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THILINA GUNARATHNE 

SCALABLE PARALLEL COMPUTING ON CLOUDS: 
EFFICIENT AND SCALABLE ARCHITECTURES TO PERFORM PLEASINGLY PARALLEL, 

MAPREDUCE AND ITERATIVE DATA INTENSIVE COMPUTATIONS ON CLOUD 

ENVIRONMENTS 

Over the last decade, three major disruptive trends driven by the software industry altered the 

scalable parallel computing landscape. These disruptions are the data deluge (i.e., shift to data-

intensive from compute-intensive), next generation compute and storage frameworks based on 

MapReduce, and the utility computing model introduced by cloud computing environments. This 

thesis focuses on the intersection of these three disruptions and evaluates the feasibility of using 

cloud computing environments to perform large-scale, data-intensive computations using next-

generation programming and execution frameworks. The current key challenges for performing 

scalable parallel computing in cloud environments include identifying suitable application patterns, 

identifying efficient and easy-to-use programing abstractions  to represent those patterns, 

performing appropriate task partitioning and task scheduling, identifying suitable data storage and 

staging architectures, utilizing suitable communication patterns, and identifying appropriate fault 

tolerance mechanisms.  

This thesis will identify three types of application patterns that are well suited for cloud 

environments. Presented first are pleasingly parallel computations, including pleasingly parallel 

programming frameworks for cloud environments. Secondly, MapReduce-type applications are 

explored, including a decentralized architecture and a prototype implementation to develop 

MapReduce frameworks using cloud infrastructure services. Third and finally, data-intensive 

iterative applications, which encompass many graph processing algorithms, machine-learning 

algorithms, and more, are considered. We present the Twister4Azure architecture and runtime as a 

solution for implementation of data-intensive iterative applications in cloud environments. 
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Twister4Azure architecture extends the familiar, easy-to-use MapReduce programming model with 

iterative extensions and iterative specific optimizations, enabling a wide array of large-scale iterative 

and non-iterative data analysis and scientific applications to utilize cloud platforms easily and 

efficiently in a fault-tolerant manner.  

Collective communication operations facilitate the optimized communication and coordination 

between groups of nodes of distributed computations, which leads to many advantages. We also 

present the applicability of collective communication operations to the iterative MapReduce 

computations on cloud and cluster environments, enriching these computations with additional 

application patterns without sacrificing the desirable properties of the MapReduce model. The 

addition of collective communication operations enhances the iterative MapReduce model by 

offering many performance improvements and ease-of-use advantages. 
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 1. INTRODUCTION 

Traditionally, High performance parallel computations using technologies like MPI have been the 

dominant force of large scale distributed parallel computing. These technologies have been used to 

implement a plethora of large scale scientific computations very successfully, and they have been driven 

mainly by the academics.   Examples of applications implemented using these technologies include many 

fluid dynamics computations such as weather predictions and molecular dynamic simulations. 

Applications implemented using these technologies are typically compute and/or communication 

bound, as opposed to disk bound, and they have very long execution times.  Usually these types of 

computations are performed by physicists, meteorologists, astro-physists, etc.  These technologies 

typically require specialized interconnects for optimal performance.  

However, over the last decade, three interconnected disruptions have happened in the large scale 

distributed parallel computing landscape, mainly driven by the software industry. These are the 

emergence of data intensive computing (aka big data), the emergence of the utility computing model 

introduced by Cloud computing offerings and the emergence of new generation of storage, 

programming and  execution frameworks such as MapReduce.  

A. Big Data 

The emergence of “Big Data” is fueled by the massive amount of data now flowing through 

virtually every field of science as well the technology industry. These massive data include the 

results of massive experiments such as the Large Hadron Collider (LHC), the rapid data produced 

by equipment such as new generation of sequencing machines, the data generated by the 
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overabundance of sensors, the ever increasing data set of the World Wide Web and many more.  

Scientists as well as those in the technology industry are reliant more than ever on large scale 

data and its analysis to uncover valuable information and observations. Jim Gray has noted that, 

increasingly, scientific breakthroughs will be powered by computing capabilities that support the 

ability of researchers to analyze massive data sets. Aptly, he dubbed data intensive scientific 

discovery “the fourth scientific paradigm of discovery [1].”  While the users of these data crave 

more power and greater ease of use to store and process these large data volumes, 

preprocessing, processing and analyzing these large amounts of data present unique and 

challenging problems.  Often, traditional HPC is not the optimal choice to implement data 

intensive computations.  

B. Cloud Computing 

Cloud computing introduces a utility computing model combined with a rich set of cloud 

infrastructure services offering a very viable environment in which to perform data intensive 

computations.  Cloud computing offerings by major commercial players provide on-demand 

computational services over the Web, which can be purchased within a matter of minutes by 

simply using a credit card. The utility computing model of these cloud computing offerings 

opens up exciting new opportunities for users to perform their data intensive parallel 

computations.  An interesting feature of Cloud computing is the ability to increase the 

throughput of the computations by horizontally scaling computing resources without incurring 

any additional overhead costs. This is facilitated by the virtually unlimited resource availability of 

cloud computing infrastructures, which are backed by the world’s largest data centers owned by 

major commercial players such as Amazon, Google and Microsoft. We expect that the 

economies of scale enjoyed by cloud providers will translate into lower costs for users. Cloud 
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computing platforms also offer a rich set of distributed cloud infrastructure services including 

storage, messaging and database services with cloud-specific service guarantees. These services 

can be leveraged to build and deploy scalable distributed applications on cloud environments. 

While clouds offer raw computing power combined with cloud infrastructure services offering 

storage and other services, there is a need for distributed computing frameworks to harness the 

power of clouds both easily and effectively.  At the same time, it should be noted that Clouds 

offer unique reliability and sustained performance challenges to large scale computations due to 

the virtualization, multi-tenancy, and non-dedicated commodity connectivity characteristics of 

the cloud environments. They do not provide the high-speed interconnects needed by high 

performance frameworks such as MPI. This produces the need for distributed parallel 

computing frameworks specifically tailored for cloud characteristics to harness the power of 

clouds both easily and effectively.   

C. MapReduce 

MapReduce consists of a storage framework, a programming model and an associated 

execution framework for distributed processing of very large data sets. The MapReduce 

distributed data analysis framework was originally introduced by Google [2], and it provides an 

easy-to-use programming model that features fault tolerance, automatic parallelization, 

scalability and data locality-based optimizations.  These features and the simplicity of the 

programming model allow users with no background or experience in distributed and parallel 

computing to utilize MapReduce and the distributed infrastructures to easily process large 

volumes of data. Due to the excellent fault tolerance features, MapReduce frameworks are well-

suited for the execution of large distributed jobs in brittle environments such as commodity 

clusters and cloud infrastructures. MapReduce frameworks are typically not optimized for the 
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best performance or parallel efficiency of small scale applications. The main goals of MapReduce 

frameworks include framework managed fault tolerance, the ability to run on commodity 

hardware, the ability to process very large amounts of data and horizontal scalability of compute 

resources. MapReduce frameworks like Hadoop trade off costs such as large startup overheads, 

task scheduling overheads and intermediate data persistence overheads for better scalability 

and reliability. Though introduced by the industry and used mainly in the information retrieval 

community, it is shown [3-5] that MapReduce frameworks are capable of supporting many 

scientific application use cases as well, making these frameworks good choices for scientists to 

easily build large, data-intensive applications that need to be executed within cloud 

infrastructures. Apache Hadoop [6] and Microsoft DryadLINQ [7] are two such distributed 

parallel data processing frameworks that support MapReduce type computations.   

The work of this thesis focuses on the intersection of the above three disruptions and evaluates the 

feasibility of Cloud Computing environments to perform large scale data intensive computations using 

new generation programming and execution frameworks such as MapReduce. 

In the following subsections, we present a detailed discussion of some of the challenges to 

performing scalable parallel computing on clouds and the approaches we propose to solve them. We 

focus mostly on scientific use cases as the technology industry leads the way with exploring other use 

cases such as web searching, various recommender systems, and targeted marketing, etc.  However, the 

solutions we propose are equally applicable for scientific use cases as well as for industry use cases. 

1.1 Statement of research problem 
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In this thesis, we investigate whether cloud computing environments and related application 

frameworks can be used to perform large-scale parallel computations efficiently with good scalability, 

fault-tolerance and ease-of-use. The outcomes of this work would be: 

1. Understand the challenges and bottlenecks to perform scalable parallel computing on cloud 

environments  

2. Propose solutions to the challenges and bottlenecks identified in 1. 

3. Develop scalable parallel programming frameworks specifically designed for cloud 

environments to support efficient, reliable and user friendly execution of data intensive 

computations on cloud environments.  

4. Develop data intensive scientific applications using the frameworks developed in 3. 

Demonstrate that these applications can be executed on cloud environments in an efficient 

scalable manner. 

1.2 Research Challenges  

In this section, we discuss the challenges to performing scalable parallel computing on Cloud 

environments. These challenges ideally need to be addressed by the programming frameworks that we 

design and develop. The solutions we propose to solve these challenges are summarized in section 8.2 

of the summary and conclusions chapter. 

1. Programming model 

One of the most important components of a computational framework is the programming 

model abstraction. The programming abstraction for scalable parallel computing should have the 

ability to express a sufficiently large and useful subset of large-scale data intensive computations. At 
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the same time, it should be simple and easy-to-use by the end user developers. Extending a familiar 

existing model, rather than inventing a new complex model, would be preferable from an end-user 

perspective. Another requirement is that the programming model should be suitable for efficient 

execution in cloud environments. An ideal programming abstraction to perform scalable parallel 

computing on clouds should strive for a balance of the above requirements.  

2. Data Storage 

Typical cloud storage offerings have large bandwidth and latency limitations due to the data 

that has been stored in off-instance shared storage infrastructures. Overcoming the bandwidth and 

latency limitations when accessing large input data products from cloud and other storages would 

be critical to the performance of data intensive computations in clouds as well as in other 

environments.  

Another challenge is to decide where to store and when to store (or whether to store) the 

output and intermediate data products of the computation. These decisions will have an impact on 

the fault tolerance and the performance of the computations. 

Cloud environments offer a variety of storage options. We need to choose the storage option 

best suited for the particular data product and the particular use case to get the maximum 

utilization and efficiency from the cloud resources. 

3. Task Scheduling 

Task scheduling can have a large impact on the performance of distributed computations, 

especially if the computation consists of thousands of finer grained tasks. In data intensive 

distributed computations, the tasks should be scheduled efficiently with an awareness of the data 
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locality, which improves the data bandwidth and with an awareness of the data availability in 

different locations (e.g., cached data), which potentially improves or eliminates the data transfer 

overheads. 

Task scheduling should support the dynamic load balancing of the computations to ensure 

optimum usage of the compute resources by possibly avoiding the effects of task and compute 

resource inhomogeneity.   Task scheduling should also support the dynamic scaling of the compute 

resources to take advantage of the dynamic scaling ability of the cloud environments. 

4. Data Communication 

Cloud infrastructures are known to exhibit inter-node I/O performance fluctuations (due to a 

shared network, unknown topology), which affect the data communication performance. 

Frameworks should be designed with consideration for these fluctuations. These may include 

reducing the amount of communication required, overlapping communication with computation to 

avoid performance bottlenecks with regards to communication, identifying communication patterns 

which are better suited for the particular cloud environment, etc. 

5. Fault tolerance 

Fault tolerance is a very important component of a large scale computation framework. Large 

scale computations should have the ability to recover from failures to the parts or tasks of the 

computation without having to re-run the whole computation, preferably with excellent support 

from the framework. Hence, the framework we design should ensure the eventual completion of 

the computations through framework-managed fault-tolerance mechanisms. These mechanisms 

also should strive to restore and complete the computations as efficiently as possible. Large scale 



8 

 

computation frameworks should also handle the stragglers (the tail of slow tasks) to optimize the 

computations. 

Node failures are to be expected whenever large numbers of nodes are utilized for 

computations. These failures become much more prevalent when virtual instances are running on 

top of non-dedicated hardware in cloud environments.  Cloud programming frameworks should be 

able to recover from node failures and should avoid single point of failures in the presence of node 

failures. 

6. Scalability 

Computations should be able to scale well with the increasing amount of compute resources. 

Inter-process communication and coordination overheads as well as system bottlenecks need to be 

kept to a minimum to ensure scalability of the computations up to hundreds of instances or cores. 

Also, computations should be able to scale well with increasing input data sizes as well. 

7. Efficiency 

The framework should facilitate the optimized execution of the applications by achieving good 

parallel efficiencies for most of the commonly used application patterns. In order to achieve good 

efficiencies, the framework overheads such as scheduling, data staging, and intermediate data 

transfer need to be low relative to the compute time. In addition, the applications must be able to 

utilize all the compute resources of the system, ensuring ideal amount of parallelism.  

Clouds environments are implemented as shared infrastructures operating by using virtual 

machines. It is possible for the performance to fluctuate based on the load of the underlying 

infrastructure services, based on the load from other users on the shared physical node, based on 
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the load on the network and  based on other issues which can be unique to virtual machine 

environments. The frameworks should contain mechanisms to handle any tasks that take much 

longer to complete than others; they should also be able to provide appropriate load balancing in 

the job level.  

8. Monitoring, Logging and Metadata storage * 

Users should be provided with sufficient capabilities to monitor the progress of their 

computations with the ability to drill down to the task level. This should also inform the users about 

any errors encountered as well as an overview of the CPU and memory utilization of the system.  

Cloud instance storage is preserved only for the lifetime of the instance. Hence, information 

logged to the instance storage would be lost after the instance termination. On the other hand, 

performing excessive logging to a bandwidth limited off-instance storage location can become a 

performance bottleneck for the computations. Hence, it is important to select the granularity of 

logging and the log storage location by trading off the overhead of logging and the durability of the 

log location. 

The frameworks need to maintain metadata information to manage and coordinate the jobs as 

well as the infrastructure. This metadata needs to be stored reliably while ensuring good scalability 

and accessibility to avoid a single point of failure and performance bottlenecks. 

9. Cost effective * 

When performing large scale computations on cloud environments, we need to keep the cost of 

cloud services to an acceptable amount, while extracting the most out of the cloud services.  
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Choosing suitable instance types is one aspect of optimizing the costs. Clouds offer users several 

types of instance options, with different configurations and price points. It is important to select the 

best matching instance type, both in terms of performance as well as money-wise. 

10. Ease of usage * 

Users should be able to develop, debug and deploy programs with ease, without the need for 

extensive upfront system specific knowledge. 

In this thesis, we do not focus on the research issues involving monitoring, logging and metadata 

storage*(9), cost effectiveness*(10) and the ease of usage*(11). However, the solutions and frameworks 

we have developed as part of this thesis research provide and, in some cases, improve the industry 

standard solutions for each of these issues.  

1.3 Thesis contributions 

The following comprise a summary of the contributions of this thesis:  

 Architecture, programming model and implementations to perform pleasingly parallel 

computations on cloud environments utilizing cloud infrastructure services. 

 Designed and implemented an architecture and a programming model to perform 

pleasingly parallel type computations on cloud environments using both cloud 

infrastructure services as well as using existing MapReduce frameworks. 

Implemented several large scale pleasingly parallel applications using the above 

designed framework, and performed a detailed study of performance and cost of 

the cloud environments to perform pleasingly parallel computations. 
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 Decentralized architecture and implementation to perform MapReduce computations on 

cloud environments utilizing cloud infrastructure services. 

 Designed a decentralized, scalable and fault tolerance architecture to perform 

MapReduce computations on cloud environments using cloud infrastructure 

services. Developed a prototype implementation of the framework for Microsoft 

Windows Azure Cloud. 

 Implemented several large scale MapReduce applications and performed a detailed 

study of the performance and the challenges to perform MapReduce type 

computations on cloud environments, including the effect of inhomogeneous data 

and scheduling policies on the application performance. 

 Decentralized architecture, programming model and implementation to perform iterative 

MapReduce computations on cloud environments utilizing cloud infrastructure services. 

 Designed a decentralized, scalable and fault tolerant architecture and programming 

model to efficiently perform data intensive iterative MapReduce computations on 

cloud environments using cloud infrastructure services.  Developed a prototype 

implementation for Windows Azure cloud. 

 Introduced a multi-level data caching approach to solve the data bandwidth and 

latency issues of cloud storage services for iterative MapReduce. Designed a high 

performance low overhead cache aware task scheduling algorithm for iterative 

applications on Cloud environments.  

 Utilized hybrid data transfer approaches to improve data communication 

performance on cloud environments without sacrificing fault tolerance capabilities.  
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 Implemented several large scale iterative MapReduce applications and performed a 

detailed study of the performance and the challenges to perform iterative 

MapReduce type computations on cloud environments, including the effect of 

multi-level data caching and scheduling policies on the application performance. 

 Map-Collectives collective communication primitives for iterative MapReduce 

 Introduced All-to-All type collective communication operations to the iterative 

MapReduce model, and developed prototype implementations of collective 

communication primitives for Apache Hadoop MapReduce (for local clusters and 

clouds) and for Twister4Azure iterative MapReduce (for the Windows Azure cloud). 

 Implemented several large scale applications using the  Map-Collectives and 

performed a detailed study of the performance of the above mentioned collective 

communication primitives in cluster and cloud environments 

1.4 Thesis outline 

Chapter 2 of this thesis discusses the related works of this thesis, and provides an introduction to 

the cloud environments and example applications used in this thesis. Chapter 2 also provides a 

classification of application that is used throughout this thesis. This includes a study of the other 

MapReduce and cloud-oriented programming & execution frameworks.  We also present a synthesis 

summary of these frameworks based on programming abstraction, data storage & communication 

mechanisms, scheduling strategies, fault tolerance and several other dimensions. 

Chapter 3 presents our work on performing pleasingly parallel computations on cloud 

environments. In this chapter, we introduce a set of frameworks that have been constructed using 

cloud-oriented programming frameworks and cloud infrastructure services to perform pleasingly parallel 
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computations. We also present the implementations and the performance of several pleasingly parallel 

applications using the frameworks that were introduced in this chapter. 

Chapter 4 explores the execution of MapReduce type applications on cloud environments and 

presents the MapReduceRoles4Azure MapReduce framework. MapReduceRoles4Azure is a novel 

MapReduce framework for cloud environments with a decentralized architecture built using Microsoft 

Windows Azure cloud infrastructure services. MapReduceRoles4Azure architecture successfully 

leverages high latency, eventually consistent, yet highly scalable Azure infrastructure services to provide 

an efficient, on demand alternative to traditional MapReduce clusters. We also discuss the challenges 

posed by the unique characteristics of cloud environments for the efficient execution of MapReduce 

applications on clouds.   Further, we evaluate the use and performance of different MapReduce 

frameworks in cloud environments for several scientific applications. 

Chapter 5 explores the execution of data intensive iterative MapReduce type applications on cloud 

environments and introduces the Twister4Azure iterative MapReduce framework. Twister4Azure is a 

distributed decentralized iterative MapReduce runtime for Windows Azure Cloud, which extends the 

familiar, easy-to-use MapReduce programming model with iterative extensions, enabling fault-tolerance 

execution of a wide array of data mining and data analysis applications on the Azure cloud.  This chapter 

also presents the Twister4Azure iterative MapReduce architecture for clouds, which optimizes the 

iterative computations using a multi-level caching of data, a cache aware decentralized task scheduling, 

hybrid tree-based data broadcasting and hybrid intermediate data communication. This chapter also 

presents the implementation and performance of several real world data-intensive iterative 

applications. 
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Chapter 6 studies some performance implications for executing data intensive computations on 

cloud environments. These include the study of the effect of inhomogeneous data and scheduling 

mechanisms on the performance of MapReduce applications, a study of the effects of virtualization 

overhead on MapReduce type applications and a study of the effect of sustained performance of cloud 

environments on the performance of MapReduce type applications. We also discuss and analyze how 

various data caching strategies on the Azure cloud environment affect the performance of data 

intensive iterative MapReduce applications. 

Chapter 7 discusses the applicability of All-to-All collective communication operations to Iterative 

MapReduce without sacrificing the desirable properties of the MapReduce programming model and 

execution framework such as  fault tolerance, scalability, familiar API’s and the data model, etc.  We 

show that the addition of collective communication operations enriches the iterative MapReduce model 

by providing many performance and ease of use advantages. We also present Map-AllGather primitive, 

which gathers the outputs from all the map tasks and distributes the gathered data to all the workers 

after a combine operation, and Map-AllReduce primitive, which combines the results of the Map Tasks 

based on a reduction operation and delivers the results to all the workers. The MapReduce-

MergeBroadcast model is presented as a canonical model representative of most of the iterative 

MapReduce frameworks. Prototype implementations of these primitives on Hadoop and Twister4Azure 

as well as a performance comparison are studied in this chapter. 

Finally, we present a summary, conclusions, and solutions to the research challenges and future 

work in chapter 8.  
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 2. BACKGROUND 

2.1 Cloud Environments 

2.1.1 Microsoft Azure platform 

The Microsoft Azure platform [16] is a cloud computing platform that offers a set of cloud 

computing services. Windows Azure Compute allows the users to lease Windows virtual machine 

instances according to a platform as a service (PaaS) model; it offers the .net runtime as the platform 

through two programmable roles called Worker Roles and Web Roles. Azure also supports VM roles 

(beta), which enables the users to deploy virtual machine instances that can support an infrastructure as 

a service model as well. Azure offers a limited set of instance types (Table 1) on a linear price and 

feature scale [8]. 

Table 1 Windows Azure instance types (as of July 2013) 

Instance Name CPU Cores Memory Cost Per Hour 

Extra Small Shared 768 MB $0.02 

Small 1 1.75 GB $0.09 

Medium 2 3.5 GB $0.18 

Large  4 7 GB $0.36 

Extra Large 8 14 GB $0.72 
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Memory intensive (A6) 4 28 GB $1.02 

Memory intensive (A7) 8 56 GB $2.04 

 

The Azure Storage Queue is an eventual consistent, reliable, scalable and distributed web-scale 

message queue service that is ideal for small, short-lived, transient messages. The Azure queue does not 

guarantee the order of the messages, the deletion of messages or the availability of all the messages for 

a single request, although it guarantees eventual availability over multiple requests. Each message has a 

configurable visibility timeout. Once a client reads a message, the message will be invisible for other 

clients for the duration of the visibility time out. It will become visible for the other client once the 

visibility time expires, unless the previous reader deletes it. The Azure Storage Table service offers a 

large-scale eventually consistent structured storage. The Azure Table can contain a virtually unlimited 

number of entities (aka records or rows) where a single entity can be as large as 1MB. Entities contain 

properties (aka cells), that can be as large as64KB. A table can be partitioned to store the data across 

many nodes for scalability. The Azure Storage Blob service provides a web-scale distributed storage 

service in which users can store and retrieve any type of data through a web services interface. Azure 

Blob services support two types of Blobs, Page blobs that are optimized for random read/write 

operations and Block blobs that are optimized for streaming. The Windows Azure Drive allows the users 

to mount a Page blob as a local NTFS volume. 

Azure has a logical concept of regions that binds a particular service deployment to a particular 

geographic location, or, in other words, to a data center.   Azure also has an interesting concept of 

‘affinity groups’ that can be specified for both services as well as for storage accounts. Azure tries its 
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best to deploy services and storage accounts of a given affinity group close to each other to ensure 

optimized communication between all parties.  

2.1.2 Amazon AWS 

Amazon Web Services (AWS) [9] are a set of cloud computing services by Amazon, offering on-

demand computing and storage services including, but not limited to, Elastic Compute Cloud (EC2), 

Simple Storage Service (S3) and Simple Queue Service (SQS).  

EC2 provides users the option to lease virtual machine instances that are billed hourly and that allow 

users to dynamically provision resizable virtual clusters in a matter of minutes through a web service 

interface. EC2 supports both Linux and Windows virtual instances. EC2 follows an approach that uses 

infrastructure as a service; it provides users with ‘root’ access to the virtual machines, thus providing the 

most flexibility possible. Users can store virtual machine snapshots as Amazon Machine Images (AMIs), 

which can then be used as templates for creating new instances. Amazon EC2 offers a variety of hourly 

billed instance sizes with different price points, giving users a richer set of options to choose from, 

depending on their requirements. One particular instance type of interest is the High-CPU-Extra-Large 

instance, which costs the same as the Extra-Large (XL) instance but offers greater CPU power and less 

memory than XL instances. Table 1 provides a summary of the EC2 instance types used in this thesis. The 

clock speed of a single EC2 compute unit is approximately 1 GHz to 1.2 GHz. The Small instance type 

with a single EC2 compute unit is only available in a 32-bit environment, while the larger instance types 

also support a 64-bit environment.  

Table 2 Sample of Amazon Web Services EC2 on-demand instance types 

Instance Type Memory EC2 compute Actual CPU Cost per 
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units cores hour 

Micro 0.615GB Variable Shared 0.02$ 

Large (L) 7.5 GB 4 2 X (~2Ghz) 0.24$ 

Extra Large (XL) 15 GB 8 4 X (~2Ghz) 0.48$ 

High CPU Extra Large (HCXL) 7 GB 20 8 X (~2.5Ghz) 0.58$ 

High Memory 4XL (HM4XL) 68.4 GB 26 8 X (~3.25Ghz) 1.64$ 

Cluster GPU 22.5 33.5 8 X (~2.93Ghz) 2.10$ 

 

SQS is a reliable, scalable, distributed web-scale message queue service that is eventually consistent 

and ideal for small, short-lived transient messages. SQS provides a REST-based web service interface 

that enables any HTTP-capable client to use it. Users can create an unlimited number of queues and 

send an unlimited number of messages. SQS does not guarantee the order of the messages, the deletion 

of messages or the availability of all the messages for a request, though it does guarantee eventual 

availability over multiple requests. Each message has a configurable visibility timeout. Once it is read by 

a client, the message will be hidden from other clients until the visibility time expires. The message 

reappears upon expiration of the timeout as long as it is not deleted. The service is priced based on the 

number of API requests and the amount of data transfers.  

S3 provides a web-scale distributed storage service where users can store and retrieve any type of 

data through a web services interface. S3 is accessible from anywhere on the web. Data objects in S3 are 
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access controllable and can be organized into buckets. S3 pricing is based on the size of the stored data, 

the amount of data transferred and the number of API requests. 

2.2 MapReduce 

MapReduce consists of a storage framework, a programming model and an associated execution 

framework for distributed processing of very large data sets. The MapReduce distributed data analysis 

framework was originally introduced by Google [2], and it provides an easy-to-use programming model 

that features fault tolerance, automatic parallelization, scalability and data locality-based optimizations. 

Due to its excellent fault tolerance features, MapReduce frameworks are well-suited for the execution 

of large distributed jobs in brittle environments such as commodity clusters and cloud infrastructures. 

The MapReduce framework takes care of data partitioning, task scheduling, fault tolerance, 

intermediate data communication and many other aspects of MapReduce computations for the users. 

These features and the simplicity of the programming model allow users with no background or 

experience in distributed and parallel computing to utilize MapReduce and the distributed 

infrastructures to easily process large volumes of data. 

MapReduce partitions the processing of very large input data in to a set of independent tasks.  The 

MapReduce data model consists mainly of key-value pairs. The MapReduce programming model 

consists of map(key1, value1) function and reduce(key2, list<value2>) function, borrowed from the 

functional programming concepts. The map function operates on every element in the input data set 

and the reduce function combines and aggregates the output of the map function. Each map function 

invocation is independent of the others; this allows for parallel executions on different data sets. This 

property also enables richer fault tolerance implementations. However, users should be careful not to 

have any side effects from their map functions that will violate the independence property. MapReduce 
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programs written as Map and Reduce functions will be parallelized by the framework and will be 

executed in a distributed manner.  

2.2.1 MapReduce execution framework 

MapReduce frameworks are typically not optimized for the best performance or parallel efficiency 

of small scale applications. The main goals of MapReduce frameworks include framework managed fault 

tolerance, ability run on commodity hardware, the ability to process very large amounts of data and 

horizontal scalability of compute resources. MapReduce frameworks like Hadoop trade off costs such as 

large startup overheads, task scheduling overheads and intermediate data persistence overheads for 

better scalability and reliability.  

When running a computation, MapReduce frameworks first logically split the input data into 

partitions, where each partition would be processed by a single Map task. When a Map Reduce 

computation has more map tasks than Map slots available in the cluster, the tasks will be scheduled in 

waves. For example, a computation with 100 Map tasks executing in a cluster of 200 Map slots will 

execute as approximately 5 Map task waves. Figure 1 depicts a sample MapReduce execution flow with 

multiple Map tasks waves. Tasks in MapReduce frameworks are scheduled dynamically by taking data 

locality into consideration.  Map tasks read the data from the assigned logical data partition and process 

them as key value pairs using the provided map function. The output key-value pairs of a map function 

are collected, partitioned, merged and transferred to the corresponding Reduce tasks.  MapReduce 

frameworks typically persist the Map output data in the local disks of the Map nodes. 
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Figure 1 A sample MapReduce execution flow 

Reduce tasks fetch the data from the Map nodes and perform an external-merge sort on the data. 

