
Indiana University Bloomington

Indiana, United States

TOWARDS DATA ANALYTICS-AWARE HIGH PERFORMANCE DATA

ENGINEERING AND BENCHMARKING

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

INTELLIGENT SYSTEMS ENGINEERING

by

Vibhatha Lakmal Abeykoon

2021

To: Martin Swany
Luddy School of Informatics, Computing and Engineering

This dissertation, written by Vibhatha Lakmal Abeykoon, and entitled Towards
Data Analytics-aware High Performance Data Engineering and Benchmarking, hav-
ing been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this dissertation and recommend that it be approved.

Minje Kim

Prateek Sharma

Ariful Azad

Geoffrey Fox, Major Professor

Date of Proposal:

The dissertation proposal of Vibhatha Lakmal Abeykoon is approved.

Martin Swany

Luddy School of Informatics, Computing and Engineering

Raj Achariya

Dean of the University Graduate School

Indiana University Bloomington, 2021

ii

ABSTRACT OF THE DISSERTATION PROPOSAL

TOWARDS DATA ANALYTICS-AWARE HIGH PERFORMANCE DATA

ENGINEERING AND BENCHMARKING

by

Vibhatha Lakmal Abeykoon

Indiana University Bloomington, 2021

Indiana, United States

Data analytics has become the centre of novel research and extensively growing in-

dustrial applications. With the rapid growth of data, such data analytics workloads

have focused more on the high-performance computing (HPC) paradigm. In gen-

eral, in a data pipeline the data engineering component holds the key to providing

pre-processed data by operating on raw datasets. With the rapid growth of high-

performance data analytical systems, data engineering frameworks have also shifted

towards high-performance. Implementing data analytics-aware HPC data engineer-

ing operators are vital in providing scalable operators for HPC environments.

This thesis focuses on data engineering beneficial for HPC environments. The

critical factor is to provide a compatible software stack utilizing HPC clusters effi-

ciently. Mainly the HPC environments rely on efficient communication via MPI. In

addition to this, designing optimized compute kernels allows using HPC resources

efficiently. This thesis considers three main areas: data engineering operators, in-

teroperability, and usability. Data engineering operators discuss a set of widely

used operators in data engineering. Interoperability focuses on the ability to be

used by existing data analytics and data engineering systems, and usability details

how HPC-aware data engineering operators are made available for efficient data

exploration using the widely used dataframe abstraction.

iii

In data engineering, the most popular data abstraction is the dataframe. This

thesis analyses in-depth a set of data engineering operators implemented to run on

HPC resources, and these operators are exposed to the user in terms of the state-of-

the-art dataframe abstraction, which involves less overhead in migrating an existing

data engineering program to the introduced novel dataframe on HPC. The seamless

integration between HPC data engineering operators and dataframe abstraction in

Python is enabled via efficient language bindings designed using Cython. Applying

Cython efficiently provides the ability to seamlessly integrate data structures across

programming languages (C++ and Python). Compared to current sophisticated big-

data systems, having this mode of operation offers the ability to execute efficiently

on HPC environments.

In data analytics, the most widely used data structures are Numpy and Tensors.

Seamless integration among data engineering data structures and data analytics data

structures provides efficiency in data exploration research. Such tactics as well as

existing data structures like Pandas dataframe also enable facilitation with current

data engineering programmes. This thesis investigates how the developed HPC

data engineering operators are performing compared to existing data engineering

operators. Also, this thesis comprises scaling a scientific data analytics-aware data

engineering workload deployed on PyTorch and Pandas in an HPC cluster using the

introduced novel data engineering dataframe. A set of benchmarks is carried out

to analyse the data engineering workload’s performance on HPC clusters involving

GPUs and CPUs for deep learning and CPUs for data engineering. Additionally,

these benchmarks are packaged with a framework designed for scientific applications.

iv

TABLE OF CONTENTS

CHAPTER PAGE

1. Motivation . 1
1.1 Research Goals . 4
1.2 Research Contributions . 5

2. Introduction . 6

3. Literature Review . 10

4. Distributed Machine Learning . 16
4.1 Distributed Support Vector Machines for HPC and Big Data Overlap . . 17
4.1.1 Anatomy of the SVM Algorithm . 17
4.1.2 Parallel Gradient Descent SVM . 18
4.1.3 Datasets . 19
4.1.4 BLAS Optimizations . 20
4.1.5 Performance Benchmarks . 20
4.2 Iterative Streaming for Data Analytics 22
4.2.1 Streaming SVM . 25
4.2.2 Streaming KMeans . 26
4.2.3 Model Synchronization . 28
4.2.4 Performance Evaluation . 28

5. High Performance Data Analytics aware Data Engineering 35
5.1 Methodology . 37
5.2 System Architecture . 39
5.3 Communication Kernels . 41
5.4 Data Engineering Kernels . 42
5.4.1 Relational Algebra Kernel . 42
5.4.2 Indexing Kernel . 44
5.4.3 Search Kernel . 45
5.4.4 Filtering Kernel . 46
5.4.5 Duplicate Handling Kernel . 47
5.4.6 Null Handling Kernel . 48
5.4.7 Linear Algebra Kernel . 49
5.5 PyCylon . 49
5.5.1 Cython for Python Bindings . 50
5.5.2 Cython API . 53
5.5.3 Python API . 54
5.6 Dataframe API . 54
5.7 Interoperability Among Python Data Structures 55
5.8 In-Memory Conversions . 58

v

5.9 Data Loaders . 59
5.10 Productivity and Usability . 60

6. Performance and Benchmarks . 64
6.1 Indexing and Searching . 64
6.2 Duplicate Handling . 66
6.3 Comparator Operations . 66
6.4 Math Operations . 68
6.5 Null Handling . 69
6.6 Distributed Join Performance . 70
6.7 Distributed Drop Duplicates . 70
6.8 Join with CPU and GPU . 71
6.9 Overhead from Python . 73

7. Integration with Deep Learning Frameworks 75
7.1 PyTorch . 77
7.1.1 Stage 1 . 78
7.1.2 Stage 2 . 79
7.1.3 Stage 3 . 80
7.1.4 Stage 4 . 81
7.2 Horovod with PyTorch . 81
7.2.1 Stage 1 . 82
7.2.2 Stage 2 . 83
7.2.3 Stage 3 . 83
7.2.4 Stage 4 . 83
7.3 Horovod with Tensorflow . 85
7.3.1 Stage 1 . 85
7.3.2 Stage 2 . 85
7.3.3 Stage 3 . 86
7.3.4 Stage 4 . 86

8. Implementing a Scientific Workload . 88
8.1 UNO . 88
8.2 Deep Learning Component . 89
8.2.1 Drug Response Regression Network . 90
8.2.2 Cell Line Category Classifier . 94
8.2.3 Cell Line Types Classifier . 96
8.2.4 Cell Line Sites Classifier . 98
8.2.5 Drug Target Family Classifier . 100
8.2.6 Drug QED Regression Network . 102
8.3 Data Engineering Component . 103
8.3.1 Drug Response Data Processing . 104
8.3.2 Cell-line Data Processing . 109

vi

8.3.3 Drug Property Data Processing . 110
8.4 Performance Evaluation . 111
8.4.1 Data Engineering Sequential Performance 113
8.4.2 Data Engineering Distributed Performance 115
8.4.3 Data Analytics Distributed Performance 120

9. Conclusion . 123

10. Research Goals in Action . 124

BIBLIOGRAPHY . 128

vii

LIST OF FIGURES

FIGURE PAGE

1.1 Systems overview for data analytics aware data engineering 4

2.1 Higher Level View of Data Analytics aware Data Engineering 9

4.1 SVM Distributed Data Parallel Training with BLAS Optimizations with
MPI . 21

4.2 SVM Distributed Data Parallel Training with BLAS Optimizations with
Big Data HPC Overlap . 22

4.3 Twister2 Iterative Streaming Workflow for a ML Application 24

4.4 Streaming SVM with Linear Kernel-based experiments for tumbling win-
dow is recorded for both HPC and Dataflow programming models.
The time recorded is the streaming training time until expected con-
vergence. 30

4.5 Streaming SVM with Linear Kernel-based experiments for sliding win-
dow is recorded for HPC model and Dataflow programming models.
The time recorded is the streaming training time until expected con-
vergence. The x-axis in the right figure is labeled with the pair of
(window length, sliding length). 31

4.6 Streaming KMeans Results for 1000 cluster-based experiments for tum-
bling window is recorded for both HPC and Dataflow programming
models. The time recorded is the streaming training time until ex-
pected convergence. 33

4.7 Streaming KMeans for 1000 cluster-based experiments for sliding win-
dow is recorded for both HPC and Dataflow programming models.
The time recorded is the streaming training time until expected con-
vergence. The x axis in the right figure is labeled with the pair of
(window length,sliding length). 34

5.1 Data analytics aware data engineering workload 39

5.2 System Architecture . 40

5.3 High Level API Abstraction . 51

5.4 Cython Interfacing with Computing . 52

5.5 Data Structure Hierarchy . 57

5.6 PyCylon Data Inter-operability . 58

5.7 In-memory data conversion . 59

viii

6.1 Indexing Operation Performance . 65

6.2 Search By Value Operation Performance 66

6.3 Indexing and Search By Value Operation Performance 67

6.4 Duplicate Handling Operation Performance 67

6.5 Comparator Operation Performance . 68

6.6 Math Operation Performance . 69

6.7 Null Handling (DropNa) Performance 70

6.8 Distributed Join Performance . 71

6.9 Distributed Drop Duplicates Performance 72

6.10 Join CPU vs GPU Performance . 73

6.11 Performance Overhead by Language Bindings 74

7.1 Integrating Data Engineering Workload with Data Analytics Workload . 77

7.2 Stage 1: Initialization for PyTorch With PyCylon 78

7.3 Stage 2: PyCylon Data Engineering Workload 79

7.4 Stage 3: Moving data from Data Engineering workload to Data Analyt-
ics Workload . 80

7.5 Stage 4: Distributed Data Analytics Workload 81

7.6 Stage 1: Initialization for Horovod-PyTorch With PyCylon 82

7.7 Stage 4: Distributed Data Analytics Workload 84

7.8 Stage 1: Initialization for PyTorch With PyCylon 85

7.9 Stage 3: Moving data from Data Engineering workload to Data Analyt-
ics Workload . 86

7.10 Stage 4: Distributed Data Analytics Workload 87

8.1 UNO DNN Architecture: Gene Network 91

8.2 UNO DNN Architecture: Drug Network 91

8.3 UNO DNN Architecture: Response Block Module 92

8.4 UNO DNN Architecture: Response Network 93

ix

8.5 UNO DNN Architecture: Cell-line Category Classifier 95

8.6 UNO DNN Architecture: Cell-line Type Classifier 97

8.7 UNO DNN Architecture: Cell-line Site Classifier 99

8.8 UNO DNN Architecture: Drug Target Family Classifier 101

8.9 UNO DNN Architecture: Drug QED Regression Network 102

8.10 Drug Response Data Processing . 105

8.11 Drug Feature Data Processing . 106

8.12 RNA Sequence Data Processing . 107

8.13 Drug Response Overall Data Processing 108

8.14 Cell-Meta Data Processing . 109

8.15 Cell Feature Meta Data Overall Processing 110

8.16 Drug Property Data Processing . 111

8.17 Drug QED Feature Data Processing . 112

8.18 Drug QED Data Processing . 112

8.19 Sequential Data Engineering . 114

8.20 Multi-Core Data Parallel Data Engineering Performance 116

8.21 Multi-Core Data Parallel Data Engineering Speed Up 117

8.22 Distributed Data Engineering Time Breakdown 118

8.23 Distributed Data Engineering (CPU) Percentile Time Breakdown 119

8.24 Distributed Data Parallel Data Engineering 120

8.25 Distributed Data Parallel Data Analytics on CPU 121

8.26 Distributed Data Parallel Data Analytics on GPU 122

x

CHAPTER 1

MOTIVATION

The modern day data analytics has become a vital component in logistics, e-

commerce, health, security, transportation and many other scientific explorations.

In the early days, the main component was very focused on developing algorithms

to model such problems in an accurate way. But with the growth of the data

these problems scaled into a much larger problem which was not only restricted to

modelling, but to process the data efficiently to model vivid scientific curiosities and

unknowns to a simply understandable expression. Modelling such problems relied on

very accurate statistical models which were focused on various numerical modelling

methods. But these statistical model evolved into a very structured form of data

analytics domain called machine learning in the early part of the last two decades.

Machine learning became a very powerful tool to solve a wide variety of problems

very efficiently. Since the dawn of big data age, the data started growing rapidly

and scientists needed to tools to process such big data sets efficiently. This was the

dawn of big data systems which started to couple with machine learning workloads.

With time, the machine learning models evolved into deep learning models which

are very much sophisticated algorithms developed based on neural networks.

Many tools were developed to solve the problems associated with data processing

for efficient data analytics. Data exploration tools like Pandas[M+11] has become

a key tool in data processing for data analytics for smaller scale problems. For dis-

tributed data exploration data engineering frameworks like [das] was created on top

of Pandas. Frameworks like Apache Spark[ZXW+16], Apache Flink[apaa], Apache

Storm [IS15] and Apache Hadoop [apab] were created to provide data processing

ability for streaming and batch computations. Individually these existing tools are

built to perform on specific tasks like do data exploration at small scale or do data

1

processing in large scale. But the underlying core problem set is much deeper and it

requires more involvement from distributed system researchers to built seamlessly

integrating tools for data analytics aware data engineering.

Data analytics has also grown to larger scale problems based on two factors.

Increasing data for analytics and model size. In early days, the model size did fit

into a single machine so that using data parallelism was enough. With evolving

problems and granularity of problems, scalability for data analytics has also become

a vital key. Frameworks like PyTorch[PGM+19], Tensorflow [ABC+16] and MxNet

[CLL+15] have become popular tools for data analytics. While frameworks like

Horovod[SDB18] has become a popular tool to scale do data analysis at scale with

many data analytics frameworks in a unified manner. Integrating these tools with

data processing is a vital key to build scientific data pipelines.

Figure 1.1 shows the system overview for data analytics aware data engineering.

The software stack associated with data analytics aware data engineering comprise

of two sets of softwares focused on two goals. The data analytics software stack

contains a set of algorithms specific for data analysis. Also frameworks build for this

purpose support distributed computing on a high performance computing (HPC)

compatible way. PyTorch is one of the leading bulk synchronous parallel (BSP) deep

learning framework supporting distributed data parallel training. Tensorflow and

MxNet also provides interfaces for extending sequential data analytics workload

to run on multiple machines. To enhance the performance and provide unified

software stack for distributed deep learning frameworks like Horovod[SDB18] has

been created. This software stack is entirely assumes the provided data are tensors

and are in numeric format for math-base calculations. In data exploration based

research, the data engineering component plays a major role in pre-processing the

data to provide numerical features for the data analytics workloads. Currently, the

2

existing software stack comprises a few options to do data engineering sequentially

or parallel. Frameworks like Pandas provide a definition to represent tabular data

and pre-process them with basic dataframe operations widely used by the data

engineers. And frameworks like Modin and Dask were created by following Pandas

to scale Pandas on CPU stack. These frameworks are entirely written in Python

and focus on a client-server based distributed model to support data engineering.

These frameworks are not entirely focused on classical HPC software stack to provide

efficient kernels for distributed computation. But these frameworks are easy to use

and provide users the ability to scale existing Pandas workloads on CPUs. Besides

CPUs, frameworks like Cudf was created to do data engineering on GPUs. But Cudf

is based on HPC kernels specifically written for GPUs and scale on top of dask for

distributed computing. Cudf also doesn’t posses a BSP mode of execution for data

engineering and rely on the classic client-server architecture to scale the dataframe-

based workloads. We belive we can design a high performance dataframe which

suits the BSP execution which seamlessly integrates with deep learning workloads

for distributed computing on HPC hardware. In addition we believe that a BSP

model is more effective in scaling large workloads across multiple nodes. Also,

having a BSP model which bases on HPC software stack also provides the ability to

seamlessly integrate with the existing data analytics workloads specifically designed

to run on HPC hardware.

Our research focuses on understanding the importance of high performance data

analytics and analyze in depth the integration of high performance data analytics

aware data engineering operators to enhance data exploration based data analytics.

We observe that the data analytics, data engineering and HPC paradigms are not

very well integrated to provide better support for data analytics aware data engi-

neering. In this research, we focus on solving this key problem with a sub set of in

3

Figure 1.1: Systems overview for data analytics aware data engineering

depth analysis on the importance of high performance data analytics, efficient and

effective data engineering and usability for seamless integration with the existing

data analytics sub-systems.

Our research goals are focused on evaluating and solving the following key prob-

lems.

1.1 Research Goals

• Importance of high performance computing for distributed machine learning

with big data

• Importance and necessity of high performance computing for data analytics

aware data engineering.

• Identifying limitations of existing data engineering frameworks

• Evaluate the necessity of a distributed memory oriented dataframe for HPC

on CPUs.

4

• Evaluate of high performance data engineering kernels to improve existing

dataframe operators.

• Usability of data engineering tools with high performance computing.

• Seamless integration with existing data analytics and data engineering tools

• Efficient implementation of end-to-end scientific data engineering and data

analytics workloads

1.2 Research Contributions

• Evaluating the performance of a Support Vector machines with high perfor-

mance computing approach vs big-data approach

• Introducing a novel distributed memory dataframe for high performance data

engineering.

• Evaluating the limitations in the current data engineering solutions with the

novel distributed dataframe.

• Designing and building PyCylon, a high performance Python framework for

data analytics aware data engineering.

• Integrating with state of the art distributed deep learning frameworks

• Integration with state of the art distributed training libraries for data analytics

• Implementing an end-to-end scientific application for high performance data

analytics on the introduced novel dataframe.

5

CHAPTER 2

INTRODUCTION

Data engineering has become a major component of today’s analytical work-

loads in every major business and scientific application. These analytical workloads

depend on the structured data with expected data formats and data types. Such

structured data are ingested by vivid analytical platforms to provide intelligence

and harness important information. Majority of these applications rely on tabular

data and later converted into more complex data structures like graphs depending

on application requirements. In an end-to-end analytical workflow, data engineering

becomes the first point of entry. Later, the processed data is fed to data analytical

systems for training and inference. Since data engineering is a key component, it

is important to improve the existing data engineering stack for higher performance

and usability.

In the classical data engineering world, big data computing plays an important

role. Apache Spark[ZXW+16], Apache Flink[apaa], Apache Hadoop[apab], Apache

Beam[Roo20] and Apache Storm[IS15] can be considered as major big data systems.

These systems are designed to pre-process the data for most of the industrial appli-

cations. The main programming languages used to build these frameworks are Java,

Scala and Python. They perform very well in cloud environments. Majority of these

systems are designed for high throughput and scalability. One drawback in these sys-

tems are the lack of ability to scale well in high performance computing environments

which are mainly built on top of high performance compute kernels written in C,

C++ and Fortran and communication kernels like MPI[SGO+98], PGAS[ZKD+14]

and HPX[KHAL+14]. The importance of running in HPC is driven by the fact that

the majority of data analytics workloads are running in HPC-driven environments.

