
A Crowd-Sensing Framework for Allocation of
Time-Constrained and Location-Based Tasks

Rebeca Estrada , Rabeb Mizouni , Hadi Otrok, Senior Member, IEEE,

Anis Ouali, and Jamal Bentahar ,Member, IEEE

Abstract—Thanks to the capabilities of the built-in sensors of smart devices, mobile crowd-sensing (MCS) has become a promising

technique for massive data collection. In this paradigm, the service provider recruits workers (i.e., common people with smart devices)

to perform sensing tasks requested by the consumers. To efficiently handle workers’ recruitment and task allocation, several factors

have to be considered such as the quality of the sensed data that the workers can deliver and the different tasks locations. This

allocation becomes even more challenging when the MCS tries to efficiently allocate multiple tasks under limited budget, time

constraints, and the uncertainty that selected workers will not be able to perform the tasks. In this paper, we propose a service

computing framework for time constrained-task allocation in location based crowd-sensing systems. This framework relies on (1) a

recruitment algorithm that implements a multi-objective task allocation algorithm based on Particle Swarm Optimization, (2) queuing

schemes to handle efficiently the incoming sensing tasks in the server side and at the end-user side, (3) a task delegation mechanism

to avoid delaying or declining the sensing requests due to unforeseen user context, and (4) a reputation management component to

manage the reputation of users based on their sensing activities and task delegation. The platform goal is to efficiently determine the

most appropriate set of workers to assign to each incoming task so that high quality results are returned within the requested response

time. Simulations are conducted using real datasets from Foursquare1 and Enron email social network.2 Simulation results show that

the proposed framework maximizes the aggregated quality of information, reduces the budget and response time to perform a task and

increases the average recommenders’ reputation and their payment.

Index Terms—Mobile crowd sensing, worker selection, particle swarm optimization (PSO)
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1 INTRODUCTION

MOBILE crowd-sensing (MCS) is a new paradigm in
which a crowd of ordinary citizens utilize their

mobile phone or smart devices to conduct complex and
large-scale sensing tasks [1]. The user mobility makes MCS
a versatile platform that can replace or complement current
static sensing infrastructures. MCS systems benefit several
applications in various areas such as community dynamics
monitoring (i.e., traffic planning [2], environment monitor-
ing [3], or public safety [4]).

The main components of an MCS system are: task man-
ager, customers, and workers. The “workers” are enlisted to
perform tasks in return for some compensation or incentive
(e.g., entertainment, service, and money) [5]. The customers
are the sensing task initiators. Each sensing task has its own
requirements (e.g., deadline and budget), and is published
on the platform to recruit mobile users to perform it. The
task manager is the MCS platform that usually allocates the
sensing tasks to appropriate workers.

MCS systems rely on user-contributed or crowd-source
information. In other words, a task may be answered by one
or multiple workers, depending on the application domain
and the task requirements. Some platforms require a single
user to perform a task while in others, such as Gigwalk,3

many users are required to answer the task request to
ensure the reliability of the collected information. In the par-
ticular case of location-based and time-sensitive sensing
tasks, such as checking the on-shelf availability of a product
in a convenience store, the users can collect the data at the
precise time and location [6]. With this information, any
company can reduce the cost of taking inventories, while
maintaining the proper stock levels at different stores. Cur-
rently, several well-known brands and retailers are custom-
ers of Gigwalk. This suggests that the collection of location-
based and time-sensitive data using MCS is a practice of
growing importance.

1. https://archive.org/details/201309_foursquare_dataset_umn
2. https://snap.stanford.edu/data/email-Enron.html
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InMCS systems, selection of participants is one of themain
challenges, which has an impact on the quality of the task out-
come. Several approaches have been proposed to tackle this
problem. They aim at selecting the best set of users to com-
plete a task subject to several constraints (e.g., budget). How-
ever, most of these approaches are single-task oriented and
do not consider the impact of the task allocation problem in a
large-scale scenario. There are few solutions that address the
multi-task allocation problem (e.g., TaskMe [7] and Active-
Crowd [8]). In these approaches, the relationship between the
number of active participants and the number of tasks to be
completed affects severely the task allocation and completion
rates. Moreover, the multi-task allocation problem faces other
challenges such as location dependency, diversity of quality
of the sensing data, and budget constraints.

The limitations of the existing approaches are summa-
rized as follows:

� The selection of participants is based on a single-objec-
tive optimization problem (e.g., maximizing the num-
ber of accomplished tasks, minimizing the budget [9])
assuming that the workers are willing to participate
regardless how much they expect to earn. Moreover,
modeling the sensing location-based task without
specifying any time constraints [10], [11] is unrealistic
as assumption formany crowd-sensing systems.

� Task allocation and completion rates are severely
affected by limited resources (i.e., active workers)
[7], [8]. Therefore, complementary components
should be investigated in order to enhance the per-
formance of the task allocation model.

� There is a lack of effective delegation mechanisms. A
delegation scheme [12] with monetary incentives can
be abused because the participants can misbehave.
In other words, workers may compete to perform a
task and once they are selected (for instance due to
their high reputation), they may delegate their work
to other workers and still get paid for the task (that
other workers performed).

� The inability to complete tasks affects not only the par-
ticipants’ payment but also their reputation. For exam-
ple, the approach in [13] does not pay the workers if
they give wrong answers, which can discourage the
workers to stay committed to the MCS system. The
model should update the worker’s reputation based
on their performance and their successful delegation.

In this paper, our solution addresses the trade-off among
quality of the sensed data, budget and time constraints for
tasks that require the sensed data within a time frame
because the information is useless afterwards. The main
contribution of this paper is a service computing framework
for the allocation management of time-constrained and
location-based sensing tasks that consists of:

� a multi-objective task allocation algorithm to deal
with worker selection taking into account that the
workers establish their minimum wages to perform
any task. This algorithm maximizes the aggregated
QoI (Quality of Information)/budget ratio while min-
imizing the response time under scenarios with time
and budget limitation, which is implemented using
the Particle SwarmOptimization (PSO) technique.

� two types of queuing schemes: (1) a First In First Out
(FIFO) queue implemented in the device application
that allows participants to be selected to perform
consecutive tasks; and (2) a priority queue in the task
manager to queue arriving tasks when there is no
available resources and their required response time
has not expired.

� a delegation mechanism in case the workers cannot
finish their allocated task. Workers may recommend
a set of workers from their social network to finish
their assigned task. To avoid any abuse of the system,
this mechanism affects the recommender reputation
based on the performance of the delegatedworkers.

� a systematic evaluation of workers’ reputation based
on their performance and the incentives/penalties
from the delegation mechanism.

To evaluate theMCS system, we use event-driven simula-
tions [14]. In other words, the functioning of the system is
simulated as a discrete sequence of events over time where
the occurrence of an event triggers the performance of some
actions. Examples of these events include task arrival/depar-
ture or mobile user arrival/departure. In this paper, we only
consider task arrival/departure events leaving the modeling
of mobile user arrival/departure events for futurework.

For comparison purposes, we use two benchmarkmodels
that are based on the proposed framework using different
task allocation algorithms found in the literature. The first
algorithm aims at maximizing the quality of information per
task under budget constraints [15]. It did not consider time-
constrained tasks. We implemented it using the PSO tech-
nique. The second one is the heuristic algorithm presented in
[16]. We modified both algorithms to include the time con-
straint and budget estimation as the product of the traveled
distance and worker payment. Both benchmark models are
evaluated using the other components of the proposed solu-
tion, namely, the queueing schemes, delegation mechanism
and reputation management. A performance comparison is
carried out under two scenarios ð1Þ an incremental scenario
where the number of tasks is increased by a step of 15 tasks,
which allows us to show that the proposed multi-objective
task allocation algorithm can enhance the performance of the
benchmark models for different number of tasks in a specific
time slot; and ð2Þ a realistic scenario, where the task arrival is
modeled as a Poisson process and the required response
time per task is an exponential random variable. Simulations
are conducted using locations from a real dataset4 where a
large-scale scenario is generated.

The remaining of the paper is organized as follows:
Section 2 presents an overview of the relevant related work.
Section 3 formulates the multi-task allocation problem and
discusses the challenges of such a formulation. Section 4
presents our proposed service computing framework and
its components. Section 5 describes the two benchmark
models used in this paper. Section 6 presents the simulation
scenarios and results. Finally, Section 7 concludes the paper.

2 RELATED WORK

Crowdsensing techniques and challenges are analyzed with
a focus on resource constraints and data quality issues in

4. https://archive.org/details/201309_foursquare_dataset_umn
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[17]. A better understanding of resource management and
QoS estimation in mobile crowdsensing can help research-
ers design cost-effective crowdsensing systems that can
reduce the cost by fully utilizing the resource and improve
the QoI for customers. Regarding task allocation and partici-
pant selection problems, the majority of existing solutions
are single-task oriented. These approaches do not address
the task allocation problem for a large-scale scenario where
multiple heterogeneous tasks can be requested by several
customers and be performed by several workers. Moreover,
the participants selection procedure is based on a single
optimization objective (e.g., sensing costs [9], coverage of
targets of interest [18], quality or credibility of sensed data
[15], [16], or revenue [10], [11]). There are few solutions that
address the multi-task allocation problem taking into
account several optimization objectives to find a trade-off
between the most commonly used factors [7], [8].

Some researchers introduce redundancy to ensure a cer-
tain level of reliability in MCS systems [19] and several
workers are asked to carry out the same task. Then, a tech-
nique such as majority voting [20] is applied to determine
the answer for the requester. Although this solution reduces
the impact of wrong answers on the final result [21], it
increases the required budget to perform a given task. A
trade-off between maximizing the aggregated quality of
information per task while minimizing the budget per task
should be investigated.

Furthermore, once the workers are selected to perform a
task, any worker selected may not complete the task due to
unforeseen circumstances. If the quality of information of
the task is not met, then, a re-selection of workers should be
carried out. Instead of performing the re-selection proce-
dure, a delegation mechanism was proposed in [12]. Their

mechanism allows a worker who cannot finish the task to
recommend other worker from her/his social network to
perform the task. For time-constrained tasks, the delegation
is more complicated because the data should be collected
within a certain time interval.

Table 1 summarizes the main contributions and limita-
tions of five relevant approaches found in the literature
related to our work.

3 FORMULATION OF MULTI-TASK ALLOCATION

PROBLEM

In this section, the model for multi-task allocation problem is
presented. We consider a service computing framework
where the service provider publishes the tasks for the work-
ers. Then, each worker chooses some of the published tasks
and provides the minimum payment that the worker is will-
ing to receive from a specific range. The range payment
depends on the worker reputation. The workers can visual-
ize the tasks that satisfy some basic constraints such as the
workers is within the task coverage radius and the requested
payment is lower than themaximumpayment per task.

3.1 Problem Formulation

The objective of the multi-task allocation problem (MTAP) is
to maximize the ratio of the aggregated QoI to the required
budget and response time to perform several tasks given a
set of available workers. The MCS should determine the
assigned tasks for each worker within their requested
response time and time constraints. Workers have different
reputation levels based on their historical performance in the
MCS system. They are also attributed a confidence level,
which represents the self-confidence that a worker has

TABLE 1
Location-Based Task Management Solutions

Solution Contribution Dataset Limitations

ProMoT [11] Auction mechanism that maximizes the profit of the Randomly Generated - No time-constraints

platform while providing satisfying rewards to the

workers

- Single-task oriented

- Does not take into account workers’

reputation

QOATA [15] Single objective optimization approach to Randomly Generated - No time-constraints

maximize the task QoI with budget constraint - Single-task oriented

taking into account the workers reputation - Does not take into account workers’ reputation

Budget Task [16] Heuristic algorithm for single objective optimization Workers and tasks - No time-constraints

problem that maximizes the task QoI from Foursquare [22] - Single-task oriented

taking into account the workers reputation and payment Worker’s Reputation is

randomly generated

- Payment does not depend on

traveled distance

TaskMe [7] Two bi-objective optimization approaches for participant For workers - Complexity

selection D4D[23] - Fairness among workers

FPMT: to maximize the total number of accomplished tasks - Does not guarantee the task QoI

and also to minimize the total movement distance. - Does not take into account workers’ reputation

MPFT: to minimize total incentive payments for participants - Not suitable for large-scale scenario

and minimize traveling distance to complete tasks - Task location are randomly generated

within the mobile user area

ActiveCrowd [8] Two greedy-enhanced genetic algorithms for optimal task For workers and tasks - Not an optimal solution

allocation to minimize the total distance traveled to complete D4D [23] - Does not guarantee the task QoI

the tasks under two common situations: - Worker Payment is not considered

1) intentional-movement-based selection for time-sensitive - Complexity

tasks and 2) unintentional-movement-based selection for

delay-tolerant tasks

- Task/worker locations given by cell

towers’ location
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related to the task accomplishment. For example, the battery
usage level of the worker’s mobile device can be used as the
confidence level. In fact, a user with low battery level is less
likely to be selected to perform any task. For location-based
tasks, the user needs to travel a certain distance to perform
the task. As the distance increases, the user needs more time
to travel to the task location. This fact delays the data collec-
tion and increases the cost of performing the task (i.e., the sys-
tem needs to reward the user for travelling a long distance).

While there is no definition of information quality that
fits every scenario, this concept is often related to the accu-
racy of the information, completeness, and timeliness.
Many formulations have been proposed in the literature
[15], [16]. In our case, the quality of information of a worker
cij reflects the accuracy and timeliness of the collected data
and is given by

cij ¼ rj � bj � dij; (1)

where rj and bj are the reputation and confidence of the
worker to perform a given task during a given period of
time. The reputation is a parameter computed by the MCS
system based on the historical performance of the worker.
The confidence bj is an input parameter reflecting the work-
er’s self-confidence to perform the task. The battery level is
an example of such a parameter that could also be
expressed by a combination of different other parameters. dij
is a function of the distance between a worker and a given
task. We use the same function given in [16], which calcu-
lates the discount to the worker’s reputation as a result of
his proximity to the task location

dij ¼ 1�max 0;min logDC dij

� �
; 1

h i� �
; (2)

where DC is the city radius (i.e., 30 km) and dij represents
the euclidean distance between the worker location lj and
the task location li, which are given in GPS coordinates
in the Foursquare dataset. This distance is estimated using
the Haversine formula [24].

The objective function for the MTAP problem aims at
maximizing the aggregated quality of information per unit
of required budget and it can be formulated as

max
X;P

X
i2T

P
j2W cijX

i
j

� �
� CiP

j2W dijP
i
j

� �
�maxj2W ðtijÞ

24 35; (3)

where X and P correspond to the vectors of the variables Xi
j

and Pi
j respectively. Xi

j is a binary variable that indicates
the selection of a worker j to perform the task iwhile Pi

j cor-
responds to the payment per traveled kilometer received by
worker j to perform the task i. Ci represents the minimum
QoI required by task i. Thus, the numerator represents the
aggregated quality of information per task i and the denom-
inator is the product between the required budget and the
required time to finish the task i for the selected set of work-
ers given by vector X. W and T are the set of workers and
tasks respectively. tij is the estimated time that the worker
takes to reach the location of the task ti. This time is a calcu-
lated as the distance between the worker j and task i
divided by the speed of the worker j. The sensing time is
assumed to be negligible in comparison to this time.

3.1.1 Model Parameters

For the sake of clarity, Table 2 summarizes the notation
used in this paper.

3.1.2 Model Constraints

The objective function (3) is subject to the following con-
straints X

j2W
Xi

j � Ni
max; i 2 T (4)

X
j2W

cijX
i
j � Ci; i 2 T (5)

tij �Xi
j � timax; ; i 2 T; j 2W (6)

TABLE 2
Model Parameters

Task Parameters

Name Description

T Set of tasks

Bi Maximum budget per task i

Ri Coverage radius of task i

Ci Minimum QoI for task i

P i
max Maximum payment allowed per traveled km for workers for task i

P i
g;max Maximum payment per traveled km for worker with reputation

level g for task i

P i
g;min Minimum payment per traveled km for worker with

reputation level g

DC Radius of the city

li Location of the task i

Ni
max Maximum number of workers per task i

timax Maximum response time required by Task i

tiq Queuing time for task i

Wi Set of selected workers to perform task i

Si Subset of arbitrary workers inWi that can perform task i

Worker Parameters

rj reputation of the worker j

r
ðkÞ
j reputation of the worker j at the instant k

Nmax
j Maximum number of consecutive tasks per worker

W Set of workers

cij QoI provided by the worker j to the task i

bj Self-Confidence to perform any task of worker j

lj Location of worker j

Pmin
j Requested payment that the worker is willing to receive

per traveled km

dij Distance from task i to worker j

tij Time that the worker takes j to reach the location of task i

WSN
j Set of recommended workers from the social network of worker j

WD;i
j Set of delegated workers to perform the task i that worker

j could not do it

NT
j Number of assigned task to the worker j at the time k

NTV
j Number of completed tasks with true value for worker j

NCT
j Number of completed tasks for worker j

NIT
j Number of incomplete tasks for worker j

General Parameters

rmin
g Minimum reputation for level g

rmax
g Maximum reputation for level g

Output Variables

Xi
j Binary variable that indicates if task i is allocated to worker j

P i
j Value paid per traveled km to the worker j for performing

the task i
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Pi
j � Xi

jP
i
g;max; ; i 2 T; j 2W (7)

Pi
j � Xi

jmaxðPmin
j ; P i

g;minÞ ; i 2 T; j 2W: (8)

Constraint (4) defines the maximum number of workers that
can be allocated to perform a task i. Constraints (5) and (6)
ensure that the set of selected workers will satisfy the qual-
ity of information required by task i and deliver the sensed
data within the required response time. Finally, constraints
(7) and (8) determine the upper and lower bound for the
payment of the workers with reputation g.

This model aims at maximizing the objective function (3)
and is a non-linear mixed integer problem (MINLP). It
could be solved by decomposing the complex problem into
several subproblems for each task i 2 T [15] or several sub-
problems for each worker j 2W [25].

3.2 NP-Hardness

Theorem 1. The MTAP as shown in Eqs. (3), (4), (5), (6), (7),
(8) is NP-hard.

Proof. We prove this theorem by showing that an arbitrary
instance of a NP-complete problem can be polynomially
Turing reduced to an instance of the MTAP0, a simplified
version of the MTAP where each worker has to be
assigned to only one task. Thus, the idea is to provide an
algorithm that solves the NP-complete problem in poly-
nomial time by calling an oracle that solves the MTAP0.
The candidate NP-complete problem we consider is the
two-way Number Partitioning Problem (2-NPP) [26].