The fetching of intermediate data starts as soon as the first map task completes the execution. Reduce 

task starts the reduce function processing after all of the Map tasks are finished and after all the 

intermediate data are shuffled and sorted. Figure 2 depicts the steps of a typical MapReduce 

computation. 

 Map Task Reduce Task 

Task 

Scheduling 
Data read Map execution Collect Spill Merge Shuffle Merge 

Reduce 

Execution 

Write 

output 

Figure 2 Steps of a typical MapReduce computation 

2.3 Iterative MapReduce 

Many important data-intensive applications and algorithms can be implemented as iterative 

computation and communication steps, where computations inside an iteration are independent and 

synchronized at the end of each iteration through reduce and communication steps. Often, each 

iteration is also amenable to parallelization. Many statistical applications fall into this category, including 
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graph processing, clustering algorithms, data mining applications, machine learning algorithms, data 

visualization algorithms, and most of the expectation maximization algorithms. Their preeminence is a 

result of scientists relying on clustering, mining, and dimension reduction to interpret the data. The 

emergence of computational fields such as bioinformatics and machine learning has also contributed to 

increased interest in this class of applications.  

 

Figure 3 Structure of a typical data-intensive iterative application. 

As mentioned in the section above, there exists a significant amount of data analysis, data mining 

and scientific computation algorithms that rely on iterative computations with which we can easily 

specify each iterative step as a MapReduce computation. Typical data-intensive iterative computations 

follow the structure depicted in Figure 3. 

We can identify two main types of data in these computations: the very large loop invariant input 

data and the smaller loop variant delta values. The loop invariant input data would be the set of input 

data points. Single iterations of these computations are easy to parallelize by processing the data points 

(or blocks of data points) independently in parallel while performing synchronization between the 

iterations through communication steps. In a K-means Clustering computation, the loop invariant input 

data would be the set input data vectors, while in a PageRank calculation, the loop invariant input data 

would be a representation of the link graph. The loop invariant nature of these input data points gives 

rise to several optimization possibilities. 
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Delta values are the result of processing the input data in each iteration. Often, these delta values 

are needed for the computation of the next iteration. In a K-means Clustering computation, the loop 

variant delta values are the centroid values. In PageRank calculations, the delta values conform to the 

page rank vector.  

Other general properties of the data-intensive iterative MapReduce calculations include relatively 

finer-grained tasks resulting in more prominent intermediate I/O overheads and a very large number of 

tasks due to multiple iterations giving more significance to the scheduling overheads.  

Fault Tolerance for iterative MapReduce can be implemented either in the iteration-level or in the 

task-level. In the case of iteration-level fault tolerance, the check pointing will happen on a per iteration 

basis, and the frameworks can avoid check pointing the individual task outputs. Due to the finer grained 

nature of the tasks along with a high number of iterations, some users may opt for higher performance 

by selecting iteration level fault tolerance. When iteration level fault tolerance is used, the whole 

iteration would need to be re-executed in case of a task failure. Task-level fault tolerance is similar to 

the typical MapReduce fault tolerance, and the fault-recovery is performed by execution of failed Map 

or Reduce tasks. 

2.4 Execution Frameworks 
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Table 3 Summary of MapReduce frameworks 

  Google 

MapReduce[2]  

Apache Hadoop[6] Twister [10] Microsoft Dryad[11] Twister4Azure[12] 

Parallel Model MapReduce MapReduce MapReduce, Iterative 

MapReduce 

DAG execution, 

Extensible to 

MapReduce and 

other patterns 

MapReduce, iterative 

MapReduce 

Data Storage GFS (Google File 

System) 

HDFS (Hadoop 

Distributed File 

System) 

Local disks Shared Directories & 

local disks 

Azure Blob Storage 

Data 

Communication 

Files Files over HTTP Publish/subscribe 

messaging 

Framework,  TCP, 

Optimized broadcasts 

Files, TCP Pipes, 

Shared Memory FIFO 

Files, Optimized TCP 

intermediate data transfer 

and broadcasts, Collective 

Communication operations 
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Scheduling Data/rack Locality Data/rack Locality, 

Dynamic task 

scheduling through 

global queue 

Data Locality,  Map 

task reuse with data 

caching 

Data locality; 

Topology based, run 

time graph 

optimizations 

Dynamic task scheduling 

through global queue, Cache 

aware scheduling, Collective 

communication based 

scheduling 

Fault Tolerance Re-execution of 

failed tasks; 

Duplicate execution 

of slow tasks 

Re-execution of 

failed tasks; 

Duplicate execution 

of slow tasks 

Re-execution of 

Iterations 

Re-execution of failed 

tasks; Duplicate 

execution of slow 

tasks 

Re-execution of failed tasks; 

Duplicate execution of slow 

tasks, Re-execution of 

iterations 

Language 

Support 

C++, Sawzall Java, Hive,Pig Latin, 

Scalding 

Java C#, DryadLINQ [55] C# 

Runtime 

Environment 

Linux Cluster. Linux Clusters, 

Amazon EMR, Azure 

HDInsights  

Linux Cluster Windows HPCS 

cluster 

Window Azure Compute, 

Windows Azure Local 

Development Fabric 
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2.4.1 Apache Hadoop 

Apache Hadoop [6] MapReduce is a widely used open-source implementation of the Google 

MapReduce [2] distributed data processing framework.  

Apache Hadoop MapReduce uses the Hadoop distributed parallel file system (HDFS) [13] for data 

storage, which stores the data across the local disks of the computing nodes while presenting a single 

file system view through the HDFS API. The HDFS is designed for deployment on commodity clusters and 

achieves reliability through replication of data across nodes. The HDFS partitions the data files into 

coarser grained blocks of 10s or 100s of Megabytes; it stores these blocks on the native file system of 

the nodes. The block size and the replication factor are configurable as cluster wide as well as for 

individual data sets. With this HDFS data partitioning and storage strategy, a very large data set or a very 

large file would effectively get stored in a distributed manner across all or most of the nodes of the 

cluster, providing very large aggregate read bandwidth when processing the data. The HDFS central 

NameNode store manages the Meta data of the files stored in HDFS. 

When executing Map Reduce programs, Hadoop optimizes data communication by scheduling 

computations near the data by using the block data locality information provided by the HDFS file 

system. Hadoop has an architecture consisting of a master node with many client workers, and it uses a 

global queue for task scheduling, thus achieving natural load balancing among the tasks. Hadoop 

performs data distribution and automatic task partitioning based on the information provided in the 

master program and based on the structure of the data stored in HDFS. The Map Reduce model reduces 

the data transfer overheads by overlapping data communication with computations when reduce steps 
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are involved.  Hadoop performs duplicate executions of slower tasks and handles failures by rerunning 

the failed tasks using different workers. 

Over the years, Hadoop has grown into a large eco system of projects providing functionalities on 

top of Hadoop MapReduce and HDFS. These include high level data processing languages such as 

Apache Hive [14] and Apache Pig [15], Google BigTable [16] like tabular data storage solutions such as 

Apache HBase [17] and Apache Accumulo [18], large scale machine learning libraries such as Apache 

Mahout [19], graph processing libraries such as Giraph [20], and data ingesting projects such as Apache 

Flume [21], Apache Sqoop [22], etc. 

2.4.1.1 Amazon Elastic Map Reduce 

Amazon Elastic MapReduce (EMR) [23] provides MapReduce as an on-demand service hosted within 

the Amazon infrastructure. EMR is a hosted Apache Hadoop MapReduce framework, which utilizes 

Amazon EC2 for computing power and Amazon S3 for data storage. It allows the users to perform 

Hadoop MapReduce computations in the cloud with the use of a web application interface, as well as a 

command line API, without worrying about installing and configuring a Hadoop cluster. Users can run 

their existing Hadoop MapReduce program on EMR with minimal changes.  

EMR supports the concept of JobFlows, which can be used to support multiple steps of Map & 

Reduce on a particular data set. Users can specify the number and the type of instances that are 

required for their Hadoop cluster. Intermediate data and temporary data are stored in the local HDFS 

file system while the job is executing. Users can use either the S3 native (s3n) file system or the legacy 

S3 block file system to specify input and output locations on Amazon S3. Use of s3n is recommended, as 

it allows files to be saved in native formats in S3. 
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The pricing for the use of EMR consists of the cost for the EC2 computing instances, the S3 storage 

cost, an optional fee for the usage of SimpleDB to store job debugging information, and a separate cost 

per instance hour for the EMR service. 

2.4.1.2 Azure HDInsight 

HDInsight is an Apache Hadoop as service offering hosted within the Microsoft Windows Azure 

cloud. Similar to Amazon EMR, HDInsight uses Windows Azure instances for computing power and Azure 

blob storage for long term data storage. Hadoop jobs can be submitted to HDInsights through a web 

interface or by using the command line of the master node or programmatically through Windows 

PowerShell. Windows Azure blob storage can be accessed from Hadoop MapReduce computations using 

a HDFS compatible file system layer (WASBS). Alternatively, users can use the HDFS deployed over the 

instance storage for data storage as well, but the data in this HDFS would be lost after the termination 

of the HDInsight cluster. 

HDInsight is a community technology preview (beta) as of January 2014. 

2.4.2 Microsoft Dryad 

Dryad [11] is a framework developed by Microsoft Research as a general-purpose distributed 

execution engine for coarse-grain parallel applications. Dryad applications are expressed as directed 

acyclic data-flow graphs (DAG), where vertices represent computations and edges represent 

communication channels between the computations. DAGs can be used to represent MapReduce type 

computations, and they can be extended to represent many other parallel abstractions as well. Similar 

to MapReduce frameworks, the Dryad scheduler optimizes the data transfer overheads by scheduling 

the computations near data and handles failures through the rerunning of tasks and duplicate task 

execution. In the Dryad version we used, data for the computations need to be partitioned manually and 
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stored beforehand in the local disks of the computational nodes via Windows shared directories. Dryad 

is available for academic usage through the DryadLINQ [7] API, which is a high level declarative language 

layer on top of Dryad. DryadLINQ queries get translated into distributed Dryad computational graphs in 

the run time. DryadLINQ can be used only with Microsoft Windows HPC clusters. The DryadLINQ 

implementation of the framework uses the DryadLINQ “select” operator on the data partitions to 

perform the distributed computations. The resulting computation graph looks much similar to the figure 

2, where instead of using HDFS, Dryad will use the Windows shared local directories for data storage. 

Data partitioning, distribution and the generation of metadata files for the data partitions is 

implemented as part of our pleasingly parallel application framework. 

2.4.3 Twister 

The Twister [10] iterative MapReduce framework is an expansion of the traditional MapReduce 

programming model, which supports traditional as well as iterative MapReduce data-intensive 

computations. Twister supports MapReduce in the manner of “configure once, and run many times”. 

Twister configures and loads static data into Map or Reduce tasks during the configuration stage, and 

then reuses the loaded data through the iterations. In each iteration, the data is first mapped in the 

compute nodes, and reduced, then combined back to the driver node (control node). Twister supports 

direct intermediate data communication, using direct TCP as well as using messaging middleware, across 

the workers without persisting the intermediate data products to the disks. With these features, Twister 

supports iterative MapReduce computations efficiently when compared to other traditional MapReduce 

runtimes such as Hadoop [24]. Fault detection and recovery are supported between the iterations.  

Java Twister uses a master driver node for management and controlling of the computations. The 

Map and Reduce tasks are implemented as worker threads managed by daemon processes on each 

worker node. Daemons communicate with the driver node and with each other through messages. For 
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command, communication and data transfers, Twister uses a Publish/Subscribe messaging middleware 

system and ActiveMQ [25] is used for the current experiments. Twister performs optimized broadcasting 

operations by using the chain method [26] and uses the minimum spanning tree method [27] for 

efficiently sending Map data from the driver node to the daemon nodes. Twister supports data 

distribution and management through a set of scripts as well as through the HDFS [13]. 

2.4.4 Haloop 

Haloop [28] extends Apache Hadoop to support iterative applications and supports the caching of 

loop-invariant data as well as loop-aware scheduling. Similar to Java HPC Twister and Twister4Azure, 

Haloop also provides a new programming model, which includes several APIs that can be used for 

expressing iteration related operations in the application code.  

However, Haloop doesn’t have an explicit Combine operation to get the output to the master node, 

and it also uses a separate MapReduce job to do the calculation (called Fix point evaluation) for terminal 

condition evaluation. HaLoop provides a high-level query language, which is not available in either Java 

HPC Twister or Twister4Azure. 

HaLoop performs loop aware task scheduling to accelerate iterative MapReduce executions. Haloop 

enables data reuse across iterations, by physically co-locating tasks that process the same data in 

different iterations. In HaLoop, the first iteration is scheduled similar to traditional Hadoop. After that, 

the master node remembers the association between the data and the node, and the scheduler tries to 

retain previous data-node associations in the following iterations. If the associations can no longer hold 

due to the load, the master node will associate the data with another node.  HaLoop also provides 

several mechanisms of on disk data caching such as a reducer input cache and a mapper input cache. In 

addition to these two, there is another cache called the reducer output cache, which is specially 
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designed to support Fix point Evaluations. HaLoop can also cache intermediate data (reducer 

input/output cache) generated by the first iteration. 

2.4.5 Spark 

Spark [29] is an open source large data analytics framework that supports in-memory caching and 

interactive querying of data. Spark addressed some of the bottlenecks of the MapReduce model, while 

retaining the scalability and fault tolerance features of MapReduce. Spark provides better performance 

than Hadoop for many types of computations. Spark is implemented using Scala and builds on top of 

Hadoop Distributed File System (HDFS).  

Spark introduces an abstraction called Resilient Distributed Datasets (RDDs) [30], which are 

distributed data sets partitioned across the cluster. RDD’s can be created by performing deterministic 

operations on raw data or on other RDD’s. RDD’s are a form of intermediate data structures, and can be 

cached in memory for fast in-memory computations such as iterative computations and interactive 

queries.  RDD’s contain lineage information, and can be rebuilt in case a partition is lost due to some 

reason. Spark uses the RDD lineage information to provide fault tolerance support similar to 

MapReduce. Spark supports parallel computations on RDD’s and provides a set of operators that can be 

applied on RDD’s.  

There are several projects that are building functionalities on top of Spark. These include an Apache 

Hive compatible data processing language layer called Shark[31], a large scale machine learning library 

named MLib, Spark-Streaming[32] stream data processing project and the GraphX[33] graph processing 

library. 

2.4.6 Microsoft Daytona 
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Microsoft Daytona [26] is a recently announced iterative MapReduce runtime developed by 

Microsoft Research for Microsoft Azure Cloud Platform. It builds on some of the ideas of the earlier 

Twister system.  Daytona utilizes Azure Blob Storage for storing intermediate data and final output data 

which enables data backup and easier failure recovery. Daytona supports the caching of static data 

between iterations. Daytona combines the output data of the Reducers to form the output of each 

iteration. Once the application has completed, the output can be retrieved from Azure Blob storage or 

can be continually processed by using other applications. In addition to the above features, which are 

similar to Twister4Azure, Daytona also provides automatic environment deployment and data splitting 

for MapReduce computations; it also claims to support a variety of data broadcast patterns between the 

iterations. However, as opposed to Twister4Azure, Daytona uses a single master node based controller 

to drive and manage the computation.  This centralized controller substitutes for the ‘Merge’ step of 

Twister4Azure, but makes Daytona prone to single point failures.  

Currently, Excel DataScope is presented as an application of Daytona. Users can upload data in their 

Excel spreadsheet to the DataScope service or select a data set already in the cloud, and then select an 

analysis model from our Excel DataScope research ribbon to run against the selected data. The results 

can be returned to the Excel client or they can remain in the cloud for further processing and/or 

visualization. Daytona is available as a “Community Technology Preview” for academic and non-

commercial usage. 

2.4.7 i-MapReduce and PrIter 

i-MapReduce [34] is another iterative MapReduce framework built on top of Hadoop. i-MapReduce 

reduces the startup overhead of creating new tasks in each iteration by supporting persistent Map and 

Reduce tasks. Persistent Map and Reduce tasks keep running until all the iterations are done. However, 

this requires that the cluster has enough free task slots to execute all the tasks of the computation at 
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the same time. Similar to Twister and Twister4Azure, i-MapReduce improves the data shuffling by 

shuffling only the loop-variant data. It also partitions the data in such a way that the Map and Reduce 

tasks will have a one to one correspondence, and it uses this property to support the asynchronous 

execution of tasks. PrIter[35] improves i-MapReduce by introducing prioritized iterations, where it can 

prioritize the computations that provide the most help in terms of the convergence of the iterative 

algorithm. 

2.4.8 Google Pregel and Apache Giraph 

Pregel [36] is a large scale graph processing framework developed at Google. The Pregel 

programming model consists of vertices and edges, and it can be programmed by using iterations. 

Pregel follows the Bulk Synchronize Parallel (BSP) [37] model of computations, in which each iteration 

consists of independent computations at the vertices followed by communication and barrier 

synchronization. In a Pregel iteration, vertices receive messages sent to them in the previous iteration, 

perform the vertex computation independent of other vertices, and finally, send messages to the other 

vertices that will be received in the next iteration. The vertex computation can alter the state of that 

vertex, alter the state of the outgoing edges of that vertex and can change the graph topology as well. 

Pregel claims scalability up to thousands of computers and claims the ability to process billions of 

vertices and edges. Pregel achieves fault tolerance by check pointing the vertex and edge states at the 

beginning of each iteration.  

Apache Giraph is an open source implementation of the Pregel model. Apache Giraph is built on top 

of Hadoop and translates the graph processing to a series of MapReduce computations. However, 

Giraph supports keeping the graph state in-memory throughout the computation, which improves the 

performance of the computations. 
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2.4.9 Other related cloud execution frameworks 

CloudMapReduce [38] for Amazon Web Services (AWS) and Google AppEngine MapReduce [39] 

follow an architecture similar to MRRoles4Azure, in which they utilize the cloud services as the building 

blocks. Windows Azure HPC scheduler enables the users to launch and manage high-performance 

computing (HPC) and other parallel applications in the Windows Azure environment. Azure HPC 

scheduler supports parametric sweeps, Message Passing Interface (MPI) and LINQ to HPC applications 

together with a web-based job submission interface. AzureBlast [40] is an implementation of a parallel 

BLAST on the Azure environment that uses Azure cloud services with an architecture similar to the 

Classic Cloud model described in section 3. CloudClustering [41] is a prototype KMeansClustering 

implementation that uses Azure infrastructure services. CloudClustering uses multiple queues (single 

queue per worker) for job scheduling and supports the caching of loop-invariant data.   

2.5 Application types 

For the purposes of this dissertation, we classify parallel applications into the following four 

categories based on their execution patterns. 

2.5.1 Pleasingly Parallel Applications 

A pleasingly (also called embarrassingly) parallel application is an application that can be 

parallelized, thus requiring minimal effort to divide the application into independent parallel parts. Each 

independent parallel part has very minimal or no data, synchronization or ordering dependencies with 

the others. These applications are good candidates for computing clouds and compute clusters with no 

specialized interconnections. A sizable number of scientific applications fall under this category. 

Examples of pleasingly parallel applications include Monte Carlo simulations and BLAST [42] searches, as 

well as parametric studies and image processing applications such as ray tracing. Most of the data 
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cleansing and pre-processing applications can also be classified as pleasingly parallel applications.  These 

types of applications can be mapped to the MapReduce programming model as Map only applications 

or MapReduce applications with trivial reduce phases such as simple aggregation or collection of data.  

Chapter 3 of this thesis focuses on providing solutions to executing pleasingly parallel applications 

on cloud environments and using cloud oriented applications frameworks. The pleasingly parallel 

applications discussed in this thesis include BLAST sequence searching (section 2.6.3), Cap3 sequence 

assembly (section 2.6.1) and GTM interpolation (section 2.6.2). 

2.5.2 MapReduce Type Applications 

We define MapReduce type applications as the set of applications that consist of a pleasingly 

parallel step (Map) followed by a non-trivial reduction step. The non-trivial reduction can take 

advantage of the combining, sorting and partitioning functionalities provided by the MapReduce 

frameworks. Examples of MapReduce type applications include Smith-Watermann-GOTOH sequence 

distance calculation [43] and WordCount applications. 

Chapter 4 of this thesis focuses on providing solutions to executing the MapReduce type of 

applications on cloud environments; it also introduces the MapReduceRoles4Azure decentralized cloud 

MapReduce framework for Azure cloud. MapReduce type applications discussed in this thesis include 

Smith-Watermann-GOTOH sequence distance calculation (section 2.6.4) application. 

2.5.3 Data Intensive Iterative Applications 

Many important scientific applications and algorithms can be implemented as iterative computation 

and communication steps, where computations inside an iteration are independent and are 

synchronized at the end of each iteration through reduce and communication steps. Often, each 

iteration is also amenable to parallelization. Many statistical applications fall into this category. 
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Examples include clustering algorithms, data mining applications, machine learning algorithms, data 

visualization algorithms, and most of the expectation maximization algorithms. The growth of such 

iterative statistical applications, in importance and number, is driven partly by the need to process 

massive amounts of data, for which scientists rely on clustering, mining, and dimension-reduction to 

interpret the data. The emergence of computational fields, such as bioinformatics, and machine 

learning, has also contributed to an increased interest in this class of applications.  

Chapter 5 of this thesis focuses on providing solutions to executing data intensive iterative 

applications on cloud environments; it also introduces the Twister4Azure iterative MapReduce 

framework for Azure cloud. Also chapter 7 of this thesis introduces the collective communication 

primitives for iterative MapReduce type applications. Data intensive iterative type applications discussed 

in this thesis includes KMeansClustering (section 2.6.5) and Multi-Dimensional-Scaling (section 2.6.6) 

applications. 

2.5.4 MPI type applications  

Applications with more complex inter-process communication and coordination requirements than 

the data intensive iterative applications fall into this category. These applications often require the 

usage of technologies such as MPI or OpenMP together with special communications interconnects. We 

do not explore MPI type applications in this thesis. 

2.6 Applications 

Described below are some of applications that we implemented and/or parallelized, benchmarked 

and analyzed in the later chapters of this thesis.  
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2.6.1 Cap3 

Cap3 [44]  is a sequence assembly program which assembles DNA sequences by aligning and 

merging sequence fragments to construct whole genome sequences. Sequence assembly is an integral 

part of genomics, as the current DNA sequencing technology, such as shotgun sequencing, is capable of 

reading only parts of genomes at once. The Cap3 algorithm operates on a collection of gene sequence 

fragments presented as FASTA-formatted files. It removes the poor regions of the DNA fragments, 

calculates the overlaps between the fragments, identifies and removes the false overlaps, joins the 

fragments to form contigs of one or more overlapping DNA segments and finally, through multiple 

sequence alignment, generates consensus sequences.  

The increased availability of DNA sequencers are generating massive amounts of sequencing data 

that need to be assembled. The Cap3 program is often used in parallel with lots of input files due to the 

pleasingly parallel nature of the application. The run time of the Cap3 application depends on the 

contents of the input file. The Cap3 is less memory intensive than the GTM Interpolation and BLAST 

applications we discuss below. The size of a typical data input file for the Cap3 program and the result 

data file range from hundreds of kilobytes to few megabytes. The output files resulting from the input 

data files can be collected independently and do not need any combining steps. 

2.6.2 Generative Topographic Mapping Interpolation 

Generative Topographic Mapping (GTM) [45] is an algorithm for finding an optimal user-defined 

low-dimensional representation of high-dimensional data. This process is known as dimension 

reduction, which plays a key role in scientific data visualization. In a nutshell, GTM is an unsupervised 

learning method for modeling the density of data and finding a non-linear mapping of high-dimensional 

data in a low-dimensional space. To reduce the high computational costs and memory requirements in 

the conventional GTM process for large and high-dimensional datasets, GTM Interpolation [46, 47] has 
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been developed as an out-of-sample extension to process much larger data points with a minor trade-

off of approximation. GTM Interpolation takes only a part of the full dataset, known as samples, for a 

compute-intensive training process, and it applies the trained result to the rest of the dataset, known as 

out-of-samples. With this interpolation approach in GTM, one can visualize millions of data points with 

modest amount of computations and memory requirement.  

The size of the input data for the interpolation algorithm consists of millions of data points and 

usually ranges in gigabytes, while the size of the output data in lower dimensions are orders of 

magnitude smaller than the input data. Input data can be partitioned arbitrarily on the data point 

boundaries in order to generate computational sub tasks. The output data from the sub tasks can be 

collected using a simple merging operation and do not require any special combining functions. The 

GTM Interpolation application is highly memory intensive and requires a large amount of memory 

proportional to the size of the input data. 

2.6.3 Blast+ sequence search  

NCBI BLAST+ [42] is a very popular bioinformatics application that is used to handle sequence 

similarity searching. It is the latest version of BLAST [48], a multi-letter command line tool developed 

using the NCBI C++ toolkit, to translate a FASTA formatted nucleotide query and to compare it to a 

protein database. Queries are processed independently and have no dependencies between them. This 

makes it possible to use multiple BLAST instances to process queries in a pleasingly parallel manner. We 

used a sub-set of a real-world protein sequence data set as the input BLAST queries and used NCBI’s 

non-redundant (NR) protein sequence database (8.7 GB), updated on 6/23/2010, as the BLAST database. 

In order to make the tasks coarser granular, we bundled 100 queries into each data input file resulting in 

files with sizes in the range of 7-8 KB. The output files for these input data range from a few bytes to a 

few Megabytes. 
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2.6.4 Sequence alignment using SmithWaterman GOTOH (SWG) 

The SmithWaterman [49] algorithm with GOTOH [50] (SWG) improvement is used to perform 

pairwise sequence alignment on two FASTA sequences. We used the SWG application kernel in parallel 

to calculate the all-pairs dissimilarity of a set of n sequences resulting in n*n distance matrix. A set of 

map tasks for a particular job are generated using the blocked decomposition of the strictly upper 

triangular matrix of the resultant space. Reduce tasks aggregate the output from a row block.  In this 

application, the size of the input data set is relatively small, while the size of the intermediate and the 

output data are significantly larger due to the n2 result space; this stresses the performance of inter-

node communication and output data storage. The SWG can be considered as a memory-intensive 

application.  

We used open source implementations, named JAligner and NAligner[11], of the Smith Waterman – 

Gotoh algorithm SW-G modified to ensure low start up effects by each thread, processing a large 

number (above a few hundred) of sequence calculations at a time. The memory bandwidth needed was 

reduced by storing data items in as few bytes as possible. 

More details about the Hadoop-SWG application implementation can be found in [43].  

2.6.5 KMeansClustering 

Clustering is the process of partitioning a given data set into disjoint clusters.  The use of clustering 

and other data mining techniques to interpret very large data sets has become increasingly popular, 

with petabytes of data becoming commonplace. The K-Means Clustering [20] algorithm has been widely 

used in many scientific and industrial application areas due to its simplicity and applicability to large data 

sets. We are currently working on a scientific project that requires the clustering of several Terabytes of 

data using KMeansClustering and millions of centroids. 
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K-Means clustering is often implemented using an iterative refinement technique, in which the 

algorithm iterates until the difference between cluster centers in subsequent iterations, i.e. the error, 

falls below a predetermined threshold. Each iteration performs two main steps, the cluster assignment 

step, and the centroids update step. In the MapReduce implementation, the assignment step is 

performed in the Map Task and the update step is performed in the Reduce task. Centroid data is 

broadcast at the beginning of each iteration. Intermediate data communication is relatively costly in 

KMeansClustering, as each Map Task outputs data are equivalent to the size of the centroids in each 

iteration. 

2.6.6 Multi-Dimensional Scaling (MDS) 

The objective of multi-dimensional scaling (MDS) is to map a data set in a high-dimensional space to 

a user-defined lower dimensional space with respect to the pairwise proximity of the data points [51].  

Dimensional scaling is used mainly in the visualizing of high-dimensional data by mapping them into a 

two or three-dimensional space.  MDS has been used to visualize data in diverse domains, including but 

not limited to bio-informatics, geology, information sciences, and marketing. We use MDS to visualize 

dissimilarity distances for hundreds of thousands of DNA and protein sequences to identify 

relationships.  

 

Figure 4 Multi-Dimensional Scaling SMACOF application architecture using iterative MapReduce 

For the purposes of this dissertation, we use Scaling by MAjorizing a COmplicated Function 

(SMACOF) [52], an iterative majorization algorithm. The input for MDS is an N*N matrix of pairwise 
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proximity values, where N is the number of data points in the high-dimensional space.  The resultant 

lower dimensional mapping in D dimensions, called the X values, is an N*D matrix.  

The limits of MDS are more bounded by memory size than by CPU power. The main objective of 

parallelizing MDS is to leverage the distributed memory to support processing of larger data sets. In this 

thesis, we implement the parallel SMACOF algorithm described by Bae et al [46]. This results in iterating 

a chain of three MapReduce jobs, as depicted in Figure 4. For the purposes of this dissertation, we 

performed an unweighted mapping that results in two MapReduce jobs steps per iteration, BCCalc and 

StressCalc. Each BCCalc Map task generates a portion of the total X matrix. MDS is challenging for 

MapReduce frameworks due to its relatively finer grained task sizes and multiple MapReduce 

applications per iteration. 