6

So there exists a tendency for data engineering workloads to be compatible with

such requirements.

In the modern data engineering world, a set of data engineering frameworks have

gained great popularity due to the core programming language used. Pandas[M+11]

can be considered as one of the early systems designed even before some of these

big data systems were created. Pandas provides ideal conditions to do data engi-

neering in an effective manner in Python. But this system is not scalable beyond

a single core. One major reason for Pandas gaining popularity is the usage of

Python in data analytical systems like Scikit-Learn[PVG+11], PyTorch[PGM+19],

Tensorflow[ABC+16] and MxNet[CLL+15]. These systems are focused on machine

learning and deep learning workloads. Since Pandas was developed entirely on

Python, the seamless integration between data engineering and data analytical work-

loads were made easy. Pandas also support Numpy[num] which is the state of the

art numerical data representation format in the scientific computing community.

The tensors in machine learning and deep learning frameworks are created based on

similar compute capabilities like Numpy and seamlessly integrate with Numpy.

Adopting the Python data engineering best practices, PySpark, PyFlink, Py-

Hadoop, PyStorm and Beam-Python were created to breach the gap between data

analytical workloads and to improve usability. Here the data is moved between the

JVM-based data engineering backend and Python API exposed to the user. This

implementation has many bottlenecks when considering usability and performance.

Data movement causes data serialization and deserialization and it takes away a

majority of time in large scale applications. Also, the complex task-based systems

take away the ability to efficiently prototype a problem unlike it is done in Pandas.

The Python community and research community came up with frameworks like

Dask[das] and Modin[mod] to overcome these bottlenecks by introducing scalability

7

on top of Pandas. But the majority of the compute kernels are written in Python.

These frameworks are not scaling well when compared to frameworks like PySpark.

Considering the computer architecture, CPUs are still widely used in heavy data

engineering workloads compared to GPUs. One major drawback in GPUs is the

lack of ability to do large scale in-memory data engineering problems. Even though

frameworks like CuDF[cud] are promising and developed on high performance com-

pute kernels which efficiently run compared to existing Pythonic data engineering

frameworks. But the limited memory poses an issue when working with large scale

compute jobs which are mainly done in distributed memory.

In addition to data engineering, the programming environment plays a major role

in improving the efficiency of the researchers. In classical scientific research, the most

important tool is a notebook which contains diagrams, notes and ideas required for

conducting an experiment. The Python community also presents a notebook[Per18]

environment to visualize the intermediate stages of data engineering and data ana-

lytics. These implementations work well with single process computation but doesn’t

provide a better usability for distributed computing. There are existing commercial

products to support this on cloud environments, but there is lacking in usability from

the existing open source frameworks like IPyParallel[VOS18] when dealing with the

data representation in high performance computing environments. Figure 2.1 shows

the higher-level view of data analytics aware data engineering.

We believe that data engineering on CPU-stack can be further enhanced for high

performance by retaining the usability provided by existing Pythonic data engineer-

ing frameworks. In this research, we introduce PyCylon, a dataframe abstraction

written for distributed memory computation in high performance computing envi-

ronments. PyCylon[APW+20] is the Python data engineering framework written on

top of Cylon[WPA+20, PAW+20] data engineering system designed by us. With this

8

system, our focus is to breach the gap between high performance and high usability

in data engineering.

Figure 2.1: Higher Level View of Data Analytics aware Data Engineering

9

CHAPTER 3

LITERATURE REVIEW

Classical big data systems were a breakthrough in data engineering in the past

decade. Major contributions came from open-source software development, enter-

prise and academic research. Apache Spark [ZXW+16], Apache Hadoop [apab],

Apache Beam [Roo20], Apache Flink [apaa] and Apache Storm [IS15] can be recog-

nized as such big data systems capable of data engineering. These systems support

both batch and stream data computation on the distributed computing paradigm.

Apart from the big data systems, the High-performance computing (HPC) com-

munity from academia provided frameworks like MPI[SGO+98], PGAS[ZKD+14]

and HPX[KHAL+14] running on supercomputing environments. These frameworks

are specialized with high performance compute kernels for math-base computations

and distributed memory computations. The HPC systems are mostly favourable

for compute-intensive workloads with basic compute and communication kernels.

The major differences between big data and HPC systems are the way they are

designed and the tasks they are specialized to do. For a better understanding of

the general big data use case, it is vital to understand the core values of both sys-

tems and design a hybrid system which can do both. Big data systems are easy

to use and provide a large variety of compute kernels abstracted by layers of appli-

cation programming interfaces (APIs) and provide easy access for users to design

systems. On the other hand, big data systems are only providing the major com-

pute kernels and communication kernels to build such APIs. But HPC systems

are much faster in most cases compared to big data systems. To breach this gap,

Twister2[Fox17, twi17, WKG+19, KWG+18] was created from our research to sup-

port common requirements in both big data and HPC applications. This system

bridged the gap between scientific and industrial research problems conducted on

10

larger data. Twister2 can run in distributed in-memory, spill to disk and provides all

the state of the art communication and compute kernels written in dataflow passion.

Since we developed that system, we have been closely analysing its capabilities

and limitations when it comes to computation-intensive applications from mod-

ern data-related applications. Data science wrapped in machine learning and deep

learning are such sets of applications which require a special set of requirements.

Such analytical problems consist of two major aspects. To solve such analytical

problems, an efficient system is required to do the computation and an effective sys-

tem is required to model the problem. The accelerated data processing inherently

becomes an HPC problem and existing knowledge can be extended towards design-

ing an efficient system. Considering the effectiveness of the system, programming

language, data structures, computation model and communication model can be

recognized as the key attributes. Both aspects focus on accurate and efficient model

prototyping to solve data analysis problems. With the increasing complexity of an-

alytical problems and nature of data, the data scientists and engineers who work on

such problems need efficient and effective systems to make available data analytical

model prototypes for production in various scientific domains. The aforementioned

requirements can be partially seen in three systems in existing scientific research.

Efficiency is provided by HPC systems. Effectiveness is provided by big data sys-

tems. But this effect is enhanced to a greater extent with the Python programming

layer added on top of existing big data systems. These three characteristics provide

the capability to efficiently and effectively prototype a scientific analysis and design

the end system for production. We realized this simple pattern which has been

adopted by major big data systems like Apache Spark with PySpark[DL17] and

Apache Flink with PyFlink[AZR17]. Also, the HPC community extended MPI with

mpi4py[Tes16]. These frameworks provided a solution to data engineering problems

11

to a certain extent.

We observe a set of major drawbacks in the existing systems. The major draw-

back from big data systems with Python is the massive serialization-deserialization

cost when data is moved back and forth from Python to Java. Since core computes

kernels in big data systems are written in Java, even though the user program is writ-

ten in Python, the real workload runs in a JVM-based distributed system. So data

has to be continuously serialized and deserialized. In addition to that, the lazy exe-

cution model in most of these frameworks takes away the capability of writing eager

applications which are easy to debug and prototype with existing scientific work-

loads written on classical compute kernels on eager execution. In addition to this,

the learning curve for maintaining such systems and using such systems is higher

compared to modern-day Pythonic data science tools. Pandas[M+11], Modin[mod],

Cudf[cud] and Dask[das] can be denoted as some of the prominent tools used in

data science. These Python systems are highly effective in designing but suffer from

performance issues mainly because of having computed kernels written entirely on

Python. Also, these systems do not scale well on distributed computations. But sys-

tems like Numpy[num] written with high-performance C++ compute kernels provide

better performance over classical Python systems. This reveals a very significant

point in designing better systems for efficiency and effectiveness.

One aspect of the motivation behind an efficient and effective data engineer-

ing system is the evolving intensive data analytical workloads. Today’s data an-

alytical workloads are mainly focused on machine learning and deep learning ap-

proaches. These analytical workloads are layers and layers of classical data ana-

lytical kernels focused on extracting as much as useful information from the raw

data processed by data engineering systems. These analytical systems are built

based on two principles. The principles are efficiency and effectiveness. This looks

12

very similar to the modern-day motivation in data engineering systems. In the

early days of machine learning, frameworks like Scikit-learn[PVG+11] and Scikit-

Image[VdWSNI+14] were designed entirely using Python. The effectiveness of these

systems was very pleasing to the scientists for rapid model prototyping. Evolving

towards high performance factor, deep learning frameworks like PyTorch[PGM+19],

Tensorflow[ABC+16], MxNet[CLL+15] and Chainer[TOHC15] provided high per-

formance compute kernels written in C/C++ and exposed the kernels via efficient

Python bindings. A major part of the computation workload is running on C++,

but deep learning system definitions, layer definitions, computation models and dis-

tributed computation models are all exposed via Python for effective usage. Similar

to big data systems, there are data structures used in deep learning and it is limited

to a math-based data structure called tensors. Tensors are the form in which data

is being injected into these data analytical systems.

Data analytic systems ingress data from a disk-based or in-memory approach.

In the model prototyping stage, this could be mainly done in-memory rather than

by disk. Since the scientist is working on evaluating the feature extraction based

analytical model convergence, it is vital to keep an efficient data pipeline when

processing large data sets. Even for the disk-based approach, it is vital to store them

in tensor-compatible data structure rather than other data structures. Focusing on

data structures, the big data systems are in favour of structured data in tabular

format. In modern-day data engineering, these are also known as DataFrames.

Such dataframes can store heterogeneous data in tabular format. In the last stage

of data engineering, the data in these dataframes would be mostly numerical for the

math-based analysis of data analytical systems. Here the data conversion from data

engineering data structures to data analytical data structures is a key. Having an

efficient and effective methodology for this conversion is vital in building a seamless

13

integration between data analysis and data engineering workloads.

Another aspect of data engineering and data analysis is a better medium in

sharing the workloads and allowing complex computation models to be visualized.

Especially in distributed programming models, it is hard to visualize the interme-

diate data structures in distributed memory. A medium which is acceptable and

widely used by scientists must also be a key to implement such enhancements.

Notebooks have been widely used by scientists in the long history of scientific dis-

coveries to take notes and write down experiments and observations in a presentable

manner. Extending from this best practice, interactive notebooks like Jupyter

notebooks[KRKP+16, GG16] have been widely used by many scientists. To provide

enhancements for many programming languages like Python, Java, C++, Scala,

Ruby and Julia has been added to such notebooks by scientific research communi-

ties. Extending on this many of the industrial research communities have extended

this to support various requirements. Netflix has created an opensource version of

Scala-driven interactive notebook called Polynote [LDMG20] to match their indus-

trial needs. Apache Zeppelin[CLJ+18] is another such project created opensource

to extend the capabilities towards specific goals. For cloud environments and re-

mote compute capability Google Colab [Bis19], Databricks notebooks and Microsoft

Azure notebooks [Eta19] have also been created. One main component missing from

these tools is to provide distributed computation support on HPC-driven models.

IPyParallel [ipy] a parallel compute kernel for IPython[PG07] has been produced to

breach this gap. It supports MPI models and task-based models. Dask also provides

their notebook [Hay20] extending from the IPyParallel kernels. Still, the main issue

is these runtimes are not properly designed to visualize and link with massively

parallel computation models. The existing work can be further improved to provide

a better user experience and high-performance computing capability to remotely

14

link to HPC clusters to run scientific workloads, monitor progress and extend to

distributed data visualization in an optimized manner.

15

CHAPTER 4

DISTRIBUTED MACHINE LEARNING

This chapter discusses about the integrating HPC integration for distributed

machine learning algorithms. Here we discuss how distributed machine learning

algorithms can be efficiently implemented for better scalability and usability with big

data analytics. Here, we mainly focus on our early research conducted on building

a faster big-data system specifically designed for data engineering for data science.

Furthermore, this chapter mainly focuses on a set of machine learning algorithms

implemented on our big-data system, Twister2.

Distributed data analytics has been a widely used approach in domain sciences

and industrial applications for the better half of the last century. In the very early

stages of distributed computing, most of these systems were designed for simulat-

ing various domain sciences models. These systems were designed to run on 100s

of machines with high-performance capabilities. Later on, this domain was very

well established as high-performance computing (HPC). But later on, the trend of

analyzing data moved towards the big-data systems with the increasing industrial

applications. A set of big-data specialized systems were introduced to meet these

specific requirements. Frameworks like Apache Hadoop, Apache Spark, Apache

Flink, Apache Storm and Apache Heron are the most prominent frameworks that

provided the ability to do computations on batch and streaming data. These systems

were specialized to process big data sets with high-level API abstractions following

the dataflow model. But we observed that the classical HPC model could be adopted

to process big data more efficiently in both batch and streaming settings. Twister2

was designed to provide an efficient communication layer using Twister2:Net to

do distributed computing operations efficiently on the HPC hardware. Internally

Twister2:Net [KWG+18] uses MPI point-to-point communication to build a com-

16

munication abstraction having the state of the art collective communication used

in HPC. This provides the ability to incorporate the classical HPC communication

model into the big data by bridging the dataflow model with the HPC communica-

tion. Following this novel model, we developed a set of applications and advanced

programming models to fit well with the state of the art dataflow operators in the

existing big-data systems. In the following sections, we discuss the distributed SVM,

distributed streaming SVM, distributed streaming KMeans and benchmarks carried

out on the Twister2 system compared to existing big-data systems.

4.1 Distributed Support Vector Machines for HPC and Big

Data Overlap

Support Vector Machines (SVM) is one of the most prominent machine learning al-

gorithms used for classification prior to the deep learning models dominated artificial

intelligence applications. With the larger datasets, SVM requires more computing

resources to train efficiently. There are multiple implementations which provides dis-

tributed computation for SVM. Among these implementations, Apache Spark and

MPI-based implementations are very dominant. Since our focus is to improve the

performance and retain the big-data attributes in programming, we implemented a

distributed version of SVM on Twister2.

4.1.1 Anatomy of the SVM Algorithm

There are a few optimizations algorithms widely used in SVM. Sequential minimal

optimization, chunking algorithm and gradient descent are some of these variations.

Recently, the usage of gradient descent has been widely considered with the growth

of deep learning algorithm. In this implementation we selected a gradient-descent

17

(GD) based optimization algorithm for the implementation. Algorithm 1 shows the

sequential version of the GD-based SVM.

S = {xi, yi}

where i = [1, 2, 3, ..., n], xi ∈ Rd, yi ∈ [+1,−1] (4.1)

α ∈ (0, 1) (4.2)

g(w; (x, y)) = max(0, 1− y〈w|x〉) (4.3)

J t = min
w∈Rd

1

2
‖w‖2 + C

∑
x,y∈S

g(w; (x, y)) (4.4)

Equations 4.1,4.2,4.3 and 4.4 denote the configurations of the sample space, helper

functions for gradient calculation and the loss function.

Algorithm 1 Gradient Descent SVM

1: INPUT : [x, y] ∈ S,w ∈ Rd, t ∈ R+, b ∈ Z+

2: OUTPUT : w ∈ Rd

3: procedure Gradient Descent(S,w, t, b)
4: for i = 0 to n with step size b do
5: if (g(w; (xi, yi)) == 0) then
6: ∇J t = w
7: else
8: ∇J t = w − Cxiyi
9: w = w − α∇J t

return w

4.1.2 Parallel Gradient Descent SVM

We use a parallel gradient descent SVM algorithm designed based on the sequential

version of the algorithm. After the completion of each epoch, a model synchroniza-

18

tion is performed by doing an MPI Allreduce call. Here the model weights across

each process is aggregated and averaged over the number of processes involved. Al-

gorithm 2 is the parallel algorithm implemented based on the sequential algorithm

in 1. Here K refers to the number of processes, Si refers to the ith batch and T

refers to the total number of epochs.

Algorithm 2 Parallel Gradient Descent SVM

1: INPUT : [X, Y] ∈ S,w ∈ Rd, b ∈ Rd

2: OUTPUT : w ∈ Rd

3: procedure Parallel Gradient Descent(S,w, b)
4: Parallel in K Machines [S1, ...Sk] ∈ S
5: for t = 0 to T do
6: procedure Gradient Descent(S,w, t, b)

w = MPI AllReduce(w) / K
return w

4.1.3 Datasets

We use three datasets to determine the performance of the algorithm under a va-

riety in data sparsity, number of features, training data size and testing data size.

The table 4.1 refers to the composition of the data selected for the performance

benchmarks.

Table 4.1: Datasets

DataSet Training Data (80%) Testing Data (80%) Sparsity Features
Ijcnn1 39992 9998 40.91 22
Webspam 280000 70000 99.9 254
Epsilon 320000 80000 44.9 2000

19

4.1.4 BLAS Optimizations

In the distributed SVM implementation, we further looked into improving the se-

quential performance. Here we integrated linear algebra optimizations by using

BLAS routines where necessary. In equation 4.5, the ddot signature refers to a

BLAS operation which performs dot product of two vectors [Donb]. In equations

4.6, 4.7 and 4.8 refers to daxpy BLAS operation which performs constant times a

vector plus a vector [Dona]. Additionally, the incx and incy refers to the storage

space between the elements in the x and y arguments of the daxpy notation where

x and y refers to two vectors of similar length.

g(w; (x, y)) =⇒ max(0, 1− y〈w|x〉) =⇒ max(0, 1− ddot(d, x, incx, w, incy)); (4.5)

〈Xj, yi〉 =⇒ daxpy(d, yi, Xj, incx, xiyi, incy); (4.6)

w = w − αCXiyi =⇒ daxpy(d, αC, xiyi, incx, w, incy) (4.7)

w = w − αw =⇒ daxpy(d, α, w, incx, w, incy); (4.8)

4.1.5 Performance Benchmarks

We conducted a set of benchmarks by considering the state of the art computing

engines specialized for distributed computing. We design two sets of experiments

discussing the performance of distributed SVM. The first set of experiments were

implemented to compare the performance of implementations on Java and C++

20

along with BLAS integration. The second set of experiments compare the perfor-

mance of big-data systems, MPI systems against big-data and MPI hybrid system,

Twister2. The experiments were conducted in 16 nodes of Intel(R) Xeon(R) CPU

E5-2670 v3 @ 2.30GHz and the maximum of processes per node was set to 16.

Figure 4.1 refers to the experiments conducted on the first set of experiments.

In these experiments, we evaluated the performance of Java-based and C++ based

distributed SVM with BLAS optimizations. From these tests we gathered that the

C++ oriented programming provides better performance compared to the JVM-

based implementation. The main reasons for the performance boosts are the op-

timized memory management done in the application development compared to

autonomous memory management in JVM-based implementation. In addition to

that, the BLAS operations provides slightly better performance when implemented

in C++ compared to Java.

Figure 4.1: SVM Distributed Data Parallel Training with BLAS Optimizations with
MPI

Figure 4.2 refers to the experiments conducted on the second set of experiments.