Given a multiset S of natural numbers, the 2-NPP con-
sists of partitioning S into two subsets S1 and S2, so that
the sum of the numbers in S1 is nearly equal to the sum
of the numbers in S2. This problem can be simply solved
by calling an oracle to the MTAP0 where two sensing
tasks T1 and T2 localized in the same region l1 have to be
assigned to a set of workers sharing the same location l2
so that dij are the same for all the pairs of workers j and
sensing tasks i. The total number of workers is equal to
jSj. All the workers are paid the same price per traveled
kilometer so that Pi

j are equal for all the pairs i and j.
Moreover, the workers have the same speed sj of

movement so that tij are also equal for all the pairs. Each
number s 2 S is associated to a worker j who is charac-
terized by two indistinguishable qualities c1j and c2j (i.e.,
s ¼ c1j ¼ c2j ). These numbers are linked to C1 and C2 as

follows:
P

s2S s ¼
P

j2W c1j ¼
P

j2W c2j ¼ C1 þ C2.

If
P

j2W c1j is even, then set C1 ¼ C2, otherwise, set

C1 ¼ C2 þ 1. N1
max and N2

max are set to be large enough so
that constraint (4) is always satisfied. If the oracle call
provides a solution, then two subsets of workers are
identified so that the sum of qualities cij is getting maxi-
mized, and according to constraint (5), the sum of these
qualities in the two sets are nearly equal. This provides a
solution to the 2-NPP since the numbers in the two sets
S1 and S2 are mapped to cij. If the call to the oracle does
not provide a solution, then the oracle is called again
after updating C1 and C2 as follows: C1 :¼ C1 þ 1 and
C2 :¼ C2 � 1. This procedure is repeated until a solution
is provided. The procedure is guaranteed to terminate
since the only reason of not providing a solution is the
non-satisfaction of constraint (5), and each iteration is
modifying C1 and C2 towards the satisfaction of the
inequality.

The proposed procedure runs in OðPj2W c1j Þ as there
are at most C1 þ C2 calls to the oracle. Therefore, the
reduction is polynomial since constructing the 2-NPP
solution is a simple mapping of the quantities cij of the
workers conducting task ti to the subset Si. Thus, the
NP-hardness of MTAP0 follows from the fact that 2-NPP
�p MTAP0, where �p is the polynomial Turing reduction.
Since the MTAP is harder than the MTAP0 because in the
MTAP a worker can be assigned to 0 or many tasks,
which increases the number of possible combinations,
we conclude that the MTAP is NP-hard. tu

3.3 Motivating Example

Let’s consider a simple MCS system with five available
workers ðU1; ::; U5Þ and two arriving tasks ðt1; t2Þ in a two
dimensional (2D) area as illustrated in Fig. 1. This simplified
example is only for illustrative purpose; real scenarios are
more complex and highly scalable involving considerable
number of tasks and workers. Workers might have different
reputations (e.g., high, medium and low reputation users).
The question is how to allocate these workers to each task
so that they can maximize the aggregated quality of infor-
mation per unit of used budget and time to execute each
task. The required quality of information are 1 and 0.9 for
tasks t1, and t2 respectively while response time is 5
minutes for both tasks.

Table 3 presents the worker parameters, namely reputa-
tion, speed, minimum payment to receive as well as the

TABLE 3
Worker Parameters and Metrics

Worker rj Pmin
j sj d1j d2j t1j t2j c1j c2j

U1 0.85 5 1 1.41 2.2 1.41 2.2 0.76 0.65
U2 0.8 4.2 0.75 1 2 1.33 2.67 0.8 0.64
U3 0.5 2.5 0.25 3.61 1.41 14.44 5.64 0.31 0.45
U4 0.25 0.5 1 2.82 1 2.82 1 0.17 0.25
U5 0.55 2.7 0.5 2 1 4 2 0.44 0.55

Fig. 1. Scenario with two tasks and five mobile users.
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estimated distance to reach the task locations and the esti-
mated quality of information that each worker can contrib-
ute to each task using Eq. (1). We include a minimum
payment per worker to represent the willingness of the
worker to perform a task. This minimum payment depends
on the corresponding range of the worker reputation
hPi

g;min; P
i
g;maxi. We assume that the range payment for each

reputation level are the same for both tasks. For instance,
high reputation users can select values in the range between
3.5 and 5 while medium and low reputation users can select
values from [2, 3.5) and [0.5, 2) respectively. For the motivat-
ing example, we assume that the worker confidence is equal
to 1 for any task.

Table 4 presents the worker combinations that meet the
requirements for task t1. We start with task t1 because it
requires higher QoI. Then, the problem is to select disjoint
set of mobile users to solve each task since they cannot per-
form both tasks at the same time.

Selecting the first option for task t1 could mean that only
three workers can be allocated to task t2. Then, only one
combination of these workers meet the QoI of task t2, which
is shown in the scenario I in Table 5. If the model only maxi-
mizes the QoI per task under budget constraint, then, this
combination could be selected as a solution. However, this
implies that the worker with higher response time do not
get paid and the worker satisfaction is decreased.

In the second scenario of Table 5, the task manager allows
each user to keep a local queue of tasks to be carried out
sequentially. Thus, the users U1 and U2 that were allocated to
perform task t1, can also perform task t2 after finishing task
t1. This scenario presents theworker combinations including
users U1 and U2 taking into consideration the total time that
these users need to reach the location of task t2 while their
payments are estimated using the traveled distance from the
location of task t1 to the location of task t2. In this case, the
first option is the one that maximizes the ratio between
aggregated QoI divided by the product of budget and
response time and also guarantee the worker payment. This
means that workers U1 and U2 will perform two consecutive
tasks while workers U4 and U5 will carry out one task. In
addition, all the workers performing tasks will receive their
payment owing to the fact that they can deliver the sensed
information within the requested time. Worker U3 is not
selected because the sensed data cannot be delivered to the
task manager within the required response time. This allows
the MCS system to meet the requirements of task t2 and to
enhance theworker satisfaction.

In summary, the MTAP model proposed assigns all tasks
to the available workers in one step. We demonstrated by

means of an example that this might not be the best strategy
and it would be better if some workers are allowed to exe-
cute several tasks sequentially. The following section
presents an enhanced task manager framework that deals
with the single task allocation at a time and allows the
workers to be selected to perform more than one task. The
workers are considered for the allocation of new tasks as
long as they can reach the new task location within its
required time and they do not reach their maximum num-
ber of tasks allowed by the system.

4 SERVICE COMPUTING FRAMEWORK FOR TASK
MANAGEMENT IN MCS SYSTEM

In this section, we present the proposed framework for task
management in the MCS system. The main idea is that the
MCS task manager can be considered as a queuing system
with N servers (mobile users), which can process the same
task in parallel and at the same time several tasks can be
allocated for service if there are some available servers.
Thus, our MCS system can be seen as discrete-event system
where the system state SðtÞ is defined by the number
of tasks in service and the number of queued tasks
ðTsðtÞ; TqðtÞÞ. The task arrival process is a Poisson process
while the service time per server is deterministic.

4.1 Multi-Objective Task Allocation Model

Here, we present the optimization problem for the worker
selection per task that maximizes the ratio between the
aggregated quality of information, the product of the bud-
get,and the execution time under the constraints to meet the
quality of information with the limited budget and response
time. Thismeans that our objective function for every task i is

max
X;P

P
j2W cijX

i
j

� �
� CiP

j2W dijP
i
j

� �
�maxj2W ðtijÞ

: (9)

The denominator in (9) corresponds to the task budgetmulti-
plied by the response time to gather the information from the
allocated workers to the task (i.e., the maximum time of the
allocatedworkers to perform a task). The budget is estimated
as the payment paid per traveled kilometer to the worker, Pi

j ,
multiplied by the traveled distance per worker, dij. The sec-
ond term in the denominator is introduced to reduce the total
required time to collect the sensed information.

TABLE 4
Set of Workers to Perform Task t1

Workers QoI Agg QoI Budget Response Time AggQoI
B�T

½U1; U2� 1.56 0.56 11.25 1.41 0.04
½U1; U2; U4� 1.74 0.74 12.66 2.82 0.02
½U1; U2; U4; U5� 2.18 1.18 18.06 4.00 0.02
½U1; U2; U5� 2.00 1 16.65 4.00 0.02
½U2; U4; U5� 1.41 0.41 11.01 4.00 0.01
½U1; U4; U5� 1.38 0.38 13.86 4.00 0.01
½U2; U5� 1.24 0.24 9.60 4.00 0.01

TABLE 5
Set of Workers to Perform Task t2 under Two Scenarios

Scenario I: U1 and U2 are not included

Workers QoI Agg QoI Budget Response Time AggQoI
B�T

½U3; U4; U5� 0.92 0.02 6.73 5.64 0.0006

Scenario II: U1 and U2 are included

Workers QoI Agg QoI Budget Response Time AggQoI
B�T

½U1; U2; U4; U5� 2.06 1.16 23.44 4.26 0.012
½U1; U4; U5� 1.45 0.55 14.2 3.61 0.011
½U2; U4; U5� 1.41 0.51 12.44 4.26 0.009
½U1; U2; U4� 1.51 0.61 20.74 4.26 0.006
½U1; U5� 1.2 0.3 13.7 3.6 0.006
½U2; U5� 1.16 0.26 11.94 4.26 0.005
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In our model, a spatial task i is represented as a tuple of
the form hli;Ci;Ri;Bi;Pi

max; t
i
maxi. These parameters corre-

sponds to the task location, minimum expected QoI, cover-
age radius, budget, maximum payment per traveled
kilometer, and maximum response time respectively. Work-
ers are represented by tuples of the form hlj; rj;bj;P

min
j ; sji,

which represent their location, reputation, confidence to
perform a task, minimum payment they are willing to
receive and finally their speed.

In summary, we want to maximize the aggregated QoI/
budget ratio while minimizing the time to collect the infor-
mation about a given task from the workers taking into
account the worker’s willingness to perform this task. Our
objective function is a multi-objective function. Particle
Swarm Optimization has been used to solve several com-
plex optimization problems with multi-objective function.
Moreover, PSO has been proven to obtain a satisfying solu-
tion while speeding up the optimization process in compari-
son to other evolutionary-based optimization algorithms
[27]. Therefore, we propose to solve the optimization prob-
lem using this technique.

4.1.1 Model Constraints

The constraints for our task allocation sub-problem are:

� Maximum Budget per task iX
j2W

Pi
j d

i
j � Bi: (10)

� Minimum required Quality of InformationX
j2W

cijX
i
j � Ci: (11)

� Maximum response time

tij �Xi
j � ðtimax � tiqÞ; (12)

and the constraints (7) and (8) given for MTAP model.

4.1.2 PSO-Based Multi-Objective Task Allocation

Algorithm (PSO-MOA)

We propose to solve the worker selection for each task
defined by Eq. (9) using PSO, which is a population-based
search approach and depends on information sharing
among the population members to enhance the search pro-
cesses using a combination of deterministic and probabilis-
tic rules. PSO algorithm uses two vectors that determine the
position and velocity of each particle n at each iteration k.
These two vectors are updated based on the memory gained
by each particle. The position ykn and velocity vkn of a particle
n at each iteration k are updated as follows:

ykn ¼ yk�1n þ dtv
k�1
n ; (13)

vkn ¼ vvk�1n þ c1r1ðplocalk�1 � yk�1n Þ þ c2r2ðpglobalk�1 � yk�1n Þ; (14)

where dt is the time step value typically considered as unit
[28], plocalk�1 and pglobalk�1 are the best ever position of particle n
and the best global position of the entire swarm so far, and
r1 and r2 represent random numbers from interval [0,1].

The parameters v, c1 and c2 are the configuration parame-
ters that determine the PSO convergence. The first term is
related to the particle inertia v, which is used to control the
exploration abilities of the swarm. Large inertia values pro-
duce higher velocity updates allowing the algorithm to
explore the search space globally. Conversely, small inertia
values force the velocity to concentrate in a local region of
the search space. Parameters c1 and c2 are known as the cog-
nitive scaling and social scaling factors. Thus, the second
and third terms are associated with cognitive knowledge
that each “particle” has experienced and the social interac-
tions among “particles” in the population respectively [29].

Many PSO variants update the inertia parameter v using
different functions [29]. For simplicity, we consider the fol-
lowing

vn
k ¼ vo �

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðplocalk � yknÞ2 þ ðpglobalk � yknÞ2Þ

q
maxð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
plocalk � yknÞ2 þ ðpglobalk � yknÞ2

q
Þ
: (15)

According to [28], the convergence of PSO is guaranteed
if the following set of stability conditions are met

0 � ðc1 þ c2Þ � 4 and
c1 þ c2

2
� 1 � v � 1:

For our PSO-based multi-objective task allocation algo-
rithm, the position particle Y in the search space is given by
two vectors (X, P), which represent the allocation of the task
i to worker j and price per worker respectively.

PSO algorithm is formulated as an unconstrained opti-
mizer. One way to accommodate constraints is to augment
the objective function with penalties proportional to the
degree of constraint infeasibility. In our PSO algorithm, a
penalty parameter-less scheme [30] is used to accommodate
the constraints, where the penalties are based on the aver-
age of the objective function and the level of violation of
each constraint during each iteration. According to [28], the
penalty coefficients pcl are determined by

pcl ¼ jfðyÞj glðyÞPPC
j¼1½gðyÞ�2

; (16)

where l indicates a particular constraint, fðyÞ is the average
objective function, gðyÞ is the average level of lth constraint
violation over the current population and PC is the number
of penalty coefficients, which also corresponds to the total
number of constraints [28]. Thus, the fitness function is
defined by

f 0ðyÞ ¼ fðyknÞ; if ykn is feasible

fðyknÞ þ
PPC

l¼1 pclbgðyknÞ; otherwise:

(
(17)

and bgðyknÞ is determined as follows:

bgðyknÞ ¼ max 0; gjðyknÞ
� �

: (18)

Accordingly, the average of the fitness function for any
population is approximately equal to fðyÞ þ jfðyÞj. Since we
formulate our model as a maximization problem and PSO is
defined to solve a minimization problem, we modify our
objective function from (9) to
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fðX; P Þ ¼ Z �
P

j2W cijX
i
j

� �
� CiP

j2W dijP
i
j

� �
�maxjðtjÞ

0@ 1A; (19)

where Z is a large number, which is computed as the objec-
tive function (9) under the worst case scenario with the min-
imum response time and maximum budget that a task can
allow. The resulting values is then multiplied by 100 to
ensure Z to be large enough. The fitness function of our
minimization problem is given by

f 0ðxÞ ¼ fðX; P Þ; for feasible solutions

fðX; P Þ þPPC
l¼1 pcl � bgðX;P Þ; otherwise

(
:

(20)

where model constraints are included in
PPC

l¼1 pclbgðX;P Þ to
penalize unfeasible solutions. Algorithm 1 presents the
PSO-based multi-objective task allocation algorithm. The
random function in the Algorithm 1 returns a random num-
ber between 0 and 1.

Algorithm 1. PSO-MOA Algorithm

Data:Worker Locations (lj),
Worker Demands (Pmin

j ),
Task Location (li),
Maximum Budget per Task Bi,
Task Maximum Price Pi

max

Coverage radius di

Required Time ti)
Result: Set of worker allocated to the task and the price to be

paid per worker ðXi
j; P

i
j Þ.

begin
Generate initial swarm with the particle positions
Y i
j ¼ ðXi

j; P
i
j Þ and velocities randomly vij;

Evaluate Fitness Function;
Determine first global best of the swarm;
while k �MaxIteration do
Update Position using Eq. (13);
Evaluate Fitness Function;
Determine best local for each particle;
Determine best global in the swarm and update the best
global;
Update the inertia parameter w using Eq. (15);
Update velocity using Eq. (14);

end
end

PSO Parameters Settings and Convergence Analysis. The
convergence analysis of the proposed PSO algorithm using
different values of cognition and social behavior factors
(c1; c2) is shown in Fig. 2. It can be observed that the best
objective value was given for the setting c1=2 and c2 = 1.5
after 400 iterations. Therefore, we set the parameters to
those values for the rest of our simulations.

4.2 Queuing Schemes

4.2.1 Task Queuing in the Device Application

Our framework proposes to have a local queue in the work-
er’s device with a maximum number of consecutive tasks
that can be allocated to him, Nmax

j . Thus, several tasks can
be assigned to a worker and they are going to be performed

in the sequential order that they were assigned to the
worker (i.e., FIFO queue). The main idea is to reduce the
number of rejected tasks in a scenario with reduced number
of workers within the task coverage area. Thus, the follow-
ing constraint is added to our task allocation model

Xi
j þNT

j � Nmax
j ; j 2W; (21)

where NT
j is the number of assigned task to the worker j at

the time k without being processed and Nmax
j is the size of

the worker local queue. For convenience, we assume that all
the workers have a local queue with the same size, (i.e.,
Nmax

j ¼ NT
w ; 8j 2W ).

4.2.2 Priority-Based Task Queuing in Task Manager

Our framework also uses a priority-based queuing system
in the task manager. If there are no available workers to per-
form the task, then, the task is queued until the potential
workers are released from their current assigned task (i.e.,
after finishing their assigned tasks) and can perform the
queued task. Otherwise, the task is rejected. The priority is
defined by the remaining response time. Thus, a low
remaining response time task should be assigned first over
the tasks with higher time. Doing so, the model always
selects the task that needs to be served first according to the
remaining response time. If the remaining response time is
zero, then, the task is eliminated from the queue and it is
marked as an unsuccessful queued task. The task allocation
algorithm complements the queuing scheme since it aims at
minimizing the response time per task. This means that the
workers are able to finish rapidly their current tasks and
they can be assigned to the new arriving or queued tasks.