2.6.7 Bio sequence analysis pipeline 

The bio-informatics genome processing and visualizing pipeline [14] shown in Figure 5 inspired some 

of the application use cases analyzed in this thesis. This pipeline uses the SmithWatermann-GOTOH 

application, described in section 2.6.4, or the BLAST+ application, described in section 2.6.3, for 

sequence alignment, Pairwise clustering for sequence clustering and the Multi-Dimensional Scaling 

application, described in section 2.6.6, are used to reduce the dimensions of the distance matrix to 

generate 3D coordinates for visualization purposes. This pipeline is currently in use to process and 

visualize hundreds of thousands of genomes with the ultimate goal of visualizing millions of genome 

sequences.  



42 

 

 

Figure 5 Bio sequence analysis pipeline [14] 
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 3. PLEASINGLY PARALLEL COMPUTING ON CLOUD ENVIRONMENTS 

A pleasingly parallel application is an application that can be parallelized, and thus requires minimal 

effort to divide the application into independent parallel parts. Each independent parallel part has very 

minimal or no data, synchronization or ordering dependencies with the others. These applications are 

good candidates for computing clouds and compute clusters with no specialized interconnections. There 

are many scientific applications that fall under this category. Examples of pleasingly parallel applications 

include Monte Carlo simulations, BLAST searches, parametric studies and image processing applications 

such as ray tracing. Most of the data cleansing and pre-processing applications can also be classified as 

pleasingly parallel applications. Recently, the relative number of pleasingly parallel scientific workloads 

has grown due to the emergence of data-intensive computational fields such as bioinformatics. 

In this chapter, we introduce a set of frameworks that have been constructed using cloud-oriented 

programming models to perform pleasingly parallel computations. Using these frameworks, we present 

distributed parallel implementations of biomedical applications such as the Cap3 [44] sequence 

assembly, the BLAST sequence search and GTM Interpolation. We analyze the performance, cost and 

usability of different cloud-oriented programming models using the above-mentioned implementations. 

We use Amazon Web Services [9] and Microsoft Windows Azure [53] cloud computing platforms, and 

Apache Hadoop [6] MapReduce and Microsoft DryadLINQ [7], as the distributed parallel computing 

frameworks. 

The work of this chapter have been presented and published as a workshop paper [54] and as a 

journal paper [55].  
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3.1 Pleasingly parallel application architecture 

Processing large data sets using existing sequential executables is a common use case encountered 

in many scientific applications. Many of these applications exhibit pleasingly parallel characteristics in 

which the data can be independently processed in parts. In the following sections, we explore cloud 

programming models and the frameworks that we developed to perform pleasingly parallel 

computations 

3.1.1 Classic Cloud processing model 

Figure 6  depicts the Classic Cloud processing model. Varia [56] and Chappell [57] describe similar 

architectures that are implemented using the Amazon and Azure processing models, respectively. The 

Classic Cloud processing model follows a task processing pipeline approach with independent workers. It 

uses cloud instances (EC2/Azure Compute) for data processing, and it uses Amazon S3/Windows Azure 

Storage for data storage. For the task scheduling pipeline, it uses an Amazon SQS or an Azure queue as a 

queue of tasks where every message in the queue describes a single task. The client populates the 

scheduling queue with tasks, while the worker-processes running in the cloud instances pick tasks from 

the scheduling queue. The configurable visibility timeout feature of the Amazon SQS and the Azure 

Queue services is used to provide a simple fault tolerance capability to the system. The workers delete 

the task (message) in the queue only after the completion of the task. Hence, a task (message) will get 

processed by some worker if the task does not get completed with the initial reader (worker) within the 

given time limit. Rare occurrences of multiple instances processing the same task, or another worker re-

executing a failed task, will not affect the result due to the idempotent nature of the independent tasks. 
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Figure 6 Classic cloud processing architecture for pleasingly parallel computations 

For the applications discussed in this chapter, a single task is comprised of a single input file and a 

single output file. The worker processes will retrieve the input files from the cloud storage through the 

web service interface using HTTP; they will then process them using an executable program before 

uploading the results back to the cloud storage. In this implementation, the user can configure the 

workers to use any executable program in the virtual machine to process the tasks, provided that it 

takes input in the form of a file. Our implementation uses a monitoring message queue to monitor the 

progress of the computation. One interesting feature of the Classic Cloud framework is the ability to 

extend it to use the local machines and clusters side-by-side with the clouds. Although it might not be 

the best option due to the data being stored in the cloud, one can start workers in computers outside of 

the cloud to augment the compute capacity.  

 

3.1.2 Pleasingly parallel processing using MapReduce frameworks 
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We implemented similar pleasingly parallel processing frameworks using Apache Hadoop [6] and 

Microsoft DryadLINQ [7]. 

 

Figure 7 Hadoop MapReduce based processing model for pleasingly parallel computations 

As shown in Figure 7, the pleasingly parallel application framework on Hadoop is developed as a set 

of map tasks which process the given data splits (files) using the configured executable program. Input 

to a map task comprises of key, value pairs, where by default Hadoop parses the contents of the data 

split to read them. Most of the legacy data processing applications expect a file path as the input instead 

of the contents of the file, which is not possible with the Hadoop built-in input formats and record 

readers. We implemented a custom InputFormat and a RecordReader for Hadoop to provide the file 

name and the HDFS path of the data split respectively as the key and the value for the map function, 

while preserving the Hadoop data locality based scheduling.  

The DryadLINQ [7] implementation of the framework uses the DryadLINQ “select” operator on the 

data partitions to perform the distributed computations. The resulting computation graph looks much 
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similar to the Figure 7, where instead of using HDFS, Dryad will use the Windows shared local directories 

for data storage. Data partitioning, distribution and the generation of metadata files for the data 

partitions is implemented as part of our pleasingly parallel application framework.  

3.1.3 Usability of the technologies 

Table 4: Summary of pleasingly parallel cloud framework features 

 AWS/ Azure Hadoop DryadLINQ 

Programming 

patterns 

Independent job 

execution, More structure 

possible using client side 

driver program. 

MapReduce DAG execution, Extensible 

to MapReduce and other 

patterns 

Fault Tolerance Task re-execution based 

on a configurable time 

out  

Re-execution of failed and 

slow tasks. 

Re-execution of failed and 

slow tasks. 

Data Storage and 

Communication  

S3/Azure Storage. Data 

retrieved through HTTP. 

HDFS parallel file system. 

TCP based 

Communication 

Local files  

Environments EC2/Azure virtual 

instances, local compute 

resources 

Linux cluster, Amazon 

Elastic MapReduce 

Windows HPCS cluster 

Scheduling and 

Load Balancing 

Dynamic scheduling 

through a global queue, 

providing natural load 

balancing 

Data locality, rack aware 

dynamic task scheduling 

through a global queue, 

providing natural load 

balancing 

Data locality, network 

topology aware 

scheduling. Static task 

partitions at the node 

level, suboptimal load 
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balancing 

Implementing the above-mentioned application framework using the Hadoop and DryadLINQ data 

processing frameworks was easier than implementing them from the scratch using cloud infrastructure 

services as the building blocks. Hadoop and DryadLINQ take care of scheduling, monitoring and fault 

tolerance. With Hadoop, we had to implement a Map function, which copy the input file from HDFS to 

the working directory, execute the external program as a process and finally upload the result file to the 

HDFS. It was also necessary to implement a custom InputFormat and a RecordReader to support file 

inputs to the map tasks. With DryadLINQ, we had to implement a side effect-free function to execute 

the program on the given data and copy the result to the output-shared directory. But significant effort 

had to be spent on implementing the data partition and the distribution programs to support 

DryadLINQ. 

EC2 and Azure Classic Cloud implementations involved more effort than the Hadoop and DryadLINQ 

implementations, as all the scheduling, monitoring and fault tolerance had to be implemented from 

scratch using the cloud infrastructure services’ features. The deployment process was easier with Azure 

as opposed to EC2, in which we had to manually create instances, install software and start the worker 

instances. On the other hand the EC2 infrastructure gives developers more flexibility and control. Azure 

SDK provides better development, testing and deployment support through Visual Studio integration. 

The local development compute fabric and the local development storage of the Azure SDK make it 

much easier to test and debug Azure applications. While the Azure platform is heading towards 

providing a more developer-friendly environment, it still lags behind in terms of the infrastructure 

maturity Amazon AWS has accrued over the years. 
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3.2 Evaluation Methodology 

In the performance studies, we use parallel efficiency as the measure by which to evaluate the 

different frameworks. Parallel efficiency is a relatively good measure for evaluating the different 

approaches we use in our studies, as we do not have the option of using identical configurations across 

the different environments. At the same time, we cannot use efficiency to directly compare the different 

technologies. Even though parallel efficiency accounts for the system dissimilarities that affect the 

sequential and the parallel run time, it does not reflect other dissimilarities, such as memory size, 

memory bandwidth and network bandwidth. Parallel efficiency for a parallel application on P number of 

cores can be calculated using the following formula:  

                     

   
   --- Equation 1[58] 

In this equation, Tp is the parallel run time for the application. T1 is the best sequential run time for 

the application using the same data set or a representative subset. In this chapter, the sequential run 

time for the applications was measured in each of the different environments, having the input files 

present in the local disks, avoiding the data transfers. 

The average run time for a single computation in a single core is calculated for each of the 

performance tests using the following formula. The objective of this calculation is to give readers an idea 

of the actual performance they can obtain from a given environment for the applications considered in 

this chapter. 

                                                         
     

                  
   --- Equation 2 

Due to the richness of the instance type choices Amazon EC2 provides, it is important to select an 

instance type that optimizes the balance between performance and cost. We present instance type 
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studies for each of our applications for the EC2 instance types mentioned in Table 2 using 16 CPU cores 

for each study. EC2 Small instances were not included in our study because they do not support 64-bit 

operating systems. We do not present results for Azure Cap3 and GTM Interpolation applications, as the 

performance of the Azure instance types for those applications scaled linearly with the price. However, 

the total size of memory affected the performance of BLAST application across Azure instance types; 

hence we perform an instance type study for BLAST on Azure.  

Cloud virtual machine instances are billed hourly. When presenting the results, the ‘Compute Cost 

(hour units)’ assumes that particular instances are used only for the particular computation and that no 

useful work is done for the remainder of the hour, effectively making the computation responsible for 

the entire hourly charge. The ‘Amortized Cost’ assumes that the instance will be used for useful work for 

the remainder of the hour, making the computation responsible only for the actual fraction of time 

during which it was executed. The horizontal axes of the EC2 cost figures (Figure 3 and 7) and the 

vertical axis labeling of the EC2 compute time figures (Figures 4 and 8) are labeled in the format 

‘Instance Type’ – ‘Number of Instances’ X ‘Number of Workers per Instance’. For an example, HCXL – 2 X 

8 means two High-CPU-Extra-Large instances were used with 8 workers per instance. 

When presenting the results used in this section, we considered a single EC2 Extra-Large instance, 

with 20 EC2 compute units as 8 actual CPU cores while an Azure Small instance was considered as a 

single CPU core. In all of the test cases, it is assumed that the data was already present in the 

framework’s preferred storage location. We used Apache Hadoop version 0.20.2 and DryadLINQ version 

1.0.1411.2 (November 2009) for our studies.  

3.3 Cap3 
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We implemented a distributed parallel version of Cap3[44] sequence assembly application for 

Amazon EC2, Microsoft Azure, DryadLINQ and for Apache Hadoop using the frameworks that were 

presented in section 3.1. Cap3 program is a pleasingly parallel application that is often used in parallel 

with lots of input files. More details on Cap3 are given in section 2.6.1. 

3.3.1 Performance with different EC2 cloud instance types 

Figure 8 and Figure 9 present benchmark results for the Cap3 application on different EC2 instance 

types. These experiments processed 200 FASTA files, each containing 200 reads using 16 compute cores.  

According to these results, we can infer that memory is not a bottleneck for the Cap3 program and that 

performance depends primarily on computational power. While the EC2 High-Memory-Quadruple-Extra-

Large instances show the best performance due to the higher clock-rated processors, the most cost 

effective performance for the Cap3 EC2 ClassicCloud application is gained using the EC2 High-CPU-Extra-

Large instances. 

 

Figure 8 Cap3 application execution cost with different EC2 instance types 
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Figure 9 : Cap3 applciation compute time with different EC2 instance types 

3.3.2 Scalability study 

 

We benchmarked the Cap3 Classic Cloud implementation performance using a replicated set of 

FASTA-formatted data files, each file containing 458 reads, and compared this to our previous 

performance results [43] for Cap3 DryadLINQ and Cap3 Hadoop. 16 High-CPU-Extra-Large instances 

were used for the EC2 testing and 128 small Azure instances were used for the Azure Cap3 testing. The 

DryadLINQ and Hadoop bare metal results were obtained using a 32 node X 8 core (2.5 GHz) cluster with 

16 GB of memory on each node.  

Load balancing across the different sub tasks does not pose a significant overhead in the Cap3 

performance studies, as we used a replicated set of input data files making each sub task identical. We 

performed a detailed study of the performance of Hadoop and DryadLINQ in the face of inhomogeneous 

data in one of our previous studies [43]. In this study,  we noticed better natural load balancing in 

Hadoop than in DryadLINQ due to Hadoop’s dynamic global level scheduling as opposed to DryadLINQ’s 

static task partitioning. We assume that cloud frameworks will be able perform better load balancing 

similar to Hadoop because they share the same dynamic scheduling global queue-based architecture. 
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Figure 10 Parallel efficiency of Cap3 application using the pleasingly parallel frameworks 

 

Figure 11 Cap3 execution time for single file per core using the pleasingly parallel frameworks 

Based on Figure 10 and Figure 11, we can conclude that all four implementations exhibit 

comparable parallel efficiency (within 20%) with low parallelization overheads. When interpreting Figure 

11, it should be noted that the Cap3 program performs ~12.5% faster on Windows environment than on 

the Linux environment. As mentioned earlier, we cannot use these results to claim that a given 

framework performs better than another, as only approximations are possible, given that the underlying 

infrastructure configurations of the cloud environments are unknown. 
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3.3.2.1 Cost comparison 

Table 5 : Cost Comparison of Cap3 execution among different cloud environments 

Amazon Web Services Azure 

Compute Cost 10.88 $ (0.68$ X 16 HCXL) 15.36$ (0.12$ X 128 Azure Small) 

Queue messages (~10,000) 0.01 $ 0.01 $ 

Storage (1GB, 1 month) 0.14 $ 0.15 $ 

Data transfer in/out (1 GB) 0.10 $ (in) 0.10$ (in) + 0.15$ (out) 

Total Cost 11.13 $ 15.77 $ 

 

In Table 5, we estimate the cost of assembling 4096 FASTA files using Classic Cloud frameworks on 

EC2 and on Azure. For the sake of comparison, we also approximate the cost of the computation using 

one of our internal compute clusters (32 node 24 core, 48 GB memory per node with Infiniband 

interconnects), with the cluster purchase cost (~500,000$) depreciated over the course of 3 years plus 

the yearly maintenance cost (~150,000$), which include power, cooling and administration costs. We 

executed the Hadoop-Cap3 application in our internal cluster for this purpose. The cost for computation 

using the internal cluster was approximated to 8.25$ US for 80% utilization, 9.43$ US for 70% utilization 

and 11.01$ US for 60% utilization. For the sake of simplicity, we did not consider other factors such as 

the opportunity costs of the upfront investment, equipment failures and upgradability. There would also 

be additional costs in the cloud environments for the instance time required for environment 

preparation and minor miscellaneous platform-specific charges, such as the number of storage requests. 

3.4 BLAST 
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NCBI BLAST+ [42] is a very popular bioinformatics application that is used to handle sequence 

similarity searching described in section 2.6.3. We implemented distributed parallel versions of BLAST 

application for Amazon EC2, Microsoft Azure, DryadLINQ and for Apache Hadoop using the frameworks 

that were presented in section 3.1. All of the implementations download and extract the compressed 

BLAST database (2.9GB compressed) to a local disk partition of each worker prior to beginning 

processing of the tasks. Hadoop-BLAST uses the Hadoop-distributed cache feature to distribute the 

database. We added a similar data preloading feature to the Classic Cloud frameworks, in which each 

worker will download the specified file from the cloud storage at the time of startup. In the case of 

DryadLINQ, we manually distributed the database to each node using Windows-shared directories. The 

performance results presented in this chapter do not include the database distribution times. 

 

3.4.1 Performance with different cloud instance types 

 

Figure 12 : Cost to process 64 BLAST  query files on different EC2 instance types 
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Figure 13 : Time to process 64 BLAST query files on different EC2 instance types 

Figure 12 and Figure 13 present the benchmark results for BLAST Classic Cloud application on 

different EC2 instance types. These experiments processed 64 query files, each containing 100 

sequences using 16 compute cores.  While we expected the memory size to have a strong correlation to 

the BLAST performance, due to the querying of a large database, the performance results do not show a 

significant effect related to the memory size, as High-CPU-Extra-Large (HCXL) instances with less than 

1GB of memory per CPU core were able to perform comparatively to Large and Extra-Large instances 

with 3.75GB per CPU core. However, it should be noted that there exists a slight correlation with 

memory size, as the lower clock rated Extra-Large (~2.0Ghz) instances with more memory per core 

performed similarly to the HCXL (~2.5Ghz) instances. The High-Memory-Quadruple-Large (HM4XL) 

instances (~3.25Ghz) have a higher clock rate, which partially explains the faster processing time. Once 

again, the EC2 HCXL instances gave the most cost-effective performance, thus offsetting the 

performance advantages demonstrated by other instance types. 

Figure 14 presents the benchmark results for BLAST Classic-Cloud application on different Azure 

instance types. These experiments processed 8 query files, each containing 100 sequences using 8 small, 

4 medium, 2 large and 1 Extra-Large instances respectively. Although the features of Azure instance 

types scale linearly, the BLAST application performed better with larger total memory sizes. When 
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sufficient memory is available, BLAST can load and reuse the whole BLAST database (~8GB) in to the 

memory. BLAST application has the ability to parallelize the computations using threads. The horizontal 

axis of Figure 14 depicts ‘Number of workers (processes) per instance’ X ‘Number of BLAST threads per 

worker’. The ‘N’ stands for the number of cores per instance in that particular instance type. According 

to the results, Azure Large and Extra-Large instances deliver the best performance for BLAST. Using pure 

BLAST threads to parallelize inside the instances delivered slightly lesser performance than using 

multiple workers (processes). The costs to process 8 query files are directly proportional to the run time, 

due to the linear pricing of Azure instance types.  

 

Figure 14 Time to process 8 query files using BLAST application on different Azure instance types 

3.4.2 Scalability 

For the scalability experiment, we replicated a query data set of 128 files (with 100 sequences in 

each file), one to six times to create input data sets for the experiments, ensuring the linear scalability of 

the workload across data sets. Even though the larger data sets are replicated, the base 128-file data set 

is inhomogeneous. The Hadoop-BLAST tests were performed on an iDataplex cluster, in which each 

node had two 4-core CPUs (Intel Xeon CPU E5410 2.33GHz) and 16 GB memory and was inter-connected 

using Gigabit Ethernet. DryadLINQ tests were performed on a Windows HPC cluster with 16 cores (AMD 
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Opteron 2.3 Ghz) and 16 GB of memory per node. 16 High-CPU-Extra-Large instances were used for the 

EC2 testing and 16 Extra-Large instances were used for the Azure testing. 

 

Figure 15 : BLAST parallel efficiency using the pleasingly parallel frameworks 

 

Figure 16 : BLAST average time to process a single query file using the pleasingly parallel frameworks 

Figure 15 depicts the absolute parallel efficiency of the distributed BLAST implementations, while 

Figure 16 depicts the average time to process a single query file in a single core. From those figures, we 

can conclude that all four implementations exhibit near-linear scalability with comparable performance 

(within 20% efficiency), while BLAST on Windows environments (Azure and DryadLINQ) exhibit the 

better overall efficiency. The limited memory of the High-CPU-Extra-Large (HCXL) instances shared 

across 8 workers performing different BLAST computations may have contributed to the relatively low 
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efficiency of EC2 BLAST implementation. According to figure 8, use of EC2 High-Memory-Quadruple-

Extra-Large instances would have given better performance than HCXL instances, but at a much higher 

cost. The amortized cost to process 768*100 queries using Classic Cloud-BLAST was ~10$ using EC2 and 

~12.50$ using Azure. 

3.5 GTM Interpolation 

We implemented distributed parallel versions of GTM interpolations application described in section 

2.6.2 for Amazon EC2, Microsoft Azure, DryadLINQ and for Apache Hadoop using the frameworks that 

were presented in section 3.1. 

 

Figure 17 : Cost of using GTM interpolation application with different EC2 instance types 
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Figure 18 : GTM Interpolation compute time with different EC2 instance types 

3.5.1 Application performance with different cloud instance types 

According to Figure 18, we can infer that memory (size and bandwidth) is a bottleneck for the GTM 

Interpolation application. The GTM Interpolation application performs better in the presence of more 

memory and a smaller number of processor cores sharing the memory. The high memory quadruple 

Extra-Large instances give the best performance overall, but the High-CPU-Extra-Large instances still 

appear to be the most economical choice. 

3.5.2 GTM Interpolation speedup  

 

Figure 19: GTM Interpolation parallel efficiency using the pleasingly parallel frameworks 
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Figure 20 : GTM Interpolation performance per core using the pleasingly parallel frameworks 

We used the PubChem data set of 26 million data points with 166 dimensions to analyze the GTM 

Interpolation applications. PubChem is an NIH funded repository of over 60 million chemical molecules, 

their chemical structures and their biological activities. A pre-processed subset of 100,000 data points 

were used as the seed for the GTM Interpolation. We partitioned the input data into 264 files, with each 

file containing 100,000 data points. Figure 19 and Figure 20 depict the performance of the GTM 

Interpolation implementations. 

DryadLINQ tests were performed on a 16 core (AMD Opteron 2.3 Ghz) per node, 16GB memory per 

node cluster. Hadoop tests were performed on a 24 core (Intel Xeon 2.4 Ghz) per node, 48 GB memory 

per node cluster which was configured to use only 8 cores per node. Classic Cloud Azure tests we 

performed on Azure Small instances (single core). Classic Cloud EC2 tests were performed on EC2 Large, 

High-CPU-Extra-Large (HCXL) as well as on High-Memory-Quadruple-Extra-Large (HM4XL) instances 

separately. HM4XL and HCXL instances were considered 8 cores per instance while ‘Large’ instances 

were considered 2 cores per instance. 

Characteristics of the GTM Interpolation application are different from the Cap3 application as GTM 

is more memory-intensive and the memory bandwidth becomes the bottleneck, which we assume to be 
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the cause of the lower efficiency numbers. Among the different EC2 instances, Large instances achieved 

the best parallel efficiency and High-Memory-Quadruple-Extra-Large instances gave the best 

performance while High-CPU-Extra-Large instances were the most economical. Azure small instances 

achieved the overall best efficiency. The efficiency numbers highlight the memory-bound nature of the 

GTM Interpolation computation, while platforms with less memory contention (fewer CPU cores sharing 

a single memory) performed better. As noted, the DryadLINQ GTM Interpolation efficiency is lower than 

the others. One reason for the lower efficiency would be the usage of 16 core machines for the 

computation, which puts more contention on the memory. 

The computational tasks of GTM Interpolation applications were much finer grain than those in the 

Cap3 or BLAST applications. Compressed data splits, which were unzipped before handing over to the 

executable, were used due to the large size of the input data. When the input data size is larger, Hadoop 

and DryadLINQ applications have an advantage of data locality-based scheduling over EC2. The Hadoop 

and DryadLINQ models bring computation to the data optimizing the I/O load, while the Classic Cloud 

model brings data to the computations. 

3.6 Summary 

We have demonstrated the feasibility of Cloud infrastructures for three loosely-coupled scientific 

computation applications by implementing them using cloud infrastructure services as well as cloud-

oriented programming models, such as Hadoop MapReduce and DryadLINQ. 

Cloud infrastructure services provide users with scalable, highly-available alternatives to their 

traditional counterparts, but without the burden of managing them.  While the use of high latency, 

eventually consistent cloud services together with off-instance cloud storage has the potential to cause 
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significant overheads, our work in this chapter has shown that it is possible to build efficient, low 

overhead applications utilizing them. Given sufficiently coarser grain task decompositions, Cloud 

infrastructure service-based frameworks as well as the MapReduce-based frameworks offer good 

parallel efficiencies in almost all of the cases we considered. Computing Clouds offer different instance 

types at different price points. We showed that selecting an instance type that is best suited to the 

user’s specific application can lead to significant time and monetary advantages. 

While models like Classic Cloud bring in both quality of services and operational advantages, it 

should be noted that the simpler programming models of existing cloud-oriented frameworks like 

MapReduce and DryadLINQ are more convenient for the users. Motivated by the positive results 

presented in this chapter, in the next couple of chapters, we present a fully-fledged MapReduce 

framework with iterative-MapReduce support for the Windows Azure Cloud infrastructure by using 

Azure infrastructure services as building blocks, which will provide users the best of both worlds. The 

cost effectiveness of cloud data centers, combined with the comparable performance reported here, 

suggests that loosely-coupled science applications will be increasingly implemented on clouds, and that 

using MapReduce frameworks will offer convenient user interfaces with little overhead. 
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 4. MAPREDUCE TYPE APPLICATIONS ON CLOUD ENVIRONMENTS 

The MapReduce distributed data analysis framework model introduced by Google [2] provides an 

easy-to-use programming model that features fault tolerance, automatic parallelization, scalability and 

data locality-based optimizations. Due to their excellent fault tolerance features, MapReduce 

frameworks are well-suited for the execution of large distributed jobs in brittle environments such as 

commodity clusters and cloud infrastructures. Though introduced by the industry and used mainly in the 

information retrieval community, it is shown [3-5] that MapReduce frameworks are capable of 

supporting many scientific application use cases, making these frameworks good choices for scientists to 

easily build large, data-intensive applications that need to be executed within cloud infrastructures. 

The lack of a distributed computing framework on the Azure platform at the time (circa 2010) 

motivated us to implement MRRoles4Azure (MapReduce Roles for Azure), which is a decentralized novel 

MapReduce run time built using Azure cloud infrastructure services. MRRoles4Azure implementation 

takes advantage of the scalability, high availability and the distributed nature of cloud infrastructure 

services, guaranteed by cloud service providers, to deliver a fault tolerant, dynamically scalable runtime 

with a familiar programming model for users. 

Several options exist for executing MapReduce jobs on cloud environments, such as manually 

setting up a MapReduce (e.g.: Hadoop[6]) cluster on a leased set of computing instances, using an on-

demand MapReduce-as-service offering such as Amazon ElasticMapReduce (EMR) [23]or using a cloud 

MapReduce runtime such as MRRoles4Azure or CloudMapReduce[38]. In this chapter, we explore and 

evaluate each of these different options for two well-known bioinformatics applications: Smith-

Waterman GOTOH pairwise distance alignment (SWG) [49, 50] and Cap3 [59] sequence assembly. We 
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have performed experiments to gain insights about the performance of MapReduce in the clouds for the 

selected applications, and we compare its performance to MapReduce on traditional clusters.  For this 

study, we use an experimental version of MRRoles4Azure. 

Our work was further motivated by an experience we had in early 2010, in which we evaluated the 

use of Amazon EMR for our scientific applications. To our surprise, we observed subpar performance in 

EMR compared to using a manually-built cluster on EC2 (which is not the case anymore); this experience 

prompted us to perform the current analyses. In this chapter, we show that MapReduce computations 

performed in cloud environments, including MRRoles4Azure, have the ability to perform comparably to 

MapReduce computations on dedicated private clusters. 

The work of this chapter has been presented and published as a conference paper [60].  

4.1 Challenges for MapReduce in the Clouds 

As mentioned above, MapReduce frameworks perform much better in brittle environments than 

other tightly coupled distributed programming frameworks, such as MPI [61], due to their excellent fault 

tolerance capabilities. However, cloud environments provide several challenges for MapReduce 

frameworks to harness the best performance.  

 Data storage: Clouds typically provide a variety of storage options, such as off-instance 

cloud storage (e.g.: Amazon S3), mountable off-instance block storage (e.g.: Amazon EBS) as 

well as virtualized instance storage (persistent for the lifetime of the instance), which can be 

used to set up a file system similar to HDFS [13].  The choice of the storage best-suited to 

the particular MapReduce deployment plays a crucial role as the performance of data 

intensive applications rely a lot on the storage location and on the storage bandwidth. 
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 Metadata storage: MapReduce frameworks need to maintain metadata information to 

manage the jobs as well as the infrastructure. This metadata needs to be stored reliability 

ensuring good scalability and the accessibility to avoid single point of failures and 

performance bottlenecks to the MapReduce computation. 