These experiments were conducted to evaluate the performance of distributed SVM

21

algorithm implemented Apache Spark (as a big-data system), MPI (as a HPC sys-

tem) and Twister2 (a hybrid big-data and HPC system). The objective of these

experiments are to show case the importance of integrating machine learning al-

gorithms with a HPC and big-data hybrid system compared to classical big data

systems. These results show that, the performance of Twister2 is very much similar

compared to the implementation on MPI. Also, Twister2 outperforms Spark-based

implementation at scale.

Figure 4.2: SVM Distributed Data Parallel Training with BLAS Optimizations with
Big Data HPC Overlap

4.2 Iterative Streaming for Data Analytics

Impact of big-data processing is not only limited to batch data, but also for stream-

ing data. With the expansion of data growth and various IoT applications, it is

important to evaluate the application of iterative streaming algorithms for data

analytics. Iterative computations are widely done on batch applications for data

analytics. When we consider streaming applications, one way is to just compute a

given data point once and create a state and use it for the next data point. But when

22

it comes to the accuracy and various computational requirements, sometimes the

streaming data can be converted into mini-batches and computed iteratively. This

is the simple idea in iterative streaming processing. A stream can be discretized

by partitioning a stream of data into a container called a window. In streaming, a

window contains a specified number of elements that is being gathered by means of

a windowing schema. Windowing schema can be considered in two ways as far as

discretization is considered,

• Tumbling Window (overlapping elements are not included)

• Sliding Window (overlapping elements are included)

In addition to the windowing schema, the window size can be considered either

as number of elements in the window or time taken to acquire elements to the

window. To provide HPC-aware iterative stream processing, we implemented an

iterative streaming component on top of the core streaming engine of Twister2.

We developed this component, specifically to focus on data analytics on iterative

streaming. The implemented iterative-streaming component is known as Windowing

API in the Twister2 system. Figure 4.3 shows how an iterative streaming workflow

can be used to design to train machine learning algorithms online.

Initially the data is loaded from a data source which can be a messaging-queue

or a stream of data coming from a data storage. The source task does the pre-

processing required to formulate the expected features required for the machine

learning algorithm. This involves raw data processing to formulate numerical vec-

tors. In the window-compute task, the training mini-batches are generated based on

the windowing configurations and iterative computation is done on the formulated

mini-batch to create the training model. Here the windowing configuration includes

a set of hyperparameters. They are, window length, sliding length, window type

23

Figure 4.3: Twister2 Iterative Streaming Workflow for a ML Application

24

and number of iterations per the iterative computation done on a single mini-batch.

In the sink-task the computed training model is evaluated on the testing data.

4.2.1 Streaming SVM

Support Vector Machine is one of the most prominent classification algorithm used

in the machine learning domain. In an online version of this algorithm, we first

discretize a stream of data points into a mini-batch or a window and do an iterative

computation on each window. Here a variable number of iterations can be used in

tuning the application towards expected accuracy in the training period. The core

of the algorithm adopted is a stochastic gradient descent-based model. For each

window, the weight vector is updated and synchronized to a global value by doing

a model aggregation over the distributed setting. Once a model is globally syn-

chronized over all the processes, it is then tested for accuracy. This implementation

follows the principle of a batch model developed to evaluate batch-size based perfor-

mance on SGD-SVM. We adopted the same approach to calculate the weight vector

or gradient in the discretized stream (windowed elements) and globally synchronized

the calculated weight vector once the computation per window was completed.

Equations 4.1,4.2,4.3 and 4.4 denote the configurations of the sample space, helper

functions for gradient calculation and the loss function.

In algorithm 3, the stochastic gradient descent-based step to update the weights is

described as a pseudo-code. This algorithm shows the computation done per data

point.

Algorithm 4 shows the complete iterative algorithm with windowing configurations.

The l symbol in the algorithm refers to the window length and the s symbol refers to

25

Algorithm 3 Iterative SGD SVM

1: INPUT: [x, y] ∈ S,w ∈ Rd, t ∈ R+

2: OUTPUT: w ∈ Rd

3: procedure ISGDSVM(S,w, t)
4: for i = 0 to n do
5: if (g(w; (xi, yi)) == 0) then
6: ∇J t = w
7: else
8: ∇J t = w − Cxiyi
9: w = w − α∇J t

return w

Algorithm 4 Iterative Streaming SVM

1: INPUT: X∞, Y∞ ∈ S∞, w ∈ Rd, l ∈ R+, s ∈ R+,m < K,m ∈ R+

2: OUTPUT: w ∈ Rd

3: procedure ISSVM(S̄i, w, T, l, s)
4: In Parallel K Machines [S̄1, ..., S̄b] ⊂ S∞
5: procedure Window(S̄m, w, l, s)
6: for t = 0 to T do
7: procedure ISGDSVM(S̄m, w, t)

8: All Reduce(w)
return w

the sliding length. The algorithm encapsulates both tumbling and sliding window-

based computations.

4.2.2 Streaming KMeans

KMeans is another popular clustering algorithm in the machine learning domain. We

apply an online version of this algorithm in our research. In the streaming setting,

we use the stream discretization by means of a window operation. In Algorithm 5

we have implemented a basic version of the online-KMeans algorithm. V refers to

the cluster centroids, k refers to the number of centroids, and n refers to the number

of total data points observed down the stream. The number of data points observed

must be at least equal to the number of cluster centroids. In this algorithm, a single

26

data point is observed only once and the closest centroid is located by calculating

the euclidean distance. The new centroid is calculated as shown in the algorithm.

But in the initialization step, the centroids can be either handpicked from the data

set or randomly selected. Here we select it as shown in the algorithm. Our objective

is to see how each framework works on global model synchronization when working

with machine learning models.

In implementing this algorithm we followed the state-of-the-art time notion-based

window-less streaming KMeans implemented in Apache Spark. Once the compu-

tation related to a window finishes, a global model synchronization is performed.

Unlike in a classification algorithm, there is no cross-validation involved during the

model generation step.

Algorithm 5 Online KMeans

1: INPUT:X = {x1, ..., xm}, xi ∈ Rm

2: V = {v1, ..., vk}vi ∈ Rm, k ≤ n
3: OUTPUT: V
4: procedure Streaming-KMeans(X, V)
5: procedure Window(X̄, V̄)
6: for xj in X̄ do
7: if j ≤ k then
8: vi = xj
9: ki = 1
10: i = i+ 1
11: else
12: vi = argmini||xj − vi||
13: vi = vi +

1

ni + 1
[xj − vi]

14: ni = ni + 1

15: All Reduce(V)
return V

27

4.2.3 Model Synchronization

In the distributed setting, generating a synchronized model is vital. In implementing

the online versions of the machine learning algorithms, we adopted the strategies

specific for each framework. In Apache Flink, the reduce function is used for syn-

chronizing the models. This is the only possible way to get an approximation to

the all-reduce model. Apache Flink doesn’t support an all-reduce like communica-

tion for synchronizing models globally. In Apache Spark, reduce function and RDD

broadcast is used to synchronize the model. In Apache Storm, all-grouping is used

to generate a synchronized model. Twister2-HPC model uses MPI-AllReduce col-

lective communication to synchronize the models. Twister2-Dataflow model uses a

variation of all-reduce communication with a tree-like communication model. The

model synchronization is thus carried out in Twister2.

4.2.4 Performance Evaluation

For the experiments, we use a distributed cluster with 8 physical nodes. We schedule

16 tasks per each node to run the experiments. Each node consists of Intel(R)

Xeon(R) Platinum 8160 CPU @ 2.10GHz with 250GB of RAM capacity. For running

an experiment for a finite period, a stream of 49,000 records for training and a stream

of 90,000 records for testing is used. For the experiments, we only use a finite stream

to evaluate training accuracy and performance. The implementations used for the

performance evaluation are Apache Storm 1.2.8, Apache Flink 1.9.0 and Twister

0.3.0.

28

Streaming SVM

For streaming SVM model, we use a dataset with two classes with 22 elements per

data point. For the experiments, we used an iterative computation on windowed

elements. This operation is supported by Apache Flink, Apache Storm and Twister2.

We tried this model using Apache Spark streaming engine. With the provided

APIs and system constraints, we were able to design an approximate model to

that of design with the aforementioned frameworks. The main constraint is that

it only provides windowing considering the notion of time. This makes it hard

to do a stress test on the stream engine. Because, by the notion of time, the

minimum number of elements that can be set per batch is in millisecond level.

Furthermore, it doesn’t support iterative streaming models. This feature is not

directly supported with DStream in Apache Spark streaming engine. With the

approximate model, the accuracy obtained was comparatively very low concerning

the other frameworks. A workaround is to use structured streaming in Apache Spark.

This implementation works on the SQL engine of Spark, and it only considers the

notion of time. We didn’t implement that model in this research as it is a very

different implementation concerning the other implementations. In the conclusion

section, this will be explained in detail.

Figure 4.4 shows the experiment results for tumbling window is shown. From

these results, it is clear that the Twister2 models outperform both Apache Storm

and Apache Flink implementations. Figure 4.5 shows the sliding window related

experiments. Similar to tumbling windowing, with sliding windows, Twister2 imple-

mentations outperform Apache Flink and Apache Storm implementations. Twister2

possesses a faster stream processing capability through a strong MPI-based back-

end. This provides a scalable solution for an iterative stream processing on a win-

dow. With Apache Flink, the main bottleneck is the reduce task doing the model

29

Figure 4.4: Streaming SVM with Linear Kernel-based experiments for tumbling
window is recorded for both HPC and Dataflow programming models. The time
recorded is the streaming training time until expected convergence.

synchronization. In Twister2 and Apache Storm, the all-reduce and all-grouping

mechanisms involve in providing all-toall model synchronization capability. But in

Apache Flink, this process becomes all-to-one and makes a bottleneck in processing

the data. In this case, both Twister2 and Apache Storm outperforms Apache Flink.

From all implementations in Apache Flink, Apache Storm and Twister2, 90.49%

of test accuracy was obtained after a finite length of the stream was processed. With

Apache Spark implementation, we were able to get an average accuracy of 40%-50%

with the same number of iterations. We didn’t include the graphs here, because

the number of iterations required to get the same accuracy is much higher. The

main issue for this is Spark streaming API is not designed with iteration compati-

bility. Also, it doesn’t provide a window function to capture the elements belong-

ing to a window. This functionality is available in Apache Storm, Apache Flink

30

Figure 4.5: Streaming SVM with Linear Kernel-based experiments for sliding win-
dow is recorded for HPC model and Dataflow programming models. The time
recorded is the streaming training time until expected convergence. The x-axis in
the right figure is labeled with the pair of (window length, sliding length).

31

and Twister2. Apache Spark only provides basic element wise operators like map,

flatmap, etc. If this was attempted with a forEachRDD function, the user has no

capability to synchronize the model as it is a sink function. In addition Spark only

provides a windowing functionality with the notion of a time and it has no support

for windowing based on the count of elements.

Streaming KMeans

For the streaming KMeans model, the dataset we used contains 23 elements per

a data point. Here a non-iterative computation is done. Apache Flink, Apache

Storm and Twister2 support the windowing functions to implement an algorithm like

this. With Apache Spark streaming, a non-iterative application can be developed

but the count-based notion is not available in the API. In this research, we have

only conducted windowed streaming with the notion of the number of elements per

window. In achieving the current goal we have used the streaming systems which

provide this functionality.

Figure 4.6 shows the tumbling window-based experiments carried out on stream-

ing KMeans model. And in figure 4.7 shows the sliding window-based experi-

ments carried out on streaming KMeans model. Similar to streaming SVM results,

Twister2 models outperform both Apache Spark and Apache Flink. Twister2 model

synchronization with an all-reduce mechanism provides faster execution than that

of regular all-to-all communication in Apache Storm. In Apache Flink, there is no

all-to-all communication, the model synchronization happens in an all-to-one set-

ting. This is the same bottleneck as observed in streaming SVM application. But

Apache Flink outperforms Apache Storm. This model is a non-iterative model and

the pressure exerted on communication is lesser. This leads to quite faster data

progress from the windowing task to the reduce task.

32

Figure 4.6: Streaming KMeans Results for 1000 cluster-based experiments for tum-
bling window is recorded for both HPC and Dataflow programming models. The
time recorded is the streaming training time until expected convergence.

33

Figure 4.7: Streaming KMeans for 1000 cluster-based experiments for sliding window
is recorded for both HPC and Dataflow programming models. The time recorded
is the streaming training time until expected convergence. The x axis in the right
figure is labeled with the pair of (window length,sliding length).

34

CHAPTER 5

HIGH PERFORMANCE DATA ANALYTICS AWARE DATA

ENGINEERING

The importance of data analytics and the necessity of integrating high per-

formance computing resources is a must for many scientific problems. From our

in-depth research and discussion in chapter 4, it is evident that the data analytics

workloads can be efficiently executed in large scale to train vivid scientific mod-

els effectively and efficiently. Another important aspect that we didn’t analyze in

depth is the data engineering operations that is being widely standardized and used

in parallel to the evolved data analytics workloads. Even though the big data sys-

tems played a major role in the data analytics in the better half of the last decade,

more systems took over data analytics by specializing into sub domains by not just

providing distributed communication, but providing application development capa-

bility by writing a very smaller number of lines of code. In addition to that, these

data analytics frameworks were built in such a way that the data scientists can eas-

ily write programs and analyze the data very efficiently. Frameworks like PyTorch

[PGM+19] and Tensorflow [ABC+16] are such dominant frameworks specialized for

data analytics. And also the user base, scientific applications and research efforts ex-

ponential grew into using these data analytics frameworks rather than using classical

big data systems to implement problems. With the emergence of these frameworks,

it is clear that the best is to provide better support for the data engineering portion

of data analytics is very important than building data analytics components with

classical big data systems. Taking all these facts into considering, we dive deep

into investigate how we can provide better and faster tools to do data science by

retaining the best practices of data engineering.

35

Even though data science is the key to understand patterns and behaviors in

data oriented problems, the key component to make data available for such anala-

ysis is data engineering. With the dawn of data science applications, most of these

workloads moved to Python to make these tools available with much easier pro-

gramming abstractions for efficient and effective application development. Besides,

most of the data science platforms are developed in Python programming language

to allow data scientists to develop applications efficiently. When it comes to data

engineering, there are Python APIs provided on top of the JVM-based big-data

systems to provide this usability. But using the existing systems is a very time

consuming exercise for data scientists to pre-process the data. In addition to that,

these APIs are not seamlessly integrated to support HPC-oriented data science sys-

tems to provide better performance and usability. From our current research efforts

and existing literature, we believe that the data engineering stack can be further

reinforced for high performance computing by building a set of high performance

data engineering kernels and making them available via a simple Python interface

to develop data science applications efficiently.

In the modern data engineering domain, most of the Python-based data engi-

neering systems are developed by considering a data abstraction called dataframe.

Dataframe is nothing but a tabular data representation for heterogeneous data. The

raw data coming from various data sources contain data with multiple data types

and are mostly in tabular shape. Having a tabular data representation is key to

support a wide range of data engineering applications. Pandas[M+11] dataframe

can be considered as the state of the art dataframe representation in the Python-

oriented data engineering. Pandas only support data processing in a single process

at the moment. There have been many efforts from the Python community to pro-

vide distributed computing for dataframe. This abstraction has been adopted by

36

many distributed data engineering frameworks like Modin[mod] (structured Pandas

for parallel computing), Dask[das] (distributed Pandas), Cudf[cud] (dataframe for

GPUs). Our data engineering interface mimics the state of the art dataframe and

extends towards a HPC-compatible computation to provide distributed operators

and pleasingly parallel operators.

We also observe that the existing data engineering workloads on CPUs can be

further enhanced. The reasoning behind our observation is based on the way systems

are implemented and the way they are integrated with the existing data analytics

workloads. Since the theme of our contribution is data analytics aware data engi-

neering, we do a dive from the top to bottom, by starting to analyze the modern

day data analytics workloads and how this can be reinforced by building a data

engineering system to support data analytics.

5.1 Methodology

In supporting data analytic applications rapidly evolving on Deep Learning, the

vital task would be to identify where data engineering is efficiently applied. The

direct relationship between data engineering and data analytics is the data and

the pipeline to move data from the data engineering engine (DE) to data analytic

engine (DA). For a better data engineering design, it is vital to understand the

requirements of the DA frameworks and backtrack to design efficient solutions. The

approach for understanding requirements is drawn from existing applications. Also,

we expand the requirements for designing the DE solutions by understanding the

future demands based on the DA application evolution.

The computations in DA engines are associated with numerical data structures

like tensors. A seamless connection between DE engine and DA engine can be en-

abled by transforming DE data structures into tensors. For this task, efficient data

37

transformation and loading are key components. Figure 5.1 shows the data move-

ment from a data source towards a data analytic workload. The DA applications in

the future will be dominated by datasets since multi-modal training and multi-task

training have become the newest data analytic models. To provide an efficient data

pipeline from DE to DA, it is vital to understand the key components of DE and

DA data loading components.

Data engineering can be discussed under three criteria namely data extraction,

transformation and loading. Data extraction phase is related to reading data effi-

ciently from data sources like distributed file systems, distributed messaging queues

and local file systems. In processing big datasets, efficient data reading and data

movement in distributed computing environments is a key attribute. Data in this

phase is heterogeneous where both numerical and non-numerical data is in a struc-

tured or unstructured format. Structured data are with a schema and this is the most

common data type (CSV or spreadsheets). Unstructured data formats are mainly

involved in domain science research where a format like HDF5 is widely used. The

key challenge is to read data efficiently and load into an efficient in-memory format

where data can be efficiently transformed.

In the scope of this research, the main focus is to accelerate the CPU workloads

on data pre-processing and data movement. The pre-processing can be defined into

two main categories. The first category is the raw data processing to extract fea-

tures. The second category is numerical data augmentations done to re-shape and

transform the data into the data analytic models. Here some of the data transfor-

mation kernels are known to run much faster in GPUs. But the limitation in the

in-memory computation becomes a bottleneck in pre-processing larger datasets. The

main objective of this research is to provide an efficient and effective data engineering

system on CPU-based DataFrame abstractions with seamless integration to Python.

38

On the developed system, state of the art scientific applications and workloads are

benchmarked. In the initial phase of the benchmarks, we micro-benchmark system-

level performance compared to the existing state of the art systems. For evaluating

an end-to-end workload, we benchmark state of the art scientific workloads written

on the proposed system.