4.3 Task Delegation Mechanism

The proposed task delegation mechanism is intended to
avoid the QoI decrease when some workers are not able to
finish their assigned task(s) due to unpredictable circum-
stances. In our proposal, a worker who cannot finish a task
is able to recommend one or a worker set WSN

j from the
social network to perform the task. Since the worker’s social
network may be unknown to the MCS system, the task man-
ager determines the appropriate set WD

j from the set of

Fig. 2. Convergence Analysis for different settings of c1, c2.
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recommended workers WSN
j , who are registered in the sys-

tem and can satisfy the following requirements:

� The sum of the QoI of selected workers should be at
least equal to QoI of the recommender.X

h2WD;i
j

cih � cij; ; i 2 T; (22)

where WD;i
j represents the selected delegated work-

ers for task i obtained from the set of recommended
workers WSN

j by the worker j. This means that WD;i
j

is a subset of the intersection of the set of workers
registered to MCS system and the set of delegated
workers from the social network of worker j
(WD;i

j 	WD;i
j \W ) that comply with the require-

ments of task i. The index h is used to represent
workers other than j.

� The maximum budget to be allocated to the dele-
gated workers should be less or equal to the remain-
ing budget.X

h2WD;i
j

P i
hd

i
h � Bi �

X
k2Winj

P i
kd

i
k; (23)

where Wi is the set of workers selected to perform
the task i by the task manager.

� When delegation is allowed, the delegated workers
may be located outside the area of coverage. How-
ever, they should reach the task location within the
remaining response time. This constraint is given by

tih � timax �max
k2Wi

tik: (24)

� The probability of not finishing a task for the dele-
gated workers is exponentially reduced (e.g., p2).

� Only one delegation level is taken into account, which
means delegatedworkers are not allowed to delegate.

� The model incentivizes the recommender by increas-
ing their reputation as linear function of the reputa-
tion of the delegated workers. Doing so, the user
avoids getting bad reputation for future tasks and the
delegation becomes useful for time-constrained tasks.

4.4 Reputation Management

The worker reputation should be updated every time that a
given number of tasks are completed in the system. In this
procedure, only the workers that have been allocated to
tasks are considered regardless of the task completion or
delegation. Our framework updates the worker reputation
each time that five tasks are completed. The reputation of
the participating worker j at time k is estimated as follows:

rkj ¼ min 1;
NTV

j

NCT
j þNIT

j

þ
X

l2WDk;k�1
j

a 
 rk�1l

0BB@
1CCA; (25)

where the first term corresponds to the worker performance
evaluation in the MCS system. This means how well is the
worker performing his assigned tasks. NTV

j ;NCT
j and NIT

j

indicates the number of completed tasks with true value,

number of completed tasks and number of incomplete task
respectively for the worker j. The proposed framework con-
siders that a task is answered with a true value by the work-
ers if their answers are equal to the estimated ground truth
value by the system, which is given in (26). The second term

is related to the delegation mechanism and W
Dk;k�1
j corre-

sponds to the set of delegated workers by the worker j dur-
ing the reputation update periods between k and k� 1. This
term is a linear function of the a given parameter a multi-
plied by the reputation of the delegated workers in the pre-
vious period. The value of a can be positive or negative and
depends on the task completion of the delegated worker. If
the delegated worker did not finish the task this parameter
is negative, otherwise it is positive. rk�1l represents the repu-
tation of worker l in the previous period k� 1.

We assume that the ground truth of the task (i.e., the cor-
rect answer to the location-based sensing task) is binary as
in [16], which is reasonable for many real-world situations
(e.g., whether the road work at a particular location has
been completed, on-shelf availability of a product in a con-
venience store, etc). In practice, the correct answer of a task
i is unknown to the task requester which makes the perfor-
mance evaluation of the participating workers difficult. To
overcome this limitation, the authors in [16] propose to esti-
mate the ground truth from the collected data oij using the
majority voting system [20]. This means that the ground
truth is the most common response (vote) given by the
selected workers (voters) regardless the worker’s reputa-
tion. Our MCS system uses instead the weighted voting sys-
tem [31] based on the idea that not all workers have the
same influence over the estimated ground truth. In other
words, workers with high reputation are more reliable to
give good answers than the ones with low reputation. Thus,
the estimated ground truth Oi of the task i is given by

Oi ¼ b
P

j2Wi Xi
jrjo

i
jP

j2Wi Xi
jrj
� 1

2
c þ 1: (26)

In other words, Oi = 1 if the average outcome is greater
than 1

2, and is 0 otherwise. This mechanism allows the model
to evaluate the performance of the participating workers.
Thus, if the worker response oij is equal to the estimated
ground truth Oi. If so, it is assumed that the worker com-
pleted the task i with a true value. We keep the historical
worker performance for the allocated tasks to update their
reputation over time. However, if the ground truth of the
sensing tasks are not binaries, it would be good to use other
mechanism to estimate the ground truth of the tasks. Regard-
less the mechanism used to determine the ground truth, the
MCS framework needs to know if the reported value of the
worker is close to the ground truth of a task. If so, it is
assumed that the worker completed the task successfully.

4.5 Running Example

Based on the motivating example presented in Section 3.3,
let’s suppose now that two new tasks (t3; t4) arrive to the
system one minute after the arrival of task t1. The minimum
quality of information for both tasks is 1 and the maximum
response time is 10 and 5 respectively. In this example, we
limit the maximum number of tasks per worker to 2. After 1
minute, the conditions of the workers are shown in Fig. 3.
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As shown in Table 3, users U1 and U2 are still going to the
location of their first assigned task (i.e., t1) and keep the two
tasks in their local queue, which means that they cannot be
considered for the allocation task process of the new tasks.
Table 6 shows the distances, required time and QoI for each
worker regarding the new tasks.

Although both tasks have the same QoI requirement, the
algorithm selects task t4 to allocate the workers first because
of its lowest response time (5 minutes).

One combination meets the requirements of time and
QoI as shown in Table 7. After the allocation of this combi-
nation to task t4, the allocation of task t3 is analyzed with
the workers having space in their local queue. Only users
U3 and U4 can be considered for task t3 because worker U5

queue is full. The algorithm also should consider that user
U4 needs some time to finish task t4 and the traveled dis-
tance to perform task t3 (i.e., starting from the location of
task t4). After running the algorithm for task t3, there is no
combination that meet the required QoI. However, since the
response time of the task is long enough and there are some
potential workers that can be selected in a future time, our
framework queues task t3 in the task manager queue until
any other user can be allocated to task t3. For example, user
U2 and U1 can be allocated to another task after 0.33 and
0.41 minutes from the arrival of task t3.

After the worker selection is performed for a given task,
there is always a probability p that the worker might not be
able to finish his/her assigned task. In such scenario, the
task manager should wait until all workers deliver their
sensed data to see if the QoI is satisfied. When the QoI is

deprived, the task manager checks for the recommendations
of the worker who did not finish the task and select the dele-
gated workers that can perform the corresponding task
within the remaining response time and budget. If the
worker did not recommend anyone, this affects the worker
reputation since the task is marked as not completed on his
historical performance. Otherwise, the task manager
rewards or penalizes the reputation based on the recom-
mended participants’ performance.

5 BENCHMARK MODELS AND PERFORMANCE

METRICS

In this section, we present two benchmark models (PSO-QoI
and QoI-Heu) as well as the performance metrics used to
validate and evaluate the proposed framework. The bench-
mark models use different task allocation algorithms. Also,
we extended them using the other components from our
framework, namely, queueing schemes, delegation mecha-
nism and reputation management.

5.1 Benchmark Models

5.1.1 QoI Aware PSO-Based Algorithm (PSO-QoI)

This benchmark model aims at maximizing the total quality
of information under budget constraints [15]. The authors
did not consider time-constrained tasks. To have a fair com-
parison, we modified their model to include the time con-
straints. The objective function for this optimization
problem is given by

max
X;P

X
j2W

cijX
i
j: (27)

We propose to solve the optimization problem under the
same constraints (7-8,10,11,12) as in our model using PSO
technique. Therefore, the PSO algorithm is similar to the
algorithm in 1 but with a different fitness function.

5.1.2 QoI Aware Heuristic Algorithm with Budget

Constraints (QoI-Heu)

In [16], a heuristic algorithm, which aims at maximizing the
QoI of one task under budget constraint, was proposed.
Thus, we modified their algorithm to solve the problem of
allocating a location-based task i to a set of candidate work-
ers W subject to a budget limit of Bi 2 Rþ within the
response time timax 2 Rþ. The Algorithm 2 presents the
modified version of the algorithm in [16].

This algorithm should provides close results to the PSO-
QoI algorithm since both algorithms aim at maximizing the
QoI per task.

5.2 Metrics

� Task allocation rate. This metric represents the percent-
age of tasks being effectively allocated toworkers

Fig. 3. Scenario with four tasks (2 already assigned and 2 new arriving
tasks).

TABLE 6
Worker Metrics for Tasks t3 and t4

Worker d3j d4j t3j t4j c3j c4j

U3 2 1 8 4 0.40 0.5
U4 1.41 1 1.41 1 0.25 0.25
U5 1.41 1 3.82 3 0.49 0.55

TABLE 7
Set of Workers to Perform Task t4

Workers QoI Agg QoI Budget Response Time AggQoI
B�T

½U3; U4; U5� 1.3 0.3 5.7 4 0.01
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fT ¼
Tassigned

jT j ; (28)

where Tassigned is the number of tasks that are effec-
tively allocated and performed within their respec-
tive response time.

� Average Response time per task. It indicates the average
time to perform a location-based task

tT ¼
P

i2T maxj2W ðtijÞ
Tassigned

: (29)

� Average QoI Satisfaction per Task. This metric meas-
ures the average satisfaction of the quality of infor-
mation over the set of tasks in a given instant

SQoI ¼
P

i2T max 1;
P

j2W cijX
i
j � Ci

� �
Tassigned

: (30)

� Average Payment per Worker. It indicates the average
payment received by the worker per traveled kilo-
meter and it can be expressed as follows:

PW ¼
P

i2T
P

j2W dijP
i
jP

i2T
P

j2W dijX
i
j

: (31)

� Average Estimation Error Rate. This metric measures
how effective is an approach in finding credible
workers for a location-based task. The average esti-
mation error rate � is the ratio of incorrect responses
(i.e., the number of answers provided by the worker
that differ from the ground truth of the assigned
tasks) to the total number of assigned tasks. This
metric is given by

� ¼

P
i2T

P
j2W Xi

j
1j
oi
j
6¼OiP

j2W Xi
j

 !
Tassigned

: (32)

� Average Budget per Task. This metric measures the
average budget used per task and is given by

BT ¼
P

i2T
P

j2W Pi
j d

i
j

Tassigned
: (33)

� Average Reputation per Worker. It measures the aver-
age reputation of the participating workers in the
MCS system

RW ¼
P

i2T
P

j2W rkjX
i
jP

i2T
P

j2W Xi
j

: (34)

� Effective Crowd Size. This metric measures the num-
ber of participating workers in the MCS system

SIZE ¼
X
i2T

X
j2W

Xi
j: (35)

6 SIMULATION RESULTS

For our simulations, we used a real dataset of an existing
application: Foursquare. Specifically, two files from this
dataset are used: 1) the venues’ file that represents the task
locations and 2) the users’ file that corresponds to the work-
ers’ locations. Moreover, we extracted two subsets: 500 ven-
ues and 16,836 users to represent the tasks and workers in
our model. These subsets allows us to construct realistic
spatial crowd sensing scenario to demonstrate that the pro-
posed approach outperforms existing approaches.

Algorithm 2.Heuristic Algorithm (QoI-Heu)

Data: A set of workers W, a spatial task i
Result: Worker selected to the task i and the price to be paid

per worker ðXi
j; P

i
j .)

begin
for i 1 to jW j do
Compute cij according to Eq. (1);

end
Rank workers in descending order of their cij ;
for j 1 tominðjWij; b B

Pmin
H;j

cÞ do
J  minjWij; bB�P

max
H;j

Pmax
M;j
c;

Select a set of workers,Wi who satisfy dðljðtÞ; liÞ � Ri;
Select a subset,Si 2Wi workers who satisfy:
1 : rjðtÞ � ThML, and;
2 : maxjt

i
j � treqi ;

(subject to actual availability) with ties broken arbitrarily;
end
Pi ¼ argmaxSiC

i
Si
;

end

We first identify the distribution of the workers in the
vicinity of the tasks as the task coverage radius increased
from 0.4 to 2 km, which is shown in Fig. 4).

For coverage radius equal to 2 km, it is observed that for
100 tasks it is possible to find between 10-1,000 workers in
the vicinity of 100 tasks. Therefore, we select a set of 1,000
workers for our simulations and generate their initial reputa-
tion randomly. Table 8 shows the workers distribution per
reputation level according to their initial reputation.

Fig. 4. Range of Workers close to tasks vs Number of task.

TABLE 8
Workers Distribution per Reputation Level

Number Workers Initial Distribution

RepL RepM RepH

200 27 72 101
400 53 141 206
600 70 228 302
800 102 301 397
1,000 118 384 498

ESTRADA ET AL.: A CROWD-SENSING FRAMEWORK FOR ALLOCATION OF TIME-CONSTRAINED AND LOCATION-BASED TASKS 779



We run the simulations under two different scenarios: an
incremental scenario and a realistic scenario.

a) Incremental Scenario. This scenario starts with 15 tasks
up to 150 tasks with incremental steps of 15 tasks. This sce-
nario is used to prove that the proposed multi-objective task
allocation algorithm can enhance the performance of the
benchmark task allocation algorithms for different number
of tasks. We modified the three-stage strategy used in [16]
to obtain the numerical results. In the first stage, the tasks
are sorted according to three parameters: required QoI, the
number of workers and requested response time instead of
only QoI. The first two parameters are used to sort the tasks
in descending order while the response time is used to sort
them in ascending order. In such way, the system gives pri-
ority to the tasks with short response time. In the second
stage, workers are selected if they meet the conditions to
perform the task, such as they are located within the cover-
age area defined by the task and the time to reach the task
location is lower than required response time. For this sce-
nario, the performance metrics are presented as a function
of the number of tasks in Section 6.1 and the benefits of the
worker queue in Section 6.2.1.

b) Realistic scenario. The task arrival process is considered
as Poisson Process with parameter �. Each task identifies
the required time to gather the sensed information from
the assigned workers. We use an exponential random vari-
able with mean m to generate the required response time for
the tasks. We run extensive event-driven simulations over
1,000 iterations to get to steady state conditions with the
parameters described in Table 9.

We assume that workers can finish a task with certain
probability 1� p. If they do not finish a task, their reputa-
tion is affected over the time. The initial worker’s reputation
is randomly generated. Then, after each five completed
tasks, the worker reputation is calculated as the ratio
between their completed task with correct answer and his
total allocated tasks plus the reward or penalty from the del-
egation mechanism.

The initial worker self-confidence bj is assumed to be the
percentage of his phone battery (bj 2 ½0; 1�). In our simula-
tions, the confidence value is a decreasing function of the
number of tasks completed by the worker due to the battery
consumption needed to perform the task and send the col-
lected data to the server. For convenience, the worker confi-
dence during a given period k is estimated as follows:

bjðkÞ ¼ ðbjÞT
k
j ; (36)

where Tk
j is the number of completed tasks by the worker j

during the period k and bj is the initial measured phone bat-
tery level. The battery consumption function is only an exam-
ple and other functions could be used depending on the
technical features and the applications running on the device.

Our event-driven simulation are carried out as follows:
At the initial state, one task arrival event is generated. The
arrival time follows an exponential distribution. Then, the
process starts selecting the event that occurs first (minimum
time of occurrence) and according to the type of event (task
arrival or departure), several actions are performed.

In the case of arrival, the worker selection for the task
starts. If there are available workers, then, the workers that
maximize our multi-objective function are selected. Other-
wise, the MCS platform queues the task until these workers
are available. Once the task is assigned to a set of workers,
the type of event is changed to departure and the event time
is updated to the service starting time plus the estimated
response time from the algorithm and another arrival task
event is generated.

In the case of departure, the MCS platform verifies that
the selected workers have sent the sensed data. If the QoI of
the task is higher than the MCS customer requirements,
then, the number of completed tasks is increased by one
and the workers’ payment and reputation are updated. Oth-
erwise, the MCS platform checks for delegation proposal by
the worker who did not finish the task. If the worker did not
recommend any other worker, the task is considered as
incomplete because the MCS customer won’t pay for the
sensed data that does not comply with the required quality
of information. In the case of delegation, the event time is
updated to the total service time estimated by the delegation
mechanism. Finally, the MCS platform always checks the
queue to allocate the queued tasks as soon as potential
workers are available.

For the realistic scenario, the performance metrics over
the time are presented in Section 6.1. Then, we show how
the delegation mechanism can improve the worker satisfac-
tion without depriving the worker reputation in Section 6.3.
In addition, we analyze the impact of each component of

TABLE 9
Realistic Scenario Parameters

Name Description Value

m Required Response time mean 30 min
� Task arrival rate 1 Task/minute
Ni

max Maximum number of worker per task i 1 or 5
Nmax

j Maximum number of task per worker j 1 or 5
Bi Maximum Budget per Task 100
Pi
max Maximum Price per Task 5

Ri Task Coverage Radius 2-5 km
Q MCS Task Manager Queue Size 0 or 5
rj Worker Reputation 0 - 1
bj Worker Self-Confidence 0.7 - 1
sj Worker Speed 10 - 50 km/h
p Probability of not finishing a task per worker 0.2

Fig. 5. Performance under an incremental scenario (one task per
worker).
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the framework individually over the performance metrics in
Section 6.4.

6.1 Performance Analysis

Fig. 5 shows the task allocation rate, budget and response
time for the three models, where the worker can perform
only one task at a time but several workers can be involved
in the execution of one task.

For the case of 15 tasks, PSO-MOAmodel requires 50 per-
cent less budget than the benchmark models PSO-QoI and
QoI-heu and it achieves a task allocation rate of 100 percent.
QoI-Heu has a lower task allocation rate (around 55 percent)
due to the fact that this model recruits more workers to per-
form each task, as shown in Fig. 5d. PSO-MOA model also
reduces the time to collect the sensed data from the workers
by 55 and 40 percent in comparison to the time required by
the PSO-QoI and QoI-Heu models respectively.

Fig. 6 depicts the performance metrics for the realistic
scenario. In fact, the proposed framework increases the task
allocation rate and reduces the estimation error while keep-
ing the same level of QoI satisfaction per task in comparison
with the benchmark models. In particular, PSO-MOA
model presents a task allocation rate approximately 20 and
25 percent higher than PSO-QoI and QoI-heu models
respectively while the estimation error is around 10 percent
less than the other two models and the average worker rep-
utation is 10 percent higher than the benchmark models.

In summary, the PSO-MOA model outperforms the
benchmark models under the incremental and the realistic
scenarios.