 Communication consistency and scalability: Cloud infrastructures are known to exhibit 

inter-node I/O performance fluctuations (due to shared network, unknown topology), which 

affect the intermediate data transfer performance of MapReduce applications. 

 Performance consistency (sustained performance): Clouds are implemented as shared 

infrastructures operating using virtual machines. It is possible for the performance to 

fluctuate based the load of the underlying infrastructure services as well as based on the 

load from other users on the shared physical node which hosts the virtual machine (see 

Section 6.3). 

 Reliability (Node failures): Node failures are to be expected whenever large numbers of 

nodes are utilized for computations. But they become more prevalent when virtual 

instances are running on top of non-dedicated hardware. While MapReduce frameworks 

can recover jobs from worker node failures, master node (nodes which store meta-data, 

which handle job scheduling queue, etc.) failures can become disastrous. 

 Choosing a suitable instance type: Clouds offer users several types of instance options, with 

different configurations and price points (See Table 1 and Table 2). It is important to select 

the best matching instance type, both in terms of performance as well as monetary wise, for 

a particular MapReduce job. 

 Logging: Cloud instance storage is preserved only for the lifetime of the instance. Hence, 

information logged to the instance storage would be lost after the instance termination. 
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This can be crucial if one needs to process the logs afterwards, for an example to identify a 

software-caused instance failure. On the other hand, performing excessive logging to a 

bandwidth limited off-instance storage location can become a performance bottleneck for 

the MapReduce computation. 

4.2 MRRoles4Azure (MapReduce Roles for Azure) 

MRRoles4Azure is a distributed decentralized MapReduce runtime for Windows Azure that was 

developed using Azure cloud infrastructure services. The usage of the cloud infrastructure services 

allows the MRRoles4Azure implementation to take advantage of the scalability, high availability and the 

distributed nature of such services guaranteed by the cloud service providers to avoid single point of 

failures, bandwidth bottlenecks (network as well as storage bottlenecks) and management overheads.  

The usage of cloud services usually introduces latencies larger than their optimized non-cloud 

counterparts and often does not guarantee the time for the data’s first availability. These overheads can 

be conquered, however, by using a sufficiently coarser grained map and reduce tasks. MRRoles4Azure 

overcomes the availability issues by retrying and by designing the system so it does not rely on the 

immediate availability of data to all the workers. The MRRoles4Azure implementation uses Azure 

Queues for Map and Reduce task scheduling, Azure tables for metadata & monitoring data storage, 

Azure blob storage for input, output and intermediate data storage and the Window Azure Compute 

worker roles to perform the computations.  

Google MapReduce [2], Hadoop [62] as well as Twister [63] MapReduce computations are centrally 

controlled using a master node and assume master node failures to be rare. In those run times, the 

master node handles the task assignment, fault tolerance and monitoring for the completion of Map 
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and Reduce tasks, in addition to other responsibilities. By design, cloud environments are more brittle 

than the traditional computing clusters are. Thus, cloud applications should be developed to anticipate 

and withstand these failures. Because of this, it is not possible for MRRoles4Azure to make the same 

assumptions of reliability about a master node as in the above-mentioned runtimes. Due to these 

reasons, MRRoles4Azure is designed around a decentralized control model without a master node, thus 

avoiding the possible single point of failure. MRRoles4Azure also provides users with the capability to 

dynamically scale up or down the number of computing instances, even in the middle of a MapReduce 

computation, as and when it is needed. The map and reduce tasks of the MRRoles4Azure runtime are 

dynamically scheduled using a global queue. In a previous study [43], we experimentally showed that 

dynamic scheduling through a global queue achieves better load balancing across all tasks, resulting in 

better performance and throughput than statically scheduled runtimes, especially when used with real-

world inhomogeneous data distributions.  
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Figure 21 MapReduceRoles4Azure: Architecture for implementing MapReduce frameworks on Cloud 

environments using cloud infrastructure services 

4.2.1 Client API and Driver 

Client driver is used to submit the Map and Reduce tasks to the worker nodes using Azure Queues. 

Users can utilize the client API to generate a set of map tasks that are either automatically based on a 

data set present in the Azure Blob storage or manually based on custom criteria, which we find to be a 

very useful feature when implementing science applications using MapReduce. Client driver uses the 

.net task parallel library to dispatch tasks in parallel overcoming the latencies of the Azure queue and 

the Azure table services. It is possible to use the client driver to monitor the progress and completion of 

the MapReduce jobs.  

4.2.2 Map Tasks 
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Users have the ability to configure the number of Map workers per Azure instance. Map workers 

running on the Azure compute instances poll and dequeue map task scheduling messages from the 

scheduling queue, which were enqueued by the client API.  The scheduling messages contain the meta-

data needed for the Map task execution, such as input data file location, program parameters, map task 

ID, and so forth. Map tasks upload the generated intermediate data to the Azure Blob Storage and put 

the key-value pair meta-data information to the correct reduce task table. At this time, we are actively 

working on investigating other approaches for performing the intermediate data transfer. 

4.2.3 Reduce Tasks 

Reduce task scheduling is similar to map task scheduling. Users have the ability to configure the 

number of Reduce tasks per Azure Compute instance. Each reduce task has an associated Azure Table 

containing the input key-value pair meta-data information generated by the map tasks. Reduce tasks 

fetch intermediate data from the Azure Blob storage based on the information present in the above-

mentioned reduce task table. This data transfer begins as soon as the first Map task is completed, 

overlapping the data transfer with the computation. This overlapping of data transfer with computation 

minimizes the data transfer overhead of the MapReduce computations, as found in our testing. Each 

Reduce task starts processing the reduce phase; when all the map tasks are completed, and after all the 

intermediate data products bound for that particular reduce task is fetched. In the MRRoles4Azure, each 

reduce task will independently determine the completion of map tasks based on the information in the 

map task meta-data table and in the reduce task meta-data table. After completion of the processing, 

reduce tasks upload the results to the Azure Blob Storage and update status in the reduce task meta-

data table. 

Azure table does not support transactions across tables or guarantee the immediate availability of 

data, but rather guarantees the eventual availability data. Due to that, it is possible for a worker to 
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notice a map task completion update, before seeing a reduce task intermediate meta-data record added 

by that particular map task. Even though rare, this can result in an inconsistent state where a reduce 

task decides all the map tasks have been completed and all the intermediate data bound for that task 

have been transferred successfully, while in reality it is missing some intermediate data items.  In order 

to remedy this, map tasks store the number of intermediate data products it generated in the map task 

meta-data table while doing the task completion status update. Before proceeding with the execution, 

reduce tasks perform a global count of intermediate data products in all reduce task tables and tally it 

with the total of intermediate data products generated by the map tasks. This process ensures all the 

intermediate data products are transferred before starting the reduce task processing. 

4.2.4 Monitoring 

We use Azure tables for the monitoring of the map and reduce task meta-data and status 

information. Each job has two separate Azure tables for Map and Reduce tasks. Both the meta-data 

tables are used by the reduce tasks to determine the completion of Map task phase. Other than the 

above two tables, it is possible to monitor the intermediate data transfer progress using the tables for 

each reduce task.  

4.2.5  Fault Tolerance 

Fault tolerance is achieved using the fault tolerance features of the Azure queue. When fetching a 

message from an Azure queue, a visibility timeout can be specified, which will keep the message hidden 

until the timeout expires. In MRRoles4Azure, map and reduce tasks delete messages from the queue 

only after successful completion of the tasks. If a task fails or is too slow processing, then the message 

will reappear in the queue after the timeout. In this case, it would be fetched and re-executed by a 

different worker. This is made possible by the side effect-free nature of the MapReduce computations as 
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well as the fact that MRRoles4Azure stores each generated data product in persistent storage, which 

allows it to ignore the data communication failures. In the current implementation, we retry each task 

three times before declaring the job a failure. We use the Map & Reduce task meta-data tables to 

coordinate the task status and completion. Over the course of our testing, we were able to witness few 

instances of jobs being recovered by the fault tolerance. 

4.2.6 Limitations of MRRoles4Azure 

Currently Azure allows a maximum of 2 hours for queue message timeout, which is not enough for 

Reduce tasks of larger MapReduce jobs, as the Reduce tasks typically execute from the beginning of the 

job till the end of the job. In our current experiments, we disabled the reduce tasks fault tolerance when 

it is probable for MapReduce job to execute for more than 2 hours. Also in contrast to Amazon Simple 

Queue Service, Azure Queue service currently doesn’t allow for dynamic changes of visibility timeouts, 

which would allow for richer fault tolerance patterns. 

 

4.3 Performance evaluation 

4.3.1 Methodology 

We performed scalability tests using the selected applications to evaluate the performance of the 

MapReduce implementations in the cloud environments, as well as in the local clusters. For the 

scalability test, we decided to increase the workload and the number of nodes proportionally (weak 

scaling), so that the workload per node remained constant. 
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All of the MRRoles4Azure tests were performed using Azure small instances (one CPU core). The 

Hadoop-Bare Metal tests were performed on an iDataplex cluster, in which each node had two 4-core 

CPUs (Intel Xeon CPU E5410 2.33GHz) and 16 GB memory, and was inter-connected using Gigabit 

Ethernet network interface. The Hadoop-EC2 and EMR tests for Cap3 application were performed using 

Amazon High CPU extra-large instances, as they are the most economical per CPU core. Each high CPU 

extra-large instance was considered as 8 physical cores, even though they are billed as 20 Amazon 

compute units. The EC2 and EMR tests for SWG MapReduce applications were performed using Amazon 

extra-large instances as the more economical high CPU extra instances showed memory limitations for 

the SWG calculations. Each extra-large instance was considered as 4 physical cores, even though they 

are billed as 8 Amazon computing units. In all the Hadoop-based experiments (EC2, EMR and Hadoop 

bare metal), only the cores of the Hadoop slave nodes were considered for the number of cores 

calculation, despite the fact that an extra computing node was used as the Hadoop master node. 

Below are the defined parallel efficiency (                     

   
   --- Equation 1) and relative 

parallel efficiency calculations used to present results in this chapter. 

                         
    

     
 

T(1) is the best sequential execution time for the application in a particular environment using the 

same data set or a representative subset. In all the cases, the sequential time was measured with no 

data transfers, i.e. the input files were present in the local disks. T(ρ) is the parallel run time for the 

application while “p” is the number of processor cores used.  

We calculate that the relative parallel efficiency when estimating the sequential run time for an 

application is not straightforward. α = p/p1, where p1 is the smallest number of CPU cores for the experiment.  
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  --- Equation 3 

4.3.2 Smith-Waterman-GOTOH (SWG) pairwise distance calculation 

 

Figure 22 Task decomposition mechanism of SWG pairwise distance calculation MapReduce application 

In this application, we use the Smith-Waterman [49] algorithm with GOTOH [50] (SWG) 

improvement to perform pairwise sequence alignment on FASTA sequences. Given a sequence set we 

calculate the all-pairs dissimilarity for all the sequences. When calculating the all-pairs dissimilarity for a 

data set, calculating only the strictly upper or lower triangular matrix in the solution space is sufficient, 

as the transpose of the computed triangular matrix gives the dissimilarity values for the other triangular 

matrix. As shown in Figure 22, this property, together with blocked decomposition, is used when 

calculating the set of map tasks for a given job. Reduce tasks aggregate the output from a row block.  In 

this application, the size of the input data set is relatively small, while the size of the intermediate and 

the output data are significantly larger due to the n2 result space, stressing the performance of inter-

node communication and output data storage. SWG can be considered as a memory-intensive 

application. 
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More details about the Hadoop-SWG application implementation are given in [43]. The 

MRRoles4Azure implementation also follows the same architecture and blocking strategy as in the 

Hadoop-SWG implementation. Hadoop-SWG uses the open source JAligner [64] as the computational 

kernel, while MRRoles4Azure SWG uses the C# implementation, NAligner [64] as the computational 

kernel. The results of the SWG MapReduce computation get stored in HDFS for Hadoop-SWG in bare 

metal and EC2 environments, while the results get stored in Amazon S3 and Azure Block Storage for 

Hadoop-SWG on EMR and SWG on MRRoles4Azure, respectively. 

 

Figure 23 SWG MapReduce pure performance 
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Figure 24 SWG MapReduce relative parallel efficiency 

 

Figure 25 SWG MapReduce normalized performance 

Due to the all-pairs nature and the block-based task decomposition of the SWG MapReduce 

implementations, it is hard to increase the workload linearly by simply replicating the number of input 

sequences for the scalability test. Hence, we modified the program to artificially reuse the 

computational blocks of the smallest test case in the larger test cases, so that the workload scaling 

occurs linearly. The raw performance results of the SWG MapReduce scalability test are given in Figure 

23. A block size of 200 * 200 sequences is used in the performance experiments resulting in 40,000 

sequence alignments per block, which resulted in ~123 million sequence comparisons in the 3072 block 
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test case.  The MRRoles4Azure SWG performance in Figure 23 is significantly lesser than the others. This 

is due to the performance of NAligner core executing in windows environment being slower than the 

JAligner core executing in Linux environment. 

Due to the sheer size of even the smallest computation in our SWG scaling test cases, we found it 

impossible to calculate the sequential execution time for the SWG test cases. Also, due to the all-pairs 

nature of SWG, it is not possible to calculate the sequential execution time using a subset of data. In 

order to compensate for the lack of absolute efficiency (which would have negated most of the platform 

and hardware differences across different environments), we performed a moderately-sized sequential 

SWG calculation in all of the environments and used that result to normalize the performance using the 

Hadoop-bare metal performance as the baseline. The normalized performance is depicted in Figure 25, 

where we can observe that all four environments show comparable performance and good scalability 

for the SWG application. Figure 24 depicts the relative parallel efficiency of SWG MapReduce 

implementations using the 64 core, 1024 block test case as p1 (see section V-A). 

 

Figure 26 SWG MapReduce amortized cost for clouds 
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In Figure 26 we present the approximate computational costs for the experiments performed using 

cloud infrastructures. Even though the cloud instances are hourly billed, costs presented in Figure 26 are 

amortized for the actual execution time (time / 3600 * num_instances * instance price per hour), 

assuming the remaining time of the instance hour has been put to useful work. In addition to the 

depicted charges, there will be additional minor charges for the data storage for EMR & MRRoles4Azure.  

There will also be additional minor charges for the queue service and table service for MRRoles4Azure. 

We notice that the costs for Hadoop on EC2 and MRRoles4Azure are in a similar range, while EMR costs 

a fraction more.  We consider the ability to perform a large computation, such as ~123 million sequence 

alignments, for under 30$ with zero up front hardware cost, as a great enabler for the scientists, who 

don’t have access to in house compute clusters.  

4.3.3 Sequence assembly using Cap3 

Cap3 [59] is a sequence assembly program which assembles DNA sequences by aligning and merging 

sequence fragments to construct whole genome sequences. More details about the Cap3 are given in 

section 2.6.1 and more details about Cap3 Hadoop implementation are given in section 3.3.  

 

Figure 27 Cap3 MapReduce scaling performance  
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Figure 28 Cap3 MapReduce parallel efficiency 

 

Figure 29 Cap3 MapReduce computational cost in cloud infrastructures 

We used a replicated set of Fasta files as the input data in our experiments. Every file contained 458 

reads. The input/output data was stored in HDFS in the Hadoop Bare Metal and Hadoop-EC2 

experiments, while they were stored in Amazon S3 and Azure Blob storage for EMR and MRRoles4Azure 

experiments respectively. Figure 27 presents the pure performance of the Cap3 MapReduce 

applications, while Figure 28 presents the absolute parallel efficiency for the Cap3 MapReduce 

applications. As we can see, all of the cloud Cap3 applications displayed performance comparative to the 

bare metal clusters and good scalability, while MRRoles4Azure and Hadoop Bare metal showed a slight 

edge over the Amazon counterparts in terms of the efficiency. Figure 29 depicts the approximate 
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amortized computing cost for the Cloud MapReduce applications, with MRRoles4Azure showing an 

advantage. 

4.4 Summary 

We introduced the novel decentralized controlled MRRoles4Azure framework, which fulfills the 

much-needed requirement of a distributed programming framework for Azure users. MRRoles4Azure is 

built by using Azure cloud infrastructure services that take advantage of the quality of service 

guarantees provided by the cloud service providers. Even though cloud services have higher latencies 

than their traditional counter parts, scientific applications implemented using MRRoles4Azure were able 

to perform comparably to the other MapReduce implementations; thus, these results prove the 

feasibility of the MRRoles4Azure architecture. We also explored the challenges presented by cloud 

environments to execute MapReduce computations and we discussed how we overcame them by using 

the MRRoles4Azure architecture. 

We also presented and analyzed the performance of two scientific MapReduce applications on two 

popular cloud infrastructures. In our experiments, scientific MapReduce applications executed in the 

cloud infrastructures exhibited performance and efficiency comparable to the MapReduce applications 

executed using traditional clusters. Performance comparable to in-house clusters and no upfront costs, 

coupled together with the features of on demand availability, horizontal scalability and the easy to use 

programming model make using MapReduce in cloud environments a very viable option and an enabler 

for computational scientists, especially in scenarios where in-house compute clusters are not readily 

available. From an economical and maintenance perspective, it even makes sense not to procure in-

house clusters if the utilization would be low.   
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 5. DATA INTENSIVE ITERATIVE COMPUTATIONS ON CLOUD 

ENVIRONMENTS 

Iterative computations are at the core of the vast majority of large-scale data intensive 

computations. Many important data intensive iterative scientific computations can be implemented as 

iterative computation and communication steps, in which computations inside an iteration are 

independent and are synchronized at the end of each iteration through reduce and communication 

steps; this makes it possible for individual iterations to be parallelized using technologies such as 

MapReduce. Examples of such applications include dimensional scaling, many clustering algorithms, 

many machine learning algorithms, and expectation maximization applications, among others. The 

growth of such data intensive iterative computations, in number as well as in importance, is driven 

partly by the need to process massive amounts of data, and partly by the emergence of data intensive 

computational fields, such as bioinformatics, chemical informatics and web mining. 

Twister4Azure is a distributed decentralized iterative MapReduce runtime for the Windows Azure 

Cloud that has been developed utilizing Azure cloud infrastructure services. Twister4Azure extends the 

familiar, easy-to-use MapReduce programming model with iterative extensions; this thus enables a wide 

array of large-scale iterative data analysis and scientific applications to utilize the Azure platform easily 

and efficiently in a fault-tolerant manner. Twister4Azure effectively utilizes the eventually consistent, 

high-latency Azure cloud services to deliver performance that is comparable to traditional MapReduce 

runtimes for non-iterative MapReduce, while outperforming traditional MapReduce runtimes for 

iterative MapReduce computations. Twister4Azure has minimal management and maintenance 

overheads, and it provides users with the capability to dynamically scale up or down the amount of 
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computing resources. Twister4Azure takes care of almost all the Azure infrastructure (service failures, 

load balancing, etc.) and coordination challenges, and frees users from having to deal with the 

complexity of the cloud services. Window Azure claims to allow users to “focus on your applications, not 

the infrastructure.” Twister4Azure takes that claim one step further, and lets users focus only on the 

application logic without worrying about the application architecture. 

The applications of Twister4Azure can be categorized according to three classes of application 

patterns. The first of these are the Map only applications, described in section 2.5.1, which are also 

called pleasingly (or embarrassingly) parallel applications. Examples of this type of application include 

Monte Carlo simulations, BLAST+ sequence searches, parametric studies and most of the data cleansing 

and pre-processing applications. Twister4Azure contains sample implementations of the BLAST+ and 

Cap3   as pleasingly parallel applications.  

The second type of applications includes the traditional MapReduce type applications, described in 

section 2.5.2, which utilize the reduction phase and other features of MapReduce. Twister4Azure 

contains sample implementations of the SmithWatermann-GOTOH (SWG) [43] pairwise sequence 

alignment and Word Count as traditional MapReduce type applications. 

The third and most important type of applications Twister4Azure supports is the iterative 

MapReduce type of applications. As mentioned above, there exist many data-intensive scientific 

computation algorithms that rely on iterative computations, wherein each iterative step can be easily 

specified as a MapReduce computation. Section 5.2.2 and 5.2.3 present detailed analyses of Multi-

Dimensional Scaling and KMeans Clustering iterative MapReduce implementations.  

The work of this chapter has been presented and published as a conference paper [65] and as a 

journal paper [12].  
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5.1 Twister4Azure – Iterative MapReduce 

Twister4Azure is an iterative MapReduce framework for the Azure cloud that extends the 

MapReduce programming model to support data intensive iterative computations. Twister4Azure 

enables a wide array of large-scale iterative data analysis and data mining applications to utilize the 

Azure cloud platform in an easy, efficient and fault-tolerant manner. Twister4Azure extends the 

MRRoles4Azure architecture by utilizing the scalable, distributed and highly available Azure cloud 

services as the underlying building blocks. Twister4Azure employing a decentralized control architecture 

that avoids single point failures.   

5.1.1 Twister4Azure Programming model 

We identified the following requirements for choosing or designing a suitable programming model 

for scalable parallel computing in cloud environments.  

1) The ability to express a sufficiently large and useful subset of large-scale data intensive and 

parallel computations,  

2) That it should be simple, easy-to-use and familiar to the users,  

3) That it should be suitable for efficient execution in the cloud environments.  

We selected the data-intensive iterative computations as a suitable and sufficiently large subset of 

parallel computations that could be executed in the cloud environments efficiently, while using iterative 

MapReduce as the programming model. 

5.1.1.1 Data intensive iterative computations 

There exists a significant amount of data analysis, data mining and scientific computation algorithms 

that rely on iterative computations, where we can easily specify each iterative step as a MapReduce 

computation. Typical data-intensive iterative computations follow the structure given in Code 1 and 
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Figure 3. We can identify two main types of data in these computations, the loop invariant input data 

and the loop variant delta values. Loop variant delta values are the result, or a representation of the 

result, of processing the input data in each iteration. Computations of an iteration use the delta values 

from the previous iteration as an input. Hence, these delta values need to be communicated to the 

computational components of the subsequent iteration. One example of such delta values would be the 

centroids in a KMeans Clustering computation (section 2.6.5). Single iterations of such computations are 

easy to parallelize by processing the data points or blocks of data points independently in parallel, and 

performing synchronization between the iterations through communication steps.  Section 2.3 provides 

more information on iterative MapReduce and iterative data intensive computations. 

 

Code 1 Typical data-intensive iterative computation 

1: k ← 0; 
2: MAX ← maximum iterations 
3: δ

[0] 
← initial delta value 

4: while ( k< MAX_ITER || f(δ
[k]

, δ
[k-1]

) ) 
5:      foreach datum in data 
6:            β[datum] ← process (datum, δ

[k]
) 

7:      end foreach 
8:      δ

[k+1]
 ← combine(β[]) 

9:      k ← k+1 
10: end while 

 

Twister4Azure extends the MapReduce programming model to support the easy parallelization of 

the iterative computations by adding a Merge step to the MapReduce model, and also, by adding an 

extra input parameter for the Map and Reduce APIs to support the loop-variant delta inputs.  Code 1 

depicts the structure of a typical data-intensive iterative application, while Code 2 depicts the 

corresponding Twister4Azure MapReduce representation. Twister4Azure will generate map tasks (line 
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5-7 in Code 1, line 8-12 in Code 2) for each data block, and each map task will calculate a partial result, 

which will be communicated to the respective reduce tasks. The typical number of reduce tasks will be 

orders of magnitude less than the number of map tasks. Reduce tasks (line 8 in Code 1, line 13-15 in 

Code2) will perform any necessary computations, combine the partial results received and emit parts of 

the total reduce output. A single merge task (line 16-19 in Code 2) will merge the results emitted by the 

reduce tasks, and will evaluate the loop conditional function (line 8 and 4 in Code1), often comparing the 

new delta results with the older delta results. Finally, the new delta output of the iteration will be 

broadcast or scattered to the map tasks of the next iteration (line 7 Code2). Figure 30 presents the flow 

of the Twister4Azure programming model.  

 

Figure 30 Twister4Azure iterative MapReduce programming model 

Code 2 Data-intensive iterative computation using Twister4Azure programming model 

1:  k ← 0; 
2: MAX ← maximum iterations 
3: δ

[0] 
← initial delta value 

4: α ← true 
 

5: while ( k< MAX_ITER || α) 
6:      distribute datablocks 
7:      broadcast δ

[k]
 

Reduce

Reduce

Merge
Add 

Iteration? No

Map Combine

Map Combine

Map Combine

Data Cache

Yes

Hybrid scheduling of the new iteration

Job Start

Job Finish

Broadcast
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8:      map (datablock, δ
[k]

)            
9:                 foreach datum in datablock 
10:                       β[datum] ← process (datum, δ

[k]
) 

11:                 end foreach 
12:                 emit (β)        

      
13:      reduce (list of β)            
14:                 β’ ← combine (list of β) 
15:                 emit (β’) 

             
16:      merge (list of β’, δ

[k]
)        

17:                 δ
[k+1]

 ← combine (list of β) 
18:                 α ← f(δ

[k]
, δ

[k-1]
) 

19:                 emit (α, δ
[k+1]

)        
 

20:        k ←k+1 
end while 

5.1.1.2 Map and Reduce API 

Twister4Azure extends the map and reduce functions of traditional MapReduce to include the loop 

variant delta values as an input parameter. This additional input parameter is a list of key, value pairs. 

This parameter can be used to provide an additional input through a broadcast operation or through a 

scatter operation.  Having this extra input allows the MapReduce programs to perform Map side joins, 

avoiding the significant data transfer and performance costs of reduce side joins[27], and avoiding the 

often unnecessary MapReduce jobs to perform reduce side joins. The PageRank computation presented 

by Bu, Howe, et.al. [28] demonstrates the inefficiencies of using Map side joins for iterative 

computations. The Twister4Azure non-iterative computations can also use this extra input to receive 

broadcasts or scatter data to the Map & Reduce tasks. 

Map(<key>, <value>, list_of <key,value>) 

Reduce(<key>, list_of <value>, list_of <key,value>) 
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5.1.1.3 Merge 

Twister4Azure introduces Merge as a new step to the MapReduce programming model to support 

iterative MapReduce computations. The Merge task executes after the Reduce step. The Merge Task 

receives all the Reduce outputs and the broadcast data for the current iteration as the inputs.  There can 

only be one merge task for a MapReduce job. With Merge, the overall flow of the iterative MapReduce 

computation would look like the following sequence: 

Map -> Combine -> Shuffle -> Sort -> Reduce -> Merge -> Broadcast 

Since Twister4Azure does not have a centralized driver to make control decisions, the Merge step 

serves as the “loop-test” in the Twister4Azure decentralized architecture. Users can add a new iteration, 

finish the job or schedule a new MapReduce job from the Merge task. These decisions can be made 

based on the number of iterations, or by comparing the results from the previous iteration with the 

current iteration, such as the k-value difference between iterations for KMeans Clustering.  Users can 

use the results of the current iteration and the broadcast data to make these decisions. It is possible to 

specify the output of the merge task as the broadcast data of the next iteration. 

Merge(list_of <key,list_of<value>>,list_of <key,value>) 

5.1.2 Data Cache 

Twister4Azure locally caches the loop-invariant (static) input data across iterations in the memory 

and instance storage (disk) of worker roles. Data caching avoids the download, loading and parsing cost 

of loop invariant input data, which are reused in the iterations. These data products are comparatively 

larger sized, and consist of traditional MapReduce key-value pairs. The caching of loop-invariant data 

provides significant speedups for the data-intensive iterative MapReduce applications. These speedups 
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are even more significant in cloud environments, as the caching and reusing of data helps to overcome 

the bandwidth and latency limitations of cloud data storage.  

Twister4Azure supports three levels of data caching: 

1. Instance storage (disk) based caching 

2. Direct in-memory caching 

3. Memory-mapped-file based caching 

For the disk-based caching, Twister4Azure stores all the files it downloads from the Blob storage in 

the local instance storage. The local disk cache automatically serves all the requests for previously 

downloaded data products. Currently, Twister4Azure does not support the eviction of the disk cached 

data products, and it assumes that the input data blobs do not change during the course of a 

computation. 

The selection of data for in-memory and memory-mapped-file based caching needs to be specified 

in the form of InputFormats. Twister4Azure provides several built-in InputFormat types that support 

both in-memory as well as memory-mapped-file based caching. Currently Twister4Azure performs the 

least recently used (LRU) based cache eviction for these two types of caches.  

Twister4Azure maintains a single instance of each data cache per worker-role shared across map, 

reduce and merge workers, allowing the reuse of cached data across different tasks, as well as across 

any MapReduce application within the same job. Section 6.4 presents a more detailed discussion about 

the performance trade-offs and implementation strategies of the different caching mechanisms. 

5.1.3 Cache Aware Scheduling 
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In order to take maximum advantage of the data caching for iterative computations, Map tasks of 

the subsequent iterations need to be scheduled with an awareness of the data products that are cached 

in the worker-roles. If the loop-invariant data for a map task is present in the DataCache of a certain 

worker-role, then Twister4Azure should assign that particular map task to that particular worker-role. 