Figure 5.1: Data analytics aware data engineering workload

5.2 System Architecture

Figure 5.2 refers to the high-level architecture of the proposed system. The lower

layer comprises the high-performance communication layer written with MPI and

high performance compute kernels written in C++. To facilitate the support for

existing frameworks and to improve usability, a layer of language bindings is imple-

mented to expose to multiple languages. But the main focus of our effort is to enrich

the Python data engineering stack to seamlessly integrate with data analytics frame-

works which are mainly written with a Python user interface. On top of the language

bindings, the usability APIs and sub-algorithms are developed. DataFrame API is

the key component providing high-performance data engineering. The DataFlow

API is the gateway towards external systems like machine learning and deep learn-

ing systems allowing data movement from a data engineering workload to a data

39

analytics workload. The highest level of abstraction is focused towards an anno-

tated Python API which allows users to write distributed or sequential code with-

out paying attention to internal details of writing a parallel code. The distributed

computation is abstracted away from the user in terms of writing data engineering

kernels. Since, the programming model is on the classical bulk-synchronous-parallel

(BSP) model, in some advance applications user needs to handle parallelism aware

local computations by dealing with the rank or process id.

Figure 5.2: System Architecture

These data engineering operators are built into Cylon framework. Following are

the key components contributed from our research to the Cylon framework.

• Designing and implementing high performance data engineering kernels

• Designing and implementing high performance language bindings for Python

• Designing and implementing a dataflow abstraction for data analytics aware

data engineering

• Designing and implementing a fast and scalable DataFrame abstraction on

distributed memory.

40

• Specification for data engineering operators on distributed memory computa-

tion with BSP awareness.

• Seamless integration with Python-based data structures for data analytics and

data engineering

• Seamless integration with data analytics frameworks for distributed data par-

allel computations

5.3 Communication Kernels

The data engineering kernels require the ability to compute in parallel. The com-

munication layer provides an All-To-All abstraction to move the data around ma-

chines based on the data distribution. All-To-All implementation is written with

MPI point-to-point isend and irecv calls. Compared to classically data-parallel jobs

which require mere data parallelism, data engineering workloads are more focused

on processing a data sample with a given attribute in data. Relational algebra

operators like join, union and intersect are operating on a given sub-attribute on

the data set. Join requires a specific column/s to do the join and the data type of

that column and the value of the data is required to do the required computation

to join two tables. In the distributed setting, when comparing such values, hashing

becomes a very prominent technique which allows moving the values with the same

hash to a single machine to do the relational algebra operation locally and provide

the expected result similar to the sequential algorithm. This is the main difference

between a regular data-parallel workload and a data engineering workload.

41

5.4 Data Engineering Kernels

Data engineering kernels are the core compute kernels required to process raw data.

For better performance most of our compute kernels are written in C++ or we refer

to vectorized C++ and Python implementations to enhance the performance. These

are the main cateogries of data engineering kernels supported in the system.

Kernel Operation
Relational Algebra Kernel Join, Union, Intersect, Difference and Project kernels
Indexing Kernels Hash, Linear and Range indexing kernels
Search Kernels Hash, Linear and Range indexing based searching
Filter Kernels Filter values by conditions
Duplicate Handling Kernels Locate duplicate values and filtering
Null Handling Kernels Locate null values and replace or remove
Linear algebra operators Basic math operations

Table 5.1: Core data engineering kernel classification

These data engineering kernels can be divided into two groups based on the

scalability.

• Local Operators

• Pleasingly Parallel Operators

• Distributed Operators (distributed memory operators)

Note that there are no explicit implementations of pleasingly parallel operators,

the local operators can be executed in a pleasingly parallel way depending on the

parallelism. The distributed operators are only designed to run on parallelism > 1

and it falls back to local computation when used in parallelism = 1 setting.

5.4.1 Relational Algebra Kernel

Considering the dataframe, the main data relational algebra kernel used is the join

operation. In the dataframe domain, the join operation requires a set of parameters

42

Operator Local Distributed Pleasingly Parallel
Relational Algebra Yes Yes Yes
Indexing Yes Not Implemented Yes
Search Yes N/A Yes
Filter Yes N/A Yes
Duplicate Handling Yes Yes Yes
Null Handling Yes N/A Yes
Linear Algebra Yes Not Implemented Yes

from the user. The join column/s, join type, join prefixes (optional) and join algo-

rithm (optional). The join prefixes are to provide readability when visualizing the

join outputs. The join type falls under four categories.

• Inner Join : Includes records that have matching values in both tables.

• Left (outer) Join : Includes all records from the left table and just the matching

records from the right table.

• Right (outer) Join : Includes all records from the right table and just the

matching records from the left table.

• Full Outer Join : Includes all records, but combines the left and right records

when there is a match.

The join algorithm is an additional feature supported from our implementation

to provide user the ability to use the most suitable algorithm depending on required

performance and scalability. We support two join algorithms, namely hash join and

sort join. In the sort join, we sort both relations by join column and do a merging

operation by scanning from top to bottom in both relations.

In the local hash join, hashing is done on the join column of one relation (prefer-

ably the smallest relation) by keeping them in a hashmap and scans through the

other relation join-column and computes the hash to build the resultant table by

comparing hashes. In the distributed setting, before performing the join, we do a

43

hash-based data shuffling. The hashes for join columns are computed and data is

being re-shuffled in such a way that hashes with equal values come to a designated

process. After this communication process is completed, a local join is computed in

each process.

5.4.2 Indexing Kernel

Indexing kernels support fast data querying. We have implemented 3 indexing types

to support vivid use cases. The current implementation only supports single column

indexing. The supported indexing kernels are;

• Vector Indexing : A column of a table is used as an index and vector search

operations are applied

• Hash Indexing : A column of a table is used to create a multi-map of key value

and row indices

• Range Indexing : A virtual column is created with start and end index

In the vector indexing implementation, a column in selected and dropped off the

table depending on a user argument. The idea is that particular column can be a

data column and index or it can just be a column just to search values corresponding

to a particular query criterion. Currently we only support searches based on equality.

In the hash indexing implementation, the selected column is being hashed such a

way that, hashes with same value maps a set of rows. Compared to vector indexing

implementation, the hash indexing implementation takes more time due to the hash

collisions and multi-map population time. Range indexing is basically a virtual

indexing interface to provide compatibility for a non-indexed table. In a non-indexed

table, we create a virtual column with 0 to num rows with int64 data type. But

44

this virtual column doesn’t exist in actual memory until user wants to get index

values. It only records the starting index and end index and generates the index as

per user’s requirement in data visualization.

We have designed a generic indexing interface with endpoints to implement ad-

vanced search operations on retrieving data from a table. The generic indexing

interface includes the following end points to retrieve data. For the distributed

mode, we provide a unique index for each process, at the moment the searching

happens by considering a local index in each process. For distributed operations, at

the moment user require to re-implement the indexes after the distributed computa-

tion. When using vector indices the time taken to generate the indices is negligible.

We will discuss more on the performance in the benchmark section 6.1.

• Retrieve by range of keys (a start key and a end key)

• Retrieve by a list of keys (single key retrieval implicitly includes)

5.4.3 Search Kernel

For fast data retrieval index based searches provide the edge over a linear search

across all the records. The search kernels are implemented to support the higher

level search capability. When retrieving data, users can provide a start index and

end index or a vector of indices and specify which columns need to be included in

that query. The search kernels exposes these querying capability. Basically there are

6 types of sub-queries involved with indexing-based search involving the following

two categories.

• Search by value range (start value and end value): this retrieves a set of records

start from the start value and ends with end value. Here the start and end

values must be unique values in the given index.

45

• Search by a vector of values: A search is done upon each value in the vector

with the index values.

When retrieving search table, the user can specify a range of column/s or a list of

columns as well. These combinations all together gives 6 types of sub-querying. For

both distributed and sequential context the same search kernel is used. In the BSP

setting, when a search occurs, each operator will be executing the search operator for

the search parameter given in each process. For this operator a distributed search

function is not applicable.

5.4.4 Filtering Kernel

Filtering provides the ability to retrieve a table from an existing table by using a

mask. A mask is a set of boolean values. In tabular format this is can be a table

with multiple columns or a single column table. To generate this filter table, there

are multiple ways. A boolean-valued table can be generated by comparing table

or subset of table values to a given value/s. Filtering kernel basically provides the

ability to compare the values considering the basic comparator operators allowed by

any programming language. The supported comparator operators are;

• Greater than

• Greater than or equal

• Lesser than

• Lesser than or equal

• Equal

• Not Equal

46

In implementing these comparator operators, we have used two types of im-

plementations to support vector operations. Since we use Arrow-tabular format

to represent the data internally, we use Arrow compute operations to provide the

vectorized filters rather than implementing them from the scratch. Also we have

integrated numpy kernels internally to support optimized vector operations for com-

parators. We have exposed the choice of selecting compute engine as a parameter

when defining the context of the application runtime. These are discussed in detail

in the dataframe section 5.6.

In terms of parallelism, the filter function is considered as a pleasingly parallel

operator. Each process will provide the filtering operator along with the filter value.

The filter value can be different for each process or it can be same as far as a BSP

programme is considered.

5.4.5 Duplicate Handling Kernel

Duplicate records can be widely located in a raw dataset. The objective of the

duplicate handling is depending on a keep policy, where keeping the first value found

as duplicate into records or the last value found into records. This implementation

consists of a hashset where we iterate through each row and create a hash. When

new rows are inserted to the hashset, a row comparator is used to evaluate the hash

to identify whether the value is already present or not. This provides the ability to

differentiate between a unique record and a duplicate record. In the default setting,

all the columns are considered when considering a duplicate record, but we have also

provided the option to include a subset of columns to decide the uniqueness of a

record. In the distributed setting, prior to executing this algorithm, a data shuffling

operation is done based on the selected columns considering the hash value of a row.

47

5.4.6 Null Handling Kernel

In raw data processing removing null values and replacing null values with meaning

full values is a useful function. And also depending on data representation, null value

can be represented as a string or can be particular phrase. In the data loading stage,

we provide options to denote such references 5.9. Null handling can be categorized

into three main operations;

• Check null values (boolean response)

• Drop null values

• Fill null values

When checking null values, since we are integrated with Apache Arrow format,

currently we use internal kernels of Apache Arrow. The same process is followed

for filling null values with a user specified option. When dropping null values, we

implemented a based on dropping null values based on the existence of null values

row-wise and column-wise based on existence of any null value or all null values.

For column-wise operations we check for nulls and do a algebraic sum of boolean

values to determine whether all or any values are null and corresponding row indices

are dropped. But in the column scenario, we designed a couple of heuristics. The

reason for designing the following heuristic is that, since we depend on columnar

data, we cannot physically do row-base computations directly. For row-wise null

check implementation, a column-wise null check is done and the obtained boolean

array is then casted to int32 array and addition of all columns is taken. Then we

follow the following heuristics in deciding all or any null values are present.

• Heuristic 1 : If the resultant sum-array contains an element with value equals

to 0. It implies that all elements in that row are not None.

48

• Heuristic 2 : If the resultant sum-array contains an element with value equals

to the number of columns. It implies that all elements in that row are None.

Selection criterion is decided on how the dropping is done, when ’any’ is selected,

the addition value in corresponding row is greater than 0 that row will be dropped.

For ’all’ criteria that value has to be equal to the number of columns.

5.4.7 Linear Algebra Kernel

Linear algebra kernels are another important set of kernels required when numerical

computations are involved in numerically typed data. Currently we support basic

math operators like addition, subtraction, multiplication and division on column

based and table based (if all columns are numerically typed). To support efficient

vector operations for linear algebra, we have implemented the support by using

Numpy and Arrow compute kernels. Currently, we don’t support an internal ver-

sion of linear algebra kernels but rely on highly optimized kernels written in Numpy

and Arrow. With arrow we use the C++ level compute kernels exposed via Ar-

row compute APIs. Matrix level operations are not yet supported in the current

implementation.

5.5 PyCylon

Language bindings are a key component of our system. Since we focus on providing

highest usability and seamless integration to the data science eco-system, ability to

write programmes in Python is essential. We introduce the framework PyCylon the

Python API for data engineering workloads as one of the major contributions from

our research.

49

Majority of our data engineering kernels are written in C++ and kernel level

APIs require efficient language bindings when it comes to linking up with extensively

used languages like Java or Python. The main focus on our research is to make the

tools available in Python. To enable C++ kernels to Python, the most efficient

and developer friendly mode is to use Cython as the interface between C++ and

Python. Cython has been widely used in scientific computing libraries like Numpy,

Scipy, Pandas and many other research projects to write efficient Python bindings.

Figure 5.3 depicts the high level API abstraction in our data engineering frame-

work. The lower most layers consist of the core kernels for data engineering and

communication. On top of these core kernels, we have the C++ Cylon API. This

API contains all the endpoints for writing communication modules, data engineering

operators, data loading operators and other util operators. We expose thee C++

Cylon API with the Cylon Cython API to make an efficient Python interface. This

layer is also seamlessly integrated with PyArrow Cython API and Numpy Cython

API. Also, the current Cython layer can also seamlessly integrate with other li-

braries providing Cython interfaces. On top of the core Cython API, we develop

the PyCylon API. The PyCylon API is purely Python and calls to Cython interface

when computations needed to be done on data engineering operators.

5.5.1 Cython for Python Bindings

Cython is a special language created to design Python programmes for high per-

formance computing. The advantage of using Cython provides the ability closely

work with C/C++ data structures using the internal Cython APIs. When build-

ing HPC systems for Python, Cython provides a wide variety of APIs to integrate

C/C++ kernels to Python such that from Python C++ functions can be called very

50

Figure 5.3: High Level API Abstraction

efficiently.

In terms of data copying across languages, if the data is created on Python data

structures (entirely Python) and if the data are primitive types it will be copied

when calling functions or creating C++ objects via corresponding Python objects.

But in our design, since we are using Apache Arrow format to load the data, there

is no data copy even when we do computations on a data created on PyArrow or

LibArrow using Cylon. This provides an advantage since we don’t need to serialize

or deserialize data.

Referring to the function calls made from the Python interface, the actual com-

putation happens only in C++ based memory allocation formulated when loading

data via Arrow. Here Python actually doesn’t do any memory allocation, but calls

Cython bindings to do data engineering operators internally on that designated

memory location (or Arrow Table) and the output is presented to the user. Here

the data copying refers to the pure data loading to the memory for computations.

Figure 5.4 shows how a particular Python interface has been integrated via language

bindings to the core compute kernels.

51

Figure 5.4: Cython Interfacing with Computing

52

Here any compute operator or compute interface that needs to be executed us-

ing C++ core kernels require the flow shown in the figure 5.4. The Such interfaces

can be unwrapped to access the Cython interface object which is generally a shared

pointer in C++. The Cython interface provides the expected shared pointer refer-

ence to the C++ Cylon interface. Within our C++ Cylon interface lies the C++

Arrow interfaces (Arrow Table or Arrow array) which will be used in the compute

kernel. Once the expected computation is done on the shared pointer, the resultant

shared pointer is again wrapped as a Python object using the wrapping interface.

The unwrap interface is nothing but casts the Python objects into Cython object

and extract the underlying shared pointer in the C++ implementation. The wrap

interface use the underlying shared pointer in C++ to create the Cython object and

forms the Python object. Here there is no data copy since we do this by pointing to

the shared pointer created when initial data was created in memory. The Apache

Arrow interfacing provides the ability to even extend this to multiple languages

without doing any serialization or deserialization when moved across vivid language

layers.

5.5.2 Cython API

With the discussion in section 5.5.1, the objective of this layer is to provide the

efficient execution of C++ kernels and provide outputs to Python interface without

copying data but use the underlying memory allocated from C++ kernels. For

extended use and advanced usages the Cython API can be used to build third-party

libraries and add-ons. Currently our Cython API includes major functions available

in the C++ kernels. The exposed Cython APIs are as follows;

• Table API : Includes data engineering high level operators

53

• Context API: Interface to determine distributed runtime information

• Configuration API: Sub modules related to network information and other

configurations

• IO API : Input and output modules related to data (read, write, convert)

• Compute API : A high level wrapper for sub-set of data engineering kernels

built on top of Apache Arrow Compute API.

We have used the Cython API to extend the functionality to a higher level

Python API 5.5.3. Similary, when building third-party libraries or writing additional

functionalities, kernels from existing libraries can be extended via the Cython layer.

5.5.3 Python API

Python API is the highest level of API abstraction in the framework. The Python

API relies on the immediate underlying layer, Cython API. The Python API consists

of the wrapped interfaces containing Cython interfaces. This layer is designed to

provide more usability in programming environments and abstract away Cython

syntaxes and utils from the users. Python API mainly contains the DataFrame API

5.6 and other util APIs supporting data engineering.

5.6 Dataframe API

Dataframe is the highest level of API abstraction in our system. This dataframe

API is designed such that it mimics the functionality of the state of the art Pandas

Dataframe representation. The major differences compared to Pandas dataframe is

the functions with distributed computing interfaces and a few additional interfaces

supporting to determine the distributed context of an application. The dataframe

54

API is built on top of the Table API exposed in the Cython API. The Table API

contains all the core data engineering operators abstracted to be used as a simple

Python class. But the dataframe API abstracts away the distributed compute func-

tion calls and other internal details and provide a streamline function definitions.

The supported dataframe operations are grouped into sequential (also function as

pleasingly parallel operators) and distributed operators as shown in the table 5.2

and 5.3 respectively. Here we mainly support the widely used data engineering

operators and our motivation is to improve and add more operators based on the

scientific applications developed as a research outcome of this research.

In the dataframe representation, most of the operators are pleasingly parallel

operators because the nature of the computation mimics a sequential computation

that can be executed across all the processes. The distributed operators that can

be supported for dataframes are dataframe initialization, joins, groupby, join and

duplicate handling operators. In our research we mainly focus our attention towards

initializations, joins and duplicate handling.

5.7 Interoperability Among Python Data Structures

When it comes to application development, one of the most important feature is the

ability to seamlessly integrate with other existing data structures which are widely

used in the interdisciplinary domains. The data structures mainly represent the

data in a useful abstraction with vivid compute functions useful in manipulating

the data. As far as data engineering is considered, the widely used data formats

are CSV, Parquet, HDFS and other binary formats like HDF5. When it comes

to tabular data representation, the widely used data format is CSV or Parquet.

Parquet is an efficient columnar representation for data storage on disk. In the data

55

Pandas Operator Description
index Indexing for faster search
columns List Columns
shape Show dataframe shape
empty Create an empty dataframe
isin Check whether a value/s exists in the dataframe
where Check the index of a value/s located in the dataframe
add Addition of a scalar to a dataframe object (numerical)
sub Subtraction of a scalar to a dataframe object (numerical)
mul Multiplication of a scalar to a dataframe object (numerical)
div Division of a scalar to a dataframe object (numerical)
lt Comparator for lesser than
gt Comparator for greater than
le Comparator for lesser than or equal
ge Comparator for greater than or equal
ne Comparator for not equal
eq Comparator for equal
add prefix Add a prefix for dataframe columns
add suffix Add a suffix for dataframe columns
drop Drop a column from a dataframe
rename Rename a dataframe
take Obtain a sub-sample of a dataframe by indices
dropna Drop not applicable values
fillna Fill not applicable values with a user given value
isna Check for not applicable values
isnull Check for null values
notna Inverse check for not applicable values
notnull Inverse check for not null values
set index Index a table by a given column
reset index Reset index of a table
loc Locate sub-sample of dataframe by value
iloc Locate sub-sample of dataframe by position

Table 5.2: DataFrame Pleasingly Parallel Operators

Operator Description
DataFrame Create a dataframe in distributed memory
join Join two dataframes by a column or index
merge Join two dataframes by the index column
drop duplicate Drop duplicate values by config

Table 5.3: DataFrame Distributed Operators

56

loading (discussed in section 5.9), we provide support to load data into a PyCylon

dataframe. To understand how we provide the data inter-operability, it is vital to

showcase how we have interfaced the tabular data representation.