6.1.1 Complexity

Table 10 presents the running time for the incremental sce-
nario with a number of available workers equal to 1,000.
As expected, the running time increases as the number of
workers increases. The running time of the three-stage
algorithm using PSO for the task allocation is considerably
higher than the one using the heuristic algorithm. In the
incremental scenario, PSO-QoI algorithm requires an aver-
age of 1 minute and 20 seconds to find the worker selection
while PSO-MOA requires 1 minute and half approxi-
mately for the case of 90 tasks. Nevertheless, it should be
noticed from Fig. 5c that the average response time per
task plus the running time of the three-stage algorithm is
still lower than the response time of the benchmark mod-
els. For the realistic scenario, the running time is given by
the first row in Table 10 since each task is allocated upon
its arrival.

6.1.2 Impact of Crowd Size

Fig. 7 depicts the task allocation rate and the estimation
error rate versus the number of available workers for the
realistic scenario under steady state conditions.

It can be noticed that our framework presents the highest
task allocation rate (85 -92 percent) with the lowest estima-
tion error rate (15 - 22 percent). In particular, QoI-Heu algo-
rithm has similar behavior as the PSO-QoI algorithm when
the number of available workers is higher than 600. This
means that the QoI-Heu model indeed approximates the
results of the PSO-QoI model if the number of available
workers is large enough; otherwise, the heuristic algorithm
does not perform well.

6.2 Queuing Schemes

In the proposed framework, two types of queue are used: a
worker queue and the task manager queue as explained in
Section 4.2.

Fig. 6. Performance under a realistic scenario (one task per worker).

TABLE 10
Running Time (sec)

No. Tasks PSO-QoI PSO-MOA QoI-Heu

1 2.1 1.5 0.2
30 28.39 31.47 0.94
60 51.78 60.20 1.78
90 80.22 97.47 3.17

Fig. 7. Impact of number of available workers.
Fig. 8. Impact of multiple tasks allocation per worker under an incremen-
tal scenario (From 1 Task to 5 Tasks per worker).
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6.2.1 Worker Queue

Here, the budget reduction and task allocation rate gain for
the incremental scenario is presented in Fig. 8. The budget
reduction is the difference between the budgets spent for
the cases without and with the local worker queue while
the task allocation rate gain is the difference between the
task allocation rate for the cases with and without the local
worker queue. In Fig. 8a, the PSO-MOAmodel has the high-
est budget reduction (25-40 percent) while the QoI-heu
model has a budget reduction between 10 and 26 percent of
its original budget. PSO-QoI model presents a budget
reduction of 5 percent when the number of tasks is less than
50 tasks. For more than 50 tasks, PSO-QoI model presents a
budget increase and is an increasing function of the number
of tasks. From Fig. 8b, it can be observed that the PSO-MOA
model has an increase of the allocation rate between 0 and
15 percent of the original task allocation rate (Fig. 7a). For
the case of 150 tasks, the multiple tasks allocation mecha-
nism allows the PSO-MOA model to improve the task allo-
cation rate to 95 percent while PSO-QoI model presents a
task allocation rate gain of 30 percent of its original task allo-
cation rate (i.e., 62 percent).

6.2.2 Priority Queue

Fig. 9 presents the impact of the queue size in the task man-
ager side. In particular, Figs. 9a and b present the average
waiting time and the successful completion rate for those
tasks being queued due to the unavailability of workers to
perform them upon their arrival. As we can see, our model

has higher rate of successful number of tasks that have been
queued and completed than the other two benchmark mod-
els. Moreover, the average waiting time is lower than the
benchmark models. Both benchmark models present higher
waiting time in queue that the PSO-MOA model while their
rate of task being successful queued are lower in compari-
son to our model (see Fig. 9c).

As expected, the priority queue scheme is indeed lever-
aged by our multi-objective task allocation algorithm. This
is owing to the fact that our algorithm also aims at minimiz-
ing the response time to perform every task that were
already allocated. Therefore, the workers will be available
to perform the queued tasks without causing long waiting
times and having a high completion task rate.

6.3 Delegation Mechanism

The impact of the delegationmechanism over several perfor-
mance metrics is presented in this section. Although the
Foursquare dataset includes social graph information about
its users, we could not use it because we extracted a subset of
users and its corresponding social network was very limited
(approximately two people known per worker) for delega-
tion purposes. Instead, we decided to use the social network
from the Enron e-mail dataset.5 The practice of combining
two different datasets is used successfully on other papers
[32]. In fact, the two datasets are complementing each other.
The Enron email communication network covers all the
email communication within a dataset of around half million
emails. Nodes of the Enron network are email addresses and
if an address i sent at least one email to address j, the graph
contains an undirected edge from i to j. The number of nodes
is 36,692. Each worker from our subset is mapped to one
e-mail address of the Enron e-mail dataset. Table 11 shows
the average number of known people per worker after the
mapping according to the size of the worker subset. The
probability of dropping a task (p) is set to 0.2.

First, we run simulation using PSO-MOA with neither
delegation nor reselection (PSO-MOA), with the delegation
mechanism (PSO-MOA-DE) and with worker reselection by
the MCS system (PSO-MO-ReSe). Table 12 shows the aver-
age results for three models at iterations 600 and 1,000. As it
can be observed, the task allocation rate for the model that
attempts to enhance the task allocation rate of the original
model (PSO-MOA) using the delegation scheme presents
values similar to the values using the worker re-selection by
the MCS system and both schemes enhanced the task alloca-
tion rate of the original model. However, the response time
and budget are increased for the model using the reselection
compared to the one with the delegation mechanism. This is

Fig. 9. Impact of size of the priority queue.

TABLE 11
Social Graph for Different Number of Workers

No. Workers Size of social graph Avg. Known People

200 2,704 13
400 7,506 18
600 17,956 29
800 26,886 33
1,000 34,776 34

TABLE 12
Delegation Mechanism versus Worker’s Re-Selection

Iteration: 600 1,000

Model
Alloc. Resp. Budget Alloc. Resp. Budget
Rate Time Rate Time
% (min) $ % (min) $

PSO-MOA 80 6 10.2 84 6 10
PSO-MOA-ReSe 81 8.2 11.2 85 9.5 12
PSO-MOA-De 83 7 9.4 85 7.5 9.8

5. https://snap.stanford.edu/data/email-Enron.html
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because the MCS system does not select workers among the
full set of workers, but instead relies on the worker’s recom-
mendation and reduces its search to a subset of workers.

Fig. 10a presents the task allocation rate gain when the
delegation mechanism is incorporated to the three mod-
els and a worker can be assigned to only one task at a
time. It can be noticed the highest task allocation rate
gain is usually obtained using the PSO-MOA model.
Fig. 10b depicts the number of delegated and completed
tasks for each model and shows that the proposed model
is able to delegate more tasks than the benchmark mod-
els. Fig. 11 presents the average reputation per workers.
In particular, these figures show the average reputation
for workers who do not recommend and recommenders.
It is worth noticing that the proposed delegation mecha-
nism can effectively incentivize a worker to recommend
other workers from his social network and allows them
to increase their reputation and thanks to this increase
they can keep their payment higher than in the other
two models (see Fig. 12).

The benchmark models fail to incentivize through the
proposed delegation mechanism owing to the fact that these
two models require more workers to carry out one task and
there is less available workers that can be reached under a
recommendation.

In summary, the proposed delegation mechanism is able
to incentivize workers, guaranteeing their payment by
means of keeping their high reputation level. In particular,
our model increases the number of tasks being delegated
owing to the fact that our model uses less number of work-
ers per task. Therefore, there is a high probability that one
worker who does not finish his/her task can affect the total
required QOI per task.

6.4 Evaluation of Each Component of the Realistic
Framework

Table 13 presents the impact of each component of the solu-
tion on the performance metrics for the three models. The
first column indicates the name of the metric. Then, the five
consecutive columns present the results for each model. The
first column under each model indicates the case where
only one task can be carried out per worker without any
additional component. The second to fourth columns corre-
spond to the results for each model considering only one
component of the proposed framework and the fifth column
combines all the components.

Each component leads to an enhancement over the per-
formance metrics in comparison with the model that allo-
cates just one task per worker. In particular, the proposed
framework (PSO-MOA) using all components can allocate
around 81 percent of the requested tasks with a QoI satisfac-
tion of 90 percent and an estimation error of 19 percent.
PSO-QoI model allocates 70 percent of the requested tasks
with a QoI satisfaction of 90 percent and an estimation error
of 32 percent. The heuristic model allocates 64 percent of
the requested tasks with a QoI task satisfaction of 94 percent
and an estimation error of 32 percent. As expected, the pro-
posed framework reduces the budget and response time
per task around 70 and 50 percent in comparison with the
two benchmark models respectively.

Fig. 10. Impact of the delegation mechanism.

Fig. 11. Reputation per worker.

Fig. 12. Payment per worker.

TABLE 13
Impact of Each Component over the Performance Metrics

PSO-QoI PSO-MOA QoI-Heu

Performance One Priority Multipe Deleg All One Priority Multipe Deleg All One Priority Multipe Deleg All

Metrics Task Queue Tasks Task Queue Tasks Task Queue Tasks

Estimation Error (%) 28 28 27 31 32 18 19 19 20 19 28 27 29 33 32
Average Reputation (%) 51 51 50 50 51 63 65 62 61 65 49 51 51 49 49
Task Allocation Rate (%) 58 58 69 70 70 79 78 79 80 81 55 59 60 67 64
QoI Satisfaction (%) 86 87 86 90 90 89 89 89 89 90 88 87 88 94 94
Budget ($) 37.40 35.32 33.63 39.04 36.85 11.61 12.72 12.00 11.51 11.88 28.58 27.954 28.55 29.46 30.23
Time (min) 18.79 18.81 16.93 21.36 21.53 5.64 7.87 5.66 5.96 8.32 17.42 18.43 17.00 20.39 22.09
Running Time (min) 1.15 1.18 1.17 1.06 1.11 1.42 1.55 1.50 1.46 1.41 0.05 0.04 0.05 0.04 0.05

ESTRADA ET AL.: A CROWD-SENSING FRAMEWORK FOR ALLOCATION OF TIME-CONSTRAINED AND LOCATION-BASED TASKS 783



Finally, the running times for PSO-based models are
higher than the heuristic model (1.1 and 1.5 minutes for the
PSO-QoI and PSO-MOA models respectively). In particular,
PSO-MOA model presents the total response time including
the response time and running time lower than the one for
the QoI-Heu model. Moreover, the running time for the
PSO-based algorithms can be further reduced using a PSO
variant. However, this is out of the scope of the paper and it
can be investigated as future work.

6.5 Impact of Variable Task Arrival Rate

Here, the performance of the three models when the MCS
system reaches the steady state conditions is presented.
Fig. 13 shows the quality of information, the budget and the
average response time per task for variable task arrival rate
� (i.e., 2-8 tasks/min). For this scenario, the task manager
queue size Q was set up to 5, the worker queue size is equal
to 2, the delegation mechanism is used and available num-
ber of workers is equal to 1,000. As expected, our frame-
work can effectively reduce the budget and response time.
It can be noticed that as the task arrival rate increases, the
QoI for the benchmark models decreases, while in our
model slightly increases.

In summary, our solution reduces the budget by 5 to
35 percent and accommodates around 20 percent more tasks
than the benchmark models. Moreover, its response time is
lower than the response time of the QPI-Heu and PSO-QoI
models. It is also shown that the MCS framework encour-
ages the workers through the delegation mechanism by
keeping the level of workers’ reputation high. Finally, the
queuing schemes allow the framework to further increase
the task allocation rate without compromising the required
response time. Therefore, our MCS framework increases the
average quality of information per task, reduces the budget
and minimizes the response time.

7 CONCLUSION

A service computing framework for task management in
MCS systems is introduced. It consists of a multi-objective
task allocation algorithm, queuing schemes and a delega-
tion mechanism. The multi-objective task allocation algo-
rithm was implemented using PSO to find a compromise
between the aggregated quality of information/budget ratio
and the response time. This algorithm was compared with
two algorithms: one meta-heuristic (PSO-QoI) and one heu-
ristic (QoI-Heu) that aim at maximizing the QoI per task
under an incremental scenario and a realistic scenario. For
the incremental scenario, our solution reduces the budget
between 5 and 35 percent, accommodates around 20 percent
more tasks than the benchmark models while requiring less
time for the data collection. For the realistic scenario, the

proposed framework provides incentives to the workers
through the delegation mechanism. In fact, our model
presents an average recommenders’ reputation higher than
58 percent while the other two models present a reputation
lower than 50 percent. Furthermore, the queuing schemes
allow the proposed framework to further increase the allo-
cation rate without compromising the required response
time. As future work, we propose to investigate the optimi-
zation of the workers’ route when allocated to several tasks.
We also propose to investigate the implementation of other
delegation mechanisms and the analysis of the framework
performance under mobile users arrival/departure pro-
cesses to determine when the engagement strategies are
needed to guarantee the QoI per task.

ACKNOWLEDGMENTS

This work has been partially funded by Khalifa University
Internal Research Level 1, fund code 210068.

REFERENCES

[1] B. Guo, et al., “Mobile crowd sensing and computing: The review
of an emerging human-powered sensing paradigm,” ACM Com-
put. Surveys, vol. 48, no. 1, pp. 7:1–7:31, 2015.

[2] V. Coric and M. Gruteser, “Crowdsensing maps of on-street park-
ing spaces,” in Proc. IEEE Int. Conf. Distrib. Comput. Sensor Syst.,
May 2013, pp. 115–122.

[3] N. Maisonneuve, M. Stevens, M. Niessen, and L. Steels,
“Noisetube: Measuring and mapping noise pollution with mobile
phones,” in Proc. Inf. Technol. Environmental Eng., 2009, pp. 215–
228.

[4] B. Guo, H. Chen, Z. Yu, X. Xie, S. Huangfu, and D. Zhang,
“FlierMeet: A mobile crowdsensing system for cross-space public
information reposting, tagging, and sharing,” IEEE Trans. Mobile
Comput., vol. 14, no. 10, pp. 2020–2033, Oct. 2015.

[5] X. Zhang, et al., “Incentives for mobile crowd sensing: A survey,”
IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 54–67, Jan./Mar.
2016.

[6] M. H. Cheung, R. Southwell, F. Hou, and J. Huang, “Distributed
time-sensitive task selection in mobile crowdsensing,” in Proc.
16th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2015, pp. 157–
166.

[7] Y. Liu, B. Guo, Y. Wang, W. Wu, Z. Yu, and D. Zhang,
“TaskMe: Multi-task allocation in mobile crowd sensing,” in
Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 2016,
pp. 403–414.

[8] B. Guo, Y. Liu, W. Wu, Z. Yu, and Q. Han, “ActiveCrowd:
A framework for optimized multitask allocation in mobile crowd-
sensing systems,” IEEE Trans. Human-Mach. Syst., vol. 47, no. 3,
pp. 392–403, Jun. 2017.

[9] I. Koutsopoulos, “Optimal incentive-driven design of participa-
tory sensing systems,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 1402–1410.

[10] N. Do, C.-H. Hsu, and N. Venkatasubramanian, “CrowdMAC: A
crowdsourcing system for mobile access,” in Proc. 13th Int. Middle-
ware Conf., 2012, pp. 1–20.

[11] H. Shah-Mansouri and V. Wong, “Profit maximization in mobile
crowdsourcing: A truthful auction mechanism,” in Proc. IEEE Int.
Conf. Commun., 2015, pp. 3216–3221.

Fig. 13. Performance metrics for variable task arrival rate.

784 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2020



[12] H. Yu, C. Miao, Z. Shen, C. Leung, Y. Chen, and Q. Yang,
“Efficient task sub-delegation for crowdsourcing,” in Proc. 29th
AAAI Conf. Artif. Intell., 2015, pp. 1305–1312.

[13] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor,
“AutoMan: A platform for integrating human-based and digital
computation,” Commun. ACM, vol. 59, no. 6, pp. 102–109, 2016.

[14] J. Banks, J. Carson, B. L. Nelson, and D. Nicol, Discrete-Event Sys-
tem Simulation, 4th ed. Englewood Cliffs, NJ, USA: Prentice Hall,
Dec. 2004.

[15] C. Zhou, C.-K. Tham, and M. Motani, “QOATA: Qoi-aware task
allocation scheme for mobile crowdsensing under limited budg-
et,” in Proc. IEEE International Conference on Intelligent Sensors, Sen-
sor Networks and Information Processing, Apr. 2015, pp. 1–6.

[16] H. Yu, C. Miao, Z. Shen, and C. Leung, “Quality and budget
aware task allocation for spatial crowdsourcing,” in Proc. Int.
Conf. Autonomous Agents Multiagent Syst., 2015, pp. 1689–1690.

[17] J. Liu, H. Shen, and X. Zhang, “A survey of mobile crowdsensing
techniques: A critical component for the internet of things,” in
Proc. 25th Int. Conf. Comput. Commun. Netw., Aug. 2016, pp. 1–6.

[18] L. Jaimes, I. Vergara-Laurens, and M. Labrador, “A location-based
incentive mechanism for participatory sensing systems with bud-
get constraints,” in Proc. IEEE Int. Conf. Pervasive Comput. Com-
mun., Mar. 2012, pp. 103–108.

[19] L. Mo, et al., “Optimizing plurality for human intelligence tasks,” in
Proc. 22nd ACM Int. Conf. Inf. Knowl.Manage., 2013, pp. 1929–1938.

[20] L. Varshney, J. Rhim, K. Varshney, and V. Goyal, “Categorical
decision making by people, committees, and crowds,” in Proc. Inf.
Theory Appl. Workshop, Feb. 2011, pp. 1–10.

[21] J. Surowiecki, The Wisdom of Crowds. New York, NY, USA: Anchor,
2005.

[22] Foursquare dataset, 2013. [Online]. Available: https://archive.
org/details/201309_foursquare_dataset_umn

[23] V. D. Blondel, et al., “Data for development: The D4D challenge
on mobile phone data,” CoRR, 2012. [Online]. Available: http://
arxiv.org/abs/1210.0137

[24] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists
and Engineers: Definitions, Theorems, and Formulas for Reference and
Review. Mineola, NY, USA: Dover Publications, 2000.

[25] S. He, D.-H. Shin, J. Zhang, and J. Chen, “Toward optimal alloca-
tion of location dependent tasks in crowdsensing,” in Proc. IEEE
INFOCOM, Apr. 2014, pp. 745–753.