The decentralized architecture of Twister4Azure presents a challenge in this situation, as Twister4Azure 

does not have either a central entity that has a global view of the data products cached in the worker-

roles, nor does it have the ability to push the tasks to a specific worker-role.  

As a solution to the above issue, Twister4Azure opted for a model in which the workers pick tasks to 

execute based on the data products they have in their DataCache, and based on the information that is 

published on a central bulletin board (an Azure table). Naïve implementation of this model requires all 

the tasks for a particular job to be advertised, making the bulletin board a bottleneck. We avoid this by 

locally storing the Map task execution histories (meta-data required for execution of a map task) from 

the previous iterations. With this optimization, the bulletin board only advertises information about the 

new iterations. This allows the workers to start the execution of the map tasks for a new iteration as 

soon as the workers get the information about a new iteration through the bulletin board, after the 

previous iteration is completed. A high-level pseudo-code for the cache aware scheduling algorithm is 

given in Code 3. Every free map worker executes this algorithm. As shown in Figure 31, Twister4Azure 

schedules new MapReduce jobs (non-iterative and the first iteration of the iterative) through Azure 

queues. Twister4Azure hybrid cache aware scheduling algorithm is currently configured to give priority 

for the iterations of the already executing iterative MapReduce computations over new computations, 

to get the maximum value out of the cached data. 

Any tasks for an iteration that were not scheduled in the above manner will be added back in to the 

task-scheduling queue and will be executed by the first available free worker ensuring the completion of 



90 

 

that iteration. This ensures the eventual completion of the job and the fault tolerance of the tasks in the 

event of a worker failure; it also ensures the dynamic scalability of the system when new workers are 

added to the virtual cluster. Duplicate task execution can happen on very rare occasions due to the 

eventual consistency nature of the Azure Table storage. However, these duplicate executed tasks do not 

affect the accuracy of the computations due to the side effect free nature of the MapReduce 

programming model.  

There are efforts that use multiple queues together to increase the throughput of the Azure Queues. 

However, queue latency is not a significant bottleneck for Twister4Azure iterative computations as only 

the scheduling of the first iteration depends on Azure queues.   

 

Figure 31 Cache Aware Hybrid Scheduling 
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Code 3 Cache aware hybrid decentralized scheduling algorithm. (Executed by all the map workers) 

1: while (mapworker) 

2:      foreach jobiter in bulletinboard 

3:           cachedtasks[]← select tasks from taskhistories where  

                         ((task.iteration == jobiter.baseiteration)  and 

                         (memcache[] contains task.inputdata)) 

4:     foreach task in cachedtasks 

5:                newtask ← new Task 

                         (task.metadata, jobiter.iteration, …) 

6:                if (newtask.duplicate())  continue;  

7:                taskhistories.add(newTask) 

8:                newTask.execute() 

9:           end foreach 

10:           // perform steps 3 to 8 for disk cache 

11:           if (no task executed from cache) 

12:                addTasksToQueue (jobiter) 

13:      end foreach 

14:      msg ← queue.getMessage()) 

15:      if (msg !=null) 

16:           newTask ← new Task(msg.metadata, msg.iter, ….)   

17:           if (newTask.duplicate())   continue;  

18:           taskhistories.add(newTask) 

19:           newTask.execute() 

20:      else sleep() 

21: end while 

 

5.1.4 Data broadcasting 

The loop variant data (δ values in Code 1) needs to be broadcasted or scattered to all the tasks in an 

iteration. With Twister4Azure, users can specify broadcast data for iterative as well as for non-iterative 

computations. In typical data-intensive iterative computations, the loop-variant data (δ) is orders of 

magnitude smaller than the loop-invariant data.  



92 

 

Twister4Azure supports two types of data broadcasting methods: 1) using a combination of Azure 

blob storage and Azure tables; and 2) Using a combination of direct TCP  and Azure blob storage. The 

first method broadcasts smaller data products using Azure tables and the larger data products using the 

blob storage. Hybrid broadcasting improves the latency and the performance when broadcasting smaller 

data products. This method works well for smaller number of instances and does not scale well for large 

number of instances.   

The second method implements a tree-based broadcasting algorithm that uses the Windows 

Communication Foundation (WCF) based Azure TCP inter-role communication mechanism for the data 

communication, as shown in Figure 3. This method supports a configurable number of parallel outgoing 

TCP transfers per instance (three parallel transfers in Figure 3) , enabling the users and the framework to 

customize the number of parallel transfers based on the I/O performance of the instance type, the scale 

of the computation and the size of the broadcast data. Since the direct communication is relatively 

unreliable in cloud environments, this method also supports an optional persistent backup that uses the 

Azure Blob storage. The broadcast data will get uploaded to the Azure Blob storage in the background, 

and any instances that did not receive the TCP based broadcast data will be able to fetch the broadcast 

data from this persistent backup. This persistent backup also ensures that the output of each iteration 

will be stored persistently, making it possible to roll back iterations if needed.  

Twister4Azure supports the caching of broadcast data, ensuring that only a single retrieval or 

transmission of Broadcast data occurs per node per iteration, as shown by N3 in the Figure 3. This 

increases the efficiency of broadcasting when there exists more than one map/reduce/merge worker 

per worker-role, and also, when there are multiple waves of map tasks per iteration. Some of our 

experiments contained up to 64 such tasks per worker-role per iteration. 
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Figure 32 Twister4Azure tree based broadcast over TCP with Azure Blob storage as the persistent backup.  

 

5.1.5 Intermediate data communication  

Twister4Azure supports two types of intermediate data communication. The first is the legacy Azure 

Blob storage based transfer model of the MRRoles4Azure, where the Azure Blob storage is used to store 

the intermediate data products and the Azure tables are used to store the meta-data about the 

intermediate data products. The data is always persisted in the Blob storage before it declares the Map 

task a success. Reducers can fetch data any time from the Blob storage even in the cases where there 

are multiple waves of reduce tasks or any re-execution of reduce tasks due to failures. This mechanism 

performed well for non-iterative applications. Based on our experience, the tasks in the iterative 

MapReduce computations are of a relatively finer granular, making the intermediate data 

communication overhead more prominent. They produce a large number of smaller intermediate data 

products causing the Blob storage based intermediate data transfer model to under-perform.  Hence, 
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we optimized this method by utilizing the Azure tables to transfer smaller data products up to a certain 

size (currently 64kb that is the limit for a single item in an Azure table entry) and so we could use the 

blob storage for the data products that are larger than that limit.  

The second method is a TCP-based streaming mechanism where the data products are pushed 

directly from the Mapper memory to the Reducers similar to the MapReduce Online [66] approach, 

rather than Reducers fetching the data products, as is the case in traditional MapReduce frameworks 

such as Apache Hadoop. This mechanism performs a best effort transfer of intermediate data products 

to the available Reduce tasks using the Windows Communications Foundation (WCF) based Azure direct 

TCP communication. A separate Thread performs this TCP data transfer, freeing up the Map worker 

thread to start processing a new Map task. With this mechanism, when the Reduce task input data size 

is manageable, Twister4Azure can perform the computation completely in the memory of Map and 

Reduce workers without any intermediate data products touching the disks offering significant 

performance benefits to the computations. These intermediate data products are uploaded to the 

persistent Blob store in the background as well. Twister4Azure declares a Map task a success only after 

all the data is uploaded to the Blob store. Reduce tasks will fetch the persisted intermediate data from 

the Blob store if a Reduce task does not receive the data product via the TCP transfer. These reasons for 

not receiving data products via TCP transfer include I/O failures in the TCP transfers, the Reduce task not 

being in an execution or ready state while the Map worker is attempting the transfer, or the rare case of 

having multiple Reduce task waves. Twister4Azure users the intermediate data from the Blob store 

when a Reduce task is re-executed due to failures as well. Users of Twister4Azure have the ability to 

disable the above-mentioned data persistence in Blob storage and to rely solely in the streaming direct 

TCP transfers to optimize the performance and data-storage costs. This is possible when there exists 

only one wave of Reduce tasks per computation, and it comes with the risk of a coarser grained fault-
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tolerance in the case of failures. In this scenario, Twister4Azure falls back to providing an iteration level 

fault tolerance for the computations, where the current iteration will be rolled back and re-executed in 

case of any task failures.  

5.1.6 Fault Tolerance 

Twister4Azure supports typical MapReduce fault tolerance through re-execution of failed tasks, 

ensuring the eventual completion of the iterative computations. Twister4Azure stores all the 

intermediate output data products from Map/Reduce tasks, as well as the intermediate output data 

products of the iterations persistently in the Azure Blob storage or in Azure tables, enabling fault-

tolerant in task level as well as in iteration level. The only exception to this is when a direct TCP only 

intermediate data transfer is used, in which case Twister4Azure performs fault-tolerance through the re-

execution of iterations.  

5.1.7 Other features 

 Twister4Azure supports the deployment of multiple MapReduce applications in a single 

deployment, making it possible to utilize more than one MapReduce application inside an iteration of a 

single computation. This also enables Twister4Azure to support workflow scenarios without 

redeployment.  Twiser4Azure also supports the capacity to have multiple MapReduce jobs inside a 

single iteration of an iterative MapReduce computation, enabling the users to more easily specify 

computations that are complex, and to share cached data between these individual computations. The 

Multi-Dimensional Scaling iterative MapReduce application described in section 2.6.6 uses this feature 

to perform multiple computations inside an iteration. 

Twister4Azure also provides users with a web-based monitoring console from which they can 

monitor the progress of their jobs as well as any error traces. Twister4Azure provides users with CPU 
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and memory utilization information for their jobs and currently, we are working on displaying this 

information graphically from the monitoring console as well. Users can develop, test and debug the 

Twister4Azure MapReduce programs in the comfort of using their local machines with the use of the 

Azure local development fabric.  Twister4Azure programs can be deployed directly from the Visual 

Studio development environment or through the Azure web interface, similar to any other Azure 

Worker Role project.  

5.1.8 Development and current status 

Developing Twister4Azure was an incremental process, which began with the development of 

pleasingly parallel cloud programming frameworks [55] (section 3) for bioinformatics applications 

utilizing cloud infrastructure services. MRRoles4Azure [60] (section 4) MapReduce framework for Azure 

cloud was developed based on the success of pleasingly parallel cloud frameworks and was released in 

late 2010. We started working on Twister4Azure to fill the void of distributed parallel programming 

frameworks in the Azure environment (as of June 2010) and the first public beta release of 

Twister4Azure was made available in mid-2011. 

In August 2012, we open sourced Twister4Azure under Apache License 2.0 at 

http://twister4azure.codeplex.com/. We performed Twister4Azure 0.9 release on September 2012 as 

the first open source release. Currently all the developments of Twister4Azure are performed in an open 

source manner.  

5.2 Twister4Azure Scientific Application Case Studies  

5.2.1 Methodology 

http://twister4azure.codeplex.com/
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In this section, we present and analyze four real-world data intensive scientific applications that 

were implemented using Twister4Azure.  Two of these applications, Multi-Dimensional Scaling and 

KMeans Clustering, are iterative MapReduce applications, while the other two applications, sequence 

alignment and sequence search, are pleasingly parallel MapReduce applications. 

We compare the performance of the Twister4Azure implementations of these applications with the 

Twister [10] and Hadoop [6] implementations of these applications, where applicable. The 

Twister4Azure applications were implemented using C#.Net, while the Twister and Hadoop applications 

were implemented using Java.  We performed the Twister4Azure performance experiments in the 

Windows Azure Cloud using the Azure instances types mentioned in Table 1. We performed the Twister 

and Hadoop experiments in the local clusters mentioned in Table 2. Azure cloud instances are virtual 

machines running on shared hardware nodes with the network shared with other users; the local 

clusters were dedicated bare metal nodes with dedicated networks (each local cluster had a dedicated 

switch and network not shared with other users during our experiments). Twister had all the input data 

pre-distributed to the compute nodes with 100% data locality, while Hadoop used HDFS [13] to store the 

input data, achieving more than 90% data locality in each of the experiments. Twister4Azure input data 

were stored in the high-latency off-the-instance Azure Blob Storage. A much better raw performance is 

expected from the Hadoop and Twister experiments on local clusters than from the Twister4Azure 

experiments using the Azure instances, due to the above stated differences. Our objective is to highlight 

the scalability comparison across these frameworks and demonstrate that Twister4Azure has less 

overheads and scales as well as Twister and Hadoop, even when executed on an environment with the 

above overheads and complexities.  

Equal numbers of compute cores from the local cluster and from the Azure Cloud were used in each 

experiment, even though the raw compute powers of the cores differed. For example, the performance 
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of a Twister4Azure application on 128 Azure small instances was compared with the performance of a 

Twister application on 16 HighMem (Table 6) cluster nodes. 

Table 6 Evaluation cluster configurations 

Cluster/ 

Instance 

Type 

CPU cores Memory I/O Performance Compute Resource OS 

Azure Small 1 X 1.6 GHz 1.75 GB 100 MBPS, shared network 

infrastructure 

Virtual instances on 

shared hardware 

Windows 

Server 

Azure Large 4 X 1.6 GHz 7 GB  400 MBPS, shared network 

infrastructure 

Virtual instances on 

shared hardware 

Windows 

Server 

Azure Extra 

Large 

8 X 1.6 GHz 14 GB  800 MBPS, shared network 

infrastructure 

Virtual instances on 

shared hardware 

Windows 

Server 

HighMem 8 X 2.4 GHz  

(Intel®Xeon® CPU 

E5620) 

192 GB Gigabit ethernet, dedicated 

switch 

Dedicated bare metal 

hardware 

Linux 

iDataPlex 8 X 2.33 GHz 

 (Intel®Xeon® CPU 
E5410) 

16 GB Gigabit ethernet, dedicated 

switch 

Dedicated bare metal 

hardware 

Linux 

 

We use the custom defined metric “adjusted performance” to compare the performance of an 

application running on two different environments. The objective of this metric is to negate the 

performance differences introduced by some of the underlying hardware differences. The Twister4Azure 

adjusted (ta) line in some of the graphs depicts the performance of Twister4Azure for a certain 

application normalized according to the sequential performance difference for that application between 

the Azure(tsa) instances and the nodes in Cluster(tsc) environment used for Twister and Hadoop. We 

estimate the Twister4Azure “adjusted performance” for an application using ta x (tsc/tsa), where tsc is the 

sequence performance of that application on a local cluster node, and tsa is the sequence performance 

of that application on a given Azure instance when the input data is present locally. This estimation, 

however, does not account for the framework overheads that remain constant irrespective of the 

computation time, the network difference or the data locality differences.  
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5.2.2 Multi-Dimensional Scaling - Iterative MapReduce 

We implemented the SMACOF algorithm for Multi-Dimensional Scaling (MDS) described in section 

2.6.6 using Twister4Azure.  The limits of MDS are more bounded by memory size than by CPU power. 

The main objective of parallelizing MDS is to leverage the distributed memory to support the processing 

of larger data sets. MDS application results in iterating a chain of three MapReduce jobs, as depicted in 

Figure 4. For the purposes of this chapter, we perform an unweighted mapping that results in two 

MapReduce jobs steps per iteration, BCCalc and StressCalc. MDS is challenging for Twister4Azure due to 

its relatively finer grained task sizes and multiple MapReduce applications per iteration. 

 

 

Figure 33 MDS weak scaling. Workload per core is constant. Ideal is a straight horizontal line 
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Figure 34 MDS Data size scaling using 128 Azure small instances/cores, 20 iterations 

 

Figure 35 Twister4Azure Map Task histogram for MDS of 204800 data points on 32 Azure Large Instances 

(graphed only 10 iterations out of 20). Two adjoining bars represent an iteration (2048 tasks per iteration), 

where each bar represent the different applications inside the iteration. 
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Figure 36 Number of executing Map Tasks in the cluster at a given moment. Two adjoining bars represent an 

iteration. 

We compared the Twister4Azure MDS performance with Java HPC Twister MDS implementation. 

The Java HPC Twister experiment was performed in the HighMem cluster (Table 6). The Twister4Azure 

tests were performed on Azure Large instances using the Memory-Mapped file based (section 6.4.3) 

data caching. Java HPC Twister results do not include the initial data distribution time.  Figure 33 

presents the execution time for weak scaling, where we increase the number of compute resources 

while keeping the work per core constant (work ~ number of cores). We notice that Twister4Azure 

exhibits encouraging performance and scales similar to the Java HPC Twister. Figure 34 shows that the 

MDS performance scales well with increasing data sizes.   

The HighMem cluster is a bare metal cluster with a dedicated network, very large memory and with 

faster processors. It is expected to be significantly faster than the cloud environment for the same 

number of CPU cores. The Twister4Azure adjusted (ta) lines in Figure 8 depicts the performance of the 

Twister4Azure normalized according to the sequential performance difference of the MDS BC 

calculation, and the Stress calculation between the Azure instances and the nodes in the HighMem 
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cluster. In the above testing, the total number of tasks per job ranged from 10240 to 40960, proving 

Twister4Azure’s ability to support large number of tasks effectively. 

Figure 35 depicts the execution time of individual Map tasks for 10 iterations of Multi-Dimensional 

Scaling of 204800 data points on 32 Azure large instances. The higher execution time of the tasks in the 

first iteration is due to the overhead of initial data downloading, parsing and loading. This overhead is 

overcome in the subsequent iterations through the use of data caching, enabling Twister4Azure to 

provide large performance gains relative to a non-data-cached implementation. The performance gain 

achieved by data caching for this specific computation can be estimated as more than 150% per 

iteration, as a non-data cached implementation would perform two data downloads (one download per 

application) per iteration. Figure 36 presents the number of map tasks executing at a given moment for 

10 iterations for the above MDS computation. The gaps between the bars represent the overheads of 

our framework. The gaps between the iterations (gaps between red and subsequent blue bars) are 

small, which depicts that the between-iteration overheads that include Map to Reduce data transfer 

time, Reduce and Merge task execution time, data broadcasting cost and new iteration scheduling cost, 

are relatively smaller for MDS. Gaps between applications (gaps between blue and subsequent red bars) 

of an iteration are almost non-noticeable in this computation. 

5.2.3 KMeans Clustering 

The K-Means Clustering [67] algorithm described in section 2.6.5 has been widely used in many 

scientific and industrial application areas due to its simplicity and applicability to large data sets. In this 

section we compare the performance of Twister4Azure, Hadoop and Twister KMeansClustering iterative 

MapReduce implementations. 
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Figure 37 KMeans Clustering Scalability. Relative parallel efficiency of strong scaling using 128 million data 

points. 

 

Figure 38 KMeansClustering Scalability. Weak scaling. Workload per core is kept constant (ideal is a straight 

horizontal line). 

We compared the Twister4Azure KMeans Clustering performance with implementations of the Java 

HPC Twister and Hadoop. The Java HPC Twister and Hadoop experiments were performed in a dedicated 

iDataPlex cluster (Table 6). The Twister4Azure tests were performed using the Azure small instances that 
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contain a single CPU core. The Java HPC Twister results do not include the initial data distribution time.  

Figure 37 presents the relative (relative to the smallest parallel test with 32 cores/instances) parallel 

efficiency of KMeans Clustering for strong scaling, in which  we keep the amount of data constant and 

increase the number of instances/cores. Figure 38 presents the execution time for weak scaling, wherein 

we increase the number of compute resources while keeping the work per core constant (work ~ 

number of nodes). We notice that Twister4Azure performance scales well up to 256 instances in both 

experiments. In Figure 37, the relative parallel efficiency of Java HPC Twister for 64 cores is greater than 

one. We believe the memory load was a bottleneck in the 32 core experiment, whereas this is not the 

case for the 64 core experiment. We used a direct TCP intermediate data transfer and Tree-based TCP 

broadcasting when performing these experiments. Tree-based TCP broadcasting scaled well up to the 

256 Azure small instances. Using this result, we can hypothesis that our Tree-based broadcasting 

algorithm will scale well for 256 Azure Extra Large instances (2048 total number of CPU cores) as well, 

since the workload, communication pattern and other properties remain the same, irrespective of the 

instance type. 

The Twister4Azure adjusted line in Figure 38 depicts the KMeans Clustering performance of 

Twister4Azure normalized according to the ratio of the sequential performance difference between the 

Azure instances and the iDataPlex cluster nodes. All tests were performed using 20 dimensional data 

and 500 centroids. 
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Figure 39 Twister4Azure Map Task execution time histogram for KMeans Clustering 128 million data points 

on 128 Azure small instances. 

 

Figure 40 Twister4Azure number of executing Map Tasks in the cluster at a given moment 

Figure 39 depicts the execution time of Map Tasks across the whole job. The higher execution time 

of the tasks in the first iteration is due to the overhead of initial data downloading, parsing and loading, 

which is an indication of the performance improvement we get in subsequent iterations due to the data 

caching. Figure 40 presents the number of map tasks executing at a given moment throughout the job. 

The job consisted of 256 map tasks per iteration, generating two waves of map tasks per iteration. The 
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dips represent the synchronization at the end of the iterations. The gaps between the bars represent the 

total overhead of the intermediate data communication, reduce task execution, merge task execution, 

data broadcasting and the new iteration scheduling that happens between iterations. According to the 

graph, such overheads are relatively small for the KMeans Clustering application.    

5.3 Summary 

We presented Twister4Azure, a novel iterative MapReduce distributed computing runtime for 

Windows Azure Cloud. Twiser4Azure enables users to perform large-scale data intensive parallel 

computations efficiently on the Windows Azure Cloud, by hiding the complexity of scalability and fault 

tolerance when using Clouds. The key features of Twiser4Azure presented in this chapter include the 

novel programming model for iterative MapReduce computations, the multi-level data caching 

mechanisms to overcome the latencies of cloud services, the decentralized cache aware task scheduling 

utilized to avoid a single point of failures and the framework managed fault tolerance drawn upon to 

ensure the eventual completion of the computations. We also presented optimized data broadcasting 

and intermediate data communication strategies that sped up the computations. Users can perform 

debugging and testing operations for the Twister4Azure computations in their local machines with the 

use of the Azure local development fabric.  

We discussed four real world data intensive scientific applications which were implemented using 

Twister4Azure so as to show the applicability of Twister4Azure; we compared the performance of those 

applications with that of the Java HPC Twister and the Hadoop MapReduce frameworks. We presented 

Multi-Dimensional Scaling (MDS) and KMeans Clustering as iterative scientific applications of 

Twister4Azure. Experimental evaluation showed that MDS using Twister4Azure on a shared public cloud 

scaled similar to the Java HPC Twister MDS on a dedicated local cluster. Further, the KMeans Clustering 
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using Twister4Azure with shared cloud virtual instances outperformed Apache Hadoop in a local cluster 

by a factor of 2 to 4, and also, exhibited performance results comparable to that of Java HPC Twister 

running on a local cluster. These iterative MapReduce computations were performed on up to 256 cloud 

instances with up to 40,000 tasks per computation. We also presented sequence alignment and Blast 

sequence searching pleasingly parallel MapReduce applications of Twister4Azure. These applications 

running on the Azure Cloud exhibited performance results comparable to the Apache Hadoop on a 

dedicated local cluster. 
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 6. PERFORMANCE IMPLICATIONS FOR DATA INTENSIVE 

PARALLEL APPLICATIONS ON CLOUD ENVIRONMENTS 

In this section, we explore several aspects of the applications and the environments that would 

affect the performance of executing data intensive parallel applications on cloud environments. These 

include the investigations of the load balancing effects of inhomogeneous data, the effects of the 

virtualization overhead in virtualized environments, the performance variation with time in cloud 

environments and the different mechanisms to cache data in cloud instances.  

6.1 Inhomogeneous data 

Next generation parallel data processing frameworks such as Hadoop and DryadLINQ are designed 

to perform optimally when a given job can be divided into a set of equally time consuming sub tasks. 

Most of the data sets we encounter in the real world, however, are inhomogeneous in nature, making it 

hard for the data analyzing programs to efficiently break down the problems into equal sub tasks. At the 

same time, we noticed Hadoop & DryadLINQ exhibit different performance behaviors for some of our 

real data sets. It should be noted that Hadoop and Dryad use different task scheduling techniques, 

where Hadoop uses global queue based scheduling and Dryad uses static scheduling.  These 

observations motivated us to study the effects of data inhomogeneity in the applications implemented 

using these frameworks.  

6.1.1 SW-G Pairwise Distance Calculation 
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The inhomogeneity of data applies for the gene sequence sets, too, where individual sequence 

lengths and their contents can vary greatly. In this section, we study the effect of inhomogeneous gene 

sequence lengths for the performance of our pairwise distance calculation applications. 

SWG(A,B) = O(mn) 

The time complexity to align and obtain distances for two genome sequences A, B with lengths m 

and n, respectively, using the Smith-Waterman-Gotoh algorithm is approximately proportional to the 

product of the lengths of two sequences (O(mn)). All of the above described distributed 

implementations of the Smith-Waterman similarity calculation mechanisms rely on block decomposition 

to break down the larger problem space into sub-problems that can be solved using the distributed 

components. Each block is assigned two sub-sets of sequences, where the Smith-Waterman pairwise 

distance similarity calculation needs to be performed for all of the possible sequence pairs among the 

two sub sets.  According to the above mentioned time complexity of the Smith-Waterman kernel used 

by these distributed components, the execution time for a particular execution block depends on the 

lengths of the sequences assigned to the particular block.  

Parallel execution frameworks like Dryad and Hadoop work optimally when the work is equally 

partitioned among the tasks. Depending on the scheduling strategy of the framework, blocks with 

different execution times can have an adverse effect on the performance of the applications, unless 

proper load balancing measures have been taken in the task partitioning steps. For example, in Dryad, 

vertices are scheduled at the node level, making it possible for a node to have blocks with varying 

execution times. In this case, if a single block inside a vertex takes a longer  amount of time than 

other blocks to execute, then the entire node must wait until the large task completes, which utilizes 

only a fraction of the node resources.  
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Figure 41 Performance of SW-G for randomly distributed inhomogeneous data with ‘400’ mean sequence 

length. 

For the inhomogeneous data study, we decided to use controlled inhomogeneous input sequence 

sets with the same average length and varying standard deviation of lengths. It is hard to generate such 

controlled input data sets using real sequence data, as we do not have control over the length of real 

sequences. At the same time, we note that the execution time of the Smith-Waterman pairwise distance 

calculation depends mainly on the lengths of the sequences and not on the actual content of the 

sequences. This property of the computation makes it possible for us to ignore the content of the 

sequences and focus only on the sequence lengths, thus making it possible for us to use randomly 

generated gene sequence sets for this experiment. The gene sequence sets were randomly generated 

for a given mean sequence length (400) with varying standard deviations following a normal distribution 

of the sequence lengths. Each sequence set contained 10000 sequences leading to 100 million pairwise 

distance calculations to perform. We performed two studies using such inhomogeneous data sets.  In 

the first study, the sequences with varying lengths were randomly distributed in the data sets. In the 
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second study, the sequences with varying lengths were distributed using a skewed distribution, where 

the sequences in a set were arranged in the ascending order of sequence length. 

Figure 41 presents the execution time taken for the randomly distributed inhomogeneous data sets 

with the same mean length, by the two different implementations, while Figure 42 presents the 

executing time taken for the skewed distributed inhomogeneous data sets. The Dryad results depict the 

Dryad performance adjusted for the performance difference of the NAligner and JAligner kernel 

programs. As we notice from Figure 41, both implementations perform satisfactorily for the randomly 

distributed inhomogeneous data, without showing significant performance degradations with the 

increase of the standard deviation. This behavior can be attributed to the fact that the sequences with 

varying lengths are randomly distributed across a data set, effectively providing a natural load balancing 

to the execution times of the sequence blocks.  

 

Figure 42 Performances of SW-G for skewed distributed inhomogeneous data with ‘400’ mean sequence 

length. 
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For the skewed distributed inhomogeneous data, we notice clear performance degradation in the 

Dryad implementation. Once again, the Hadoop implementation performs consistently without showing 

significant performance degradation, even though it does not perform as well as its randomly 

distributed counterpart. The Hadoop implementations’ consistent performance can be attributed to the 

global pipeline scheduling of the map tasks. In the Hadoop Smith-Waterman implementation, each block 

decomposition gets assigned to a single map task. The Hadoop framework allows the administrator to 

specify the number of map tasks that can be run on a particular compute node. The Hadoop global 

scheduler schedules the map tasks directly onto those placeholders in a much finer granularity than in 

Dryad, as and when the individual map tasks finish. This allows the Hadoop implementation to perform 

natural global load     balancing. In this case, it might even be advantageous to have varying task 

execution times to iron out the effect of any trailing map tasks towards the end of the computation. The 

Dryad implementation pre-allocates all the tasks to the compute nodes and does not perform any 

dynamic scheduling across the nodes. This makes any node which gets a larger work chunk take 

considerably longer than does a node which gets a smaller work chunk; this phenomenon causes the  

node with a smaller work chuck to idle while the other nodes finish. 