Figure 5.5: Data Structure Hierarchy

From figure 5.5, the underlying data structures in the PyCylon framework are

shown. Here the dataframe is the aforementioned higher level API for data engi-

neering operations. Table refers to the C++/Cython table abstraction integrated

with data engineering kernels. Internally, we represent the data using Arrow ta-

bles. Arrow format with the columnar representation provides a naturally efficient

mechanism to read the data from the disk by considering the memory layout.

57

For data engineering operators, we access the underlying Arrow array data struc-

tures and pass to compute functions. One important feature with Arrow table is

that the Arrow table is an immutable table, when we do a particular data engineer-

ing operation we have to create a new table with updated data eventhough it is

viewed as an inplace operation in the higher level. Here we replace the underlying

shared pointer of the table from the original table with the table created with the

computation results.

Since our dataframe is internally integrated with Apache Arrow Table data struc-

ture, our Dataframe posses the ability to seamlessly integrated with other data engi-

neering data structures like Pandas dataframe, Numpy arrays and PyArrow Tables.

Figure 5.6 shows the data inter-operability in across data engineering operators.

Figure 5.6: PyCylon Data Inter-operability

5.8 In-Memory Conversions

Facilitating high-performance data movement and zero-copy among systems is a key

component of a data analytics aware data engineering workloads. Figure 5.7 shows

the memory copy overheads and the ability to move data back-and-forth in vivid data

structures used in data engineering and data analytics. Since PyCylon dataframe

is internally using Arrow data structure, it facilitates the seamless integration to

58

Pandas and Numpy. Here, the Arrow Table cannot be directly converted to a multi-

dimensional Numpy array. But iterating through each column, a multi-dimensional

array can be created. Arrow internally supports zero-copy when data representation

is numeric, with no null values and chunk-array (a list of arrays is represented as a

chunk-array in Arrow format) with chunk size = 1.

Figure 5.7: In-memory data conversion

5.9 Data Loaders

Data loading is the entry point for any data engineering application. In our data

engineering framework, we currently support the loading CSV and Parquet format-

ted files via Arrow readers, Pandas readers and by in-memory data structures like

Pandas, Numpy and PyArrow. Data loading is not only important for data engi-

neering but also for data analytics workloads. Since our dataframe abstraction has a

seamless integration to Numpy arrays, providing input to deep learning frameworks

is a possibility with the support of efficient data conversion from Numpy array to

59

Tensor in PyTorch and Tensorflow. This allows users to rely on existing data loaders

from the widely used deep learning frameworks.

5.10 Productivity and Usability

Productivity and usability plays a major role in prototyping applications and de-

signing efficient production frameworks. In recent years, Python has played a major

role to enable such objectives. Specifically for data engineering workloads, Pandas

operator specification has become the state of the art operator specification. In

our research contribution, our objective is to minimiz the programming overheads

by providing a similar API to Pandas. This allows users to migrate existing data

engineering solutions to PyCylon with minimum code changes. When migrating

an existing workload, users will be only modifying an import statement and add a

distributed context to enable efficient data engineering.

The usage of data engineering operators with the sequential relational algebra

operators can be seen in the algorithm 6.

Algorithm 6 Using Sequential Relational Algebra Operators

1: from pycylon import DataFrame
2: import random
3: df1 = DataFrame([random.sample(range(10, 100), 50),
4: random.sample(range(10, 100), 50)])
5: df2 = DataFrame([random.sample(range(10, 100), 50),
6: random.sample(range(10, 100), 50)])
7: df2.set index([0], inplace=True)
8: df3 = df1.join(other=df2, on=[0])
9: print(df3)

The difference between a sequential and distributed operation is the function call

and the way the context is initialized. This is clear from the algorithm in 7. Here

we provide a similar API to Pandas and optimize the API to provide minimum code

60

change to do code migrations efficiently. The availability of local and distributed

operators allow a user to develop an application with dynamic capabilities to solve

complex data engineering problems more easily. Another advantage of having this

mode of API support allows user to use pleasingly parallel or local operators along

with the distributed operators with minimum code changes.

Algorithm 7 Using Distributed Relational Algebra Operators

1: from pycylon import DataFrame, CylonEnv
2: from pycylon.net import MPIConfig
3: import random
4: env = CylonEnv(config=MPIConfig())
5: df1 = DataFrame([random.sample(range(10*env.rank, 15*(env.rank+1)), 5),
6: random.sample(range(10*env.rank, 15*(env.rank+1)), 5)])
7: df2 = DataFrame([random.sample(range(10*env.rank, 15*(env.rank+1)), 5),
8: random.sample(range(10*env.rank, 15*(env.rank+1)), 5)])
9: df2.set index([0], inplace=True)
10: print(”Distributed Join”)
11: df3 = df1.join(other=df2, on=[0], env=env)
12: print(df3)
13: env.finalize()

Algorithm 8 shows way data filtering operators are designed in PyCylon DataFrame

API similar to Pandas. In addition to the usage of context, the rest of the data engi-

neering code is designed to match with existing Pandas definition for data filtering.

Similar to a regular Pandas program, our APIs provide the ability to retrieve a sub-

set of data by providing a slice of row indices like 1 : 3, providing a column name/s

and retrieving those values, filtering out a sub set of data by using a comparator

operation and filtering a dataframe using another dataframe with boolean values on

the entire table.

Algorithm 9 shows way data location operators are used with indexing. This

also has a similar syntax compared to Pandas dataframe. Here the user can either

set an index manually by providing index values or use an existing column to set

61

Algorithm 8 Using Data Filtering Operators

1: from pycylon import DataFrame
2: data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
3: df = DataFrame(data)
4: df1 = df[1:3]
5: df2 = df[’col-1’]
6: df3 = df[[’col-1’, ’col-2’]]
7: df4 = df > 3
8: df5 = df[df4]
9: df8 = df[’col-1’] > 2

the index. Then loc operation can be executed by providing slice of starting and

end indices with expected columns.

Algorithm 9 Indexing Operator

1: from pycylon import DataFrame
2: data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
3: df: DataFrame = DataFrame(data)
4: df.set index([’a’, ’b’, ’c’, ’d’])
5: df1 = df.loc[2:3, ’col-2’]
6: df2 = df.loc[2:3, ’col-3’:’col-4’]

Algorithm 10 shows the way math operations can be used on the dataframe with

scalar values and dataframes with similar shapes. Currently PyCylon support the

operations on a sequential mode and embarassingly parallel mode. We have not yet

implemented distributed operations for a adding a table from one process to a table

in another process.

Algorithm 10 Math Operators

1: from pycylon import DataFrame
2: data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
3: df: DataFrame = DataFrame(data)
4: df1 = df + 1
5: df2 = df1 * 10
6: print(df2)
7: df3 = df1 + df2
8: print(df3)

62

Algorithm 11 shows duplicate handling can be done using the dataframe. This

semantic similar to Pandas routine.

Algorithm 11 Drop Duplicates Operators

1: from pycylon import DataFrame
2: import random
3: df1 = DataFrame([random.sample(range(10, 100), 50),
4: random.sample(range(10, 100), 50)])
5: df3 = df1.drop duplicates()
6: print(”Local Unique”)
7: print(df3)

Algorithm 12 shows duplicate handling can be done using the dataframe as

a distributed operation. This semantic similar to Pandas routine except for the

designation of the PyCylon context to identify it as a distributed operation.

Algorithm 12 Distributed Drop Duplicates Operators

1: from pycylon import DataFrame, CylonEnv
2: from pycylon.net import MPIConfig
3: import random
4: env = CylonEnv(config=MPIConfig())
5: df1 = DataFrame([random.sample(range(10*env.rank, 15*(env.rank+1)), 5),
6: random.sample(range(10*env.rank, 15*(env.rank+1)), 5)])
7: print(”Distributed Unique”, env.rank)
8: df3 = df1.drop duplicates(env=env)
9: print(df3)
10: env.finalize()

63

CHAPTER 6

PERFORMANCE AND BENCHMARKS

To evaluate our system under stress tests, we did a couple of benchmarks by

grouping our compute operations as parallel and sequential execution mode. For

sequential operations we benchmarked our system with Pandas since it is consid-

ered as the state of the art dataframe implementation on CPUs. For distributed

operations, we compared the performance with Dask distributed Dataframe which

is an implementation to scale Pandas on CPUs. Also, we conducted another set

of benchmarks to compare our sytems performs compare to NVIDIA GPU devices

with Rapids Cudf. Apart from this we also benchmarked the performance of our

languge bindings compared to the C++ core to identify the overheads from each

language binding.

6.1 Indexing and Searching

For indexing experiments we conducted three sets of experiments to show case the

indexing performance, search performance and overall performance for a search fol-

lowed by indexing. Generally an indexing operation is done once or a few times,

but search operations dominate if there are more queries associated with a problem.

Here we conducted the indexing experiment by using a dataset ranging from 100

million records to 1 billion records. These records were generated such that 10% of

the keys are unique in the indexing column. This data distribution provides us the

ability to test the ability to query large number of data pointing to the same key. In

the search operation we search for all unique keys in the data distribution. Figure

6.1 shows the performance results gathered from this experiment. Here we can see

that, PyCylon vector indexing mode outperforms Pandas indexing mode while Py-

Cylon hash indexing mode is much slower compared to Pandas. The main reason

64

for this slowness is that, internally when we build the hash index, we populate a

multi-map (a C++ standard multimap) which takes more time to build the map

under large number of hash collisions are present.

Figure 6.1: Indexing Operation Performance

When considering the search experiments, we used the aforementioned data dis-

tribution with the same index. Figure 6.2 shows the results obtained for loc opera-

tion or search operation. The results show that both PyCylon search implementa-

tions performs the search much faster when compared to the Pandas implementation.

Since we observed that, the indexing performance for hash-based indexing is

much slower in PyCylon compared to default indexing mode in Pandas, we con-

ducted another experiement by taking the indexing factor into consideration and

calculated the total time taken to do a search followed by an indexing operation.

In a real world scenario the number of searches per indexing operation is a factor

which is greater than or equal to 1. Figure 6.3 shows the experiments conducted

with the aforementioned scenario. Eventhough the hash indexing performance is

65

Figure 6.2: Search By Value Operation Performance

slow in PyCylon, it is clear that a search operation followed by indexing is still

faster compared to the time taken to Pandas to do the same operation.

6.2 Duplicate Handling

Duplicate handling operator refers to the drop duplicate function. Here we bench-

marked records generated such that 10% of the data is unique. Figure 6.4 shows the

results for the experiments conducted compared to Pandas. This shows that with

the increasing data size, PyCylon is performing faster compared to Pandas.

6.3 Comparator Operations

In comparator operations we refer to the operators which determine whether a par-

ticular value is greater, lesser, greater than or equal, lesser than or equal, not equal

and equal operators. With respect to a dataframe these operators mean the same

66

Figure 6.3: Indexing and Search By Value Operation Performance

Figure 6.4: Duplicate Handling Operation Performance

67

idea. Figure 6.5 shows the results from the conducted experiments. Here we observe

that the PyCylon comparator operator is slower in performance compared to that

of Pandas. We did a micro-benchmark and observed that the internal performance

for computation of the filter is as fast as Pandas. But the boolean valued output

created for each column must be transformed to a PyCylon table. In Arrow, the

overhead observed in creating a boolean type table is much higher than creating

a table with numerical values. We believe that this will be further enhanced in a

future Arrow release. In addition to this, we also support these computation do be

done either using Arrow or Numpy compute kernels.

Figure 6.5: Comparator Operation Performance

6.4 Math Operations

Math operations we benchmarked are basic operations like scalar addition, subtrac-

tion, multiplication and division. Here the benchmark refers to a scalar addition to

the dataframe created with the variable number of records. Here we observe that the

68

performance of Pandas and PyCylon is very close. Here we internally use Numpy

and Arrow interface as the compute engines to do these linear algebra operations.

Both compute engines performs similarly. In the benchmark the compute engine

can be specified by passing a configuration parameter to the context.

Figure 6.6: Math Operation Performance

6.5 Null Handling

Null handling operator benchmark is designed with 90% of null values in the records

and dropna operator is executed to drop null values on the dataframe for all columns.

Here the performance benchmark is shown in figure 6.7. These results show that

our null handling implementation executes faster compared to the Pandas operator.

This operation is executed on column-wise.

69

Figure 6.7: Null Handling (DropNa) Performance

6.6 Distributed Join Performance

In this experiment, we used 200M records per relation (for both left and right tables

in a join) and scaled up to 128 processes. Here we generated random data by

considering the uniqueness of data to be 10% such that the join performs under

a higher stress considering hash functions and hash based shuffles. In the parallel

exeperiments, each process will be loading equal amount of data such that the total

amount of data is limited to 200M records. The results from figure 6.8 show that our

distributed join implementation is faster compared to dask implementation. Also,

the scalability in dask is not very strong compared scaling provided by PyCylon.

6.7 Distributed Drop Duplicates

Distributed drop duplication operation is a widely used operator to organize the

data such that overall data in a distributed computation must be unique based.

This is a vital operator when distributed deep learning is done in data parallel

70

Figure 6.8: Distributed Join Performance

manner. For this experiment we used 500M records of data generated with 10%

uniqueness where 90% of the data must be cleaned up for duplicate handling. Here

the performance comparison compared to Dask distributed shows that PyCylon is

scaling better than Dask. And also we observe that the Dask workload doesn’t scale

after parallelism 32.

6.8 Join with CPU and GPU

Since PyCylon only supports for CPU-based computations, we conducted an ex-

periment to compare the join performance with CuDF on GPUs. Here we selected

an experiment criteria where full resources of a CPU node is compared to the full

resources of a single GPU device. For this comparison we selected, Intel(R) Xeon(R)

Platinum 8160 CPU @ 2.10GHz as CPU and NVIDIA TESLA T4 for GPU. The

CPU base experiments are executed on 48 cores while GPU based experiments are

consuming all cuda cores (this depends on Cudf internal operations) of the GPU

71

Figure 6.9: Distributed Drop Duplicates Performance

device. Here we selected the sort algorithm of PyCylon for join benchmark. Fig-

ure 6.10 shows that the performance of a single GPU device vs the used multi-core

CPU has similar performance. Eventhough CPU with single core performs slower

compared to fully Cuda core utilized GPU, the multi-core response provides the

same result. This shows that, still CPUs can be used to get descent performance

compared to a GPU. The important fact is that, the time taken for join operation is

much higher compared to other data engineering operators. For instance the math

operators in GPU is much faster that of in CPUs. But still in a data engineering

query, if a single join query is there the time taken for that query is much higher

compared to other vector operations. This also shows how resources can be utilized

in a maximum manner. Another important fact is the memory limitation. The

memory limit in the CPU node we used is 250 GB while the limit of the GPU de-

vice is 16 GB. In the particular CPU we can execute much larger data engineering

workload compared to the Single GPU device for the same performance. In terms

of pricing, in GCP GPU node hourly costs 2.33 USD dedicated and GPU node costs

72

0.35 USD. Compared to the workload size limitation, the capacity the CPU can

handle is approximately 15 times. Here the cost vs the resource utilization ratio is

much favorable to the CPUs. This doesn’t state that the CPU is faster than GPUs,

but the overall cost and computation capacity of using a CPU is favorable compared

to a GPU.

Figure 6.10: Join CPU vs GPU Performance

6.9 Overhead from Python

One of the most important attributes for creating high-performance data engineering

libraries is that, understanding the overheads caused by language bindings. Espe-

cially, in the case of Python, there are some overheads when systems are designed

in-efficiently. Here, we conducted a set of tests to evaluate the performance of the

language bindings by considering a set of operators. Figure 6.11 shows that the

overhead caused by language bindings is very small compared to the core C++

API. Especially, the overhead from the Python layer is negligible when compared

73

to Java. These results were obtained by experimenting with multiple processes for

an inner-join with 200M records per relation.

Figure 6.11: Performance Overhead by Language Bindings

74

CHAPTER 7

INTEGRATION WITH DEEP LEARNING FRAMEWORKS

Since the objective of our research is to make available the HPC-based data

engineering framework for data analytics aware computations, we also designed our

system such that we can effortlessly integrate with existing distributed data analytics

frameworks by using the existing core of PyCylon. In a data analytics aware data

engineering workload, there are three main factors that governs the usability and

performance.

• Single source including data engineering and data analytics

• Simple execution mode for sequential and distributed computing

• Support for CPUs and GPUs for distributed execution

Single source is a very powerful concept when it comes to data analytics with

data exploration. For such workloads feature engineering and data engineering com-

ponents are extensively modified to see how the data analytics workload performs

for different settings. In such cases, the data scientist must have the room to write

the usual Python script and run the data analytics workload efficiently not only

in single node, but also in across multiple nodes. Simple execution mode refers to

running the workload with a simple mode to spawn the processes to run in parallel.

When considering vivid frameworks, they provide various ways to execute the

framework on multiple nodes. For instance, frameworks like Dask require to start the

workers and schedulers on each node and provide host information for distributed

communication. On top of that, MPI provides a single execution command mpirun

to spawn all the processes. Such factors are important in providing a unified interface

to do deep learning easily. Also the execution mode on various accelerators for deep

learning is a very important component. Majority of the frameworks supports both

75

CPU and GPU execution. So it is vital to provide the support to seamlessly integrate

with these execution models to support data analytics workloads.

Figure 7.1 shows the high level component overlay of a data analytics aware data

engineering workload. Here we have partitioned the workflow into 4 stages.

• Stage 1: In the first stage depending on the parallelism, the processes must

be spawned. A unified process spawning mechanism which identifies worker

information such as host ip addresses for each machine, network information,

etc are identified at this stage.

• Stage 2: Worker information is extracted and data engineering operators will

run in distributed mode on top of the data engineering platform which depends

on the worker initialization component. Here the operations can be distributed

or pleasingly parallel.

• Stage 3: For data analytics workload, the worker information, network infor-

mation, chosesn accelerator and data must be provided from the corresponding

data engineering process. This mapping is 1:1 for data engineering worker to

data analytics worker. But also, this can be a many to many relationship.

• Stage 4: The worker information, network information and data will be used to

execute the data analytics workload in distributed mode or pleasingly parallel

manner.

