2011, pp. 1112-1121.

[35] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “PrIter: a distributed framework for prioritized iterative

computations,” in Proceedings of the 2nd ACM Symposium on Cloud Computing, Cascais,

Portugal, 2011, pp. 1-14.

185

[36] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser et al., “Pregel: a system

for large-scale graph processing,” in Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data, Indianapolis, Indiana, USA, 2010, pp. 135-146.

[37] L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM, vol. 33, no. 8, pp.

103-111, 1990.

[38] L. Huan, and D. Orban, “Cloud MapReduce: A MapReduce Implementation on Top of a Cloud

Operating System,” in Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM

International Symposium on, 2011, pp. 464-474.

[39] Google, "AppEngine MapReduce" [Online], Available: http://code.google.com/p/appengine-

mapreduce. (Retrieved March 5, 2014)

[40] Wei Lu, Jared Jackson, and Roger Barga, “AzureBlast: A Case Study of Developing Science

Applications on the Cloud,” in ScienceCloud: 1st Workshop on Scientific Cloud Computing co-

located with HPDC 2010 (High Performance Distributed Computing), Chicago, IL, 2010.

[41] A. Dave, W. Lu, J. Jackson, and R. Barga, “CloudClustering: Toward an iterative data processing

pattern on the cloud,” in First International Workshop on Data Intensive Computing in the

Clouds, Anchorage, Alaska, 2011.

[42] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer et al., “BLAST+:

architecture and applications,” BMC Bioinformatics 2009, 10:421, 2009.

[43] J. Ekanayake, T. Gunarathne, and J. Qiu, “Cloud Technologies for Bioinformatics Applications,”

Parallel and Distributed Systems, IEEE Transactions on, vol. 22, no. 6, pp. 998-1011, 2011.

[44] X. Huang, and A. Madan, “CAP3: A DNA sequence assembly program.,” Genome Res, vol. 9, no.

9, pp. 868-77, 1999.

[45] C. M. Bishop, M. Svensén, and C. K. I. Williams, “GTM: The generative topographic mapping,”

Neural computation, vol. 10, pp. 215--234, 1998.

[46] S.-H. Bae, J. Y. Choi, J. Qiu, and G. C. Fox, “Dimension reduction and visualization of large high-

dimensional data via interpolation,” in Proceedings of the 19th ACM International Symposium

on High Performance Distributed Computing, Chicago, Illinois, 2010, pp. 203-214.

186

[47] Jong Youl Choi, Judy Qiu, Marlon Pierce, and G. Fox, “Generative Topographic Mapping by

Deterministic Annealing,” in Proceedings of the 10th International conference on Computational

Science and Engineering (ICCS 2010), Amsterdam, The Netherlands, 2010.

[48] NCBI, BLAST, Retrieved Sep. 20, 2010, from NIH: http://blast.ncbi.nlm.nih.gov.

[49] T. F. Smith, and M. S. Waterman, “Identification of common molecular subsequences,” Journal

of Molecular Biology, vol. 147, no. 1, pp. 195-197, 1981.

[50] O. Gotoh, “An improved algorithm for matching biological sequences,” Journal of Molecular

Biology, vol. 162, pp. 705-708, 1982.

[51] J. B. Kruskal, and M. Wish, Multidimensional Scaling: Sage Publications Inc., 1978.

[52] J. de Leeuw, “Convergence of the majorization method for multidimensional scaling,” Journal of

Classification, vol. 5, pp. 163-180, 1988.

[53] Windows Azure Platform, Retrieved Mar. 20, 2010, from Microsoft:

http://www.microsoft.com/windowsazure/.

[54] Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, and G. Fox, “Cloud Computing Paradigms for

Pleasingly Parallel Biomedical Applications,” in Proceedings of the Emerging Computational

Methods for the Life Sciences Workshop of 19th ACM International Symposium on High

Performance Distributed Computing (HPDC 2010), Chicago, Illinois, 2010.

[55] T. Gunarathne, T.-L. Wu, J. Y. Choi, S.-H. Bae, and J. Qiu, “Cloud computing paradigms for

pleasingly parallel biomedical applications,” Concurrency and Computation: Practice and

Experience, vol. 23, no. 17, pp. 2338–2354, 2011.

[56] J. Varia, Cloud Architectures, Amazon Web Services. Retrieved April 20, 2010 :

http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf.

[57] D. Chappell, Introducing Windows Azure, December, 2009:

http://go.microsoft.com/?linkid=9682907.

[58] Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta, Introduction to Parallel

Computing: Addison Wesley (Second Edition), 978-0201648652, 2003.

[59] X. Huang, and A. Madan, “CAP3: A DNA sequence assembly program,” Genome Res, vol. 9, no. 9,

pp. 868-77, 1999.

187

[60] T. Gunarathne, W. Tak-Lon, J. Qiu, and G. Fox, “MapReduce in the Clouds for Science,” in Cloud

Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on,

2010, pp. 565-572.