6.1.2 CAP3 

Unlike in Smith-Waterman Gotoh (SW-G) implementations, the CAP3 program execution time does 

not directly depend on the file size or the size of the sequences, as it depends mainly on the content of 

the sequences. This made it hard for us to artificially generate inhomogeneous data sets for the CAP3 

program, forcing us to use real data. When generating the data sets, first we calculated the stand-alone 

CAP3 execution time for each of the files in our data set. Then, based on those timings, we created data 

sets that have approximately similar mean times while the standard deviation of the stand-alone 

running times is different in each data set. We performed the performance testing for randomly 
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distributed as well as skewed distributed (sorted according to individual file running time) data sets 

similar to the SWG inhomogeneous study. The speedup is taken by dividing the sum of sequential 

running times of the files in the data set by the parallel implementation running time. 

 

Figure 43 Performance of Cap3 for random distributed inhomogeneous data. 

Figure 43 and Figure 44 depict the CAP3 inhomogeneous performance results for the Hadoop and 

Dryad implementations. The Hadoop implementation shows satisfactory scaling for both randomly 

distributed as well as skewed distributed data sets, while the Dryad implementation shows satisfactory 

scaling in the randomly distributed data set. Once again, we notice that the Dryad implementation does 

not perform well for the skewed distributed inhomogeneous data due to its static non-global 

scheduling. 
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Figure 44 Performance of Cap3 for skewed distributed inhomogeneous data 

6.2 Virtualization overhead 

With the popularity of the computing clouds, we can notice that data processing frameworks like 

Hadoop, Map Reduce and DryadLINQ are becoming popular as cloud parallel frameworks. We measured 

the performance and virtualization overhead of several MPI applications on the virtual environments in 

an earlier study [68]. Here, we present the extended performance results of using Apache Hadoop 

implementations of SW-G and Cap3 in a cloud environment by comparing Hadoop on Linux with Hadoop 

on Linux on Xen [69] para-virtualized environment. 

While the Youseff, Wolski, et al. [70] suggest that the VM’s impose very little overheads on the MPI 

application, our previous study indicated that the VM overheads depend mainly on the communications 

patterns of the applications. Specifically, the set of applications that is sensitive to latencies (a lower 

communication to computation ration, with a large number of smaller messages) experienced higher 

overheads in virtual environments. Walker [71] presents the benchmark results of the HPC application 

performance on Amazon EC2, compared with a similar bare metal local cluster, where he noticed 40% to 
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1000% performance degradations on EC2. But since one cannot have complete control over and 

knowledge of the EC2 infrastructure, there exist too many unknowns to directly compare these results 

with the above mentioned results. 

6.2.1 SW-G Pairwise Distance Calculation 

Figure 45 presents the virtualization overhead of the Hadoop SW-G application comparing the 

performance of the application on Linux on bare metal and on Linux on Xen virtual machines. The data 

sets used is the same 10000 real sequence replicated data set used for the scalability study in section 

4.1.1. The number of blocks is kept constant across the test, resulting in larger blocks for larger data 

sets. According to the results, the performance degradation for the Hadoop SWG application on a virtual 

environment ranges from 25% to 15%. We can notice the performance degradation gets reduced with 

the increase of the problem size.   

 

Figure 45 Virtualization overhead of Hadoop SW-G on Xen virtual machines 
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Figure 46 Virtualization overhead of Hadoop Cap3 on Xen virtual machines 

 

In the Xen para-virtualization architecture, each guest OS (running in domU) performs its I/O 

transfers through Xen (dom0). This process adds startup costs to the I/O, as it involves startup 

overheads such as communication with dom0 and the scheduling of I/O operations in dom0. Xen 

architecture uses shared memory buffers to transfer data between domU’s and dom0, thus reducing the 

operational overheads when performing the actual I/O. We can notice the same behavior in the Xen 

memory management, where page table operations need to go through Xen, while simple memory 

accesses can be performed by the guest Oss without Xen involvement. According to the above points, 

we can notice that doing few coarser grained I/O and memory operations would incur relatively low 

overheads than doing the same work using many finer grained operations. We can conclude this as the 

possible reason behind the decrease of the performance degradation with the increase of data size, as 

large data sizes increase the granularity of the computational blocks.  

6.2.2 CAP3 
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Figure 46 presents the virtualization overhead of the Hadoop CAP3 application. We used the 

scalability data set we used in section 4.1.2 for this analysis. The performance degradation in this 

application remains constant - near 20% for all the data sets. The CAP3 application does not show the 

decrease of the VM overhead with the increase of the problem size, as we noticed in the SWG 

application. Unlike in SWG, the I/O and memory behavior of the CAP3 program does not change based 

on the data set size, as irrespective of the data set size, the granularity of the processing (single file) 

remains same. Hence, the VM overheads do not get changed even with the increase of the workload. 

6.3 Sustained performance of clouds 

When discussing cloud performance, the sustained performance of the clouds is often questioned. 

This is a valid question, since clouds are often implemented using a multi-tenant shared VM-based 

architecture.  We performed an experiment by running the SWG EMR and SWG MRRoles4Azure using 

the same workload throughout different times of the week. In these tests, 32 cores were used to align 

4000 sequences. The results of this experiment are given in Figure 5. Each of these tests was performed 

at +/- 2 hours 12AM/PM. Figure 5 also includes the normalized performance for MRRoles4Azure, 

calculated using the EMR as the baseline. We are happy to report that the performance variations we 

observed were very minor, with standard deviations of 1.56% for EMR and 2.25% for MRRoles4Azure. 

Additionally, we did not notice any noticeable trends in performance fluctuation.  
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Figure 47 Sustained performance of cloud environments for MapReduce type of applications 

6.4 Data Caching on Azure Cloud instances for Iterative 

MapReduce computations 

In this section, we present a performance analysis of several data caching strategies that affect the 

performance of large-scale parallel iterative MapReduce applications on Azure, in the context of a Multi-

Dimensional Scaling application presented in Section 5.2.2. These applications typically perform tens to 

hundreds of iterations. Hence, we focus mainly on optimizing the performance of the majority of 

iterations, while assigning a lower priority to optimizing the initial iteration.   

In this section, we use a dimension-reduction computation of 204800 * 204800 element input 

matrix, partitioned in to 1024 data blocks (number of map tasks is equal to the number of data blocks), 

using 128 cores and 20 iterations as our use case. We focus mainly on the BCCalc computation, as it is 

much more computationally intensive than the StressCalc computation. Table 3 presents the execution 

time analysis of this computation under different mechanisms. The ‘Task Time’ in Table 3 refers to the 

end-to-end execution time of the BCCalc Map Task, including the initial scheduling, data acquisition and 
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the output data processing time. The ‘Map Fn Time’ refers to the time taken to execute the Map 

function of the BCCalc computation, excluding the other overheads. In order to eliminate the 

skewedness of the ‘Task Time’ introduced by the data download in the first iterations, we calculated the 

averages and standard deviations, excluding the first iteration. The ‘# of slow tasks’ is defined as the 

number of tasks that take more than twice the average time for that particular metric. We used a single 

Map worker per instance in the Azure small instances, and four Map workers per instances in the Azure 

Large instances.  

6.4.1 Local Storage Based Data Caching 

As discussed in section 3.2, it is possible to optimize iterative MapReduce computations by caching 

the loop-invariant input data across the iterations. We use the Azure Blob storage as the input data 

storage for the Twister4Azure computations. Twister4Azure supports local instance (disk) storage 

caching as the simplest form of data caching. Local storage caching allows the subsequent iterations (or 

different applications or tasks in the same iteration) to reuse the input data from the local disk based 

storage, rather than fetching them from the Azure Blob Storage. This resulted in speedups of more than 

50% (estimated) over a non-cached MDS computation of the sample use case. However, local storage 

caching causes the applications to read and parse data from the instances storage each time the data is 

used. On the other hand, on-disk caching puts minimal strain on the instance memory. 

6.4.2 In-Memory Data Caching 

Twister4Azure also supports the ‘in-memory caching’ of the loop-invariant data across iterations. 

With in-memory caching, Twister4Azure fetches the data from the Azure Blob storage, and parses and 

loads them into the memory during the first iteration. After the first iteration, these data products 

remain in memory throughout the course of the computation for reuse by the subsequent iterations, 
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eliminating the overhead of reading and parsing data from the disk. As shown in Table 3, this in-memory 

caching improved the average run time of the BCCalc map task by approximately 36%, and the total run 

time by approximately 22% over disk based caching. Twister4Azure performs cache-invalidation for in-

memory cache using a Least Recently Used (LRU) policy. In a typical Twister4Azure computation, the 

loop-invariant input data stays in the in-memory cache for the duration of the computation, while the 

Twister4Azure caching policy will evict the broadcast data for iterations from the data cache after the 

particular iterations. 

As mentioned in section 5.1.3, Twister4Azure supports cache-aware scheduling for in-memory 

cached data as well as for local-storage cached data. 

Table 7 The execution time analysis of a MDS computation with different data caching mechanisms.  

(204800 * 204800 input data matrix, 128 total cores, and 20 iterations. 20480 BCCalc map tasks) 

Mechanism 

Instance 

Type 

Total 

Execution 

Time (s) 

Task Time (BCCalc) Map Fn Time (BCCalc) 

Average 

(ms) 

STDEV 

(ms) 

# of slow 

tasks 

Average 

(ms) 

 STDEV 

(ms) 

# of slow 

tasks 

Disk Cache only small * 1  2676 6,390 750 40 3,662 131 0 

In-Memory 

Cache 

small * 1  2072 4,052 895 140 3,924 877 143 

large * 4  2574 4,354 5,706 1025 4,039 5,710 1071 

Memory 

Mapped File 

(MMF) Cache 

small * 1  2097 4,852 486 28 4,725 469 29 

large * 4  1876 5,052 371 6 4,928 357 4 
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6.4.2.1 Non-Deterministic Performance Anomalies with In-Memory Data Caching 

When using in-memory caching, we started to notice occasional non-deterministic fluctuations of 

the Map function execution times in some of the tasks (143 slow Map Fn time tasks in row 2 of Table 3). 

These slow tasks, even though few, affect the performance of the computation significantly because the 

execution time of a whole iteration is dependent on the slowest task of the iteration. Figure 48 offers an 

example of an execution trace of a computation that shows this performance fluctuation, where we can 

notice occasional unusual high task execution times. Even though Twister4Azure supports the duplicate 

execution of the slow tasks, duplicate tasks for non-initial iterations are often more costly than the total 

execution time of a slow task that uses data from a cache, as the duplicate task would have to fetch the 

data from the Azure Blob Storage. With further experimentation, we were able to narrow down the 

cause of this anomaly to the use of a large amount of memory, including the in-memory data cache, 

within a single .NET process. One may assume that using only local storage caching would offer a better 

performance, as it reduces the load on memory. We in fact found that the Map function execution times 

were very stable when using local storage caching (zero slow tasks and a smaller standard deviation in 

the Map Fn time in row 1 of Table 7). However, the ‘Task Time’ that includes the disk reading time is 

unstable when a local-storage cache is used (40 slow ‘Task Time’ tasks in row 1 of Table 7). 

6.4.3 Memory Mapped File Based Data Cache 

A memory-mapped file contains the contents of a file mapped to the virtual memory and can be 

read or modified directly through memory. Memory-mapped files can be shared across multiple 

processes and can be used to facilitate inter-process communication. The .NET framework version 4 

introduces first class support for memory-mapped files to the .NET world. The .NET memory mapped 

files facilitate the creation of a memory-mapped file directly in the memory, with no associated physical 
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file, specifically to support inter-process data sharing. We exploit this feature by using these memory-

mapped files to implement the Twister4Azure in-memory data cache. In this implementation, 

Twister4Azure fetches the data directly to the memory-mapped file, and the memory mapped file will 

be reused across the iterations. The Map function execution times become stable with the memory-

mapped file based cache implementation (row 4 and 5 of Table 7).  

With the Twister4Azure in-memory cache implementation, the performance on larger Azure 

instances (with the number of workers equal to the number of cores) was very unstable (row 3 of Table 

7). By contrast, when using memory-mapped caching, the execution times were more stable on the 

larger instances than for the smaller instances (row 4 vs 5 in Table 7). The ability to utilize larger 

instances effectively is a significant advantage, as the usage of larger instances improves the data 

sharing across workers, facilitates better load balancing within the instances, provides better 

deployment stability, reduces the data-broadcasting load and simplifies the cluster monitoring.  

The memory-mapped file based caching requires the data to be parsed (decoded) each time the 

data is used; this adds an overhead to the task execution times. In order to avoid a duplicate loading of 

data products to memory, we use real time data parsing in the case of the memory-mapped files. Hence, 

the parsing overhead becomes part of the Map function execution time.  However, we found that the 

execution time stability advantage outweighs the added cost. In Table 7, we present results using Small 

and Large Azure instances. Unfortunately, we were not able to utilize Extra Large instances during the 

course of our testing due to an Azure resource outage bound to our ‘affinity group’. We believe the 

computations will be even more stable in Extra Large instances. Figure 49 presents an execution trace of 

a job that uses Memory Mapped file based caching. The taller bars represent the MDSBCCalc 

computation, while the shorter bars represent the MDSStressCalc computation. A pair of BCCalc and 

StressCalc bars represents an iteration. 
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Figure 48 Execution traces of Twister4Azure MDS using in-memory caching on small instances. The taller 

bars represent the MDSBCCalc computation, while the shorter bars represent the MDSStressCalc computation, 

and together they represent an iteration.  

 

Figure 49 Execution traces of Twister4Azure MDS using Memory-Mapped file based caching on Large 

instances.  

6.5 Summary 
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Many real world data sets and problems are inhomogeneous in nature, making it difficult to divide 

those computations into equally balanced computational parts. But, at the same time, most of the 

inhomogeneity problems are randomly distributed, providing a natural load balancing inside the sub 

tasks of a computation. We observed that the scheduling mechanism employed by both Hadoop 

(dynamic) and DryadLINQ (static) performs well when randomly distributed inhomogeneous data is 

used. Also, in the above study, we observed that, given there are sufficient map tasks, the global queue 

based dynamic scheduling strategy adopted by Hadoop provides load balancing even in extreme 

scenarios like skewed distributed inhomogeneous data sets. The static partition based scheduling 

strategy of DryadLINQ does not have the ability to load balance such extreme scenarios. It is possible, 

however, for the application developers to randomize data sets such as these before using them with 

DryadLINQ, which will allow these applications to achieve the natural load balancing of the randomly 

distributed inhomogeneous data sets we described above. 

We also observed that the fluctuation of MapReduce performance on clouds is minimal over a 

week-long period, assuring consistency and predictability of application performance in the cloud 

environments. We also performed tests using identical hardware for Hadoop on Linux and Hadoop on 

Linux on Virtual Machines to study the effect of virtualization on the performance of our application. 

These show that virtual machines give overheads of around 20%.  

We also analyzed the performance anomalies of Azure instances with the use of in-memory caching; 

we then proposed a novel caching solution based on Memory-Mapped Files to overcome those 

performance anomalies. 
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 7. COLLECTIVE COMMUNICATIONS PRIMITIVES FOR ITERATIVE 

MAPREDUCE 

When performing distributed computations, often the data needs to be shared and/or consolidated 

among the different nodes of the computations. Collective communication primitives are the 

communication operations that involve a group of nodes simultaneously [61, 72]. Collective 

communication operations facilitate the optimized communication and coordination between groups of 

nodes of a distributed computations; this leads to many advantages and makes it much easier and 

efficient to perform complex data communications inside the distributed parallel applications. Collective 

communication primitives are very popular in the HPC community and are used heavily in the MPI type 

of HPC applications. There has been much research [72] conducted to optimize the performance of 

these collective communication operations, as they have a significant impact on the performance of HPC 

applications. There exist many different implementations of collective communication primitives 

supporting many different algorithms and topologies to suit the different environments and different 

use cases. 

In addition to the common characteristics of data-intensive iterative computations that we 

mentioned in section 6, we noticed several common communication and computation patterns among 

some of the data-intensive iterative MapReduce computations. This section highlights several Map-

Collective communication primitives to support and optimize common computation and communication 

patterns in both MapReduce and iterative MapReduce computations. We present the applicability of 

Map-Collective operations to enhance (Iterative) MapReduce without sacrificing desirable MapReduce 

properties such as fault tolerance, scalability, familiar APIs and data model. The addition of collective 
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communication operations enriches the MapReduce model by providing many performance and ease of 

use advantages. This includes providing efficient data communication operations optimized for 

particular execution environments and use cases, enabling programming models that fit naturally with 

application patterns, and allowing users to avoid overhead by skipping unnecessary steps of the 

execution flow.  

We present these patterns as high level constructs that can be adopted by any MapReduce or 

iterative MapReduce runtime. We also offer proof-of-concept implementations of the primitives on 

Hadoop and Twister4Azure, and we envision a future where all the MapReduce and iterative 

MapReduce runtimes support a common set of Map-Collective primitives. 

Our work focuses on mapping the All-to-All communication type of collective communication 

operations, AllGather and AllReduce, to the MapReduce model as Map-AllGather and Map-AllReduce 

patterns. Map-AllGather gathers the outputs from all the map tasks and distributes the gathered data to 

all the workers after a combine operation. Map-AllReduce primitive combines the results of the Map 

Tasks based on a reduction operation and delivers the result to all the workers. We also present 

MapReduceMergeBroadcast as an important collective in all (iterative) MapReduce frameworks. 

This chapter presents prototype implementations of Map-AllGather and Map-AllReduce primitives 

for Twister4Azure and Hadoop (called H-Collectives). We achieved up to 33% improvement for 

KMeansClustering and up to 50% improvement with Multi-Dimensional Scaling, in addition to the 

improved user friendliness. In some cases, collective communication operations virtually eliminated 

almost all the overheads of the computations. 

The work of this chapter has been accepted for publication as a conference paper [73].   
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7.1 Collective Communication Primitives 

Collective communication operations [61] facilitate optimized communication and coordination 

between groups of nodes of a distributed computation and are used heavily in the MPI type of HPC 

applications. These powerful operations make it much easier and efficient to perform complex data 

communications and coordination inside the distributed parallel applications. Collective communication 

also implicitly provides some form of synchronization across the participating tasks. There exist many 

different implementations of HPC collective communication primitives supporting numerous algorithms 

and topologies suited to different environments and use cases. The best implementation for a given 

scenario depends on many factors, including message size, number of workers, topology of the system, 

the computational capabilities/capacity of the nodes, etc. Oftentimes collective communication 

implementations follow a poly-algorithm approach to automatically select the best algorithm and 

topology for the given scenario.  

There are two main categories of collective communication primitives.  

 Data movement (aka data redistribution) communication primitives 

These operations can be used to distribute and share data across the worker processors. 

Examples of these include broadcast, scatter, gather, and allgather operations. 

 Data consolidation (aka collective operations) communication primitives 

This type of operations can be used to collect and consolidate data contributions from 

different worker processes. Examples of these include reduce, reduce-scatter and 

allreduce. 

We can also categorize collective communication primitives based on the communication patterns 

of the primitives as well. 
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 All-to-One: gather, reduce 

 One-to-All : broadcast, scatter 

 All-to-All : allgather, allreduce, reduce-scatter 

 Synchronization : barrier  

MapReduce model supports the All-to-One type communications through the Reduce step. 

MapReduce-MergeBroadcast model we introduce in section 7.2 further extends this support through 

the Merge step. Broadcast operation introduced in MapReduce-MergeBroadcast model serves as an 

alternative to the One-to-All type collective communication operations. MapReduce model contains a 

barrier between the Map and Reduce phases and the iterative MapReduce model introduces a barrier 

between the iterations (or between the MapReduce jobs corresponding to iterations). The solutions 

presented in this paper focus on introducing All-to-All type collective communication operations to the 

MapReduce model.  Table 8 presents a summary of the support for above collective communication 

primitives in Hadoop, H-Collectives (section 7.6.1) and Twister4Azure. 

We can implement All-to-All communications using pairs of existing All-to-One and One-to-All type 

operations present in the MapReduce-MergeBroadcast mode. For an example, AllGather operation can 

be implemented as Reduce-Merge followed by Broadcast. However, these types of implementations 

would be inefficient and would be harder to use compared to dedicated optimized implementations of 

All-to-All operations. 
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Table 8 Collective communications support in MPI, Hadoop, H-Collectives and Twister4Azure 

 MPI Hadoop H-Collectives Twister4Azure Description [74] 

All-to-One 
Gather shuffle-reduce* shuffle-reduce* 

shuffle-reduce-merge 

[section 7.2.2] 

Gathers together values from a group 

of processes. 

Reduce shuffle-reduce* shuffle-reduce* 
shuffle-reduce-merge 

[section 7.2.2] 

Reduces values on all processes to a 

single value. 

One-to-All 
Broadcast 

shuffle-reduce-

distributedcache 

shuffle-reduce-

distributedcache 

merge-broadcast [section 

7.2.3] 

Broadcasts a message to all other 

processes. 

Scatter 
shuffle-reduce-

distributedcache** 

shuffle-reduce-

distributedcache** 
merge-broadcast ** 

Scatters data from one process to all 

other processes. 

All-to-All 

AllGather  Map-AllGather Map-AllGather  
Gathers data from all processes and 

distribute the result to all processes. 

AllReduce  Map-AllReduce Map-AllReduce 

Combines values from all processes 

and distribute the result back to all 

processes. 

Reduce-

Scatter 
 

Map-ReduceScatter 

(future work) 

Map-ReduceScatter  (future 

works) 

Combines values from all the 

processes and scatters the result to all 

the processes. 

Synchroni

zation Barrier 
Barrier between 

Map & Reduce 

Barrier between 

Map & Reduce and 

between iterations 

Barrier between Map, 

Reduce, Merge and 

between iterations 

Blocks until all process have reached 

the barrier. 

* Use single Reduce task or by having a post processing step that will combine the output from multiple Reduce tasks. 

** Workaround using Broadcast, where all the data is sent to all the processes rather than scattering the data.
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7.2 MapReduce-MergeBroadcast 

In this section we introduce MapReduce-MergeBroadcast as a generic programming model for the 

data-intensive iterative MapReduce applications.  Programming model of most of the current iterative 

MapReduce frameworks can be specified as MapReduce-MergeBroadcast.  

7.2.1 API 

MapReduce-MergeBroadcast programming model extends the map and reduce functions of 

traditional MapReduce to include the loop variant delta values as an input parameter. MapReduce-

MergeBroadcast provides the loop variant data (dynamicData) to the Map and Reduce tasks as a list of 

key-value pairs using this additional input parameter.  

Map(<key>, <value>, list_of <key,value> dynamicData) 

Reduce(<key>, list_of <value>, list_of <key,value> dynamicData) 

This additional input can be used to provide the broadcast data to the Map and Reduce tasks. As we 

show in the later sections of this chapter, this additional input parameters can used to provide the loop 

variant data distributed using other mechanisms to the map tasks. This extra input parameter can also 

be used to implement additional functionalities such as performing map side joins.  

7.2.2 Merge Task 

We define Merge [12] as a new step to the MapReduce programming model to support iterative 

applications. It is a single task, or the convergence point, that executes after the Reduce step. It can be 

used to perform summarization or aggregation of the results of a single MapReduce iteration. The 

Merge step can also serve as the “loop-test” that evaluates the loops condition in the iterative 

MapReduce programming model. Merge tasks can be used to add a new iteration, finish the job, or 
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schedule a new MapReduce job. These decisions can be made based on the number of iterations or by 

comparison of the results from previous and current iterations, such as the k-value difference between 

iterations for K-means Clustering.  Users can use the results of the current iteration and the broadcast 

data to make these decisions. Oftentimes the output of the merge task needs to be broadcasted to tasks 

of the next iteration. 

Merge Task receives all the Reduce outputs and the broadcast data for the current iteration as the 

inputs.  There can only be one merge task for a MapReduce job. With merge, the overall flow of the 

iterative MapReduce computation flow would appear as follows: 

 

Figure 50 MapReduce-MergeBroadcast computation flow 

The programming APIs of the Merge task can be where the “reduceOutputs” are the outputs of the 

reduce tasks and the “broadcastData” is the loop variant broadcast data for the current iteration. 

Merge(list_of <key,list_of<value>> reduceOutputs, list_of <key,value> dynamicData) 

7.2.3 Broadcast 

Broadcast operation broadcasts the loop variant data to all the tasks in iteration. In typical data-

intensive iterative computations, the loop-variant data is orders of magnitude smaller than the loop-

invariant data. In the MapReduce-MergeBroadcast model, the broadcast operation typically broadcasts 

the output data of the Merge tasks to the tasks of the next iteration. Broadcast operation of 

MapReduce-MergeBroadcast can also be thought of as executing at the beginning of the iterative 

MapReduce computation. This would make the model Broadcast-MapReduce-Merge, which is 

essentially similar to the MapReduce-Merge-Broadcast when iterations are present.  

Map Combine Shuffle Sort Reduce Merge Broadcast 
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…MapReducen-> Mergen-> Broadcastn-> MapReducen+1-> Merge n+1-> Broadcastn+1-> MapReduce n+2-> Merge... 

Broadcast can be implemented efficiently based on the environment as well as the data sizes. Well 

known algorithms for data broadcasting include flat-tree, minimum spanning tree (MST), pipeline and 

chaining [75].   It is possible to share broadcast data between multiple Map and/or Reduce tasks 

executing on the same node, as MapReduce computations typically have more than one 

map/reduce/merge worker per worker-node. 

7.2.4 MapReduceMergeBroadcast Cost Model 

There exist several models that are frequently used by the message passing community to model to 

data communication performance [75].  We use the Hockney model [75, 76] for the simplicity. Hockney 

model assumes the time to send a data set with n data items among two nodes is α+nβ, where α is the 

latency and β is the transmission time per data item (1/bandwidth).  Hockney model cannot model the 

network congestion. 

Merge is a single task that receives the outputs of all the reduce tasks. The cost of this transfer 

would be      , where nr is the total number of reduce outputs and r is the number of reduce tasks. 

The execution time of the Merge task would be relatively small, as typically the merge would be 

performing a computationally trivial task such as aggregation or summarization. The output of the 

Merge task would need to be broadcasted to all the workers of the next iteration. A minimal spanning 

tree based broadcast cost [72] can be modeled as following, where nv is the total number of merge 

outputs (broadcast data). 
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Based on these costs, the total cost of a MapReduce-MergeBroadcast can be approximated as 

follows.     is the cost of the MapReduce computation and              presents the cost of the 

Merge task. The broadcast needs to done only once per worker node as the map tasks executing in a 

single worker node can share the broadcasted data among the tasks. 

                                        

7.2.5 Current iterative MapReduce Frameworks and MapReduce-

MergeBroadcast 

Twister4Azure [12] supports the MapReduce-MergeBroadcast natively. In Twister, the combine step 

is part of the driver program and is executed after the MapReduce computation of every iteration. 

Twister [63] is a MapReduce-Combine model, where the Combine step is similar to the Merge step. 

Twister MapReduce computations broadcast the loop variant data products at the beginning of each 

iteration, effectively making the model Broadcast-MapReduce-Combine, which is semantically similar to 

the MapReduce-MergeBroadcast.  

HaLoop [28] performs an additional MapReduce computation to do the fixed point evaluation for 

each iteration, effectively making this MapReduce computation equivalent to the Merge task. Data 

broadcast is achieved through a MapReduce computation to perform a join operation on the loop 

variant and loop invariant data.  

All the above models can be generalized as Map->Reduce->Merge->Broadcast. 

7.3 Collective Communications Primitives for Iterative MapReduce 

While implementing iterative MapReduce applications using the MR-MB model, we started to notice 

several common execution flow patterns across the different applications. Some of these applications 



134 

 

had very trivial Reduce and Merge tasks while other applications needed extra effort to map to the MR-

MB model owing to the execution patterns being slightly different than the iterative MapReduce 

pattern. In order to solve such issues, we introduce Map-Collective primitives to the iterative 

MapReduce programming model, inspired by the MPI collective communications primitives [61]. 

 

Figure 51 Map-Collective primitives 

These primitives support higher-level communication patterns that occur frequently in data-

intensive iterative applications by substituting certain steps of the MR-MB computation. As depicted in 

Figure 51, these Map-Collective primitives can be thought of as a Map phase followed by a series of 

framework-defined communication and computation operations leading to the next iteration. 

In this chapter we propose two collective communication primitive implementations: Map-AllGather 

and Map-AllReduce. You can also identify MR-MB as another collective communication primitive as well. 

7.3.1 Requirements 

When designing Map-collective primitives for iterative MapReduce, we should make sure they fit 

with the MapReduce data model and the MapReduce computational model, which support multiple 

Map task waves, large overheads, significant execution variations and inhomogeneous tasks. Also the 
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primitives should retain scalability while keeping the programming model simple and easy to 

understand. These primitives should maintain the same type of framework-managed excellent fault 

tolerance supported by MapReduce. 