Considering this generic overview on deploying deep learning workloads with

data engineering workloads, we have integrated PyCylon with PyTorch distributed

data-parallel, Horovod-PyTorch distributed data parallel and Horovod-Tensorflow

distribtued data-parallel models. Horovod has become an state of the art distributed

deep learning framework which supports a unified API for supporting distributed

deep learning for multiple deep learning frameworks. PyTorch, Tensorflow and

76

Figure 7.1: Integrating Data Engineering Workload with Data Analytics Workload

MXNet and supported by Horovod. In our research, we pay close attention towards

PyTorch and Tensorflow. Horovod internally uses mpirun to spawn the processes

and this model very well fit with PyCylon internals as we rely on mpirun to spawn

the processes. This makes PyCylon uniquely qualified to become a supporting data

engineering framework for Horovod.

7.1 PyTorch

PyTorch provides a distributed data parallel (DDP) module from the distributed

runtime which allows the user to initialize an existing model using DDP to make

available distributed computing easily. But the key factor is choosing the distributed

runtime either MPI, NCCL or GLOO.

77

7.1.1 Stage 1

The first step is to initialize the runtime. Here either PyTorch distributed initializa-

tion or PyCylon distributed initialization can be called. But for specially on CPUs

the PyTorch initialization must be called since PyTorch internally doesn’t handle

the MPI initialization check. But if we use NCCL as the backend this constraint

is not there. This is one of the bugs we discovered from one of our previous re-

search. For the PyTorch DDP the master address and port must be provided since

the NCCL backend needs to identify which worker is going to be designated as the

master worker to co-ordinate the communication. In addition to that the initializa-

tion method must be set. After the distributed initializaiton in PyTorch, PyCylon

context must be initiailzed to set to distributed mode. After this stage we complete

the requirements for stage 1 and partial requirements for Stage 3 (network informa-

tion is also passed along with data in stage 3 which is being initialized in this step).

Figure 7.2 shows a sample code snippet related to the initialization step.

Figure 7.2: Stage 1: Initialization for PyTorch With PyCylon

78

7.1.2 Stage 2

The data engineering workload is done as usual in PyCylon assuming the distributed

mode initialization. Here what we do is join two table and use the join response

for a deep learning workload. Here we call the distributed join by providing the

initialized context information to the join function. At the end of this stage we create

the resultant dataframe and later on in the stage 3, this dataframe can be used to

generate the Numpy array required for deep learning. This stage is common for any

framework including PyTorch, Tensorflow or any other deep learning framework.

Figure 7.3 shows a sample data engineering workload for a data analytics problem.

Figure 7.3: Stage 2: PyCylon Data Engineering Workload

79

7.1.3 Stage 3

In the stage 3, the data from the stage 2 is used to create tensors required for the

deep learning stage. Also we do the data partitioning for training and testing. This

stage is different from framework to framework since the tensor creation and data

partitioning steps can have various internal utils. Here we don’t used data loaders or

data samplers. But please note that these tools can be used to generate data loaders

or data samplers. Figure 7.4 shows a sample code snippet for data movement from

data engineering workload to data analytics workload.

Figure 7.4: Stage 3: Moving data from Data Engineering workload to Data Analytics
Workload

80

7.1.4 Stage 4

In stage 4, we initialize the deep learning model. Here we also initialize the DDP

model by using the sequential model and we pass device information such that

tensors and models are being copied to the corresponding devices (if accelerators are

involved) for training and testing. This initialization part is vivid from framework

to framework depending on the requirements and APIs. Figure 7.10 shows the

initialization of a DDP model with PyTorch.

Figure 7.5: Stage 4: Distributed Data Analytics Workload

7.2 Horovod with PyTorch

Horovod PyTorch provides the ability to scale on both GPUs and CPUs with a uni-

fied API. Here the importance is PyTorch doesn’t need to be compiled from source

to get MPI capability. Horovod has already offloaded the distributed trainer, opti-

81

mizer and allreduce communication packages so that the internal DDP mechanism

in PyTorch is offloaded.

7.2.1 Stage 1

In the stage 1, the Horovod init method must be called to initialize environment.

Followed by that the Cylon context can be initialized with distributed runtime true.

Followed by this step if the GPUs are used the correct device must be set to PyTorch

Cuda configs. To obtain the device ids we can either use the rank from Horovod

initialization or PyCylon initialization. But Horovod at the moment support the

local rank as well. It is more suitable in terms of effortlessly integrating with the

distributed runtime for Horovod-PyTorch. Figure 7.6 shows a sample code snippet

showing how this is done.

Figure 7.6: Stage 1: Initialization for Horovod-PyTorch With PyCylon

82

7.2.2 Stage 2

Similar to section 7.1.2, the data engineering workload remains irrespective of the

deep learning runtime.

7.2.3 Stage 3

Similar to section 7.1.3, the data engineering output can be converted to a Numpy

array using the endpoints from PyCylon dataframe. Also the tensors can be created

by providing the device ids obtained from horovod runtime and data can be prepared

for deep learning workload.

7.2.4 Stage 4

In Stage 4, followed by the tensor creation step, the Horovod related initialization

must be done to prepare the optimizers, network and other utils for distributed

training. Here, for PyTorch-Horovod integration, the PyTorch’s default neural net-

work model, loss function, optimizer can be used as an input to the distributed

computation enabled Horovod components. Here first the model parameters and

optimizer must be broadcasted using the Horovod broadcast method from 0th rank.

There are two method calls designated for initial network values and the optimizer

values. Also Horovod provides a compression algorithm to select whether a compres-

sion is required for distributed communication. After these steps, the distributed

optimizer must be set by passing the initialized values. Figure 7.7 shows sample

code snippet to initialize a the Horovod components for distributed data parallel

deep learning with PyTorch.

83

Figure 7.7: Stage 4: Distributed Data Analytics Workload

84

7.3 Horovod with Tensorflow

Similar to PyTorch integration, Horovod also supports Tensorflow. Tensorflow has

its own distributed training platform. It contains distributed mirrored strategy as

the equivalent routine for distributed data parallel training.

7.3.1 Stage 1

Similar to PyTorch-Horovod integration, here we initialize Horovod and PyCylon.

And also similar to PyTorch, here we also need to decide how the device is selected

depends on the accelerator. The Tensorflow config API provides the listing of GPUs

and this information is added to the Tensorflow configurations to make available all

the GPU devices. Figure 7.8 shows a code snippet for the aforementioned initial-

ization.

Figure 7.8: Stage 1: Initialization for PyTorch With PyCylon

7.3.2 Stage 2

Similar to section 7.1.2, the data engineering workload remains irrespective of the

deep learning runtime.

85

7.3.3 Stage 3

The data analytics data structure creation is different from framework to framework.

Tensorflow has its own set of APIs to make these steps easier and structured. The

Tensorflow dataset API can be used to create tensors from the numpy arrays and

this API can be used to shuffle and create mini-batches as expected by the deep

learning workload. Figure 7.9 shows a code snippet for the aforementioned steps.

Figure 7.9: Stage 3: Moving data from Data Engineering workload to Data Analytics
Workload

7.3.4 Stage 4

Horovod-Tensorflow also require a set of initialization steps to train a Tensorflow

deep learning model. Similar to PyTorch, here the Tensorflow loss function, op-

86

timization function and neural network model are compatible with Tensorflow-

Horovod internals. Here the gradient tape from Tensoflow autograd can be used

and for this Horovod provides a DistributedGradientTape operator which takes the

gradient tape instance as a parameter. Also priror to training, this Distributed-

GradientTape must be initialized with the model parameters, loss function, and

the optimizer values must be set to initial values. Similar to Horovod-PyTorch,

the model parameters and optimizer values must be broadcasted using designated

Horovod broadcast functions. Figure 7.10 shows a code snippet showing the afore-

mentioned steps.

Figure 7.10: Stage 4: Distributed Data Analytics Workload

87

CHAPTER 8

IMPLEMENTING A SCIENTIFIC WORKLOAD

A scientific application is implemented with the designed framework with end-to-

end workload containing data engineering and data science. Here our objective is to

showcase how a sequential workload can be designed in a distributed manner using

PyCylon and run a deep learning workload seamleesly using a single script with

a unified runtime. Here we selected an application from academic sciences which

involves Pandas dataframe for data engineering and PyTorch for data analytics. The

original application is a sequentially executed application, we have implemented a

distributed version of this application with PyCylon and Distributed PyTorch with

unified execution.

8.1 UNO

UNO application is part of CANDLE[WYMY+, XAB+21] research conducted by

Argonne National Laboratory focused on automated detection of tumour cells using

a deep learning approach. With the dawn of deep learning domain science problems

have gained a lot of attention in converting classical data analytical models to deep

learning. The uniqueness of this workload is the composition of a heavy data engi-

neering workload followed by a data analytical workload written in PyTorch. This

provides us with an ideal scientific experiment to showcase the performance of an

enhanced data engineering system to facilitate efficient data pipeline for a state of

the art scientific problem.

The data engineering workload of the UNO application contains a set of steps to

load the raw data and create the processed data set by using a sub-set of meta data

associated with application. We partition the main dataset of 2.5 million records in

a data parallel manner and use the meta data to pre-process the main dataset.

88

The goal of the UNO application is to provide cross-comparison of cancer stud-

ies and integrate into a unified drug response model. In high-level intuition is to

train a deep neural network on tumour dose responses. Cell RNA sequences, drug

descriptors and drug fingerprints are used as such responses to train the model.

UNO application consists of two main components. The first component is a

data engineering workload which cleans the raw data to formulate the trainable

parameters. In the UNO application there are multiple networks involved in the

training process which are working on smaller datasets and larger datasets. In

our research we focus our attention on the distribtued network which is designed

to calculate the drug response based on the cell-line information. This network is

a regressor which is being supported by two other networks which provides gene

configuration based and drug feature based network.

8.2 Deep Learning Component

UNO refers to a unified deep learning model to predict drug response as a function

of tumor and drug features for personalized cancer treatment. Precision oncology is

focused on providing treatments for specific characteristics of a patient’s tumor. The

drug sensitivity is quantified by drug dose response values which measure the ratio

of treated to untreated cells after exposing to a drug treatment with a specific drug

concentration. In this application a set of drug data obtained from NCI60 human

tumor cell line data base is used with to predict the drug response by considering

gene expression, protein and microRNA abundance. As per the considered scope the

UNO application we focus on the study conducted on single-drug response prediction

done using NCI60 and gCSI datasets. We use 1006 drugs from NCI60 database for

this evaluation and use gCSI for the cross-validation.

89

To evaluate the drug response predictions (regression model), the metrics used

are R2 (explained variance) and mean absolute error (MAE). The input features used

to evaluate drug response are the cell-line gene expression profiles, drug chemical

descriptors and molecular fingerprints. Here the drug response is modelled as a

function of cell-line features and drug properties. The input features are engineered

such that RNAseq expression profiles, drug descriptions, drug fingerprints and drug

concentration is used as input parameters for the deep learning model.

8.2.1 Drug Response Regression Network

Drug response regression network is an ensemble model which uses two other net-

works to support the classification. This network uses rna-sequence data, drug

feature data and drug concentration feature set as input features. The rna-sequence

data becomes an input to a pre-trained model called Gene network. And the drug

feature data are used to train a network called a Drug network. Concatenating

the trained response over the data, a unified model is trained to calculate the drug

response. Figure 8.1 refers to the gene network which is being trained prior to be

an input to the main drug response model. Gene network only contains three dense

layers each followed by a relu. Figure 8.2 refers to the drug network which contains

3 dense layers. This network is also pre-trained prior to be used in the drug response

regression network.

Drug network and Gene network provide a set of concatenated parameters with

another feature called concentration by formulating a 1537 (512 + 1024 + 1) input

size layer for the unified drug response model. Within the drug response regressor,

there is another residual block being used repeatedly. This layer is called drug

response block module, which contains 2 dense layers followed by a dropout layer

90

Figure 8.1: UNO DNN Architecture: Gene Network

Figure 8.2: UNO DNN Architecture: Drug Network

91

and a relu activation layer. Figure 8.3 depicts the response block module.

Figure 8.3: UNO DNN Architecture: Response Block Module

The ensemble model contains a dense input layer of shape 1537 to get the con-

catenated results of the gene-network and the drug network response along with the

concentration value. Followed by the input layer, the residual blocks are stacked

and a set of dense layers are stacked. And finally the regression layer contains a

single output dense layer. Here the number of resp blocks can be customized to dy-

namically as well as the number of dense layers followed by it. All these parameters

can be provided as a hyper-parameter in the application configuration file. Figure

8.4 shows the drug response regressor network.

Note that this network is trained in a distributed data parallel model since this

network contains a very larger dataset and a complex network compared to the other

networks trained simultaneously. The corresponding data engineering component is

also distributed data parallel and discussed in detail in section 8.3.1.

UNO Deep learning component consists of 5 other auxiliary networks trained

on a smaller data sets to predict a few other features. These networks are trained

to get a broader view about the data related to drugs and cell information.In our

92

Figure 8.4: UNO DNN Architecture: Response Network

93

research we paid more attention towards the network with larger data to be trained

efficiently. The other networks are as follows;

• Cell-line category classifier : Tissue category (normal vs tumor) classiciation

• Cell-line types classifier : Tissue type classification (melanoma, gynecologic,

germ cell

• Cell-line Sites classifier : Tissue site classification (lung, skin, eye, etc)

• Drug target family classifier: Predict drug target family

• Drug QED weight classifier : Drug likeness score

The Cell-line related classifiers use a common network configuration defined as

ClfNet. But for each classifer the number of hidden units, activations and output

parameters are different.

8.2.2 Cell Line Category Classifier

The cell line category classifier uses the ClfNet to predict whether the cell category

is a tumor, fibroblast or normal. Figure 8.5 shows the network architecture used for

this network. The data used for this network is RNA sequence data and cell meta

data. The cell-line category classifier is a customized output of a generic model

designed for cell-based data analytics. In this classifier the last layer contains an

output size of 3 to determine the 3 classes identified this classifier. Note that this

network is trained sequentially and the corresponding data engineering component

is also a sequential 8.3.2.

94

Figure 8.5: UNO DNN Architecture: Cell-line Category Classifier

95

8.2.3 Cell Line Types Classifier

The cell line types classifier also uses the ClfNet to predict the cell-line types. This

is also a network customized by using the generic network created for cell-line based

analytics. Figure 8.6 refers to the cell-line types classifier. The difference from the

generic network is is the output size of the last layer which corresponds to the number

of classes (18) predicted by this network. The cell-line types that are classified in

this network are;

• gynecologic

• prostate

• lung

• kidney

• bladder/urothelial

• germ cell

• squamous

• melanoma

• sarcoma/mesothelioma

• head and neck

• endocrine and neuroendocrine

• digestive/gastrointestinal

• unknown

• breast

• hematologic/blood

96

• skin other

• neurologic

• liver/bile duct

Figure 8.6: UNO DNN Architecture: Cell-line Type Classifier

Note that this network is trained sequentially and the corresponding data engi-

neering component is also a sequential 8.3.2.

97

8.2.4 Cell Line Sites Classifier

The cell-line sites classifier is used to predict the cancer sites. For this classification,

the same generalized network is used but the number of classes are 17. Figure 8.7

shows the network configuration used for this classifier. The cancer sites identified

by this network are as follows.

• musculoskeletal

• gynecologic

• testes

• prostate

• lung

• skin

• kidney

• bladder/urothelial

• head and neck

• endocrine and neuroendocrine

• digestive/gastrointestinal

• breast

• hematologic/blood

• eye

• liver/bile duct

• neurologic

• unknown

98

Figure 8.7: UNO DNN Architecture: Cell-line Site Classifier

99

Note that this network is trained sequentially and the corresponding data engi-

neering component is also a sequential 8.3.2.

8.2.5 Drug Target Family Classifier

The drug target family classifier network is designed to identify the drug family.

This network also uses the generic cell-line classifier network to model the required

classifier. The drug families classified by this network are as follows;

• chaperone

• transferase

• enzyme modulator

• hydrolase

• receptor

• nucleic acid binding

• transporter

• signaling molecule

• transcription factor

• oxidoreductase

The data processing relevant for this network is discussed in the section 8.3.3.

This network is also trained sequentially and the corresponding data engineering

workload is also sequential.

100

Figure 8.8: UNO DNN Architecture: Drug Target Family Classifier

101

8.2.6 Drug QED Regression Network

The drug QED network refers to the calculation of quantitative estimation of drug-

likeliness. This is a very important study for selecting compounds in the early

stages of drug discovery. This regression network is designed to obtain the likeliness

score for the drugs used in this analysis. Figure 8.9 shows the network designed

to calculate the druglikeliness. This network is also trained sequentially as per this

application and the corresponding data engineering workload is discussed in section

8.3.3.

Figure 8.9: UNO DNN Architecture: Drug QED Regression Network

102

8.3 Data Engineering Component

UNO application uses 2.5 million samples of cancer data across six research centres.

This model analyses the study bias across these samples to design a unified drug

response model. Before building this model, the application comprises a heavy data

engineering workload written in Pandas. The data engineering component is over

3000 lines of code in Pandas. This application uses the following data engineering

operators.

• concat (inner-join)

• to csv

• rename

• read csv

• astype

• set index

• map

• isnull

• drop

• filter

• add prefix

• reset index

• drop duplicates

• drop duplicates (unique)

• not null

103

• isin

• dropna

The existing data engineering workload is written in Pandas and doesn’t scale.

We re-engineered this application to a scalable data engineering workload and de-

sign a seamless integration between data analysis and data engineering workload

consuming state of the art high-performance computing resources. Also we inte-

grated a Modin based implementation to show case the performance comparison

with our implementation. The data engineering workload is executed in CPU-based

distributed memory and the data analytical workload. We use Pytorch for data

analytics workload and extend to use PyTorch distributed data-parallel training.

Also, our objective is to integrate a HPC based full-stack of data analytics aware

data engineering for scalability. This feature is only supported by PyCylon at the

moment. And also, we stress out the importance of designing a BSP based model

for deep learning workloads associated with data engineering components for better

performance and scalability in HPC hardware.

8.3.1 Drug Response Data Processing

The data analytics component requires a set of features to be engineered from the

raw data. Here there are three main datasets required to create the complete dataset

used to create the drug response model. Figure 8.10 refers to the main dataset which

contains the drug response. The raw dataset contains additional features so in the

initial stage the data is loaded and the expected features are extracted by a column

filtering operation, select. Then a map operation is performed to pre-process a

drug id column to remove symbols from the columns to create a consistent drug

id. Once the data is cleaned, it is scaled by using the Scikit-learn pre-processing

104

library for scaling numerical values. Then the data is fully converted into a numeric

type to provide numeric tensors at the end for the deep learning workload. In the

parallel mode, we partition this dataset with the set parallelism and passed to the

corresponding operators.