[26] M. R. Garey and D. S. Johnson, Computers and Intractability;
A Guide to the Theory of NP-Completeness. San Francisco, CA, USA:
Freeman, 1979.

[27] E. Elbeltagi, T. Hegazy, and D. Grierson, “Comparison among five
evolutionary-based optimization algorithms,” Adv. Eng. Inform.,
vol. 19, no. 1, pp. 43–53, 2005.

[28] Perez. R. and K. Behdinan, “Particle swarm optimization in struc-
tural design,” in Swarm Intelligence: Focus on Ant and Particle
Swarm Optimization. Vienna, Austria: Itech Education and Pub-
lishing, 2007, pp. 532–555.

[29] D. Bratton and J. Kennedy, “Defining a standard for particle
swarm optimization,” in Proc. IEEE Swarm Intell. Symp., 2007,
pp. 120–127.

[30] F. Lobo, Parameter Setting in Evolutionary Algorithms. Berlin,
Germany: Springer, 2007.

[31] P. Tannenbaum, Excursions in Modern Mathematics. Cambridge,
U.K.: Pearson, 2013.

[32] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “Optimal
load distribution for the detection of VM-based DDoS attacks in
the cloud,” IEEE Trans. Serv. Comput., 2017.

Rebeca Estrada received the BSc degree in
computer engineering from ESPOL, in 1995, the
master’s degree with specialization in telecom-
munication from ITESM, Monterrey, M�exico, in
1998, and the engineering doctoral degree from
�Ecole de Technologie Sup�erieure, University of
Quebec, in 2014. She holds an associate profes-
sor position in the department of Electrical Engi-
neering and Computer Science at Escuela
Superior Polit�ecnica del Litoral (ESPOL), Guaya-
quil, Ecuador. Currently, she is leading a

research group (ReDIT) with focus on Networking and Technological
infrastructure at ESPOL. Her research work is oriented to resource allo-
cation in mobile crowd-sensing systems, cloud computing systems and
two-tier wireless network.

Rabeb Mizouni received the MSc and PhD
degrees in electrical and computer engineering
from Concordia University, Montreal, Canada, in
2002 and 2007, respectively. She is an assistant
professor in electrical and computer engineering
with Khalifa University. Currently, she is inter-
ested in the deployment of context aware mobile
applications, crowd sensing, software product
line and cloud computing.

Hadi Otrok received the PhD degree in ECE from
Concordia University. He holds an associate pro-
fessor position in the Department of ECE, Khalifa
University, an affiliate associate professor in the
Concordia Institute for Information Systems Engi-
neering, Concordia University, Montreal, Canada,
and an affiliate associate professor in the electri-
cal department at cole de Technologie Suprieure
(ETS), Montreal, Canada. He is an associate edi-
tor at: Ad-Hoc Networks (Elsevier), the IEEE
Communications Letters, Wireless Communica-

tions and Mobile Computing (Wiley). He co-chaired several committees
at various IEEE conferences. He is an expert in the domain of computer
and network security, web services, ad hoc networks, application of
game theory, and cloud security. He is a senior member of the IEEE.

Anis Ouali received the BSc degree in computer
engineering from LEcole Nationale des Sciences
de l’Informatique (ENSI), Tunisia, in 2000, the
MSc degree in computer science from Universite
du Quebec A Montreal (UQAM), Canada, in
2004, and the PhD degree from the Electrical and
Computer Engineering Department, Concordia
University, Montreal, Canada, in 2011. His
research interests include P2P networks for video
streaming, distributed computing and content
adaptation. He joined EBTIC in 2010 and is cur-

rently working in the network optimization team which focuses on solving
network design related problem.

Jamal Bentahar received the PhD degree in
computer science and software engineering from
Laval University, Canada, in 2005. He is a full
professor with Concordia Institute for Information
Systems Engineering, Faculty of Engineering
and Computer Science, Concordia University,
Canada. From 2005 to 2006, he was a postdoc-
toral fellow with Laval University, and then Simon
Fraser University, Canada. His research interests
include services computing, applied game theory,
computational logics, model checking, multi-

agent systems, and software engineering. He is a member of the IEEE.

ESTRADA ET AL.: A CROWD-SENSING FRAMEWORK FOR ALLOCATION OF TIME-CONSTRAINED AND LOCATION-BASED TASKS 785

https://archive.org/details/201309_foursquare_dataset_umn
https://archive.org/details/201309_foursquare_dataset_umn
http://arxiv.org/abs/1210.0137
http://arxiv.org/abs/1210.0137


A Reinforcement Learning Method for
Constraint-Satisfied Services Composition

Lifang Ren , Wenjian Wang , and Hang Xu

Abstract—With increasing adoption and presence ofWeb services, service composition becomes an effective way to construct software

applications. Composite services need to satisfy both the functional and the non-functional requirements. Traditional methods usually

assume that the quality of service (QoS) and the behaviors of services are deterministic, and they execute the composite service after all

the component services are selected. It is difficult to guarantee the satisfaction of user constraints and the successful execution of the

composite service. This paper models the constraint-satisfied service composition (CSSC) problem as aMarkov decision process

(MDP), namely CSSC-MDP, and designs aQ-learning algorithm to solve themodel. CSSC-MDP takes the uncertainty of QoS and

service behavior into account, and selects a component service after the execution of previous services. Thus, CSSC-MDP can select

the globally optimal service based on the constraints which need the following services to satisfy. In the case of selected service failure,

CSSC-MDP can timely provide the optimal alternative service. Simulation experiments show that the proposedmethod can successfully

solve the CSSC problem of different sizes. Comparing with three representative methods, CSSC-MDP has obvious advantages,

especially in terms of the success rate of service composition.

Index Terms—Web service composition, constraint-satisfied, uncertainty of service behaviors, undetermined QoS, Markov decision process

(MDP), Q-learning algorithm

Ç

1 INTRODUCTION

WITH the rapid development of cloud computing,
services are emerging as a powerful vehicle for

organizations to deliver their applications over the Inter-
net. As the number of services increases, software appli-
cations are no longer built from scratch, but rather
through integration of available services distributed in
the Web, which leads to the service composition. In this
way, component services can be integrated into more
capable composite services to fulfill more and more com-
plex demands of users. Therefore, it is an inevitable trend
to integrate the available services to meet various require-
ments from users [1], [2].

It is expected that there will be an increasing number
of services with the same functionality and different qual-
ity of service (QoS), such as response time, availability,
reliability, throughput, price, success rate, and so on.
Nevertheless, the Internet environment is dynamic and
the service evolutions take place erratically, which leads
to the uncertain QoS and service behavior. Such as, the
increase in network traffic will bring a prolonged
response time, and sometimes a service is temporarily

unavailable due to the upgrade evolution. All these make
service composition a complex task. Along with the fact
that users tend to propose different constraints on the
QoS of the composite service. For example, users may
expect the response time of a composite service to be less
than a certain threshold while the execution cost of the
composite service must fall within a budget. However, in
general there is a tradeoff between cost and response
time (or other QoS attributes) for a composite service. The
constraints from user further increase the difficulties of
service composition. Given the above consideration, it is
important and challenging to design a constraint-satisfied
service composition (CSSC) method adaptive to the
uncertainty QoS and service behavior [3].

So far, many research efforts have been devoted to solv-
ing the CSSC problem [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14]. All these methods regard the QoS values as
being determined, and they divide the process of service
composition into component services selection stage and
composite service execution stage, which means that
the composite service are executed after all the component
services are selected. However, as the supporting environ-
ment, the Internet is highly dynamic, and service evolu-
tions take place casually, thus the QoS values of the
same service invoked by the same user at different times
can be very different. Due to the uncertainty of QoS and
service behavior, it is difficult to guarantee that the optimal
component service in the selection stage is still optimal
during the execution stage. Even worse, the selected
optimal component service may become unavailable dur-
ing the execution of composite service. Thus, the optimiza-
tion process has to be performed again, however, the
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re-optimization cannot guarantee the successful execution
of the new optimal composite service.

The goal of CSSC is to find and execute the most appro-
priate service for each task in the business workflow, so far
as to satisfy the functional requirements and QoS con-
straints as possible as it can be. However, service behavior
is uncertain and QoS values are variable, this results to
difficulties in attempting to satisfy user constraints opti-
mally and robustly. Consequently, the CSSC process can be
considered as an optimization problem of multi-stage deci-
sions within an uncertain decision-making environment.
The Markov decision process (MDP), as a model of the rein-
forcement learning, is a theoretical tool for studying the
optimization problem of the multi-stage decision process in
stochastic environment [15], so it is especially suitable for
solving the CSSC problem. Accordingly, this paper models
the CSSC problem as an MDP, namely CSSC-MDP, and
designs a Q-learning algorithm to solve the model. By this
way, CSSC-MDP integrates the advantages of global optimi-
zation approaches and local optimization approaches. The
main benefits of CSSC-MDP are as follows:

� CSSC-MDP selects component services during the
composite service execution, thus it avoids the fail-
ure of whole composite service caused by the failure
of a component service. Therefore, CSSC-MDP is
robust.

� CSSC-MDP selects the optimal candidate service for
a task based on the constraints which need to be sat-
isfied by the following services. Hence, CSSC-MDP
is self-adaptive to the uncertain QoS values.

� The selection strategy of CSSC-MDP aims at maxi-
mizing the expected cumulative reward which is on
behalf of the satisfaction degree of the user con-
straints. So, CSSC-MDP is globally optimized.

The remainder of this paper is organized as follows.
Section 2 gives the details of our CSSC-MDP approach. In
Section 3, an illustrative example is presented to explain
concretely the process of CSSC-MDP method. Section 4
reports and analyzes our experimental results. Section 5
overviews the related work. Finally, conclusions are given
in Section 6.

2 THE CSSC-MDP

In this section, the CSSC problem is formally described at
first; second, the approach of this paper is presented; third,
some relevant definitions are formalized; next, the CSSC is
modeled as an MDP; then, the decision criterion of CSSC-
MDP is presented; finally, the Q-learning algorithm to solve
the CSSC-MDP is proposed.

2.1 Problem Description

The aim of CSSC is to find the appropriate component serv-
ices which can be integrated as an optimal composite ser-
vice, so as to best meet the user’s functional and
nonfunctional requirements. In this paper, the functional
requirements are described as a workflow. Generally, the
workflow can be sequential, conditional, parallel and itera-
tive constructs, or more generically, the combination of
these structures. However, in fact, service compositions

which involve loops, branches or parallel structures can be
converted into sequence structures [16]. Moreover, many
studies have been done to compute the QoS of composite
service in different structures [12], [13]. Therefore, this
paper focuses on the CSSC problem with sequential work-
flow model. Hence, the process of service composition is to
select the component services most suitable for each task in
the workflow to form the optimal composite service, mean-
while, all the QoS constraints should be satisfied.

Fig. 1 is the schematic of CSSC. At first, the request for
service composition from the user is submitted, it includes
the functional requirements and QoS constraints. According
to functional requirements, a workflow is built, which is the
abstract representation of the composite service. For exam-
ple, in Fig. 1 the workflow is formed with three sequentially
executed abstract tasks (denoted as t1; t2 and t3). In the Inter-
net, there exist many service providers, each of them pro-
vides some different services. In Fig. 1, a cloud represents a
service provider, different shapes within it represent differ-
ent services it can provide; and the same shape indicates the
same functionality. After service discovery, services with
the same functionality are gathered into a candidate service
set, such as Að1Þ, Að2Þ, and Að3Þ in Fig. 1. Thus, each AðiÞ is
the alternative services collection for the abstract task ti.
Then, according to the QoS constraints and the historical
execution QoS records of candidate services, one service is
selected from each AðiÞ to form the composite service which
can satisfy both the functional and the QoS requirements.

Our work in this paper is to find the appropriate service
for each task in the workflow ( which meets the user’s func-
tional requirements) to form an optimal composite service,
which satisfies the user’s QoS constraints as well as possi-
ble. The main difficulties lie in:

� There are contradictions among QoS attributes. Such
as a service with shorter response time may have a
higher price, and a lower price may as a result of a
lower reliability.

� Because the Internet is dynamic, the QoS values of
service are undetermined, which leads to the uncer-
tainty of QoS constraints satisfaction.

� There exists the possibility that a component service
fails during the execution of composite service. The
failure of component service results in the failure of
service composition.

This paper studies how these challenges are dealt with.

Fig. 1. The schematic of CSSC.
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2.2 Approach Overview

The approach of CSSC-MDP can be described asAlgorithm 1.

Algorithm 1. The CSSC-MDP

Input:
The function requirements from the user;
The QoS constraints from the user;

Output:
The execution of composite service and QoS records;
Or the negotiation failure information;

1: Build the workflow template;
2: Discover the available services for each abstract task and

gather the historical execution QoS records for them.
3: Evaluate the rationality of user constraints.
4: if the constraints are not rational then
5: Negotiate with the user.
6: ifNo mutually approved constraints then
7: Output: Inappropriate QoS constraints, and Exit.
8: end if
9: end if
10: Build the service composition CSSC-MDP model;
11: Use theQ-learning algorithm to solve the CSSC-MDPmodel;
12: Send the observed QoS values to the historical records.

At first, according to user’s functional requirements, the
workflow template that represents the abstract service com-
position are built. Then, the available services for each
abstract task in the workflow are discovered and collected.
Next, the historical execution QoS records for all candidate
services are gathered. There are many works studying the
construction of workflow [17], [18] and service discovery
[19], [20], so this paper does not discuss the implement of
these two steps. And after that, the rationality of user con-
straints will be evaluated; the evaluation in this paper is
based on the 3s principle; for details, please see Section 3.1.
If the constraints are rational, continue to the next step; oth-
erwise, negotiate with the user. If the mutually approved
constraints are obtained, proceed to the next step; other-
wise, abort. After the mutually approved constraints have
been obtained, build the service composition CSSC-MDP
model; for details see Section 2.4. Then, the Q-learning algo-
rithm are used to solve the CSSC-MDP; for details, see
Section 2.6. Based on the learning result, i.e., matrix Q, the
component services are selected and executed until all
the tasks in the workflow have been completed; Finally, the
observed QoS values are sent to the historical records.

In so doing, some benefits include:

� CSSC-MDP avoids the blind service composition
where the rationality of user constraints is not taken
into account;

� CSSC-MDP can self-adaptive to the variable QoS and
undetermined service behaviors;

� It is effective and efficient to solve CSSC-MDP with
the Q-learning.

2.3 Definitions Formalization

In this section, we will give the formal description of some
definitions relevant to CSSC-MDP.

Definition 1 (Service). A service is a functionally complete
and self-governed resource that can be published, located, and

visited through the Web. A service can be formalized as a 4-
tuple ð ID; FunC; QoSE; QoSR Þ, where:

ID is the identifier of a service. A service can be uniquely
determined by its ID.

FunC represents the functional class of a service, and it is a
triple ðF; I;OÞ, where F is the functional description of the ser-
vice, I represents the input items of service and O represents
the output items of the service.

QoSE is the expected QoS values offered by the service pro-
vider in service description, and it can be formalized as a vector
ðvð1Þ; vð2Þ; . . . ; vðdÞÞ, where d is the number of QoS attributes
which we are concerned with.

QoSR is a container of the historical execution QoS records
of the service. It is formalized as a d� l matrix, where l is the
historical execution number of the service. The kth row of
matrix QoSR is a vector ð vðkÞ1 ; v

ðkÞ
2 ; . . . ; v

ðkÞ
l
Þ that contains

l historical recorded values of the kth QoS attribute. The hth
column of QoSR is a vector ð vð1Þh ; v

ð2Þ
h ; . . . ; v

ðdÞ
h
Þ that

contains all the d QoS attributes’ values of the hth execution
of the service.

For simplicity, in this paper, we give special focus to two
commonly used QoS attributes, the response time and the price,
but our approach is equally valid for other QoS attributes.

Definition 2 (Candidate service set). The candidate service
set is a collection of alternative services which provide the same
functionality but different QoS. In other words, services in
such a set have the same FunC but differ in QoS. A candidate
service set can be formalized as a set fws1; ws2; . . . ; wsmg,
where m is the number of services with the desired FunC, and
wsisði ¼ 1; 2; . . . ;mÞ are the IDs of candidate services.

Definition 3 (Workflow). Workflow is an abstract description
of the business rules. A sequential execution workflow can
be formalized as a sequence ðt1; t2; . . . ; tnÞ, where tiði ¼ 1; 2; . . . ;
nÞ is the ith abstract task, and n is the total number of tasks.

The power of the services lies in that it can be dynami-
cally integrated to execute a new and more complex task.
This process is known as service composition.

Definition 4 (Composite service). In order to meet some com-
plex functional requirements, according to certain business
logic, services with different functions are integrated into a scal-
able, loosely coupled, value-added application, namely compos-
ite service. A composite service can be formalized as a sequence
ðws1; ws2; . . . ; wsnÞ, where wsis ði ¼ 1; 2; . . . ; nÞ are sequently
the IDs of services which compose the composite service and n is
the number of services that compose the composite service.

Definition 5 (Constraint). The constraint is usually a QoS
requirement about the composite service from the user, such as
maximum total price, minimum overall throughput, average
response time, etc. A constraint can be expressed in terms of
the upper or lower bound of the composite service QoS attri-
bute. Hence, a constraint can be expressed as a triple
ð att opr bnd Þ, where att is one of the QoS attributes of the
user’s concern; opr represents relational operators such as
> ; < ;�;�, etc.; and bnd is the bound. For example,
ðprice < 1000Þ represents the user requires the total cost of
the composite service is less than 1,000 monetary unit. In gen-
eral, user may impose more than one constraint to the compos-
ite service, thus the constraints form a constraint set.
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2.4 CSSC-MDP Model

Suppose the QoS constraints from user are considered to be
rational; then, based on the MDP model, the constraint-
satisfied service composition model CSSC-MDP can be for-
malized as a 5-tuple ð t; S; A; T; R Þ, where:

t is the stage of decision-making; that is, it is the numeric
sequence of the task which is being executed. Hence, its pos-
sible values are from 1 to the total number of tasks n.

S is the execution state set of the composition service.
Consulting literature [21] about the service classifications,
we set the four-level-state denoted as S ¼ f1; 2; 3; 4g. Level
1 represents the user’s requirements are excellently satis-
fied; level 2 means that the composite service can satisfy the
user’s requirements well; level 3 means that the composite
service can basically meet the user’s requirements; level 4
indicates the failure of service execution or the violation of
user constraints. The number of levels may be determined
according to the actual requirements, the details of state
division in this paper is given in Section 3.2.