7.3.2 Advantages  

7.3.2.1 Performance improvement 

Introduction of Map-Collective primitives provides 3 types of performance improvements to the 

iterative MapReduce applications. Map-Collectives can reduce the overheads of the computations by 

skipping or overlapping certain steps (e.g. shuffle, reduce, merge) of the iterative MapReduce 

computational flow. Map-Collective patterns also fit more naturally with the application patterns, 

avoiding the need for unnecessary steps.  

Another advantage is the ability for the frameworks to optimize these operations transparently for 

the users, even allowing the possibility of different optimizations (poly-algorithm) for different use cases 

and environments. For example, a communication algorithm that’s best for smaller data sizes may not 

be the best for larger ones. In such cases, the Map-Collective operations can opt to have multiple 

algorithm implementations to be used for different data sizes.  

These primitives also have the capability to make the applications more efficient by overlapping 

communication with computation. Frameworks can start the execution of collectives as soon as the first 

results are produced from the Map tasks. For example, in the Map-AllGather primitive, presented in 

section 4, partial Map results are broadcasted to all the nodes as soon as they become available. It is 

also possible to perform some of the computations in the data transfer layer, like the hierarchical 

reduction in Map-AllReduce primitive. 
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7.3.2.2 Ease of use 

These primitive operations make life easier for the application developers by presenting them with 

patterns and APIs that fit more naturally with their applications. This simplifies the case when porting 

new applications to the iterative MapReduce model. 

In addition, by using the Map-Collective operations, the developers can avoid manually 

implementing the logic of these operations (e.g. Reduce and Merge tasks) for each application and can 

rely on optimized operations provided by the framework. 

7.3.2.3 Scheduling with iterative primitives 

In addition to providing synchronization between the iterations, Map-Collective primitives also give 

us the ability to propagate the scheduling information for the next iteration to the worker nodes along 

with the collective communication data. This allows the frameworks to synchronize and schedule the 

tasks of a new iteration or application with minimal overheads.  

For example, as mentioned in section 8.6, Twister4Azure successfully employs this strategy to 

schedule new iterations with minimal overhead, while H-Collectives use this strategy to perform 

speculative scheduling of tasks.  

7.3.3 Programming model 

Map-Collective primitives can be specified as an outside configuration option without changing the 

MapReduce programming model. This permits the applications developed with Map-Collectives to be 

backward compatible with frameworks that don’t support them. This also makes it easy for developers 

who are already familiar with MapReduce programming to use Map-Collectives. For an example, a 

KMeans Clustering MapReduce implementation with Map, Reduce and Merge tasks can be used with 
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Map-AllReduce or vice versa without doing any changes to the Map, Reduce or Merge function 

implementations. 

7.3.4 Implementation considerations 

Map-Collectives can be add-on improvements to MapReduce frameworks. The simplest 

implementation would be implementing the primitives using the current MapReduce API and 

communication model on the user level, then providing the implementation as a library. This will 

achieve ease of use for the users by providing a unified programming model that better matches 

application patterns.  

More optimized implementations can present these primitives as part of the MapReduce framework 

(or as a separate library) with the ability to optimize the data transfers based on environment and use 

case, using optimized group communication algorithms in the background. 

Table 9 Summary of Map-Collectives patterns 

Pattern Execution and communication flow Frameworks Sample applications 

MapReduce MapCombineShuffleSortReduce 
Hadoop, Twister, 

Twister4Azure 
WordCount, Grep, etc. 

MapReduce-

MergeBroadcast 

MapCombineShuffleSortReduce

MergeBroadcast 

Twister, Haloop, 

Twister4Azure 

KMeansClustering, 

PageRank, 

Map-AllGather 
MapAllGather 

CommunicationAllGather Combine 

H-Collectives, 

Twister4Azure 

MDS-BCCalc (matrix X 

matrix), PageRank (matrix X 

vector) 

Map-AllReduce 
MapAllReduce (communication & H-Collectives, KMeansClustering, MDS-
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7.4 Map-AllGather Collective  

AllGather is an all-to-all collective communication operation that gathers data from all the workers 

and distributes the gathered data to all the workers [72].  We can notice the AllGather pattern in data-

intensive iterative applications where the “reduce” step is a simple aggregation operation that simply 

aligns the outputs of the Map Tasks together in order, followed by “merge” and broadcast steps that 

transmit the assembled output to all the workers. An example would be a Matrix-vector multiplication, 

where each map task outputs part of the resultant vector. In this computation we would use the Reduce 

and Merge tasks to assemble the vector together and then broadcast the assembled vector to workers.  

Data-intensive iterative applications that have the AllGather pattern include 

MultiDimensionalScaling (matrix-matrix multiplication) [51] and PageRank using inlinks matrix (matrix-

vector multiplication). 

7.4.1 Model 

We developed a Map-AllGather iterative MapReduce primitive similar to the MPI AllGather [72] 

collective communication primitive. Our intention was to support applications with communication 

patterns similar to the above in a more efficient manner.  

7.4.2 Execution model 

Map-AllGather primitive broadcasts the Map Task outputs to all computational nodes (all-to-all 

communication) of the current computation, and then assembles them together in the recipient nodes 

computation) Twister4Azure StressCalc 
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as depicted in Figure 52. Each Map worker will deliver its result to all other workers of the computation 

once the Map task is completed.  

The computation and communication pattern of a Map-AllGather computation is Map phase 

followed by AllGather communication (all-to-all) followed by the AllGather combine phase. As we can 

notice, this model substitute the shuffle->sort->reduce->merge->broadcast steps of the MapReduce-

MergeBroadcast with all-to-all broadcast and AllGather combine. 

 

Figure 52 Map-AllGather Collective 

7.4.3 Data Model 

For Map-AllGather, the map output key should be an integer specifying the location of the output 

value in the resultant gathered data product. Map output values can be vectors, sets of vectors (partial 

matrix) or single values. Final output value of the Map-AllGather operation is an assembled array of Map 

output values in the order of their corresponding keys. The result of AllGather-Combine will be provided 

to the Map tasks of the next iteration as the loop variant data using the APIs and mechanisms suggested 

in Section 8.2.2.1. 
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The final assembly of AllGather data can be performed by implementing a custom combiner or using 

the default combiner of AllGather-combine. Custom combiner allows the user to specify a custom 

assembling function. In this case, the input to the assembling function is a list of Map outputs key-value 

pairs, ordered by the key. This assembling function gets executed in each worker node after all the data 

is received.  

The default combiner should work for most of the use cases, as the combining of AllGather data is 

oftentimes a trivial process. The default combiner expect the Map outputs to be in <int, double[]> 

format. In a matrix example, the key would represent the row index of the output matrix and the value 

would contain the corresponding row vector. Map outputs with duplicate keys (same key for multiple 

output values) are not supported and therefore ignored. 

Users can deploy their Mapper implementations as is with Map-AllGather primitive. They need to 

specify only the collective operation, after which the shuffle and reduce phases of MapReduce would be 

substituted by the Map-AllGather communication and computations.   

7.4.4 Cost Model 

An optimized implementation of AllGather, such as a by-directional exchange based implementation 

[72], we can estimate the cost of the AllGather component as following, where m is the number of map 

tasks.  

                   
   

 
    

We present the above cost model to demonstrate the communication cost improvements 

achievable using a highly optimized implementation of this primitive and not as an effort to model the 
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performance of the current implementation. This model won’t be used to performance modeling of the 

current implementations. 

It is also possible to further reduce this cost by performing local aggregation in the Map worker 

nodes. In the case of AllGather, summation of size of all map output would be approximately equal to 

the loop variant data size of the next iteration (      ). The variation of Map task completion times will 

also help to avoid the network congestion in these implementations.   

Map-AllGather substitute the Map output processing (collect, spill, merge), Reduce task (shuffle, 

merge, execute, write), Merge task (shuffle, execute) and broadcast overheads with a less costly 

AllGather operation. The MapReduce job startup overhead can also be significantly reduced by utilizing 

the information contained in the AllGather transfers to aid in scheduling the tasks of the next iteration. 

Hence Map-AllReduce per iteration overhead is significantly reduced than the traditional MapReduce 

job startup overhead as well. 

7.4.5 Fault tolerance 

All-Gather partial data product transfers from Map to workers can fail due to communication 

mishaps and other breakdowns. When task level fault tolerance (typical MapReduce fault tolerance) is 

enabled, it is possible for the workers to read the missing map output data from the persistent storage 

(e.g.HDFS) to successfully perform the All-Gather computation.  

The fault tolerance and the speculative execution of MapReduce enable duplicate execution of 

tasks. Map-AllGather can perform the duplicate data detection before the final assembly of the data at 

the recipient nodes to handle any duplicate executions. 

7.4.6 Benefits 
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Use of the Map-AllGather in an iterative MapReduce computation eliminates the need for reduce, 

merge and broadcasting steps in that particular computation. Also the smaller-sized multiple broadcasts 

of Map-AllGather primitive originating from multiple servers of the cluster would be able to use the 

network more effectively than a single monolithic broadcast originating from a single server.  

Oftentimes the Map task execution times are inhomogeneous [43] in typical MapReduce 

computations. Implementations of Map-AllGather primitive can start broadcasting the map task result 

values as soon as the first map task is completed. This mechanism ensures that almost all the data is 

broadcasted by the time the last map task completes its execution, resulting in overlap of computations 

with communication. This benefit will be even more significant when we have multiple waves of map 

tasks.  

In addition to improving the performance, this primitive also enhances usability, as it eliminates the 

overhead of implementing reduce and/or merge functions. Map-AllGather can be used to efficiently 

schedule the next iteration or the next application of the computational flow as well. 

7.5 Map-AllReduce Collective 

AllReduce is a collective pattern which combines a set of values emitted by all the workers based on 

a specified operation and makes the results available to all the workers [72]. This pattern can be seen in 

many iterative data mining and graph processing algorithms. Example data-intensive iterative 

applications that have the Map-AllReduce pattern include KMeansClustering, Multi-dimensional Scaling 

StressCalc computation and PageRank using out links matrix. 

7.5.1 Model 
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We propose Map-AllReduce iterative MapReduce primitive similar to the MPI AllReduce [72] 

collective communication operation, to efficiently aggregate and reduce the results of the Map Tasks. 

7.5.1.1 Execution Model 

The computation and communication pattern of a Map-AllReduce computation is Map phase 

followed by the AllReduce communication and computation (reduction), as depicted in Figure 53. As we 

can notice, this model allows us to substitute the shuffle->sort->reduce->merge->broadcast steps of the 

MapReduce-MergeBroadcast with AllReduce communication in the communication layer.  The 

AllReduce phase can be implemented efficiently using algorithms such as bidirectional exchange (BDE) 

[72] or hierarchical tree based reduction. 

 

Figure 53 Map-AllReduce collective 

Map-AllReduce allows the implementations to perform local aggregation on the worker nodes 

across multiple map tasks and to perform hierarchical reduction of the Map Task outputs while 

delivering them to all the workers. Map-AllReduce performs the final reduction in the recipient worker 

nodes. 

7.5.1.2 Data Model 
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For Map-AllReduce, the map output values should be vectors or single values of numbers. The 

values belonging to each distinct map output key are processed as a separate data reduction operation. 

Output of the Map-AllReduce operation is a list of key/value pairs where each key corresponds to a map 

output key and the value is the combined value of the map output values that were associated with that 

map output key. As shown in Figure 54, the number of records in the Map-AllReduce output is equal to 

the number of unique map output keys. For example, 10 distinct Map output keys would result in 10 

combined vectors or values. Map output value type should be a number.  

 

Figure 54 Example Map-AllReduce with Sum operation 

In addition to the summation, any commutative and associative operation can be performed using 

this primitive. Example operations include sum, max, min, count, and product operations. Operations 

such as average can be performed by using the Sum operation together with an additional element 

(dimension) to count the number of data products. Due to the associative and commutative nature of 

the operations, Map-AllReduce has the ability to start combining the values as soon as the first map task 

completion. It also allows the Map-AllReduce implementations to use reduction trees or bidirectional 

exchanges to optimize the operation.  

It is also possible to allow users to specify a post process function that executes after the AllReduce 

communication. This function can be used to perform a simple operation on the Map-AllReduce result 
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or to check for the iteration termination condition. It would be executed in each worker node after all 

the Map-AllReduce data has been received. 

list<Key, IOpRedValue>  PostOpRedProcess(list<Key, IOpRedValue> opRedResult); 

7.5.1.3 Cost Model 

An optimized implementation of AllReduce, such as a by-directional exchange based 

implementation [72], will reduce the cost of the AllReduce component to, 

                              
 
   

We present the above cost model to demonstrate the communication cost improvements 

achievable using a highly optimized implementation of this primitive and not as an effort to model the 

performance of the current implementation. This model won’t be used to performance modeling of the 

current implementations. 

It is also possible to further reduce this cost by performing local aggregation and reduction in the 

Map worker nodes as the compute cost of AllReduce is very small. 
 

 
 gives the average number of Map 

tasks per computation that executes in a given worker node, where p is the number of worker nodes. In 

the case of AllReduce, the average size of each map output would be approximately equal to the loop 

variant data size of the next iteration (  

 
     ). The variation of Map task completion times will also 

help to avoid the network congestion in these implementations.  

                       
 
    

 

 
   

 
  

Map-AllReduce substitute the Map output processing (collect, spill, merge), Reduce task (shuffle, 

merge, execute, write), Merge task (shuffle, execute) and broadcast overheads with a less costly 
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AllReduce operation. The MapReduce job startup overhead can also be reduced by utilizing the 

information contained in the AllReduce transfers to aid in scheduling the tasks of the next iteration. 

Other efficient algorithms to implement AllReduce communication include flat-tree/linear, pipeline, 

binomial tree, binary tree, and k-chain trees [75]. 

7.5.2 Fault Tolerance 

If the AllReduce communication step fails for some reason, it is possible for the workers to read the 

map output data from the persistent storage to perform the All-Reduce computation.  

The fault tolerance model and the speculative execution model of MapReduce make it possible to 

have duplicate execution of tasks. Duplicate executions can result in incorrect Map-AllReduce results 

due to the possibility of aggregating the output of the same task twice. The most trivial fault tolerance 

model for Map-AllReduce would be a best-effort mechanism, where Map-AllReduce would fall back to 

using the Map output results from the persistent storage (e.g. HDFS) in case duplicate results are 

detected. Duplicate detection can be done by maintaining a set of map IDs with each combined data 

product. It is possible for the frameworks to implement richer fault tolerance mechanisms, such as 

identifying the duplicated values in localized areas of the reduction tree. 

7.5.3 Benefits 

Map-AllReduce reduces the work each user has to perform in implementing Reduce and Merge 

tasks. It also removes the overhead of Reduce and Merge tasks from the computations and allows the 

framework to perform the combine operation in the communication layer itself.  

Map-AllReduce semantics allow the implementations to optimize the computation by performing 

hierarchical reductions, reducing the number and the size of intermediate data communications. 
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Hierarchical reduction can be performed in as many levels as needed based on the size of the 

computation and the scale of the environment. For example, first level in mappers, second level in the 

node and nth level in rack level, etc. The mapper level would be similar to the “combine” operation of 

vanilla MapReduce. The local node aggregation can combine the values emitted by multiple mappers 

running in a single physical node. All-Reduce combine processing can be performed in real time when 

the data is received. 

7.6 Implementations 

In this section we present two implementations of Map-Collectives on Hadoop MapReduce and 

Twister4Azure iterative MapReduce.  

These implementations are proofs of concept presenting sufficiently optimal implementations for 

each of the primitives and the environments to show the performance efficiencies that can be gained 

through using even a modest implementation of these operations. It is possible to further optimize 

these implementation using more advanced communication algorithms based on the environment they 

will be executing, the scale of the computations, and the data sizes as shown in MPI collective 

communications literature[72]. One of the main advantages of these primitives is the flexibility to 

improve primitive implementations without the need to change the user application, making it possible 

to optimize these implementations in the future as future work. 

It is not our objective to find the most optimal implementations for each of the environments, 

especially for clouds where the most optimal implementation might end up being a moving target due 

to the rapidly evolving nature and the black box nature of cloud environments. This presents an 
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interesting opportunity for cloud providers to develop optimized implementations of these primitives as 

cloud infrastructure services that can be utilized by the framework developers.  

7.6.1 H-Collectives: Map-Collectives for Apache Hadoop 

H-Collectives is a Map-Collectives implementation for Apache Hadoop that can be used as a drop in 

library with the Hadoop distributions. H-Collectives uses the Netty NIO library, node-level data 

aggregations and caching to efficiently implement the collective communications and computations. 

Existing Hadoop Mapper implementations can be used with these primitives with only very minimal 

changes. These primitives work seamlessly with Hadoop dynamic scheduling of tasks, support for 

multiple map task waves and other desirable features of Hadoop, while supporting the typical Hadoop 

fault tolerance and speculative executions as well. 

A single Hadoop node may run several Map workers and many more map tasks belonging to a single 

computation. The H-Collectives implementation maintains a single node-level cache to store and serve 

the collective results to all the tasks executing in a worker node. 

H-Collectives speculatively schedules the tasks for the next iteration and the tasks are waiting to 

start as soon as all the AllGather data is received, getting rid of most of the Hadoop job startup/cleanup 

and task scheduling overheads. Speculative scheduling cannot be used easily with pure Hadoop 

MapReduce as we need to add the loop variant data (only available after the previous iteration is 

finished) to the Hadoop DistributedCache before scheduling the job. 

7.6.1.1 H-Collectives Map-AllGather 

This implementation performs simple TCP-based best effort broadcasts for each Map task output. 

Task output data are transmitted as soon as a task is completed, taking advantage of the 

inhomogeneous Map task completion times. Final aggregation of these data products are done at the 
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destination nodes only once per node. If an AllGather data product is not received through the TCP 

broadcasts, then it will be fetched from the HDFS.  

7.6.1.2 H-Collectives Map-AllReduce 

H-Collectives Map-AllReduce use n'ary tree-based hierarchical reductions, where Map task level and 

node level reductions would be followed by broadcasting of the locally aggregated values to the other 

worker nodes. The final reduce combine operation is performed in each of the worker nodes and is done 

after all the Map tasks are completed and the data is transferred.  

7.6.2 Map-Collectives for Twister4Azure iterative MapReduce 

Twister4Azure Map-Collectives are implemented using the Windows Communication Foundation 

(WCF)-based Azure TCP inter-role communication mechanism, while using the Azure table storage as a 

persistent backup. 

Twister4Azure primitive implementations maintain a worker node-level cache to store and serve the 

primitive result values to multiple Map workers and map tasks running on a single server. Twister4Azure 

utilizes the collectives to perform synchronization at the end of each iteration and also to aid in the 

decentralize scheduling of the tasks of the next iteration by using the collective operations to 

communicate the new iteration information to the workers.  

7.6.2.1 Map-AllGather 

Map-AllGather performs simple TCP-based broadcasts for each Map task output, which is an all-to-

all linear implementation. Workers start transmitting the data as soon as a task is completed. The final 

aggregation of the data is performed in the destination nodes and is done only once per node. 

7.6.2.2 Map-AllReduce 
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Map-AllReduce uses a hierarchical processing approach where the results are first aggregated in the 

local node and then final assembly is performed in the destination nodes. The iteration check happens in 

the destination nodes and can be specified as a custom function or as a limit on the number of 

iterations. 

7.6.3 Implementation Considerations on cloud environments 

As mentioned above, our goal of the above prototype implementations is to demonstrate the 

viability of Collective Communication primitives for iterative MapReduce. However, here we discuss the 

differences and challenges one would encounter when implementing highly optimized collective 

communications primitives for clouds as oppose to for local clusters.  

Cloud environments are shared virtualized environments that are known to be relatively less reliable 

than the local cluster counterparts. The failures can be whole instance failures as well as individual 

communication operation failures. One of the most important considerations when implementing Map-

Collectives to the cloud environments should be to ensure the fault tolerance of the communications as 

well as of the whole computation. One option is to explore the ability to utilize the fault tolerant high 

available cloud services to perform the optimized communication for the Map-Collectives. Another 

option is to make sure the data is persisted and available, to use in case the framework has to retry a 

communication operation or to facilitate the use of an alternate method of communication in case the 

main algorithm fails due to some reason. Twister4Azure Map-Collectives implementation takes this 

approach where the data is persisted in the background to a Cloud storage while the optimized 

communication is performed.  It is also important to keep in mind that any data stored to cloud instance 

storage would get lost in case of an instance failure or a decommission of an instance. 
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Communications in Cloud instances have higher latencies than their bare metal counterparts due to 

the virtualization overhead in the network layer and also due to the shared and commodity nature of 

the network interconnect. Bandwidth available for the data communication can also be lesser due to the 

shared nature and due to the usage of commodity interconnects. A balance needs to be achieved in 

terms of the data communication parallelism and the number and size of the individual data messages. 

Data communications should be sufficiently parallel to avoid bandwidth bottlenecks in any particular 

path that may result from the shared nature of the cloud environments.  At the same time, the data 

transfers should result in a relatively smaller number of coarser grained messages, to avoid the high 

latencies and to reduce the management and fault recovery cost of messages.  

Also it is important to select proper cloud instances for the computations. If a relatively large 

number of cores are needed for the computation, it is better to use the largest available instance type 

that does not result in a cost overhead. In almost all the cloud environments, the usage of the largest 

available instance would ensure exclusive access to a physical node without sharing it with another user. 

Usage of larger instances enables meaningful local aggregations for the collective communications 

across the multiple workers running in a single instance and to use a cache to share collective results 

data with all the workers executing inside a single instance. We employ both local aggregations and 

results cache in our prototype implementations. Larger instances would alleviate some of concerns of a 

shared environment as well.  

The black box nature of the network architecture of cloud environments rules out any topology 

specific communication algorithms and any algorithm that requires exclusive use of the network.  

Communication algorithms in cloud environments for iterative MapReduce collective communications 

should take advantage of the inhomogeneous nature of the tasks in a computation to reduce and even 
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out the load in the network interconnects. Also they should be able to take advantage of the 

computation and communication overlap ability provided by the multiple waves of map tasks. 

7.7 Evaluation 

In this section we evaluate and compare the performance of Map-Collectives with plain MapReduce 

using two real world applications, Multi-Dimensional-Scaling and K-means clustering. The performance 

results are presented by breaking down the total execution time in to the different phases of the 

MapReduce or the Map-Collectives computations. This provides an idea of the performance model and 

provides a better view of various overheads of MapReduce and the optimizations provided by Map-

Collectives to reduce some of those overheads.  

In the following figures, ‘Scheduling’ is the per iteration (per MapReduce job) startup and task 

scheduling time. ‘Cleanup’ is the per iteration overhead from reduce task execution completion to the 

iteration end. ‘Map overhead’ is the start and cleanup overhead for each map task. ‘Map variation’ is 

the overhead due to variation of data load, compute and map overhead times. ‘Comm+Red+Merge’ is 

the time for map to reduce data shuffle, reduce execution, merge and broadcast. ‘Compute’ and ‘Data 

load’ times are calculated using the average compute only and data load times across all the tasks of the 

computation. The common components (data load, compute) are plotted at the bottom of the graphs to 

highlight variable components. 

Hadoop and H-Collectives experiments were conducted in the FutureGrid Alamo cluster, which has 

Dual Intel Xeon X5550 (8 total cores) per node, 12 GB RAM per node and a 1Gbps network. 

Twister4Azure tests were performed in Windows Azure cloud, using Azure extra-large instances. Azure 

extra-large instances provide 8 compute cores and 14 GB RAM per instance. 
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7.7.1 Multi-Dimensional Scaling (MDS) using Map-AllGather 

The objective of MDS, described in detail in section 2.6.6, is to map a dataset in high-dimensional 

space to a lower dimensional space, with respect to the pairwise proximity of the data points [51]. In 

this chapter, we use parallel SMACOF [46, 52] MDS, which is an iterative majorization algorithm. The 

input for MDS is an N*N matrix of pairwise proximity values. The resultant lower dimensional mapping 

in D dimensions, called the X values, is an N*D matrix.  

Unweighted MDS results in two MapReduce jobs per iteration, BCCalc and StressCalc. Each BCCalc 

Map task generates a portion of the total X matrix. The reduce step of MDS BCCalc computation is an 

aggregation operation, which simply assembles the outputs of the Map tasks together in order. This X 

value matrix is then broadcasted to be used by the StressCalc step of the current iterations, as well as by 

the BCCalc step of the next iteration. MDS performs relatively smaller amount of computations for a unit 

of input data. Hence MDS has larger data loading and memory overhead. Usage of the Map-AllGather 

primitive in MDS BCCalc computation eliminates the need for reduce, merge and broadcasting steps in 

that particular computation.  

7.7.1.1 MDS BCCalculation Step Cost 

For the simplicity, in this section we assume each MDS iteration contains only the BCCaculation step 

and analyze the cost of MDS computation. 

Map compute cost can be approximated for large n to d*n2 , where n is the number of data points 

and d is the dimensionality of the lower dimensional space. Input data points in MDS are n dimensional 

(n*n matrix). The total input data size for all the map tasks would be n2 and the loop invariant data size 

would be n*d. 
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In MDS, the number of computations per l bytes of the input data are in the range of k*l*d, where k 

is a constant and d is typically 3. Hence MDS has larger data loading and memory overheads compared 

to the number of computations. 

7.7.1.2 H-Collectives MDS Map-AllGather 

 

Figure 55 MDS Hadoop using only the BC Calculation MapReduce job per iteration to highlight the overhead. 

20 iterations, 51200 data points 

We implemented the MDS for Hadoop using vanilla MapReduce and H-Collectives Map-AllGather 

primitive. Vanilla MapReduce implementation uses the Hadoop DistributedCache to broadcast loop 

variant data to the Map tasks. Figure 55 shows the MDS strong scaling performance results highlighting 

the overhead of different phases on the computation. We used only the BC Calculation step of the MDS 

in each iteration and skipped the stress calculation step to further highlight the AllGather component. 

This test case scales a 51200*51200 matrix into a 51200*3 matrix. The number of map tasks per 

computation is equal to the number of total cores of the computation. The Map-AllGather based 

implementation improves the performance of MDS over MapReduce by 30% up to 50% for the current 

test cases. 
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As we can notice in the Figure 55, the H-Collectives implementation gets rid of the communication, 

reduce, merge, task scheduling and job cleanup overhead of the vanilla MapReduce computation. 

However, we notice a slight increase of Map task overhead and Map variation in the case H-Collectives 

Map-AllReduce-based implementation. We believe these increases are due to the rapid scheduling of 

Map tasks across successive iterations in H-Collectives, whereas in the case of vanilla MapReduce the 

map tasks of successive iterations have few seconds between the scheduling do perform housekeeping 

tasks. 

7.7.1.3 Twister4Azure MDS-AllGather 

 

Figure 56  MDS application implemented using Twister4Azure. 20 iterations. 51200 data points (~5GB). 

We implemented MDS for Twister4Azure using Map-AllGather primitive and MR-MB with optimized 

broadcasting. Twister4Azure optimized broadcast is an improvement over simple MR-MB as it uses an 

optimized tree-based algorithm to perform TCP broadcasts of in-memory data. Figure 56 shows the MDS 

(with both BCCalc and StressCalc steps) strong scaling performance results comparing the Map-

AllGather based implementation with the MR-MB implementation. The number of map tasks per 

computation is equal to the number of total cores of the computation. The Map-AllGather-based 
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implementation improves the performance of Twister4Azure MDS by 13%-42% over MapReduce with 

optimized broadcast in the current test cases.  

7.7.1.4 Detailed analysis of overheads  

In this section we perform detailed analysis of overheads of the Hadoop MDS BCCalc calculation 

using a histogram of executing Map Tasks. In this test, we use only the BCCalc MapReduce job and 

removed the StressCalc step to show the overheads. MDS computations depicted in the graphs of this 

section use 51200 *51200 data points, 6 Iterations on 64 cores using 64 Map tasks per iteration. The 

total AllGather data size of this computation is 51200*3 data points. Average data load time is 10.61 

seconds per map task. Average actual MDS BCCalc compute time is 1.5 seconds per map task. 

These graphs plot the total number of executing Map tasks at a given moment of the computation. 

Number of an executing Map tasks approximately represent the amount of useful work done in the 

cluster at that given moment. The resultant graphs comprise of blue bars that represent an iteration of 

the computation. The width of each blue bar represents the time spent by Map tasks in that particular 

iteration. This includes the time spent loading Map input data, Map calculation time and time to process 

and store Map output data. The space between the blue bars represents the overheads of the 

computation.  
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Figure 57 Hadoop MapReduce MDS-BCCalc histogram 

 

Figure 58 H-Collectives AllGather MDS-BCCalc histogram 

 

Figure 59 H-Collectives AllGather MDS-BCCalc histogram without speculative scheduling 

Figure 58 presents MDS using H-Collectives AllGather implementation. Hadoop driver program 

performs speculative (overlap) scheduling of iterations by scheduling the tasks for the next iteration 
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while the previous iteration is still executing and the scheduled tasks wait for the AllGather data to start 

the actual execution. Blue bars represent the map task time of each iteration, while the stripped section 

on each blue bar represent the data loading time (time it takes to read input data from HDFS). 