Figure 8.10: Drug Response Data Processing

To formulate the global dataset, we require two other datasets which is used as a

meta-data to filter and process the the main drug response dataset. The first dataset

is the drug feature raw dataset. This dataset contains drug features required to be

in located in the drug response data. Here there are two sub-data sets contributing

to formulate the drug feature dataset. We merge them by performing an inner join

on the dataset based on the index formed on the drug ids. After that we cast the

data into numeric types and output as a numeric array which later converted to a

numeric tensor for deep learning. This data processing workflow is shown in figure

105

8.11.

Figure 8.11: Drug Feature Data Processing

The other dataset required is the RNA sequence data set containing information

about RNA sequences. Here the data set is first processed to remove specific symbols

by a map operation and then duplicate records are dropped by using drop duplicate

operator. Then an index is set for this dataset and later on scaling is done on the

numeric data using the Scikit-Learn preprocessing library. Finally the data is casted

to a numeric type and pre-processed RNA-sequence data is formulated as a Numpy

array which later converted into a numeric Tensor for the deep learning workload.

This data processing pipeline is shown in figure 8.12.

Once the Drug response initial dataset, drug feature data and RNA-sequence

data is pre-processed the final dataset for drug response model is engineered as shown

in the figure 8.13. The processed drug response data is further feature selected and

unique operation is applied. Then the RNA sequence data is filtered by checking

whether specific drug related RNA sequences are present and the same is done for

the drug feature data set. These two operations are done by the isin operator. Then

106

Figure 8.12: RNA Sequence Data Processing

107

the common drug set is selected by performing a and operation and later use these

common drug related drug response data filter to get the final drug response data.

Figure 8.13: Drug Response Overall Data Processing

Among the operators used, since we partitioned the data each data engineering

operator can work independently in a pleasingly parallel manner. But we can use

the distributed unique operator to make sure no duplicate records are used for

deep learning across all processes. Note that the data engineering component of

this application is basically feature engineering meta data and use them to filter a

very large dataset which is converted to formulate the expected input for the drug

response model.

108

8.3.2 Cell-line Data Processing

The cell-line data processing component produces the numerical data required for

the data analytics in the neural networks discussed in section 8.2.2, 8.2.4, 8.2.3 and

8.2.5. Here the first step is to load the cell-line information by pre-processing the raw

data for cell-line information. Figure 8.14 shows the initial step to pre-process the

cell-line meta data to extract the cell-meta data. Here the operations are executed

in a sequential passion, followed by a set of filtering operations. And a encoding

operation is used to convert the string naming conventions to a numeric category

for classification. In the final step, the data is converted to a numpy array later to

be converted into a tensor for the deep learning workload.

Figure 8.14: Cell-Meta Data Processing

Using the pre-processed cell-line meta data, the overall feature set required for

the deep learning component is engineered as shown in the figure 8.15. Here we use

109

the pre-processed RNA-sequence data along with the cell-line meta data to formulate

the final feature vector by performing a join operation on the drug sample column

information in RNA-dataset.

Figure 8.15: Cell Feature Meta Data Overall Processing

8.3.3 Drug Property Data Processing

The drug property data engineering component produces the data required to train

drug target family classifier 8.2.5 and drug QED regression network 8.2.6. Initially

the drug property data is pre-processed by loading the raw data CSV and filtering

columns and setting up an index followed by a numeric cast option. This is a very

straightforward sequential data processing component. Thus the drug property data

is pre-processed as shown in the figure 8.16.

The pre-processed drug property data set is used to obtain the dataset required

for the drug QED regression network. Figure 8.17 shows the corresponding workflow.

Here the drug property data is used and drop all the null values, scaled using Scikit-

learn pre-processing library and finally cast to numeric types to be used in the deep

learning network to form tensors. Using the pre-processed drug feature data (a

110

Figure 8.16: Drug Property Data Processing

sub input to the drug response network) and drug QED feature data the dataset

required for drug QED regression network is formulated as shown in figure 8.18.

8.4 Performance Evaluation

The original application implemented is a single threaded application which is im-

plemented on Pandas for data engineering and PyTorch for deep learning. Our

main goal was to implement the sequential version of the application and improve

the sequential performance. After the first stage we conducted distributed exper-

iments to see how we can scale our workload on CPUs for data engineering. We

also extended the deep learning component of this application by integrating with

PyTorch distributed execution framework on both CPUs and GPUs using MPI and

NCCL respectively. In this benchmark our objective was to seamlessly integrate

a deep learning aware data engineering workload using a single Python data engi-

neering and deep learning script with a single runtime. Also note that we use the

111

Figure 8.17: Drug QED Feature Data Processing

Figure 8.18: Drug QED Data Processing

112

drug response network related larger data distribution for the application bench-

mark while the smaller networks only takes a very smaller execution time compared

to this larger model.

For the experiments we used two set of clusters for CPUs and GPUs. For CPUs,

we used the future systems Victor cluster with 6 nodes and 16 processes per each

on the maximum parallelism. This cluster contains Intel(R) Xeon(R) Platinum

8160 CPU @ 2.10GHz machine per each node. For GPU experiments we used

Tesla K80s with 8 GPU devices on Google Cloud Platform. For single-node single-

process executions, we used same Victor nodes. Here for the sequential performance

comparisons we use Pandas, PyCylon (single core) and Modin (single core). And for

the distributed performance comparisons we use PyCylon and Modin on single node

multi-core scaling. We selected Modin instead of Dask, because it is more close to

the data engineering stack proposed by PyCylon because of eager execution and the

ability to convert an existing Pandas data engineering workload in a straightforward

manner.

8.4.1 Data Engineering Sequential Performance

We first conducted a set of experiments to evaluate the single process execution of the

propsed system PyCylon, Modin and Pandas. Modin provides the ability to convert

a Pandas data engineering workload by a single line of code where PyCylon provides

a dynamic API for the user to decide the nature of sequential and parallel operators

in a dynamic manner. Here we evaluated the data engineering performance for the

drug response data pre-processing workload used for the drug response regression

network. Figure 8.19 shows the single core performance for the aforementioned

data engineering workload. Here we observe that the performance of PyCylon and

113

Pandas are very similar while Modin is quite slower. This performance improvement

includes data loading efficiency plus overall operator performance improvements.

But in a general way, Pandas and PyCylon have almost similar performance in

most operators except for data loading, duplicate handling, null handling and search

operations involved in this application. Note that both PyCylon and Modin are

evolving data engineering frameworks to support data engineering on a tabular

data. In the distributed performance evaluation section 8.4.2.

Figure 8.19: Sequential Data Engineering

We investigated the underlying sub components to understand why the sequen-

tial performance in PyCylon is better compared to Pandas. Table 8.4.1 shows the

time taken for significant sub-components. The time breakdown shows that a set of

components are taking a much longer time for the sequential execution. The drug

response data loading, triming data, drug analysis and data split takes a very long

time. We observed that Modin is slower in loading data compared to PyCylon and

much slower in casting data which is a part of the drug response data loading com-

114

ponent. The drug analysis component contains iterating through the dataframe to

create a subset of data by doing a statistics calculation using Scikit-learn. The loop-

ing through the dataframe is quite slow in Modin compared to both Pandas and

PyCylon. The split operation uses the Scikit-learn pre-processing library to eas-

ily partition a dataframe as expected by passing through hyper-parameters. Here

PyCylon can do zero-copy and convert into a Pandas dataframe to do this effi-

ciently while Modin cannot be converted to a Pandas dataframe. Irrespective of the

third party library performance with Modin, we observe that the core operators in

dataframe are quite slower in Pandas when it comes to the Uno application.

Data Engineering Component PyCylon Modin
Drug response load 34.06 254.95

Drug feature extraction 1.42 0.44
RNA sequence load 2.47 3.33

Trim data 14.18 64.38
Drug analysis computation 386.25 744.38

Cell meta data load 0.044 0.33
RNA feature extraction 0.76 23.24

Data split 0.34 2515.05

Table 8.1: PyCylon vs Modin Sequential Time Breakdown for Data Engineering

8.4.2 Data Engineering Distributed Performance

First we conducted a single node performance evaluation metric based on various

data engineering components in the application. Here we compared the multi-core

performance of Modin vs PyCylon. We encountered scaling the Modin dataframe

across nodes so, we conducted this initial set of performance to compare the per-

formance with Modin. The current Modin documentation also mentions that the

distributed component is experimental. And also we found out most of the Modin

benchmarks in the published research are done on multi-core by comparing with

115

Pandas. Figure 8.20 shows the multi-core data parallel data engineering time break-

down for PyCylon vs Modin. Here we observe that the PyCylon is scaling relatively

well compared to Modin.

Figure 8.20: Multi-Core Data Parallel Data Engineering Performance

Considering the speed up gain compared to the base implementation of each

framework, we plotted the speed up graphs as depicted in figure 8.21. The speed

up from Modin is relatively low compared to PyCylon. Here the Modin dataframe

is internally using Ray to scale up the dataframe. This is the default execution

engine for Modin. By design, Modin doesn’t have its own distributed execution

engine, but rely on Ray to do the distributed computation. In PyCylon we have

multiple modes of executing the application, distributed data parallel, pleasingly

parallel and sequential. With the nature of this application we use a pleasingly

parallel approach to execute the application. We also investigated whether Modin

can provide dynamic parallelism as required by the application and we found out

Modin doesn’t have this capability. In case of Modin, the output is shown as a

116

sequential view or a one dataframe and operators are executing in a distributed

manner. But in PyCylon’s case, the dataframe is in the distributed memory. Each

process contains its own dataset corresponding to the dataframe. We evaluated and

verified the accuracy of the data engineering component by calculating the number

of data points produced by the sequential version compared to the output from the

distributed versions. In addition, we also performed micro-level validations for data

engineering steps to verify that we are using correct number of drugs and cell-line

information at intermediate stages of the distributed computation.

Figure 8.21: Multi-Core Data Parallel Data Engineering Speed Up

In order to understand how the parallelism works for the data engineering work-

load, we did a micro-benchmark for the multi-core experiments by partitioning the

data engineering components into main component which produces sub-datasets.

Figure 8.22 shows the time breakdown for these data engineering components. These

results were taken by running the application in distributed mode on 32 CPU cores

on a single machine. Here we can see that the majority of the time is taken for drug

117

analysis computation. This workload is a numerical calculation done on a drug

analysis data. In this computation the majority of the time is taken because there

is a iterative computation happening on Python with a Scikit-Learn data processing

library. We also observed that, the majority of this time is taken on iterating the

loop in Python. Here 2.5M samples are being iterated to do this calculation. We

didn’t improve this performance by doing further forking processes since it hinders

distribution execution of threads along with MPI processes. But this execution can

be improved by offloading this to a C++ kernel. But in general data engineer-

ing practices, we cannot introduce generic kernels to do such operations which are

application dependent.

Figure 8.22: Distributed Data Engineering Time Breakdown

Also figure 8.23 shows the time breakdown for the same experiment conducted

on time breakdown based on total time as a percentage. Here it is clearly seen

how distributed components reduces as parallelism increases and how non-parallel

components related to meta-data pre-processing is a constant component of the

118

overall workload. The figure clearly shows that the majority of the time is spent on

the drug analysis computation.

Figure 8.23: Distributed Data Engineering (CPU) Percentile Time Breakdown

Figure 8.24 shows the data engineering time for distributed experiments across

multiple nodes. Here we used 6 physical nodes of the victor cluster and each node

uses 16 processes for the computation. Here we observe that even though the work-

load is scaling, the scale up factor is not that significant. The major reason for

this is the dominant drug analysis computation in the data engineering compo-

nent. Even though the data is partitioned, the majority of the time is spent on this

component compared to other components. We encountered problems in scaling

Modin dataframe across multiple nodes. Also note that Modin framework is also an

evolving framework similar to PyCylon in the parallel dataframe domain.

119

Figure 8.24: Distributed Data Parallel Data Engineering

8.4.3 Data Analytics Distributed Performance

For the data analytics scaling experiments we used PyTorch distributed communi-

cation framework with MPI for CPUs and NCCL for GPUs. The single process

experiment results are same for both PyCylon and Pandas and both are using the

same PyTorch code base for this. And also, all the data are in-memory prior to deep

learning workload, so there is no overhead in loading data to create minibatches.

The experiments conducted on CPUs are scaling well across multi-nodes, but we also

observe a slight memory overhead causing the application to scale below the ideal

scaling. We conducted more experiments to evaluate if there is an overhead from the

data engineering framework, but we observed no significant overheads causing less

scaling on CPUs. Figure 8.25 shows the single process and distributed experiments

carried out on CPUs. Here we use the PyTorch build from source to enable MPI

execution as it is a requirement forced by the framework. One significant factor is

that PyTorch becomes an ideal distributed computation deep learning framework

120

for PyCylon since, PyCylon also supports and MPI backend for distributed compu-

tation.

Figure 8.25: Distributed Data Parallel Data Analytics on CPU

For the GPU-based experiments we used a single node multi-GPU experiment

setting to see how the data analytics workload can be scaled on NCCL execution

framework with PyTorch. Figure 8.26 shows the results for single GPU and multi-

GPU experiments. Here we observe that the execution time is dominated by the

communication time. With the increase of parallelism, the number of communica-

tion across devices increases but the number of batches that has to be sent across

devices lowers. So that it gives an advantage in scaling. When we consider the com-

putation time, we observe that scaling happens closer to the ideal point of scaling

in all parallel settings. Also, we observe that the computation is much faster in

parallelism 2 compared to parallelism 1 where the memory overhead is 50% lesser

compared to the sequential execution. When considering the CPU vs GPU perfor-

121

mance for the deep learning workload, we observe that the speed up from GPUs is

2x compared to the CPUs compared to this network.

Figure 8.26: Distributed Data Parallel Data Analytics on GPU

122

CHAPTER 9

CONCLUSION

The distributed data engineering framework, PyCylon currently contains over 40

dataframe operators with the capability of scaling up to multiple machines or run

sequentially. From our current micro-benchmarks conducted on each data engineer-

ing operator, it shows that our research effort is promising even in single process

execution compared to the state of the art dataframe Pandas. Besides, PyCylon

scales well compared to the state of the art distributed data engineering framework

Dask under computationally intensive workloads. In terms of usability and adapt-

ability, we have also designed a very familiar API compared to Pandas and provided

distributed computing capability on dataframe by changing a few lines of code. Un-

like the existing work, our dataframe is specially designed for HPC workloads and

works well on HPC hardware. In terms of an external viewer, PyCylon dataframe is

basically a dataframe for MPI which was a missing component until now. Besides

evaluating the framework just on operators, we also engineered our framework to

design a real world scientific workload. Here we designed an end-to-end data ana-

lytics aware data engineering workload using PyCylon and obtained better results

compared to the original implementation. Since the original implementation was

just sequential, we were also able to provide scalability for the application. This ef-

fort shows that, our data engineering framework can be a promising tool for scaling

data engineering workloads specifically on HPC.

123

CHAPTER 10

RESEARCH GOALS IN ACTION

The focused research problems and research goals have been transformed to

practical research outcomes as follows.

1. Evaluating the limitations of existing big data frameworks for distributed data

analytics: Regarding Java based data engineering and data analytics, the

research work we conducted in the past two years were mainly focused on

JVM-based high performance data engineering and analytics[AFK19, AFK+].

We researched on implementing machine learning algorithms in distributed

memory using high performance Java and C++. One major discovery was

that, even though JVM-based systems can be further enhanced for high perfor-

mance using high performance kernel interfaces for JVM, an equivalent C++

implementation outperformed JVM-based implementations for large scale data

analytics with higher dimensionality. In the related research we used the state

of the art BLAS and MPI libraries for high performance computation and

communication. This motivated us to investigate deeply into C++ based

high performance kernel development for data engineering. The literature re-

view conducted on the existing Python-based data engineering and some of

our preliminary research shows that, these systems can be further enhanced

[APW+20].Besides our deeper study on the internals of a system, the ma-

jor data analytic tools like PyTorch[PGM+19] and Tensorflow[ABC+16] show

cases that the necessity of standalone data analytics tools specialized for spe-

cific tasks. This is a scope beyond just big data computing. Besides, this shows

that the importance of being seamlessly integrated with the existing software

stack for data analytics and making compatible data engineering systems to

run at scale.

124

2. Importance and necessity of high performance computing for data analytics

aware data engineering: With a deep analysis on the existing technology

based on the rapid growth of data analytics, classical data analytics platforms

on low performance Python stack slowly converted to frameworks like Py-

Torch, Tensorflow and Chainer with the usage of C++ kernels in the core of

computation and communication. Our initial literature reviews and existing

research pointed out that the high performance computing with a low level

system design could be the key towards improving existing systems. Our own

research related to high performance data engineering [WPA+20, PAW+20,

APW+20] showed that, existing data engineering frameworks in both Java

and Python are not scaling well in the high performance computing environ-

ments. Furthermore, our preliminary findings on this also showed that a high

performance Python approach with C++ shows better scaling than the exist-

ing state of the art systems. This shows that our approach is promising for

data analytics aware data engineering.

3. Necessity of a distributed memory oriented dataframe for HPC (MPI) on CPUs

for data engineering: We have implemented an early version of a distributed

dataframe abstraction for distributed memory on CPUs. Our initial bench-

marks and API definitions shows that, our proposed method is one of the most

prominent distributed memory dataframe which exists at the moment. The

existing parallel dataframes on CPUs are entirely written on Python which

inherently impose limitations in scaling. Our preliminary research and bench-

marks provides evidence[APW+20]. By designing a high performance dis-

tributed memory dataframe, we can provide better scalability and match up

with the high performance data analytics workloads.

4. Evaluate the necessity of high performance data engineering kernels to im-

125

prove existing dataframe operators: We have implemented a set of widely

used dataframe operators such as indexing, locate by value, unique finding,

duplicate dropping and filtering. These operators are currently performing

faster compared to the existing dataframe solutions. We mainly focus our at-

tention towards Pandas, since it is the state of the art dataframe abstraction

on CPUs. Our current implementations have shown that sequential perfor-

mance of our kernels are promising and can be further enhanced for better

performance.

5. Usability of data engineering tools with high performance computing: High

performance Python has been used to many scientific problems to improve the

performance of existing data analytical and data processing problems. But we

observed that, data engineering as a research problem has not been well stud-

ied or researched with a functional data engineering system. Our research

has specifically focused on the deep level of avoiding memory copying between

programming kernels and user-space. Also, we have focused on retaining the

performance and provide the usability at the same time. We have implemented

a Cython-based middle layer of high performance Python API which allows

us to avoid regular issues found in JVM-based data engineering systems and

Python-based data engineering systems. Furthermore, our Cython implemen-

tations have been extended to use PyArrow and Numpy in C level via Cython

bindings. This allows us to get better performance compared to existing data

engineering frameworks and provide ability to seamlessly integrate with exist-

ing data analytics systems like Pytorch and Tensorflow.