For each concerning attribute, we need to determine the
state of composite service. In order to obtain a better perfor-
mance, we use the worst state of all the QoS attributes as the
integrated state, i.e., si ¼ maxfsð1Þi ; s

ð2Þ
i ; ; s

ðdÞ
i g, where si is the

state of the service composition after task ti is finished.
A ¼ S n

i¼1AðtiÞ is the set of all the candidate services in
the model, where AðtiÞ ¼ fwsi1; wsi2; . . . ; wsikig is the candi-
date service set for task ti, and ki is the total number of serv-
ices in ti’s candidate set. A is the union of all the AðtiÞs; in
other words, A contains all the services that may be used in
the composite service.

T ðs; ws; s0Þ ¼ Prðstþ1 ¼ s0jst ¼ s; ati ¼ wsÞ is the probabil-
ity that the execution of service ws at state s for task t will
lead to state s0. This can be calculated according to the his-
torical execution QoS records for service ws.

Rðs0; s; wsÞ is the reward function. it is a real-valued func-
tion, and r ¼ Rðs0; s; wsÞ is the immediate reward received
from the state transition from s to s0 after ws is executed. We
can say that it is used to quantify the benefit of executing
service ws, which leads to the state transition. When r > 0,
it indicates rewards; when r < 0, it indicates penalties.
After the execution of ws, the greater the difference of s� s0,
the higher the value of r, and vice versa. The goal of service
composition is to select the optimal services to compose the
composite service with the highest cumulative reward. The
reward function can be defined according to the actual situ-
ation, the definition of Rðs0; s; wsÞ in this paper can be found
in Section 3.3.

In contrast with existing methods, CSSC-MDP considers
the state of constraints been satisfied after each service exe-
cution. In case of the violation of QoS constraints or the ser-
vice failure, the stage t remains its value and CSSC-MDP
will redo the selection and execution. Otherwise, let
t ¼ tþ 1, and select the service which can lead to an optimal
composite service and execute it for the next task. The pro-
cess of decision-making is described in detail in the follow-
ing section.

2.5 Decision-Making of CSSC-MDP

The core problem of an MDP is to determine the optimal
policy p� that will maximize the cumulative function of the
rewards. The function pðsÞ specifies the action that the

agent will choose in state s. For the CSSC-MDP model, the
optimal service of a task is selected based on the con-
straints state and the historical execution QoS records of
candidate services.

Fig. 2 shows the decision-making process in CSSC-MDP.
At the initial state s0, according to the historical execution
QoS recorded in H1 for services in Að1Þ, for task t1 the agent
selects and executes the optimal service denoted as ws1, the
constraints state transfers to a new state, denoted as s1, and
the execution QoS data are then appended to the historical
records for ws1 in H1. Based on the new constraints state s1,
the immediate rewards r1 can be calculated. According to
the historical execution QoS recorded in H2 for services in
Að2Þ, for task t2 the agent selects and executes the optimal
service at state s2, and so forth, until all the tasks in the busi-
ness workflow have been done.

The strategy of CSSC-MDP is a mapping from state space
to service space. To determine the optimal strategy that
leads to the optimal composite service, we need to define
the value function VtðsÞ to calculate the expected cumulative
rewards of the service execution for task t at state s. The
value function VtðsÞ is defined by the recursion formula
VtðsÞ ¼

P
s0 T ðs; ws; s0Þ

�
Rðs; s0; wsÞ þ gVtþ1ðs0Þ

�
, where s0 is

one of the possible constraint states after the execution of
the service ws; T ðs; ws; s0Þ is the transition probability from
state s to s0 caused by service ws; Rðs; s0; wsÞ is the immedi-
ate reward of the execution of service ws; and g is the dis-
count factor for future rewards. Consequently, VtðsÞ is the
cumulative reward resulting from the execution of service
ws at task t in state s.

The strategy that leads to the highest value of VtðsÞ is
the optimal strategy, which can be expressed as PtðsÞ ¼
argmaxws2AðtÞVtðsÞ.

Under the guidance of the optimal strategy, the decision-
making process of CSSC-MDP maximizes the exceptional
cumulative rewards.

CSSC-MDP selects a service for a task after the previous
task is completed, hence it can update the state according to
the observed QoS values of services which have been com-
pleted. That is to say, CSSC-MDP can more realistically
reflect the QoS constraints which need the following service
to satisfy, and can provide a reliable guarantee for the next
service selection to meet the user’s constraints. This process
continues until all the tasks have been accomplished in turn.

In theory, after modeling the CSSC problem as an MDP,
the model can select the optimal strategy dynamically, so
the service composition satisfies the user with real-time
globally optimal results. However, the computational time
complexity of the exact solution of an MDP problem has

Fig. 2. The decision-making process in CSSC-MDP.
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been proved to be completely P [22]. Hence, what follows is
a Q-learning algorithm to solve the CSSC-MDP model.

2.6 CSSC-MDP Solving

In practice, the existing exact methods to solve the MDP can
only accurately solve small problems [15]. Q-learning is a
model-free reinforcement learning method that uses
rewards to reinforce actions which lead the model to a bet-
ter state; hence, it can help to learn the optimal policy in a
stochastic environment [16]. Therefore, we use Q-learning
to solve the CSSC-MDP model. In Q-learning, the transition
probabilities are generally obtained through many simula-
tions. However, because services are mostly commercial, it
is unlikely to invoke services to test their performance.
Hence, in this paper we learn the transition probabilities of
service from their historical execution records. Algorithm 2
is the Q-learning algorithm for CSSC-MDP.

Algorithm 2. Q-Learning Algorithm for CSSC-MDP

Input:
The total number of sequential tasks n;
The maximal size of the candidate service setsm;
The user constraints C0;
The historical execution QoS records for all servicesH;

Output:
The result of Q-learning, i.e., matrix Q;

1: Initial Q zerosð3� n;mÞ;
2: while Q is not convergent do
3: Initial variables: t 1, s0  1, C  C0;
4: while t � n do
5: Use the "-greed policy to choose ws 2 AðtÞ based on s0;
6: if ws:QoSR 6¼ F then
7: Randomly choose an execution historical QoS record

h of service ws;
8: else
9: h ¼ ws:QoSE
10: end if
11: Based on h and the current constraints C, calculate the

state s;
12: Based on s and s0, calculate the immediate rewards r;
13: if s < 4 then
14: Qð3ðt� 1Þ þ s0; wsÞ  ð1� aÞQð3ðt� 1Þ þ s0; wsÞ þ a½r þ

gmaxws02Aðtþ1ÞQð3tþ s0; ws
0Þ�;

15: According to h, update C;
16: t tþ 1; s0  s;
17: else
18: Qð3ðt� 1Þ þ s0; wsÞ  ð1� aÞQð3ðt� 1Þ þ s0; wsÞ þ ar;
19: t 1; s0  1; C  C0;
20: end if
21: end while
22: end while
23: return Q;

As shown in Algorithm 2, we first initialize Q as a matrix
with 3� n rows and m columns whose elements are all
zeros, where n is the total number of sequential tasks, andm
is the maximal size of the candidate service sets. For every
service, we need to consider its performance at different
states; hence, each row of matrix Q represents the scores of a
candidate service at one state. For example, the 5th row of
matrix Q represents the scores of the candidate services of
task t2 at state 2. Because state 4 represents service failure or

constraint violation, that is, the service composition cannot
proceed from state level 4, in the matrix Q, we only consider
the performance scores of services in the first 3 states.

Next, an iteration process is performed to learn the
matrix Q. At the first iteration, we initialize the task
sequence number t to 1, set the initial state s0 to 1 (we
assume that service compositions always start from the best
state), and use the original constraints C0 to initialize the
current constraints C. Then for each task from the first to
the last, we use an "-greed strategy to select one service ws
from its candidate service set AðtÞ, i.e., when the random
number is smaller than ", the greed strategy is adopted, oth-
erwise, randomly selects a service. On the one hand the
"-greed can prevent the algorithm from premature conver-
gence, on the other hand it gives chances to the newcomer
in service selection. For the selected service ws, if it has been
invoked, we randomly choose one piece of the QoS record h
from the execution historical records of service ws and con-
sider h as the currently executing QoS. We don’t choose the
best one, the worst one, the average one or the latest one,
but choose the random one piece of QoS record is to simu-
late the various possible behaviors of service. This is
because we want to learn the most likely performance of
service from all random behaviors of services. Otherwise if
ws has no QoS record, we take the expected QoS ws:QoSE
given by service provider as its QoS record h. Based on the
QoS information of historical record h and the current con-
straints C, we calculate the constraint-satisfied state s as
described in detail in the Section 3.2. According to the new
state s and the old state s0, we calculate the immediate
rewards r. Details of the method can also be found in the
Section 2.4. If the selected service ws executes successfully
and the user constraints are not violated, we update the ele-
ment of Q at the tth row and the wsth column, where we
use a ð0 � a � 1Þ as the learning rate; that is, the new
Qðt; wsÞ is composed of ð1� aÞ original Qðt; wsÞ and a new
rewards. The new rewards include the immediate reward
and the expected rewards in the future. The g in the formula
is the discount factor, means that the rewards in the future
are not necessarily as important as the immediate rewards,
and g 2 ½0; 1� can be inferred. Then, we update the current
constraints based on the QoS values of the selected QoS
record h. For example, the response time constraint will be
reduced by the response time of h. After all these steps, we
update the task sequence number t and use the current state
s to update the original state s0. In the circumstances, either
service failure or constraint violation, i.e., at the state s ¼ 4,
the immediate reward turns into a penalty. And because the
composition is interrupted, the expected rewards in the
future are not included in the Qðt; wsÞ. Also for the same
reason, t, s0, and C are returned to their initial values. The
iteration does not terminate until matrix Q is convergent.

Q-learning algorithm learns the ability to satisfy the con-
straints for every service at every state. Every element of
matrix Q is the score of this ability. Based on the matrix Q
and the user constraints, service composition can be imple-
mented. The main benefits of Q-learning include:

� The Q-learning algorithm can learn the ability of
services to satisfy the constraints from the historical
QoS records, without redundant service execution;
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� It doesn’t need to define transaction function,
which can be implied by the Q-learning process
automatically;

� The "-greedy selection strategy in the Q-learning not
only makes the algorithm more efficient but also
guarantees every service has the opportunity to be
executed.

3 AN ILLUSTRATIVE EXAMPLE

This section illustrates the approach of CSSC-MDP through
an example. Consider the following CSSC scenario: a user
captured a set of multi-angle photos of an object in motion,
and he wants to use this set of images to reconstruct the 3D
model of the object. Due to limited local resources, the user
wants to complete the task by means of Web services pro-
vided over the Internet. Moreover, he also expects that the
total response time is less than 2,000 seconds and the total
price is less than 300 yuan. To meet the user’s requirements,
we composite the available Web services. Since the images
for this moving object are blurred, we first need the image
restoration service to restore the blurred 2D images. Then
we utilize the computing power provided by Web services
to run the 3D reconstruction algorithm to obtain the 3D
model of the object. Finally, we store the 3D model in the
cloud space for the user. Meanwhile, we should ensure that
the user’s QoS constraints are best satisfied. Fig. 3 shows the
process of service composition in this scenario.

Obviously, the user’s functional requirements can be
decomposed into three sequential tasks: image restoration
task t1, the 3D reconstruct task t2 and the cloud storage task
t3. And the composite service should satisfy the following
constraints:

ðResponseTime � 2000Þ and ðPrice � 300Þ: (1)

It is a CSSC problem. We need to discover services for each
task at first. In the service computing environment, a service
provider can provide services with different functions and
services with the same function can be provided by differ-
ent providers. Suppose, after service discovery, as shown in
Fig. 3, there are 4 candidate services for the first task t1
denoted as Að1Þ ¼ fws11; ws12; ws13; ws14g, 3 candidate serv-
ices for the second task t2 denoted as Að2Þ ¼ fws21; ws22;
ws23g, and 4 candidate services for the third task t3 denoted
as Að3Þ ¼ fws31; ws32; ws33; ws34g. And let’s suppose the pri-
ces of each service in Að1Þ are ð82; 90; 70; 85Þ, in Að2Þ are
ð140; 230; 180Þ, and in Að3Þ are ð20; 30; 25; 22Þ. The historical
response time records for each service in Að1Þ are stored in
the following matrix. Values in the kth row of the matrix
represent the response time of service ws1k for different exe-
cution histories, where �1 means service failure and NaN
represents the absence of record.

417 �1 429 416 421 �1 414 430 �1 421
320 289 307 322 286 295 313 317 321 296
390 362 371 380 310 373 367 �1 NaN NaN
434 405 421 �1 400 403 413 NaN NaN NaN

0BB@
1CCA

The historical response time records for each service in Að2Þ
are stored in the following matrix.

1417 1249 �1 1641 1521 �1 NaN NaN NaN NaN
1201 1277 1307 1021 1086 1395 1313 1417 1121 996
1450 1242 1431 �1 1240 1433 1627 �1 NaN NaN

0@ 1A
The historical response time records for each service in Að3Þ
are stored in the following matrix.

173 133 121 146 �1 �1 119 128 �1 NaN
90 109 97 112 86 95 113 107 111 106
112 132 101 130 �1 122 109 113 NaN NaN
174 153 124 �1 140 133 113 NaN NaN NaN

0BB@
1CCA

After service discovery, our approach can be implemented.

3.1 Constraint Rationality Evaluation

First of all, we will evaluate the rationality of user con-
straints. Based on the historical records, the means and stan-
dard variances of both price and response time for each task
can be calculated. In the above example, mðcÞ ¼ ð81:75;
216:67; 24:25Þ and sðcÞ ¼ ð8:50; 70:95; 4:35Þ are means and
standard variances of price for each task. mðrÞ ¼ ð368:10;
1319:30; 120:76Þ and sðrÞ ¼ ð51:30; 181:60; 21:61Þ are means
and standard variances of response time for each task.
Hence, the mean of price for the composite service is mðcÞcs ¼P3

i¼1 m
ðcÞ
i ¼ 322:67 , and the standard variances of price for

the composite service is sðcÞcs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i¼1ðsðcÞi Þ2
q

¼ 71:59, the

mean of response time for the composite service is

mðrÞcs ¼
P3

i¼1 m
ðrÞ
i ¼ 1808:16, and the standard variances

of response time for the composite service is sðrÞcs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i¼1ðsðrÞi Þ2

q
¼ 189:94. Since mðcÞcs � 2sðcÞcs < 300 < mðcÞcs þ

2sðcÞcs and mðrÞcs � 2sðrÞcs < 2000 < mðrÞcs þ 2sðrÞcs , according to
the 3s principle of normal distribution, the constraints can
be satisfied with a probability of 0.9544. Hence, we have rea-
son to believe that the user constraints are rational.

Fig. 3. The process of CSSC-MDP.
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3.2 State Level Division

To set the levels for services, at first, we determine the
median QoS attribution value of every service based on its
execution historical QoS records (not include the failure
records). Such as, for task t1, the response time medians of
candidate service are v

ðrÞ
1 ¼ ð421; 307; 371; 408Þ, and the

mean response time of task ti can be calculated by
m
ðrÞ
i ¼ 1

m

Pm
j¼1 v

ðrÞ
i ðjÞ. Where m is the total number of candi-

date services for task i. In this way, we can calculate the
mean response time for tasks t1, t2 and t3, m

ðrÞ
1 ¼ 376:75,

m
ðrÞ
2 ¼ 1380 and m

ðrÞ
3 ¼ 121:625.

Then we can decompose the user’s response time con-

straints for each task by C
ðrÞ
i ¼ CðrÞ

m
ðrÞ
iPn

i¼1 m
ðrÞ
i

, where CðrÞ rep-

resents the user’s total constraints on the response time and
n is the total number of tasks. Therefore, C

ðrÞ
i is the excepted

value of the response time constraint for task ti. The
excepted value of the price constraint for task ti, i.e., C

ðcÞ
i ,

can be calculated in the same way. Note that the decomposi-
tion of constraints is only for service level setting, and dur-
ing the selection of component service we take the
constraints of composite service as a whole.

Here, taking the response time constraint as an example,

we formulate the four state levels as formula (2), where v
ðrÞ
ij

is the response time of service wsij. If v
ðrÞ
ij is less than or

equal to 0:85C
ðrÞ
i , then the state level is 1; if v

ðrÞ
ij is more

than 0:85C
ðrÞ
i and less than or equal to C

ðrÞ
i , then the state

level is 2; if v
ðrÞ
ij is more than C

ðrÞ
i and less than or equal to

the user’s total constraints vector CðrÞ, then the state level is

3; otherwise, if v
ðrÞ
ij is more than CðrÞ or the service fails, then

the state level is 4. This can be denoted as

s
ðrÞ
i ¼

1 v
ðrÞ
ij � 0:85C

ðrÞ
i

2 0:85C
ðrÞ
i < v

ðrÞ
ij � C

ðkÞ
i

3 C
ðkÞ
i < v

ðkÞ
ij � CðkÞ

4 v
ðkÞ
ij > CðkÞ or service failure;

8>>>>><>>>>>:
(2)

where 0.85 is a parameter to tune the levels. In this paper the

four state levels for price are set in the same way. In fact, the

number of levels and the scope of each level can be set up

according to the actual situation.

3.3 Solution

The Q-learning algorithm is used to study the performances
of each candidate service from the historical execution
records. In this paper, we set the reward function as
r ¼ 10ðs� s0Þ þ 10. This means that the reward is deter-
mined by the difference between s and s0. That is, the more
the new state s0 is superior to the old state s, the greater the
reward is, and vice versa. If the new state s0 is the same as

the old state s, then the running service can obtain a basic
reward. When the new state s0 is much worse, i.e., s0 is
larger than s by 2 or more levels, then the reward is a nega-
tive value; in this case, the reward becomes a penalty.