Overheads of this computation include AllGather communication and task scheduling. MapReduce job 

for the next iteration is scheduled while the previous iteration is executing and the scheduled tasks wait 

for the AllGather data to start the execution. As we can notice, the overheads between the iterations 

virtually disappear with the use of AllGather primitive.  

Figure 59 presents MDS using H-Collectives AllGather implementation without the speculative 

(overlap) scheduling. In this graph, the MapReduce job for the next iteration is scheduled after the 

previous iteration is finished. This figure compared to Figure 58 shows the gains that can be achieved by 

enabling optimized task scheduling with the help from the information from collective communication 

operations.  Hadoop MapReduce implementation can’t overlap the iterations as we need to add the 

loop variant data (only available after the previous iteration is finished) to the Hadoop DistributedCache 

when scheduling the Job.  

7.7.1.5 Twister4Azure vs Hadoop 

Twister4Azure is already optimized for iterative MapReduce [12] and contains very low scheduling, 

data loading and data communication overheads compared to Hadoop. Hence, the overhead reduction 

we achieve by using collective communication is comparatively less in Twister4Azure compared to 

Hadoop. Also a major component of Hadoop MDS Map task cost is due to the data loading, as you can 

notice in Figure 58. Twister4Azure avoids this cost by using data caching and cache aware scheduling. 

7.7.2 K-KMeansClustering using Map-AllReduce 
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The K-means Clustering [67] algorithm, described in detail in section 2.6.5, has been widely used in 

many scientific and industrial application areas due to its simplicity and applicability to large datasets. 

We are currently working on a scientific project that requires clustering of several Terabytes of data 

using K-means Clustering and millions of centroids. 

K-means clustering is often implemented using an iterative refinement technique in which the 

algorithm iterates until the difference between cluster centers in subsequent iterations, i.e. the error, 

falls below a predetermined threshold. Each iteration performs two main steps: the cluster assignment 

step and the centroids update step. In a typical MapReduce implementation, the assignment step is 

performed in the Map task and the update step is performed in the Reduce task. Centroid data is 

broadcasted at the beginning of each iteration. Intermediate data communication is relatively costly in 

K-means Clustering, as each Map Task outputs data equivalent to the size of the centroids in each 

iteration. 

K-means Clustering centroid update step is an AllReduce computation. In this step all the values 

(data points assigned to a certain centroid) belonging to each key (centroid) needs to be combined 

independently and the resultant key-value pairs (new centroids) are distributed to all the Map tasks of 

the next iteration.  

7.7.2.1 KMeansClustering Cost 

KMeans centroid assignment step (Map tasks) cost can be approximated for large n to n*c*d, where 

n is the number of data points, d is the dimensionality of the data and c is the number of centroids. The 

total input data size for all the map tasks would be n*d and the loop invariant data size would be c*d.  
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KMeansClustering approximate compute and communications cost when using the AllReduce 

primitive is as follows.  The cost of the computation component of AllReduce is k*c*d, where k is the 

number of data sets reduced at that particular step.  

In KMeansClustering, the number of computations per l bytes of the input data are in the range of 

k*l*c, where k is a constant and c is the number of centroids. Hence for non-trivial number of centroids, 

KMeansClustering has relatively smaller data loading and memory overheads vs the number of 

computations compared to the MDS application discussed above.  

The compute cost difference between KMeansClustering MapReduce-MergeBroadcast and Map-

AllReduce implementations is equal or slightly in favor of the MapReduce due to the hierarchical 

reduction performed in the AllReduce implementation. However, typically the compute cost of the 

reduction is almost negligible. All the other overheads including the startup overhead, disk overhead 

and communication overhead favors the AllReduce based implementation. 

7.7.2.2 H-Collectives KMeansClustering-AllReduce 
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Figure 60 Hadoop K-means Clustering comparison with H-Collectives Map-AllReduce Weak scaling. 500 

Centroids (clusters). 20 Dimensions. 10 iterations. 

 

Figure 61 Hadoop K-means Clustering comparison with H-Collectives Map-AllReduce Strong scaling. 500 

Centroids (clusters). 20 Dimensions. 10 iterations.  

We implemented the K-means Clustering application for Hadoop using the Map-AllReduce and plain 

MapReduce. The MapReduce implementation uses in-map combiners to perform aggregation of the 

values to minimize the size of map-to-reduce intermediate data transfers. 
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Figure 60 illustrates the K-means Clustering weak scaling performance where we scaled the 

computation while keeping the workload per core constant. Figure 61 presents the K-means Clustering 

strong scaling performance where we scaled the computation while keeping the data size constant. 

Strong scaling test cases with smaller number of nodes use more map task waves optimizing the 

intermediate data communication, resulting in relatively smaller overhead for the computation  

As we can see, the H-Collectives implementation gets rid of the communication, reduce, merge, task 

scheduling and job cleanup overhead of the vanilla MapReduce computation. A slight increase of Map 

task overhead and Map variation can be noticed in the case of Map-AllReduce based implementation, 

similar to the behavior observed and explained in above MDS section. 

7.7.2.3 Twister4Azure KMeansClustering-AllReduce 

 
Figure 62 Twister4Azure K-means weak scaling with Map-AllReduce. 500 Centroids, 20 Dimensions. 10 

iterations. 32 to 256 Million data points. 
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Figure 63 Twister4Azure K-means Clustering strong scaling. 500 Centroids, 20 Dimensions, 10 iterations. 

128Million data points. 

We implemented the K-means Clustering application for Twister4Azure using the Map-AllReduce 

primitive and MapReduce-MergeBroadcast. MR-MB implementation uses in-map combiners to perform 

local aggregation of the output values to minimize the size of map-to-reduce data transfers. Figure 62 

shows the K-means Clustering weak scaling performance results, where we scale the computations 

while keeping the workload per core constant. Figure 63 presents the K-means Clustering strong scaling 

performance, where we scaled the number of cores while keeping the data size constant. As can be seen 

in these figures, the Map-AllReduce implementation gets rid of the communication, reduce and merge 

overheads of the MR-MB computation.  

7.7.2.4 Twister4Azure vs Hadoop vs HDInsight 

KMeans performs more computation per data load than MDS and the compute time dominates the 

run time. The pure compute time in of C#.net based application in Azure is much slower than the java 

based application executing in a Linux environment. Twister4Azure is still able to avoid lot of overheads 
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and improves the performance of the computations, but the significant lower compute time results in 

lower running times for the Hadoop applications. 

 

 

Figure 64 HDInsight KMeans Clustering compared with Twister4Azure and Hadoop 

HDInsight offers hosted Hadoop as a service on the Windows Azure cloud. Figure 64 presents the 

KMeansClustering performance on the HDInsight service using Windows Azure large instances. We 

executed the same Hadoop MapReduce based KMeansClustering implementation used in section 7.2.3 

on HDInsight. HDInsight currently limits the number of cores to 170, which doesn’t allow us to perform 

the 256 core test on it. 

Input data for the HDInsight computation were stored in Azure Blob Storage and were accessed 

through ASV (Azure storage vault), which provides a HDFS file system interface for the Azure blob 

storage.  Input data for the Twister4Azure computation were also stored in Azure blob storage and were 

cached in memory using the Twister4Azure caching feature.  
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The darker areas of the bars represent the approximated compute only time for the computation 

based on the average map task compute only time. Rest of the area in each bars represent the 

overheads, which would be the time taken for task scheduling, data loading, shuffle, sort, reduce, merge 

and broadcast.  The overheads are particularly high for HDInsight due to the data download from the 

Azure Blob storage for each iteration. The variation of the time to download data from the Azure Blob 

storage adds significant variation to the map task execution times affecting the whole iteration 

execution time.   

Twister4Azure computation is significantly faster than HDInsight due to the data caching and other 

improvements such as hybrid TCP based data shuffling, cache aware scheduling etc. , even though the 

compute only time (darker areas) is much higher in Twister4Azure (C# vs Java) than in HDInsight.  

7.8 Summary 

In this section, we introduced Map-Collectives, collective communication operations for MapReduce 

inspired by MPI collectives, as a set of high level primitives that encapsulate some of the common 

iterative MapReduce application patterns. Map-Collectives improve the communication and 

computation performance of the applications by enabling highly optimized group communication across 

the workers, by getting rid of unnecessary/redundant steps and by enabling the frameworks to use a 

poly-algorithm approach based on the use case. Map-Collectives also improve the usability of the 

MapReduce frameworks by providing abstractions that closely resemble the natural application patterns 

and reduce the implementation burden of the developers by providing optimized substitutions to 

certain steps of the MapReduce model. We envision a future where many MapReduce and iterative 

MapReduce frameworks support a common set of portable Map-Collectives, and we consider this work 

as a step towards that. 
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We defined Map-AllGather and Map-AllReduce Map-Collectives and implemented Multi-

Dimensional Scaling and K-means Clustering applications using these operations. We also presented the 

H-Collectives library for Hadoop, which is a drop-in Map-Collectives library that can be used with existing 

MapReduce applications with only minimal modification. We also presented a Map-Collectives 

implementations for the Twister4Azure iterative MapReduce framework as well. MDS and K-means 

applications were used to evaluate the performance of Map-Collectives on Hadoop and on 

Twister4Azure depicting up to 33% and 50% speedups over the non-collectives implementations by 

getting rid of the communication and coordination overheads. 
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 8. CONCLUSIONS AND FUTURE WORKS 

8.1 Summary and Conclusions 

In this thesis, we have investigated the applicability of cloud computing environments and related 

application frameworks to be able to perform large-scale data intensive parallel computations efficiently 

with good scalability, fault-tolerance and ease-of-use. Over the course of our work, we have acquired 

greater understanding about the challenges and bottlenecks involved in performing scalable data-

intensive parallel computing on cloud environments; we have proposed solutions to overcome these 

potential obstacles. We selected pleasingly parallel computations, MapReduce type computations and 

iterative MapReduce type computations as the types of computations that are better suited for 

execution in cloud environments. We developed scalable parallel programming and computing 

frameworks specifically designed for cloud environments to support efficient, reliable and user friendly 

execution of the above three types of computations on cloud environments. Further, we developed data 

intensive applications using those frameworks, and demonstrated that these applications can be 

executed on cloud environments in an efficient scalable manner. 

In Chapter 3, we introduced a set of frameworks that have been constructed using cloud-oriented 

programming models to perform pleasingly parallel computations on cloud and cluster environments. 

Using these frameworks, we demonstrated the feasibility of Cloud infrastructures for the 

implementation of pleasingly parallel applications such as the Cap3 sequence assembly, the BLAST 

sequence search and Generative Topographic Mapping (GTM) Interpolation. We analyzed and compared 

each of these frameworks by performing a comparative study among them based on performance, cost 

and usability. For the applications we considered, we developed frameworks on top of high latency, 
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eventually consistent cloud infrastructure services that relied on off-the-instance cloud storage; these 

frameworks were able to exhibit performance efficiencies and scalability comparable to the MapReduce 

based frameworks with local disk-based storage. In Chapter 3, we also analyzed the variations in cost 

among the different platform choices (e.g., EC2 instance types), by highlighting the importance of 

selecting an appropriate platform based on the nature of the computation. We used Amazon Web 

Services [9] and Microsoft Windows Azure [52] cloud computing platforms, in addition to Apache 

Hadoop [6] MapReduce and Microsoft DryadLINQ [7] as the distributed parallel computing frameworks. 

While models like Classic-Cloud, which we introduced in Chapter 3, bring in operational and quality 

of services advantages, it should be noted that the simpler programming models of existing cloud-

oriented frameworks like MapReduce and DryadLINQ are more convenient for the users. Motivated by 

the positive results we saw in Chapter 3, we developed a fully-fledged MapReduce framework with 

iterative-MapReduce support for the Windows Azure Cloud infrastructure using Azure infrastructure 

services as building blocks which provided users the best of both worlds.  

In Chapter 4, we introduced a novel decentralized controlled cloud infrastructure services-based 

MapReduce architecture for cloud environments as well as an implementation of that architecture for 

the Windows Azure cloud environment, called MRRoles4Azure.  MRRoles4Azure fulfilled the much-

needed requirement of a distributed programming framework for Windows Azure cloud users. 

MRRoles4Azure was built using Azure cloud infrastructure services that take advantage of the quality of 

service guarantees provided by the Azure cloud. Even though cloud services have higher latencies than 

their traditional counterparts, scientific applications implemented using MRRoles4Azure were able to 

perform comparatively with the other MapReduce implementations, thus proving the feasibility of the 

MRRoles4Azure architecture. We also explored the challenges presented by cloud environments to 

execute MapReduce computations and we discussed how we overcame them in the MRRoles4Azure 
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architecture. We also implemented and analyzed the performance of two MapReduce applications on 

two popular cloud infrastructures. In our experiments, the MapReduce applications executed in the 

cloud infrastructures exhibited performance and efficiency characteristics comparable to the 

MapReduce applications that were executed using traditional clusters. We demonstrated that using 

MapReduce in cloud environments is a very viable option, as it exhibited performance results 

comparable to in house clusters, because of its on demand availability, horizontal scalability and its’ easy 

to use programming model; in addition, it poses no upfront costs. This option is also an enabler for the 

computational scientists, especially in scenarios where in-house compute clusters are not readily 

available. From an economical and maintenance perspective, it even makes sense not to procure in-

house clusters if the utilization would be low. 

In Chapter 5, we presented Twister4Azure, a novel iterative MapReduce distributed computing 

runtime for Windows Azure Cloud. Twiser4Azure enables the users to perform large-scale data intensive 

iterative computations efficiently on Windows Azure Cloud, by hiding the complexity of scalability and 

fault tolerance typically present when using Clouds. The key features of Twiser4Azure include the novel 

programming model for iterative MapReduce computations, the multi-level data caching mechanisms to 

overcome the latencies of cloud services, the decentralized cache aware task scheduling utilized to avoid 

single point failures and the framework managed fault tolerance drawn upon to ensure the eventual 

completion of the computations. We also presented optimized data broadcasting and intermediate data 

communication strategies that sped up the computations. Twister4Azure contains MRRoles4Azure 

MapReduce capabilities and the Classic-Cloud pleasingly parallel framework capabilities 

We presented four real world data intensive applications which were implemented using 

Twister4Azure and compared the performance of those applications with that of the Twister (Java) and 

the Hadoop MapReduce frameworks. We presented Multi-Dimensional Scaling (MDS) and KMeans 
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Clustering as iterative scientific applications of Twister4Azure. Experimental evaluation showed that 

MDS using Twister4Azure on a shared public cloud scaled similar to the Twister (Java) MDS on a 

dedicated local cluster. Further, the KMeans Clustering using Twister4Azure with shared cloud virtual 

instances outperformed Apache Hadoop in a local cluster by a factor of 2 to 4, and exhibited  

performance comparable to that of Twister (Java) running on a local cluster. These iterative MapReduce 

computations were performed on up to 256 cloud instances with up to 40,000 tasks per computation. 

We also presented sequence alignment and Blast sequence searching pleasingly parallel MapReduce 

applications of Twister4Azure. These applications running on the Azure Cloud exhibited performance 

comparable to the Apache Hadoop on a dedicated local cluster. 

In Chapter 6, we discussed some of the performance implications of performing scalable parallel 

computing on cloud environments. These include data inhomogeneity, virtualization overhead, 

performance variations in clouds infrastructures and various data caching options. Many real world data 

sets and problems are inhomogeneous in nature, a characteristic that makes it difficult to divide those 

computations into equally balanced computational parts. But often, the inhomogeneity of problems is 

randomly distributed, and this provides a natural load balancing inside the sub tasks of a computation. 

We observed that the scheduling mechanism employed by both dynamic scheduling (Hadoop) and static 

scheduling (DryadLINQ) performs well when randomly distributed inhomogeneous data is used. Also, in 

the above study, we observed that,  when there are sufficient map tasks, the global queue based 

dynamic scheduling strategy adopted by Hadoop (and also by MRRoles4Azure and Twister4Azure) 

provides load balancing even in extreme scenarios like skewed distributed inhomogeneous data sets.  

We also observed that the fluctuation of MapReduce performance on clouds is minimal over a 

week-long period, assuring consistency and predictability of application performance in the cloud 

environments. We also performed experiments using identical hardware for Hadoop on Linux and 
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Hadoop on Linux on Virtual Machines to study the effect of virtualization on the performance of our 

application. These test results showed that the average virtual machines overhead is around 20%. We 

also analyzed the performance anomalies of Azure instances with the use of in-memory caching; we 

then proposed a novel caching solution based on Memory-Mapped Files to overcome these 

performance anomalies. 

Finally, in Chapter 7, we introduced Map-Collectives, collective communication operations for 

MapReduce inspired by MPI collectives, as a set of high level primitives that encapsulate some of the 

common iterative MapReduce application patterns. Map-Collectives improve the communication and 

computation performance of the applications by enabling highly optimized group communication across 

the workers, by getting rid of unnecessary/redundant steps and by enabling the frameworks to use a 

poly-algorithm approach based on the use case. Map-Collectives also improve the usability of the 

MapReduce frameworks by providing abstractions that closely resemble the natural application patterns 

and which reduces the implementation burden of the developers by providing optimized substitutions 

to certain steps of the MapReduce model. We envision a future where many MapReduce and iterative 

MapReduce frameworks support a common set of portable Map-Collectives, and we consider this work 

as a step towards that fulfilling that goal. We defined Map-AllGather and Map-AllReduce Map-

Collectives and implemented Multi-Dimensional Scaling and K-means Clustering applications using these 

operations. We also presented the H-Collectives library for Hadoop, which is a drop-in Map-Collectives 

library that can be used with existing MapReduce applications with only minimal modifications. We also 

presented a Map-Collectives implementation for the Twister4Azure iterative MapReduce framework as 

well. MDS and K-means applications were used to evaluate the performance of Map-Collectives on 

Hadoop and on Twister4Azure, depicting up to 33% and 50% speedups over the non-collectives 

implementations by getting rid of the communication and coordination overheads. 
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Cloud infrastructure services provide users with scalable, highly-available alternatives to their 

traditional counterparts, but without the burden of managing them.  While the use of high latency, 

eventually consistent cloud services together with off-instance cloud storage has the potential to cause 

significant overheads, our work in this thesis has shown that it is possible to build efficient, low 

overhead applications utilizing them. Cloud infrastructure service-based framework prototypes that we 

developed offered good parallel efficiencies in almost all of the cases we considered. The cost 

effectiveness of cloud data centers, combined with the comparable performance reported here, 

suggests that large scale data intensive applications will be increasingly implemented on clouds, and 

that using MapReduce frameworks will offer convenient user interfaces with little overhead. 

8.2 Solutions to the research challenges 

In section 1.2, we identified a set of challenges that we faced in performing scalable parallel 

computing in the Cloud environments. The following section summarizes the solutions that we have 

proposed to those challenges as part of this thesis.  

1. Programming model 

We selected the MapReduce programming model extended to support iterative applications as 

the programming model abstraction to perform large scale computations on cloud environments. 

The iterative MapReduce model supports pleasingly parallel, MapReduce and iterative MapReduce 

type applications; this gives us the ability to express a large and a useful subset of large-scale data 

intensive computations. Iterative MapReduce is simple and easy-to-use by the end user developers 

who are already familiar with the MapReduce model. As mentioned in section 2.3, the loop variant 
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& loop invariant data properties and the ability to easily parallelize individual iterations make data 

intensive iterative computations suitable for efficient execution in cloud environments.   

We further extend the iterative MapReduce programming model by introducing the Map-

Collectives collective communications primitives (eg: Map-AllGather, Map-AllReduce).  As 

mentioned in section 7.3.2, Map-Collectives improve the usability of the iterative MapReduce 

model. 

2. Data Storage 

As presented in sections 5.1.2 and 6.4, we introduced multi-level data caching to overcome the 

latencies and bandwidth limitations of Cloud Storages so as to improve the performance of data 

intensive computations in cloud as well as in other environments.  The iterative MapReduce 

architecture and the implementations we have presented in section 5 have the capability to store 

intermediate data on different cloud storages, based on the size of the data, the access patterns of 

the data and the performance of different cloud storage options. Also, the frameworks presented in 

section 5, enable the users to configure the fault tolerance granularity to avoid finer grained check 

pointing of each task output; this allows them to select a tradeoff between a finer grained fault 

tolerance vs the performance of the computations. 

3. Task Scheduling 

Architectures and implementations presented in this thesis use a global queue based dynamic 

scheduling approach to schedule the tasks, ensuring natural load balancing and dynamic scalability 

of the system. As presented in section 5.1.3, we introduced a data cache aware task scheduling 

algorithm to improve the aggregate data bandwidth by eliminating the data transfer overheads.  
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Further, as mentioned in section 7.3.2.3, the Map-Collectives facilitates communication primitive 

based task scheduling to remove some of the overheads of the task scheduling. 

4. Data Communication 

The iterative MapReduce and MapReduce architectures presented in this thesis utilize hybrid 

data transfers using either a combination of cloud Blob Storage, cloud Tables or direct TCP 

communication to improve the data communication performance.  Also, the frameworks proposed 

in this thesis enable data reuse across applications which reduce the data transfer requirements. 

Map-Collectives identify several commonly used communications patterns of data intensive 

applications and provide communication and computation abstractions for them. In addition, Map-

Collectives improve the communication and computation performance of iterative MapReduce 

applications by utilizing all-to-all group communications and hierarchical reductions. Map-

Collectives also reduce the size of data communication, overlap the communication with 

computation and enable the possibility of platform specific Map-Collectives implementations suited 

for the particular cloud environment. 

5. Fault tolerance 

The MapReduce and iterative MapReduce architectures presented in this thesis support 

framework managed fault tolerance by ensuring the ability to recover from failure of the parts or 

tasks of a large scale computation without having to re-run the whole computation. As mentioned in 

section 5.1.6, the proposed iterative MapReduce architecture supports finer grained task level fault 

tolerance as well as coarser grained iteration level fault tolerance.   Also, we proposed the usage of 

hybrid data communication mechanisms by utilizing a combination of faster non-persistent 
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mediums and slower persistent mediums, a combination which can enable check-pointing of the 

computations in the background. 

The architectures introduced in this thesis avoid single point of failures through the use of 

decentralized architectures. This ensures that a single cloud instance failure won’t cause a total 

computation failure. Further, the frameworks handle the stragglers (tail of slow tasks) by scheduling 

duplicate executions of the slow tasks. 

6. Scalability 

The iterative MapReduce frameworks introduced in this thesis extend the MapReduce 

programming model and inherit most of the scalability properties of MapReduce.  

The decentralized architectures presented in this thesis facilitate dynamic scalability and avoid 

single point bottlenecks. They also support hybrid data transfers to overcome cloud service 

scalability issues by utilizing multiple services that act in parallel to transfer the data. The hybrid 

scheduling, utilizing a combination of cloud queue storage and cloud table storage, reduces the 

scheduling overhead even with the increase of the amount of tasks and compute resources of the 

computations. 

7. Efficiency 

The iterative MapReduce architecture proposed in this thesis uses multi-level data caching to 

improve efficiency by reducing the data transfer and staging overheads. Also, it uses direct TCP data 

transfers to increase data transfer performance, and performs execution history based scheduling to 

reduce the scheduling overheads. The frameworks proposed in this thesis support multiple waves of 

map tasks per computation and iteration, which improves the load balancing and the utilizations of 
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the cluster. Frameworks also improve performance and efficiency by overlapping the intermediate 

data communication with computations, and by performing duplicate executions of straggling tasks. 

8. Monitoring, Logging and Metadata storage * 

The Twister4Azure iterative MapReduce framework presented in section 5 contains a Web 

based monitoring console for task and job monitoring, including the monitoring of CPU and memory 

usages by the cloud instances. It also uses cloud tables for persistent meta-data and log storage. 

9. Cost effective * 

The frameworks presented in this thesis ensure cost effectiveness by ensuring near optimum 

utilization of the cloud instances. Also, these frameworks support all the cloud instance types by 

allowing users to choose the appropriate instances for their use case. The architectures presented in 

this thesis can also be used with opportunistic environments, such as Amazon EC2 spot instances. 

10. Ease of usage * 

The frameworks presented in this thesis extend the easy-to-use familiar MapReduce 

programming model and provide framework-managed fault-tolerance. The Twister4Azure 

implementation presented in Chapter 5 and the Map-Collectives for Twister4Azure presented in 

Chapter 7 support local debugging and testing of applications through the Azure local development 

fabric.  

The Map-Collective operations presented in Chapter 7 allow users to more naturally translate 

applications to the iterative MapReduce programming model. Collective operations also free the 

users from the burden of implementing these operations manually. 
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Note: In this thesis, we do not focus on the research issues involving monitoring, logging and metadata 

storage*(9), cost effectiveness*(10) and the ease of usage*(11). However, the solutions and frameworks 

we have developed as part of this thesis research provide and, in some cases, improve the industry 

standard solutions for each of these issues.   

8.3 Future Work 

In this thesis, we presented Twister4Azure iterative MapReduce and Map-Collectives as solutions to 

perform scalable parallel computing in cloud environments. Several areas and directions exist through 

which we could build on f the foundation established by these frameworks.  

One such area is the extension of the Twister4Azure data caching capabilities to a more general 

distributed caching framework.  The first step towards this would be the coordination of the data caches 

across the different instances; this would allow the programs to share the cached data across the 

instances.  Cache sharing allows a program running in another instance to fetch the data from the 

caches of other instances, if present, rather than downloading them from the cloud storage. Some use 

cases for this capability include the re-executions of failed tasks and the duplicate executions of 

straggling tasks. Further, we can expose a general API to the data caching layer, allowing applications 

other than Twister4Azure also to utilize the data caching layer. One option is to model this API as a 

distributed file system. 

Another interesting research direction would be to design a domain specific language layer for 

iterative MapReduce. One option is to extend one of the existing MapReduce language layers such as 

Hive and Pig to support iterative MapReduce computations. We can also develop workflow layers on top 
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of iterative MapReduce to better compose the applications together; this would allow for a more richer 

and efficient data sharing (eg: share data stored in cache) process to occur between the applications. 

In our work, we presented Map-AllGather and Map-AllReduce implementations as part of the Map-

Collectives concept. Another possible Map-Collectives pattern is the Map-ReduceScatter. There are 

iterative MapReduce applications where only a small subset of loop invariant data product is needed to 

process the subset of input data in a Map task. In such cases, it is inefficient to make all the loop 

invariant data available to such computations. In some of these applications, the size of the loop variant 

data is too large to fit into the memory and it can introduce communication and scalability bottlenecks 

as well. An example of such a computation is PageRank. The Map-ReduceScatter primitive can be 

modeled after MPI ReduceScatter to support such use cases in an optimized manner. 

Our Map-Collectives work focused mostly on the execution patterns and the programming API’s. 

Another dimension would be to explore the ideal data models for the Map-Collectives model. 

Our work mainly focused on the pleasingly parallel, MapReduce and iterative MapReduce type 

applications. Another pre-dominant type of large-scale applications in the scientific community is the 

MPI type of applications, which has complex inter-process communication and coordination 

requirements. Another interesting research direction would be to explore the development of cloud 

specific programming models to support some of the MPI type application types. 

Given the relative novelty of the Big Data movement, cloud infrastructures and the MapReduce 

frameworks, there exist many more exciting topics to explore for future research work.  Some of these 

examples include the large scale real time stream processing in cloud environments and large scale 

graph processing in cloud environments.  
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8.4 Produced Software 

8.4.1 Twister4Azure 

Twister4Azure is a decentralized iterative MapReduce framework for Windows Azure Cloud. 

Twister4Azure and sample applications are available at http://twister4azure.codeplex.com/ as an open 

source project. First release of Twister4Azure was performed in May 2011. 

8.4.2 Twister4Azure Map-Collectives 

We contributed the Twister4Azure Map-Collective implementation to the open source 

Twister4Azure project. Source codes of Twister4Azure Map-Collectives and the sample applications are 

available at http://twister4azure.codeplex.com/.  

8.4.3 H-Collectives – Map-Collectives for Apache Hadoop 

We implemented H-Collectives as a Map-Collective implementation for Apache Hadoop. Source 

codes of the H-Collectives implementation together with sample applications are available in the SALSA 

group source control repository. 

8.4.4 MRRoles4Azure 

MRRoles4Azure is a decentralized MapReduce framework for Window Azure Cloud. MRRoles4Azure 

and the sample applications are available at http://salsahpc.indiana.edu/mapreduceroles4azure/. First 

release of MRRoles4Azure was performed in Dec 2010, according best of our knowledge, making it the 

first MapReduce framework on Azure cloud.  MRRoles4Azure was deprecated after the functionality of 

MRRoles4Azure was absorbed in to Twister4Azure.  

8.4.5 Classic Cloud Frameworks 
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We implemented Classic Cloud Frameworks to enable the easy processing of embarrassingly parallel 

computations on Cloud environments and in local clusters. Source codes for the Classic Cloud 

framework implementations for Azure Cloud, Amazon EC2 Cloud, Apache Hadoop and Microsoft 

DryadLINQ are available in the SALSA group source control repository. 
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