6. Research on the seamless integration of end-to-end scientific data engineering

and data analytics workloads on high performance Python stack: With a high

performance distributed dataframe API and a seamless integration to numer-

126

ical data structures like Numpy and tensors allows us to seamlessly integrate

with existing data analytics workloads. This provides us the capability to

create an entire data pipeline in Python but retain high performance on the

CPU stack and transfer data seamlessly to GPU stack for high performance

data analytics.

127

BIBLIOGRAPHY

[ABC+16] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In 12th {USENIX} symposium on operating sys-
tems design and implementation ({OSDI} 16), pages 265–283, 2016.

[AFK+] Vibhatha Abeykoon, Geoffrey Fox, Minje Kim, Saliya Ekanayake,
Supun Kamburugamuve, Kannan Govindarajan, Pulasthi Wick-
ramasinghe, Niranda Perera, Chathura Widanage, Ahmet Uyar,
Gurhan Gunduz, and Selahattin Akkas. Stochastic gradient descent
based support vector machines training optimization on big data and
hpc frameworks [accepted]. Concurrency and Computation: Practice
and Experience.

[AFK19] Vibhatha Abeykoon, Geoffrey Fox, and Minje Kim. Performance
optimization on model synchronization in parallel stochastic gradi-
ent descent based svm. In Proceedings of the HPML Workshop in
International Symposium in Cluster, Cloud, and Grid Computing,
Larnaca, Cyprus, pages 1–10, 2019.

[apaa] Apache flink - stateful computations over data streams.

[apab] Apache hadoop project.

[APW+20] Vibhatha Abeykoon, Niranda Perera, Chathura Widanage, Supun
Kamburugamuve, Thejaka Amila Kanewala, Hasara Maithree, Pu-
lasthi Wickramasinghe, Ahmet Uyar, and Geoffrey Fox. Data engi-
neering for hpc with python. In 2020 IEEE/ACM 9th Workshop on
Python for High-Performance and Scientific Computing (PyHPC),
pages 13–21. IEEE, 2020.

[AZR17] Bilal Akil, Ying Zhou, and Uwe Röhm. On the usability of hadoop
mapreduce, apache spark & apache flink for data science. In 2017
IEEE International Conference on Big Data (Big Data), pages 303–
310. IEEE, 2017.

[Bis19] Ekaba Bisong. Google colaboratory. In Building Machine Learning
and Deep Learning Models on Google Cloud Platform, pages 59–64.
Springer, 2019.

128

[CLJ+18] Yanzhe Cheng, Fang Cherry Liu, Shan Jing, Weijia Xu, and
Duen Horng Chau. Building big data processing and visualization
pipeline through apache zeppelin. In Proceedings of the Practice and
Experience on Advanced Research Computing, pages 1–7. 2018.

[CLL+15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie
Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang.
Mxnet: A flexible and efficient machine learning library for heteroge-
neous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[cud] Cudf gpu dataframes.

[das] Dask framework.

[DL17] Tomasz Drabas and Denny Lee. Learning PySpark. Packt Publishing
Ltd, 2017.

[Dona] Jack Dongara. Lapack: daxpy.
http://www.netlib.org/lapack/explore-
html/de/da4/group double blas level1 ga8f99d6a644d3396aa32db472e0cfc91c.html.
(Accessed on 06/07/2020).

[Donb] Jack Dongara. Lapack: ddot.
http://www.netlib.org/lapack/explore-
html/de/da4/group double blas level1 ga75066c4825cb6ff1c8ec4403ef8c843a.html#ga75066c4825cb6ff1c8ec4403ef8c843a.
(Accessed on 06/07/2020).

[Eta19] Leila Etaati. Azure databricks. In Machine Learning with Microsoft
Technologies, pages 159–171. Springer, 2019.

[Fox17] Geoffrey Fox. Components and rationale of a big data toolkit span-
ning hpc, grid, edge and cloud computing. In Proceedings of the10th
International Conference on Utility and Cloud Computing, UCC ’17,
pages 1–1, New York, NY, USA, 2017. ACM.

[GG16] B Granger and J Grout. Jupyterlab: Building blocks for interactive
computing. Slides of presentation made at SciPy, 2016.

[Hay20] Wolfgang Hayek. Parallel computing with dask. 2020.

129

[ipy] ipython/ipyparallel: Interactive parallel computing in python.
https://github.com/ipython/ipyparallel. (Accessed on 09/10/2020).

[IS15] Muhammad Hussain Iqbal and Tariq Rahim Soomro. Big data anal-
ysis: Apache storm perspective. International journal of computer
trends and technology, 19(1):9–14, 2015.

[KHAL+14] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian
Serio, and Dietmar Fey. Hpx: A task based programming model in
a global address space. In Proceedings of the 8th International Con-
ference on Partitioned Global Address Space Programming Models,
pages 1–11, 2014.

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jes-
sica B Hamrick, Jason Grout, Sylvain Corlay, et al. Jupyter
notebooks-a publishing format for reproducible computational work-
flows. In ELPUB, pages 87–90, 2016.

[KWG+18] S. Kamburugamuve, P. Wickramasinghe, K. Govindarajan, A. Uyar,
G. Gunduz, V. Abeykoon, and G. Fox. Twister:net - communica-
tion library for big data processing in hpc and cloud environments.
In 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), volume 00, pages 383–391, Jul 2018.

[LDMG20] Sam Lau, Ian Drosos, Julia M Markel, and Philip J Guo. The
design space of computational notebooks: An analysis of 60 sys-
tems in academia and industry. In 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 1–11.
IEEE, 2020.

[M+11] Wes McKinney et al. pandas: a foundational python library for data
analysis and statistics. Python for High Performance and Scientific
Computing, 14(9), 2011.

[mod] Modin dataframes.

[num] Numpy - the fundamental package for scientific computing with
python.

[PAW+20] Niranda Perera, Vibhatha Abeykoon, Chathura Widanage, Supun
Kamburugamuve, Thejaka Amila Kanewala, Pulasthi Wickramas-

130

inghe, Ahmet Uyar, Hasara Maithree, Damitha Lenadora, and Ge-
offrey Fox. A fast, scalable, universal approach for distributed data
reductions. arXiv preprint arXiv:2010.14596, 2020.

[Per18] Jeffrey M Perkel. Why jupyter is data scientists’ computational note-
book of choice. Nature, 563(7732):145–147, 2018.

[PG07] Fernando Pérez and Brian E Granger. Ipython: a system for in-
teractive scientific computing. Computing in science & engineering,
9(3):21–29, 2007.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information
processing systems, pages 8026–8037, 2019.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Ma-
chine learning in python. the Journal of machine Learning research,
12:2825–2830, 2011.

[Roo20] Chat Room. Apache beam. system, 11(17):24, 2020.

[SDB18] Alexander Sergeev and Mike Del Balso. ”horovod: fast and
easy distributed deep learning in tensorflow”. arXiv preprint
arXiv:1802.05799, 2018.

[SGO+98] Marc Snir, William Gropp, Steve Otto, Steven Huss-Lederman, Jack
Dongarra, and David Walker. MPI–the Complete Reference: the MPI
core, volume 1. MIT press, 1998.

[Tes16] Federico Tesser. Distributed message passing with mpi4py. In Eu-
roscipy 2016, 2016.

[TOHC15] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer:
a next-generation open source framework for deep learning. In Pro-
ceedings of workshop on machine learning systems (LearningSys) in
the twenty-ninth annual conference on neural information processing
systems (NIPS), volume 5, pages 1–6, 2015.

131

[twi17] Twister2: Design of a big data toolkit, 2017. Technical Report.

[VdWSNI+14] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias,
François Boulogne, Joshua D Warner, Neil Yager, Emmanuelle
Gouillart, and Tony Yu. scikit-image: image processing in python.
PeerJ, 2:e453, 2014.

[VOS18] AARON VOSE. Interactive distributed deep learning with jupyter
notebooks. 2018.

[WKG+19] Pulasthi Wickramasinghe, Supun Kamburugamuve, Kannan Govin-
darajan, Vibhatha Abeykoon, Chathura Widanage, Niranda Perera,
Ahmet Uyar, Gurhan Gunduz, Selahattin Akkas, and Geoffrey Fox.
Twister2: Tset high-performance iterative dataflow. In 2019 Inter-
national Conference on High Performance Big Data and Intelligent
Systems (HPBD&IS), pages 55–60. IEEE, 2019.

[WPA+20] Chathura Widanage, Niranda Perera, Vibhatha Abeykoon, Supun
Kamburugamuve, Thejaka Amila Kanewala, Hasara Maithree, Pu-
lasthi Wickramasinghe, Ahmet Uyar, Gurhan Gunduz, and Geoffrey
Fox. High performance data engineering everywhere. arXiv preprint
arXiv:2007.09589, 2020.

[WYMY+] Justin M Wozniak, Hyunseung Yoo, Jamaludin Mohd-Yusof, Bogdan
Nicolae, Nicholson Collier, Jonathan Ozik, Thomas Brettin, and Rick
Stevens. High-bypass learning: Automated detection of tumor cells
that significantly impact drug response.

[XAB+21] Fangfang Xia, Jonathan Allen, Prasanna Balaprakash, Thomas Bret-
tin, Cristina Garcia-Cardona, Austin Clyde, Judith Cohn, James
Doroshow, Xiaotian Duan, Veronika Dubinkina, et al. A cross-
study analysis of drug response prediction in cancer cell lines. arXiv
preprint arXiv:2104.08961, 2021.

[ZKD+14] Yili Zheng, Amir Kamil, Michael B Driscoll, Hongzhang Shan, and
Katherine Yelick. Upc++: a pgas extension for c++. In 2014 IEEE
28th International Parallel and Distributed Processing Symposium,
pages 1105–1114. IEEE, 2014.

[ZXW+16] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-

132

aram Venkataraman, Michael J Franklin, et al. ”apache spark: a uni-
fied engine for big data processing”. Communications of the ACM,
59(11):56–65, 2016.

133

Vibhatha Lakmal Abeykoon

EDUCATION

2016 B.Sc., Electrical and Information Engineering

Faculty of Engineering, University of Ruhuna

Galle, Sri Lanka

INTERNSHIPS

2019 Research Intern

Argonne National Laboratory

Lemont, Illinois, United States

2020 Research Intern

Microsoft

Redmond, Washington, United States

PUBLICATIONS

1. Abeykoon, Vibhatha and Fox, Geoffrey and Kim, Minje and Ekanayake,

Saliya and Kamburugamuve, Supun and Govindarajan, Kannan and Wickra-

masinghe, Pulasthi and Perera, Niranda and Widanage, Chathura and Uyar,

Ahmet and Gunduz, Gurhan and Akkas, Selahattin, Stochastic Gradient De-

scent Based Support Vector Machines Training Optimization on Big Data and

HPC Frameworks, Concurrency and Computation: Practice and Experience

[ACCEPTED], 2021.

134

2. Abeykoon, Vibhatha and Perera, Niranda and Widanage, Chathura and

Kamburugamuve, Supun and Kanewala, Thejaka Amila and Maithree, Hasara

and Wickramasinghe, Pulasthi and Uyar, Ahmet and Fox, Geoffrey, Workshop

on Python for High-Performance and Scientific Computing, Supercomputing,

2020.

3. Widanage, Chathura and Perera, Niranda and Abeykoon, Vibhatha and

Kamburugamuve, Supun and Kanewala, Thejaka Amila and Maithree, Hasara

and Wickramasinghe, Pulasthi and Uyar, Ahmet and Gunduz, Gurhan and

Fox, Geoffrey, High Performance Data Engineering Everywhere, 2020 IEEE

International Conference on Smart Data Services (SMDS).

4. Perera, Niranda and Abeykoon, Vibhatha and Widanage, Chathura and

Kamburugamuve, Supun and Kanewala, Thejaka Amila and Wickramasinghe,

Pulasthi and Uyar, Ahmet and Maithree, Hasara and Lenadora, Damitha

and Fox, Geoffrey, A Fast, Scalable, Universal Approach For Distributed Data

Reductions, International Workshop on Big Data Reduction, IEEE Big Data

2020.

5. Wickramasinghe, Pulasthi and Perera, Niranda and Kamburugamuve, Supun

and Govindarajan, Kannan and Abeykoon, Vibhatha and Widanage, Chathura

and Uyar, Ahmet and Gunduz, Gurhan and Akkas, Selahattin and Fox, Ge-

offrey, High-Performance Iterative Dataflow Abstractions in Twister2: TSet,

Concurrency and Computation: Practice and Experience, 2020.

6. Abeykoon, Vibhatha and Fox, Geoffrey and Kim, Minje, Performance Op-

timization on Model Synchronization in Parallel Stochastic Gradient Descent

Based SVM, Proceedings of the HPML Workshop in International Symposium

in Cluster, Cloud, and Grid Computing, Larnaca, Cyprus, 2019.

135

7. Abeykoon, Vibhatha and Liu, Zhengchun and Kettimuthu, Rajkumar and

Fox, Geoffrey and Foster, Ian, Scientific Image Restoration Anywhere, Pro-

ceedings of Technical Consortium On High Performance Computing, Xloop,

Supercomputing 2019.

8. Abeykoon, Vibhatha and Kamburugamuve, Supun and Govindrarajan,

Kannan and Wickramasinghe, Pulasthi and Widanage, Chathura and Per-

era, Niranda and Uyar, Ahmet and Gunduz, Gurhan and Akkas, Selahattin

and Von Laszewski, Gregor, Proceedings of IEEE Big Data 2019, Streaming

ML Workshop, 2019.

9. Wickramasinghe, Pulasthi and Kamburugamuve, Supun and Govindarajan,

Kannan and Abeykoon, Vibhatha and Widanage, Chathura and Perara, Ni-

randa and Uyar, Ahmet and Gunduz, Gurhan and Akkas, Selahattin and Fox,

Geoffrey, Twister2:TSet High-Performance Iterative Dataflow, Proceedings of

the International Conference on High Performance Big Data and Intelligent

Systems, Shenzhen, China, 2019.

10. Kamburugamuve, Supun and Wickramasinghe, Pulasthi and Govindarajan,

Kannan and Uyar, Ahmet and Gunduz, Gurhan and Abeykoon, Vibhatha

and Fox, Geoffrey, Twister: Net-communication library for big data processing

in HPC and cloud environments, Proceedings of Cloud 2018 Conference, 2018.

11. Kamburugamuve, Supun and Govindarajan, Kannan and Wickramasinghe,

Pulasthi and Abeykoon, Vibhatha and Fox, Geoffrey, Twister2: Design of

a big data toolkit, Concurrency and Computation: Practice and Experience,

e5189, 2017.

12. Govindarajan, Kannan and Kamburugamuve, Supun and Wickramasinghe,

Pulasthi and Abeykoon, Vibhatha and Fox, Geoffrey, Task Scheduling in

136

Big Data-Review, Research Challenges, and Prospects, 2017 Ninth Interna-

tional Conference on Advanced Computing (ICoAC), 2017.

13. Abeykoon, Vibhatha and Kankanamdurage, Nishadi and Senevirathna,

Anuruddha and Ranaweera, Pasika and Udawalpola, Rajitha, Electrical De-

vices Identification through Power Consumption using Machine Learning Tech-

niques, International Journal of Simulation: Systems, Science and Technology,

2017.

14. Abeykoon, Vibhatha and Kankanamdurage, Nishadi and Senevirathna,

Anuruddha and Ranaweera, Pasika and Udawalpola, Rajitha, Real Time Iden-

tification of Electrical Devices through Power Consumption Pattern Detection,

Proceedings of the International Conference on Micro and Nano Technologies,

Modelling and Simulation, Kuala Lumpur, Malaysia, 2016.

CONFERENCE TALKS

2020/11 Presented the paper on Data Engineering for HPC with Python (Nov 11-13,

2020) PyHPC, Super Computing 20 [Virtual]

2019/12 Attended the conference and presented the paper, Streaming machine learning

algorithms with big data systems (Dec 9-13, 2019) Stream-ML, IEEE Big

Data 2019 [Los Angeles, California, United States]

2019/11/18 Attended the conference and presented the paper, Scientific Image Restoration

Xloop, Super Computing 2019 [Denver, Colorado, United States]

2019/05/14 Attended the conference and presented the paper, Performance optimization

on model synchronization in parallel stochastic gradient descent based SVM,

HPML, CCGRID 2019 [Larnaca, Cyprus]

137

2016/06/14 Attended the conference and presented the paper, Real-Time Electrical Device

Identification with Machine Learning Techniques, IET Present Around the

Globe, Sri Lankan Chapter [Galle, Sri Lanka]

OPEN SOURCE SOFTWARE DEVELOPMENT

1. Cylon: A Lead developer and researcher. [https://cylondata.org/]

2. Twister2: A Lead developer and researcher. [https://twister2.org/]

3. MLCube Applications: Contributor. [https://mlcommons.org/en/mlcube/]

138

	Motivation
	Research Goals
	Research Contributions

	Introduction
	Literature Review
	Distributed Machine Learning
	Distributed Support Vector Machines for HPC and Big Data Overlap
	Anatomy of the SVM Algorithm
	Parallel Gradient Descent SVM
	Datasets
	BLAS Optimizations
	Performance Benchmarks

	Iterative Streaming for Data Analytics
	Streaming SVM
	Streaming KMeans
	Model Synchronization
	Performance Evaluation

	High Performance Data Analytics aware Data Engineering
	Methodology
	System Architecture
	Communication Kernels
	Data Engineering Kernels
	Relational Algebra Kernel
	Indexing Kernel
	Search Kernel
	Filtering Kernel
	Duplicate Handling Kernel
	Null Handling Kernel
	Linear Algebra Kernel

	PyCylon
	Cython for Python Bindings
	Cython API
	Python API

	Dataframe API
	Interoperability Among Python Data Structures
	In-Memory Conversions
	Data Loaders
	Productivity and Usability

	Performance and Benchmarks
	Indexing and Searching
	Duplicate Handling
	Comparator Operations
	Math Operations
	Null Handling
	Distributed Join Performance
	Distributed Drop Duplicates
	Join with CPU and GPU
	Overhead from Python

	Integration with Deep Learning Frameworks
	PyTorch
	Stage 1
	Stage 2
	Stage 3
	Stage 4

	Horovod with PyTorch
	Stage 1
	Stage 2
	Stage 3
	Stage 4

	Horovod with Tensorflow
	Stage 1
	Stage 2
	Stage 3
	Stage 4

	Implementing a Scientific Workload
	UNO
	Deep Learning Component
	Drug Response Regression Network
	Cell Line Category Classifier
	Cell Line Types Classifier
	Cell Line Sites Classifier
	Drug Target Family Classifier
	Drug QED Regression Network

	Data Engineering Component
	Drug Response Data Processing
	Cell-line Data Processing
	Drug Property Data Processing

	Performance Evaluation
	Data Engineering Sequential Performance
	Data Engineering Distributed Performance
	Data Analytics Distributed Performance

	Conclusion
	Research Goals in Action
	BIBLIOGRAPHY