Executing Algorithm 2 for the above example, the results
of Q-learning are shown in the following matrix:

Q ¼

4:0219 1:1104 12:3300 �0:0280
0 0 0 0
0 0 0 0

1:2607 3:2561 6:7946 0
11:3940 �7:0000 2:3327 0
15:5230 3:0000 25:3450 0
4:0790 12:8200 8:2120 8:4224
17:0120 19:1020 18:6990 21:5350
3:2118 14:6410 14:8750 9:6686

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
:

The matrix Q indicates the performance scores of each ser-
vice in different sustainable states (each task has three sus-
tainable states, i.e., s=1, 2 or 3) in terms of the services’
adaptability to different constraint situations. For example,
the 5th row of matrix Q shows the performance scores of
services in A(2) at state s ¼ 2. From the data in this row, we
can infer that service ws21 is the best choice for task t2 at
state s ¼ 2. It is reasonable to suppose that the service com-
position always begins from a good start, so the initial state
is always s ¼ 1; thus, the elements of rows 2 and 3 in matrix
Q are always zeros. Furthermore, because task t2 has 3 can-
didate services, the elements of the 4th column at rows 4, 5,
and 6 are all zeros. During service composition, matrix Q is
the basis of service selection under different constraint satis-
faction states.

After Q-learning, service composition can be carried out
based on the matrix Q. Table 1 shows an execution of the
service composition, from Table 1 we can see the selected
service for each task, its actual QoS values in the execution,
and the new constraints state after the execution. Due to the
fact that service compositions always start from a good
state, the service with the highest score in the 1st row of the
matrix Q, i.e., ws13, is selected for task t1. Executing service
ws13, the state becomes s ¼ 2. Hence, for task t2, the best ser-
vice is sought in state s ¼ 2; that is, the service with the
highest score in the 5th row, i.e., ws21, is selected. After the
execution of service ws21, the state is still s ¼ 2. So, based on
the data of the 8th rows in matrix Q, service ws34 is selected
and executed, and the state becomes s ¼ 1. At this point, the
service composition for the example is executed success-
fully. It is important to note that the QoS data should be
recorded in the historical execution QoS records after the
execution of each service.

As can be seen from Table 1, CSSC-MDP always looks for
the best service in the current state of the matrix Q to exe-
cute. However, because of the dynamic nature of the Inter-
net environment, the performance of service is uncertain.
The following sections show the adaptivity of CSSC-MDP
to uncertain service behaviors.

3.4 Adaptivity to Variable QoS

Dynamic environment leads to variable QoS values. Com-
paring Tables 1 and 2. In the running of Table 2, service
ws21 takes a much longer response time in Table 2 than in

TABLE 1
An Execution of the Service Composition

Task No. Selected service Response time(s) Price(yuan) State

1 ws13 380 70 2
2 ws21 1,249 140 2
3 ws34 174 22 1
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Table 1, and the state becomes s ¼ 3. Therefore, based on
the last row of the matrix Q, service ws33 are selected and
executed.

From the historical execution records we will find the
service ws33 usually has a shorter response time and a bit
higher price. The results show the self-adaptivity of the
CSSC-MDP to the variable QoS.

3.5 Adaptivity to Uncertain Service Behaviors

Because of network fault or service evolution, sometimes
service failures may occur. Such as the running of the ser-
vice composition in Table 3, service ws13, the best candidate
service for task t1, encounters problems. Based on the
matrix Q, service ws11 is the next-best service in the candi-
date service set A(1); therefore, service ws11 is selected as
the alternative to service ws13. After the execution of service
ws11, the state becomes s ¼ 2. The best candidate service for
t2 in this state, with the maximum value in the 6th row of
matrix Q, i.e., ws23, is selected and executed, and the service
composition can proceed. It shows when service failure
occurrence CSSC-MDP can find a suitable alternative and
compliment the service composition.

If the selected alternative service has not fulfilled task t1
yet, the situation is as shown in Table 4. When service ws13,
following ws11, also encounters failure, service ws12 is the
best choice in the current situation. Therefore, service ws12
is executed to fulfill task t1, and the service composition is
able to continue.

In fact, as long as there exist qualified services for each
task, service composition can be successfully completed.
This shows the robustness of the CSSC-MDP.

3.6 Adaptivity to Different Constraints

Different users have different QoS constraints on the same
functional requirement. Suppose, in this example the con-
straints are changed to

ðresponsetime � 1830Þ and ðprice � 330Þ: (3)

Compared with the QoS constraints (1), the constraint on
price is looser and the constraint on response time is tighter.
In this case, the results of Q-learning are shown in the fol-
lowing matrix Q1.

Q1 ¼

�4:1436 �7 11:941 2:9984
0 0 0 0
0 0 0 0

�6:0003 �7 �13:654 0
6:1325 21:39 5:3209 0
19:652 22:403 20:629 0

0 0 0 0
16:943 22:996 17:753 12:674
9:8305 13:53 28:287 9:5256

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
:

Comparing the 5th row of matrix Q1 and matrix Q, we can
see that service ws22 is the worst service for task t2 in state
s ¼ 2 in Q, but in Q1 service ws22 is the best service for task
t2 in the same state. This shows that service ws22 is more
adaptive in circumstance of shorter response time and
higher price. This is in accordance with the fact that service
ws22 always has a lower mean response time and a higher
price, which can be seen from the historical execution
records. Based on matrix Q1, the best composite service
ðws13; ws22; ws33Þ for the user constraints is performed suc-
cessfully, as shown in Table 5.

If the QoS constraints of the composite service are
changed to

ðresponsetime � 2700Þ and ðprice � 255Þ: (4)

Compared with the constraints (1) and (3), the constraint on
price is tighter and the constraint on response time is looser.
In this case, the results of Q-learning are shown in the fol-
lowing matrix Q2.

Q2 ¼

�10:2390 �6:9993 2:7579 �10:8440
0 0 0 0
0 0 0 0
0 0 0 0

19:8790 �6:9322 11:5320 0
14:6440 2:9951 2:9988 0

0 0 0 0
20:1350 7:8807 11:448 7:8207
2:8271 2:7529 2:2797 1:5300

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
:

Focusing on task t3 in the state s ¼ 3, the best service is ser-
vice ws33 in Q; however, in Q2 service ws31 is the best. This
is because service ws31 is commonly lower in price and

TABLE 3
Service Composition When Service Fails

Task No. Selected service Response time(s) Price(yuan) State

1 ws13 -1 70 4
1 ws11 417 82 3
2 ws23 1,240 180 3
3 ws33 109 25 2

TABLE 4
Service Composition When Continues Services Fail

Task No. Selected service Response time(s) Price(yuan) State

1 ws13 -1 20 4
1 ws11 -1 20 4
1 ws12 289 95 3
2 ws23 1,240 180 3
3 ws33 130 25 3

TABLE 2
Service Composition When QoS Changes

Task No. Selected service Response time(s) Price(yuan) State

1 ws13 310 70 2
2 ws21 1,521 140 3
3 ws33 101 25 1

TABLE 5
Service Composition with Constraint (3)

Task No. Selected service Response time(s) Price(yuan) State

1 ws13 380 70 2
2 ws22 1,021 230 3
3 ws33 132 25 2
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higher in response time than service ws33 is, so ws31 is more
adaptive to this circumstance. Hence, the running of com-
posite service in this case is as shown in Table 6.

The results in Tables 5 and 6 show the adaptivity of
CSSC-MDP to different user constraints.

4 EXPERIMENTAL RESULTS AND DISCUSSION

To test the performance of CSSC-MDP on a larger scale, the
following experiments simulate sequential service composi-
tions which contain 20 tasks, and 50 candidate services per
task. For each service, 100 historical response time records
and a price data were artificially synthesized. The data set
was constructed as follows: randomly generate a 1� 20 vec-
tor tpmtpm whose elements are between ½100; 1000�; and ran-
domly generate a 1� 20 vector tpvtpv whose elements are
between ½10; 30�; take tpmi as the mean and tpvi as the vari-
ance, randomly generate a 50� 1 normal distribution data
spi; spsp ¼ ðsp1; sp2; ; sp20Þ are 50� 20 price data for the 20
tasks’ 50 candidate services; let trmtrm ¼ ½0:25� tpmtpm� � 10 are
the mean response time of each task, the function is set to
guarantee that for different tasks the longer average
response time the higher price; randomly generate a 1� 20
vector trv,whose elements are between ½100; 1000�; take trmi

as the mean and trvi as the variance, randomly generate
50� 1 normal distribution data srmisrmi as the mean response
time of 50 candidate services for task ti; sort the elements in
srmisrmi, let a higher price corresponds to a shorter mean
response time, it is in line with the actual situation that for
the same task the shorter response time the higher price;
randomly generate a 50� 20 vector srvsrv whose elements are
between ½50; 400�; take srmij as the mean and srvij as the
variance, randomly generate a 100� 1 normal distribution
data srrijsrrij, srrsrr are 100� 50� 20 historical recorded response
time data for the 20 tasks’ 50 candidate services 100 records.

The simulations were conducted by using MATLAB
R2013a. The experimental platform runs Windows 10 with
an Intel Core Quad CPU at a clock speed of 2.67 GHz with
4 GB RAM.

We assume that the service composition system has no
knowledge of the QoS performance of all the candidate serv-
ices. Based on the historical execution QoS records, we let the
Q-learning algorithm guide the service composition to reach
the optimal policy gradually. In the following experiments,
the parameters of Q-learning are determined first; then, the
efficiency of Q-learning is studied; finally, comparison
experiments with three existingmethods are conducted.

4.1 Parameter Tuning

The learning rate and the greedy rate are two important
parameters in the Q-learning algorithm. The following
experiments show the determination of the two parameters.

4.1.1 Learning Rate

To obtain a faster learning speed and a better learning result,
it is necessary to set a proper learning rate.We fix the number
of tasks to 5 and the number of candidate services of each
task to 10, and vary the learning rate a. Fig. 4 shows the learn-
ing efficiency of Q-learning with learning rate a ¼ 0:1; 0:3;
0:5. The learning speed here refers to the number of iterations
after which the cumulative rewards achieves the maximum.
From Fig. 4 we can see, when a ¼ 0:1, the cumulative
rewards still have an increasing trend after about 100,000
iterations (see Fig. 4a), which indicates the learning speed is
low. As demonstrated in Figs. 4b and 4c, when a ¼ 0:3, the
cumulative rewards reach the maximum before 100,000 iter-
ations; when a ¼ 0:5, the cumulative rewards reach the max-
imum before 40,000 iterations; the cumulative rewards reach
quickly to a higher value indicates the learning speeds are
higher. However, we can also see from Figs. 4b and 4c the
cumulative rewards fluctuatemore andmore severely.

It is reasonable that the smaller the learning rate, the
slower the learning speed, whereas a higher learning rate
results in a severe fluctuation range. Hence, we take a
dynamic learning rate, initially set a ¼ 0:5, and consider
that every iteration has an a ¼ a� 0:000007 decay. Fig. 5
shows learning efficiency with this dynamic learning rate.
From Fig. 5, we can see cumulative rewards reach to a
higher value after 20,000 iterations, and the fluctuations of
cumulative rewards are gradually mild. Hence, we use this
dynamic learning rate in the following experiments.

4.1.2 Greedy Rate

To study the influence of the greedy rate on Q-learning, we
vary the parameter " of "-greedy algorithm from 0.1 to 0.9.

Fig. 4. Efficiency of Q-learning with different learning rates.

TABLE 6
Service Composition with Constraint (4)

Task No. Selected service Response time(s) Price(yuan) State

1 ws13 373 70 3
2 ws21 1,641 140 3
3 ws31 146 20 1
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Fig. 6 shows the convergent cumulative rewards and the
number of iterations with different " values.

As demonstrated in Fig. 6, the iteration number in Q-
learning reaches the minimum when the "-greedy rate is
" ¼ 0:6, and in this case the cumulative reward convergence
is near-optimal. Hence, we set the "-greedy rate of " ¼ 0:6
in the following experiments.

4.2 Performance Study

In the experiments shown in Fig. 7, we study the perfor-
mance with respect to the number of tasks and the number
of candidate services. The number of tasks varies from 5 to
20, while the number of candidate services of each task
varies from 5 to 20. We take moderate constraints for each
case in order to ensure that all the 3 different states can be
reached in every case. In each case, repeat the experiments
100 times, and record the average learning time.

Fig. 7 illustrates that the time of Q-learning increases
obviously with the number of tasks. It is easy to understand,
because one more task in the work-flow brings one more
step in each iteration of the Q-learning. Fig. 7 also illustrates
that it is not obvious the time of Q-learning increases with

the number of candidate services, this is because the time
cost of Q-learning depends not only on the number of candi-
date services but also on the diversity of candidate services.

4.3 Comparison Experiments

For the purpose of performance evaluation, we compare the
method proposed in this paper with a classic global optimi-
zation method WS-IP [5], a local optimization method
Hybrid proposed in [13] and an MDP-based method [23], for
the sake of convenience, we name it RQASC.

WS-IP. The purpose of this method is to select the candi-
date service for each task that satisfies the user’s constraint
and maximizes a defined utility function. In this method,
the CSSC problem is modeled as a 0-1 integer programming
(IP) problem and the well-known lpx-intopt algorithm is
used to find the optimal solution. In [13] and [5], WS-IP is
regarded as the optimal solution to be compared.

Hybrid. This is a method based on the decomposition of
constraints. This method first uses a mixed-integer program
(MIP) to find the optimal decomposition of the global con-
straints, and then find the best services that satisfy the local
constraints. The purpose of decomposition is to improve the
optimization efficiency.

RQASC. Being aware of the undetermined QoS, this
method measures the QoS by the mean and variance of ran-
dom variables, and model the service composition as an
MDP. RQASC only selects the optimal composite service,
and it cares nothing about user’s QoS constrains.

To simulate the uncertain environments, 2,326 service
failure records were randomly inserted into the response
time record data. That is, in our artificially synthesized data-
base, the service failure rate was 0.02326 and we set the con-
straints as ðPrice � 7500Þ and ðResponseTime � 20000Þ.

Without loss of generality, suppose that the response
time and the price are of equal importance; hence, in the
WS-IP and hybrid methods, the weight of both response
time and price are set to 0.5. In RQASC method, the price
and the response time are alternately optimized to obtain
the highest success rate. For each method mentioned above,
we conduct service composition 100 times. The average suc-
cess rate of WS-IP is 54 percent, the average success rate of
Hybrid is 31 percent, the average success rate of RQASC is
72 percent, and the average success rate of CSSC-MDP is

Fig. 5. Q-learning efficiency of a dynamic learning rate.

Fig. 6. Q-learning efficiency of different greedy rates.

Fig. 7. Performance of Q-learning.
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100 percent. From the result we can see the poor adaptivity
of WS-IP and Hybrid to dynamic environments. Once one
of the selected optimal candidate services fails, the service
composition will inevitably face failure. The success rate of
RQASC is a little higher. This is because it can guarantee the
success of service composition but the QoS constrains are
ignored by RQASC. In contrast, CSSC-MDP can perceive
the state of service composition and always selects the ser-
vice best suited to the situation. Moreover, in the case of
component service failure, CSSC-MDP can select another
qualified candidate service to fulfill the task. Therefore,
even if the environment is dynamic, as long as there are
qualified candidate services, CSSC-MDP can manage to
complement the service composition successfully.

Table 7 shows the response time and the price records
recorded from one successful running of the 4 methods.

From Table 7, we can see each method has the best perfor-
mance for response time or price. On the whole, WS-IP is
superior in response time, but the price of composition ser-
vice by WS-IP is the most expensive. While CSSC-MDP per-
forms the best in terms of price, and from the perspective of
response time, CSSC-MDP performs the best for 3 tasks and
approximates the optimal values for other tasks. This shows
that CSSC-MDP can obtain the best tradeoff between the
response time and the price.

To compare the degree of satisfaction to user constraints,
Fig. 8 shows the cumulative rewards of the successful exe-
cution of the 4 methods. From Fig. 8, we can see CSSC-MDP
has the highest cumulative rewards. This illustrates that
CSSC-MDP is best adaptive to the variable QoS values, and
satisfy the user constraints as well as possible.

4.4 Experiments on Real-World Dataset

To further evaluate the performance of CSSC-MDP, we do
service composition experiments on the dataset 2 of WS-
DREAM, a real-world QoS dataset released by [24] and [25].
The dataset includes response time data rtmatrix and
through-put data tpmatrix, which are collected from 339
users on 5,825 Web services. We group the services into 50
tasks, hence, each task has about 116 candidate services, and
each service has 339 response time and through-put records.

Setting user constraints as ðResponseTime � 22sÞ and
ðThroughPut � 13 KbpsÞ, and setting the number of tasks
t ¼ 10; 20; 30; 40; 50, we do the service composition using
the 4 methods mentioned above for 1,000 times respectively.
The results are shown in Table 8 and Fig. 9.

From the data in Table 8, we can see the success rate of
CSSC-MDP on the real world dataset is significantly higher
than that of other methods. More seriously, for methods
WS-IP and Hybrid, when the number of tasks t � 30, the
service compositions are almost all failed. This is becauseFig. 8. Cumulative reward comparison for 4 methods.

TABLE 7
Response Time and Price of a Successful Execution

Task No. Response Time (s) Price (Yuan)

WS-IP Hybrid RQASC CSSC-MDP WS-IP Hybrid RQASC CSSC-MDP

1 498.94 512.02 545.68 537.40 215.75 178.33 163.44 163.44
2 716.22 735.90 746.12 746.48 271.80 257.33 231.34 231.34
3 283.61 313.18 275.60 315.29 134.59 106.19 145.52 92.33
4 463.90 476.26 465.49 465.36 178.68 157.43 220.64 157.43
5 919.64 942.00 936.69 927.12 342.36 339.46 317.70 317.70
6 1,518.34 1,554.24 1,438.85 1,503.03 579.77 575.31 661.16 589.92
7 566.48 632.37 585.25 645.41 255.89 223.95 268.44 202.44
8 421.91 423.92 423.20 418.20 149.72 137.05 187.65 137.17
9 1,164.50 1,228.97 1,237.91 1,171.89 503.66 459.36 440.37 493.72
10 389.11 374.05 374.53 370.64 113.65 125.53 107.02 118.96
11 2,004.08 1,981.03 1,939.09 2,019.56 772.18 766.89 862.04 781.65
12 1,735.82 1,765.65 1,739.19 1,703.49 643.36 648.06 626.83 643.17
13 468.03 507.36 510.17 510.25 200.81 175.97 157.24 163.95
14 584.97 583.46 492.46 564.53 213.48 204.85 267.93 191.69
15 648.18 653.73 674.88 685.28 239.27 229.67 207.72 219.46
16 1,636.47 1,624.78 1,518.87 1,611.44 626.32 604.97 717.74 633.16
17 813.01 839.17 758.23 838.11 313.01 301.80 363.65 277.11
18 773.12 830.81 803.65 815.80 325.43 276.48 276.48 276.48
19 940.74 981.64 1,043.04 1,005.90 418.65 349.34 314.89 337.41
20 1,916.04 1,990.62 1,982.29 1,959.30 757.84 684.12 684.12 690.02

Total 18,463.11 18,951.16 18,491.23 18,814.48 7,256.22 6,802.09 7,108.14 6,718.55
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the uncertainty of service composition increases rapidly as
the number of tasks increases. Fortunately, CSSC-MDP is
more adaptive to the variable QoS and service behavior, so
CSSC-MDP is relatively the most robust method.