[61] MPI-Forum, "MPI: A Message-Passing Interface Standard, Version 3.0" [Online], Available:

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf. (Retrieved Sep, 2012)

[62] Y. Gu, Grossman, R, “Sector and Sphere: The Design and Implementation of a High Performance

Data Cloud,” Crossing boundaries: computational science, e-Science and global e-Infrastructure I.

Selected papers from the UK e-Science All Hands Meeting 2008 Phil. Trans. R. Soc. A, vol. 367, pp.

2429-2445, 2009.

[63] J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu et al., “Twister: A Runtime for iterative

MapReduce,” in Proceedings of the First International Workshop on MapReduce and its

Applications of ACM HPDC 2010 conference June 20-25, 2010, Chicago, Illinois, 2010.

[64] "JAligner." [Online], Available: http://jaligner.sourceforge.net. (Retrieved December, 2009)

[65] T. Gunarathne, B. Zhang, T.-L. Wu, and J. Qiu, “Portable Parallel Programming on Cloud and HPC:

Scientific Applications of Twister4Azure,” in 2011 Fourth IEEE International Conference on Utility

and Cloud Computing (UCC), Melbourne, Australia, 2011.

[66] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears, “MapReduce

online,” in Proceedings of the 7th USENIX conference on Networked Systems Design and

Implementation, San Jose, California, 2010, pp. 21-21.

[67] S. Lloyd, “Least squares quantization in PCM,” Information Theory, IEEE Transactions on, vol. 28,

no. 2, pp. 129-137, 1982.

[68] Ekanayake J, Qiu X, Gunarathne T, Beason S, and F. G, "High Performance Parallel Computing

with Clouds and Cloud Technologies," Cloud Computing and Software Services, I. M. Ahson S,

ed.: CRC Press,ISBN: 1439803153, 2009.

[69] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho et al., “Xen and the art of

virtualization,” in Proceedings of the nineteenth ACM symposium on Operating systems

principles, Bolton Landing, NY, USA, 2003, pp. 164-177.

188

[70] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, "Evaluating the Performance Impact of Xen on MPI

and Process Execution For HPC Systems.". In Proceedings of the 2nd International Workshop on

Virtualization Technology in Distributed Computing (VTDC '06), Washington, DC, USA,

[71] E. Walker, “Benchmarking Amazon EC2 for high-performance scientific computing,”;login: The

USENIX Magazine, vol. 33, no. 5.

[72] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “Collective communication: theory,

practice, and experience,” Concurrency and Computation: Practice and Experience, vol. 19, no.

13, pp. 1749-1783, 2007.

[73] T. Gunarathne, J. Qiu, and D. Gannon, “Towards a Collective Layer in the Big Data Stack,” in 14th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chicago, USA, 2014.

[74] USF, "MPI Tutorial : Collective Communication" [Online], Available:

http://www.rc.usf.edu/tutorials/classes/tutorial/mpi/chapter8.html. (Retrieved March, 2014)

[75] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and J. J. Dongarra,

“Performance analysis of MPI collective operations,” in Parallel and Distributed Processing

Symposium, 2005. Proceedings. 19th IEEE International, 2005.

[76] R. W. Hockney, “The communication challenge for MPP: Intel Paragon and Meiko CS-2,” Parallel

Computing, vol. 20, no. 3, pp. 389-398, 1994.

189

CURRICULUM VITAE

Name of Author: Nanayakkara Kuruppuge Thilina Gunarathne

Date of Birth: June 26, 1982

Place of Birth: Kalutara, Sri Lanka

Education:

 May, 2010

Master of Science, Computer Science

Indiana University, Bloomington, Indiana

 Mar, 2004 Bachelor of Science, Computer Science and Engineering

University of Moratuwa, Sri Lanka

Experience:

 Aug, 2013 – Present Senior Data Scientist, Customer Analytics,
KPMG LLP /Link Analytics LLC, Knoxville, TN, USA

 Jun, 2010 - Oct, 2010 Research Intern, IBM Research,

Almaden Research Center, San Jose, CA, USA

 May, 2008 – Aug, 2008 Research Intern, Microsoft Research,

Microsoft Corporation, Redmond, WA, USA

 Aug, 2007 – Aug, 2013 Research Assistant, SALSA Lab / Extreme Computing Lab,
Indiana University, Bloomington, IN, USA

 Jul, 2006 – Jul, 2007 Senior Software Engineer,

WSO2 Inc, Colombo Sri Lanka

Honors/Affiliations:

 Persistent Systems Graduate Fellowship (2012-2013)

 Graduate Student Scholarship – Indiana University, Bloomington
(2007 – 2011)

 Committer and Project Management Committee member for Apache
Axis2, Apache Web Services and Apache Airavata.(2005 –Present)

 Google Summer of Code (2005)