Fig. 9 shows the mean cumulative reward of the success-
ful executions of the 4 service composition methods. From
Fig. 9 we can see CSSC-MDP is obviously superior to the
others when t ¼ 10; 20; 40; 50. And when t ¼ 30, CSSC-MDP
is very close to the highest cumulative reward. In conclu-
sion, experimental results on the real world dataset verify
the superior adaptivity of CSSC-MDP to the uncertain QoS
and service behavior.

5 RELATED WORK

In this section, we study the existing methods for constraint-
satisfied service composition at first, then we discuss the
service composition methods using reinforcement learning.

5.1 Methods for CSSC

The existing methods for solving CSSC problem can
roughly be grouped into two groups: global optimization
and local optimization.

5.1.1 Global Optimization Methods

The global optimization methods attempt to find the opti-
mal composite service among all possible combinations
while meeting user constraints.

In one of the early studies on constraint-satisfied service
composition, Hassine et al. [4] formalized the CSSC problem
as a constraint optimization problem at first; then an incre-
mental user-intervention-based protocol was used to find
the optimal composite service at run time. Yu et al. [5] mod-
eled the CSSC problem in two ways: a multi-dimension
multi-choice knapsack problem (MMKP) model and a
multi-constrained problem (MCOP) model, and for each
model, an efficient heuristic algorithm was proposed. Zhao
et al. [11] modeled the CSSC problem using the weighted
Tchebycheff distance, avoiding the limitations of linear
functions in setting the weight of the QoS attributes, and
proposed two evolutionary algorithms to solve optimal
problems in different scenarios. Lecue and Mehandjiev [26]
balanced semantic fit with QoS metrics, modeled the CSSC
problem as a constraint-satisfaction problem, and adapted a
hill-climbing algorithm to compute a “good enough” solu-
tion that met initial constraints rather than computing the
optimal composition. Caporuscio et al. [27] built both
design-time and run-time models for the service composi-
tion and identified the service composition satisfying the
QoS requirements. The quality attributes of the selected
composition are monitored, analyzed and, if necessary,
plans are generated in terms of modifications.

Other optimization methods, such as, Ardagna and
Pernici [6], Kritikos and Plexousakis [7] and He et al. [9]
consider the CSSC process as mixed-integer linear pro-
gramming (MILP) problem, and Garcia et al. [10] model
the CSSC problem as constraint shortest path problem. In
theory, such exhaustive global optimization methods can
get the global optimal constraint-satisfied composite ser-
vice, if it exists. However, the efficiency of global optimi-
zation methods decreases dramatically as the problem
grows. Some approximate optimization algorithms, such
as the stochastic search method [26], particle swarm opti-
mization [28], evolutionary algorithm [11] and so on,
have been studied to improve optimization efficiency in
the CSSC problem. In general, most of the global service
composition methods assume the QoS values are fixed
and the service behaviors are determined, as a result,
their adaptivity to the dynamic environments are poor.

5.1.2 Local Optimization Methods

The local optimization method decomposes global con-
straints for tasks in the workflow and selects the optimal
service for each task, so as to meet local constraints
independently.

Sun et al. [12] computed the utility of a composite ser-
vice from the utilities of component services and derived
the constraints of component services from the con-
straints of the composite service. Alrifai et al. [13] used a
global optimization method to find the optimal decom-
position of constraints, and then used the distributed
local selection to find the best services satisfying the
local constraints. Raj and Sasipraba [14] used local con-
straints as the thresholds to filter unqualified services
and took service utility as the key value to select the
optimal service for a task. Then the highest-ranked ser-
vice was provided to user.

Because of the undetermined QoS values, it is almost
impossible to get an appropriate decomposition of global
constraints. The local constraints are either too strict or too
loose, and the success rate of service composition is inevita-
bly reduced.

Table 9 shows the pros and cons of these methods.

TABLE 8
Comparison of Times of Successful Execution

Method t=10 t=20 t=30 t=40 t=50

CSSC-MDP 795 615 514 445 276
RQASC 174 45 37 29 16
WS-IP 249 19 4 1 0
Hybrid 394 17 3 0 0

Fig. 9. Comparison of cumulative rewards on a real dataset.
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5.2 Service Compositions by Reinforcement
Learning

Reinforcement learning is a typical technology used for
planning and optimization in dynamic environments, and
many researches has used reinforcement learning to con-
duct service composition, such as [17] considering the
undermined service behaviors, [29] considering the uncer-
tainty of the acture environment, [30] discussing the opti-
mization of different composition structure, [31] finding
multiple composition plans and selecting the most appro-
priate for user, [23] concerning the undetermined QoS,
[32] facilitating the service composition, [33] considering
the indeterminacy of service behavior, [36] finding the
optimal workflow, [34] improving the optimization effi-
ciency for large-scale service composition, [37] presenting
an approach of multi-agent service composition, [35]
building service pair to handle the change in dynamic

environment etc. Table 10 shows the pros and cons of
some presentative methods.

In contrast to these works, the proposed CSSC-MDP
satisfies the user’s functional requirements and QoS con-
straints furthest and considers the conflicts between the
QoS attributes. Moreover, CSSC-MDP selects a compo-
nent service after the execution of the previous service.
Thus, before the selection of a component service, the
execution QoS of the previous services are certain values,
hence the constraints which need to be satisfied by the
following services can be calculated. Based on the results
of calculation, the component service mostly satisfied the
constraints can be selected. Even if in the case where
a selected service failed, the optimal alternative service
can be selected immediately to replace it. Therefore,
CSSC-MDP is highly adaptive to the dynamic and uncer-
tain environment.

TABLE 9
Methods for CSSC

Method/Model Advantage Weakness

incremental user-intervention-
based protocol [4]

adaptive to stochastic service evolution not adaptive to the variable QoS

MMKP and MCOP [5] optimize the QoS of the composite service not adaptive to the variable QoS

MILP [6], [7], [9] get the global optimal solution the efficiency decreases dramatically as the prob-
lem grows

multi-objective optimization [11] the limitations of linear functions are avoided not adaptive to the variable QoS

hill-climbing algorithm [26] high solving efficiency the solution is locally optimal and not adaptive to
the dynamic environment

design-time model and run-time
model [27]

services that most likely contribute in QoS
violations are get rid off

new services have no chance to take part in

local selection approach[12] high efficiency not adaptive to the variable QoS

constraints decomposition [13] the decomposition of constraints is optimized QoS values are regarded as determined

local-global combined [14] use local constraints to filter unqualified
services

not adaptive to the variable QoS and uncertain
service behaviors

TABLE 10
Service Composition Methods Using Reinforcement Learning

Model Advantage Weakness

MDP+Bayesian learning [17] can generate robust workflow can not guarantee the optimality of composite
services

MDP+Bayesian learning [29] improve the quality of Workflow through
Bayes learning

without considering the QoS of the composite
service

MDP [30] different structures of service composition are
considered

only one QoS attribute can be optimized

MDP+HTN planning [31] multiple QoS attributes are taken into
consideration

take the QoS values as be determined

MDP[23] measure QoS by mean and variance, reduce
the probability of composite service failure

the real QoS value could not be consistent with the
theory distribution

improved MDP [32] facilitate the service composition by improving
the optimization equation

the real QoS value could not be consistent with the
theory distribution

MDP [33] integrate multiple workflows and alternative
services into service composition

the optimal service composition can only be find in
the long run

teamMarkov Games [34] applicable to the distributed environment the optimal service composition can only be find in
the long run

MDP [35] provide flexible service composition can only get the near optimal composite service

798 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2020



6 CONCLUSIONS

In this paper, we presented a reinforcement learning
method for solving the CSSC problem in the dynamic envi-
ronment. This method built a CSSC-MDP model based on
an MDP model and used a Q-learning algorithm to solve
the model. Extensive experiments show a significant
improvement in terms of adaptivity to the uncertain behav-
ior of services in the dynamic environment. In comparison
with a global optimization method, a local optimization
method and an MDP-based service composition method,
CSSC-MDP also showed the superiority in terms of the sat-
isfaction of user’s QoS constraints.

The main contributions of this paper are threefold:
first, considering the uncertain behavior of service, we
selected component services during execution of the ser-
vice composition; this avoids the service composition
failure brought by the failure of a component service.
Second, considering that QoS attributes are not always
the same for different executions, we select a component
service based on the real execution QoS data of the pre-
vious services; this will help to calculate the real con-
straints that need to be satisfied by the following
services. Third, the selection strategy of Q-learning is
globally optimized, this guarantees the optimality of the
composite service.
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Abstract—Modern cloud computing platforms based on virtual machine monitors (VMMs) host a variety of complex businesses which

present many network security vulnerabilities. In order to protect network security for these businesses in cloud computing, nowadays,

a number of middleboxes are deployed at front-end of cloud computing or parts of middleboxes are deployed in cloud computing.

However, the former is leading to high cost and management complexity, and also lacking of network security protection between

virtual machines while the latter does not effectively prevent network attacks from external traffic. To address the above-mentioned

challenges, we introduce a novel customized network security for cloud service (CNS), which not only prevents attacks from external

and internal traffic to ensure network security of services in cloud computing, but also affords customized network security service for

cloud users. CNS is implemented by modifying the Xen hypervisor and proved by various experiments which showing the proposed

solution can be directly applied to the extensive practical promotion in cloud computing.

Index Terms—Network security, FDCs, unified management, customized network security service, packet delay, throughput

Ç

1 INTRODUCTION

CLOUD computing has emerged as one of the most influ-
ential paradigms in the IT industry, and has attracted

extensive attention from both academia and industry.
Reduced costs and capital expenditures, increased opera-
tional efficiencies, scalability, and flexibility are regarded as
benefits of cloud computing. Although the great benefits
brought by cloud computing paradigm are exciting for IT
companies, academic researchers and potential cloud users,
security problems of cloud computing become serious
obstacles which, without being appropriately addressed,
will limit extensive applications and utilization of cloud
computing in the future. In cloud computing, network secu-
rity [8], [9], [17], [46], [53] is believed to be one of the promi-
nent security concerns, and it poses the same deadly threat
as data security and privacy disclosure. Furthermore, as
stated by National Vulnerability Database [29], there are 84
network vulnerabilities discovered in cloud computing by
February 2013, all of which strongly threaten network secu-
rity of cloud computing. In addition, there is sufficient evi-
dence [27] that a large number of data destruction or

tampering or forgery in cloud computing still come from
malicious network attacks.

In recent years, there have been a number of relative
efforts [1], [18], [22], [28], [47], [48], [52] in probing into
data security and privacy in cloud computing, and tremen-
dous progress has been maintained. However, these out-
comes are based on an assumption that there has been
secure network of cloud computing, and if the assumption
is got rid of, the above achievements would come to be
naught. Further, some researchers pay much attention to
certain types of network security in cloud computing. For
example, Lin et al. [19] have placed network inspection
detection system into a privileged virtual machine (VM) to
verify all packets received by the cloud platform. However,
this approach has an unavoidable drawback: the privileged
VM causes serious performance bottlenecks. Wu et al. [50]
focus on the security of virtual network in virtualized envi-
ronment and solve network security between VMs by Fire-
wall. However, it is powerless for attacks from malicious
external traffic. McAfee Security-as-a-Service [34] merely
focuses on Email and Web protection in cloud computing,
Imperva Cloud [41] and Du et al. [5] provide Distributed
Denial-of-Service (DDoS) protection service, and Krishnan
et al. [14] attach importance to intrusion detection system
in cloud computing. Huawe security products [30] also
only provides a single type of network security service
for cloud computing. The preceding solutions are provided
for a single type of service protection or detection in
cloud computing (e.g., Web or E-mail), and they are lack-
ing of integrated comprehensive protection for multi-
service cloud.

Since cloud computing hosts multi-type network-based
service which requires a desired sequence of multiple mid-
dleboxes together to protect their network security. For
example, Web service needs Firewall and Web Application
Firewall chains (FW-WAF) to protect network security.
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Thus, single network security service is unable to meet net-
work security requirements for cloud computing. Consider-
ing the above shortcomings of single network security
service, both industries and academies put many efforts on
alternative solutions. In industry, traditional architecture
[40] [10], [42] from Fig. 1a is regarded as current prevalent
solution for multi-type service cloud, requiring large-scale
security middleboxes, which leads to high costs [42], high
complexity, and serious performance overhead. Besides, the
architecture does not effectively prevent attacks between
VMs [33], [48]. In academia, recent efforts [6], [13], [24] and
[35] well combine middleboxes with SDN to protect enter-
prise network security and provide a flexible scalability and
resource optimization for middleboxes. However, they lack
of automatic security rules configuration and unified log
management for middleboxes, and cannot provide appro-
priate cloud security.

Since above-mentioned efforts is inappropriate or defec-
tive to protect network security of cloud computing, the
CNS system is presented that which adopts novel approach
to eliminate or mitigate the disadvantages with promising
benefits for cloud computing—reduced expenditure for
infrastructure, personnel and management, pay-by-use, etc.
As shown in Fig. 1b, the scheme is put forward in which
security middleboxes are placed in cloud computing instead
of at front-end of cloud computing so as to prevent mali-
cious attacks from external and internal traffic. This will
end mutual attacks between VMs for the traditional archi-
tecture. For security requirements in which cloud users’ ser-
vice is placed in cloud computing, CNS offers customized
network security service to meet on-demand network secu-
rity service. CNS also offers automatic security rules config-
uration and unified log management for middleboxes so as
to lower complexity management and costs for cloud pro-
vider. Note that security capabilities or optimization algo-
rithm of each device or middlebox [12] is not enhanced
under this approach, but a more affordable and convenient
protection service is provided.

In summary, our main contributions are as follows:

� Innovative architecture A novel flexible effiective
architecture for network protection of cloud comput-
ing is proposed. Based on best knowledge, a system-
atic approach to provide on-demand unified
solution for network security protection of cloud
computing is advocated.

� Preventing attacks from external and internal traffic
CNS prevents network attacks not only from
external traffic but also attacks from internal

traffic so as to ensure network security of cloud
users’ service.

� Customized network security service So long as cloud
users understanding their service security hosted on
cloud computing raise security requirements, CNS
can provide network security protection for their
service.

� Low cost and complexity CNS provides virtual middle-
box with automatic security rules configuration, and
offers unified log UI for a cloud user and cloud
administrator. By this approach, cloud providers
pay lower price to provide cloud users with safe and
trusted security service. Accordingly, cloud users
also have access to low-cost service fees.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 provides an overview of
the CNS design. Section 4 gives implementation details of
the entire system. Section 5 presents various experimental
results for evaluating system impact and performance. The
paper is concluded Section 6.

2 RELATED WORK

This section presents literature review on several research
areas related to CNS, including cloud-based single network
security service and cloud-based integrated security service.

Cloud-based single security service. Focus on providing
the security for a certain type of service, preventing
certain types of attacks, or optimizing a certain type of
middleboxes.

Cloud computing + IDS: In recent years, instruction detec-
tion system (IDS) for cloud computing has become research
focus for numerous experts studies. For vulnerabilities of a
cloud system and compromising virtual machines to deploy
further large-scale DDoS, NICE [3] has proposed a multi-
phase distributed vulnerability detection, measurement,
and countermeasure selection mechanism, which is con-
structed on attack graph based analytical models and
reconfigurable virtual network-based countermeasures to
significantly improve attack detection and mitigate attack
consequences. Because of distributed nature, grid and cloud
computing environments can become the targets which
intruders look for and become possible vulnerabilities to
exploit. Meanwhile, it requires more than user authentica-
tion with passwords or digital certificates and confidential-
ity in data transmission to provide the security in a
distributed system. Vieira et al. [49] have integrated knowl-
edge and behavior analysis to detect specific intrusions.
Regardless of host-based IDS, network-based IDS,

Fig. 1. Architecture comparison between the traditional architecture and CNS, (a) the traditional architecture, (b) CNS architecture, requiring external
or internal traffic to traverse a desired sequence of FDs before accessing servers in service domains.
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knowledge-based IDS, or behavior-based IDS, Modi et al.
[25] have surveyed different intrusions affecting availabil-
ity, confidentiality and integrity of cloud resources and ser-
vice and have recommended IDS/IPS positioning in cloud
environment to achieve desired security in the next genera-
tion networks.

Cloud computing + DOS: One of the most serious threats
to cloud computing itself comes from HTTP Denial of Ser-
vice or XML-Based Denial of Service attacks, Chonka et al.
[2] have offered a solution to trace back through our Cloud
TraceBack (CTB) to find attack source, and have introduced
the use of a back propagation neutral network, which was
trained to detect and filter such attack traffic.

The above research can only provide a single type of net-
work security, they could do nothing for integrated network
security service.

Cloud-based integrated network security service. provide
integrated service with security protection (such as enter-
prise, data center, cloud computing). Existing research lays
particular emphasis on middleboxes coupled with cloud
computing or SDN.

Cloud computing + middleboxes: Salah et al. [38] focus on
integrating the most popular types of middleboxes (e.g.,
IDSs, distributed denial-of-service (DDoS), FW, etc), which
aims at offering an integrated set of security service for
cloud computing. However, this brings a huge challenge to
configurate security rules and manage so many middle-
boxes. CNS not only provides comprehensive security serv-
ices, but also facilitates the provision of management and
configuration. APLOMB, Embark [15] and Yuan et al. [51]
considered that current middlebox infrastructure is expen-
sive and complex to manage, and generates new failure
modes of networks, it outsources enterprise middlebox
processing to the cloud, solves security problems faced by
modern enterprises. CNS as security provider on the cloud
can provide APLOMB with outsourcing security services.

SDN + middleboxs: Cloudwatcher [43], which provides
monitoring service for large and dynamic cloud networks,
automatically detours network packets to be inspected by
pre-installed network security devices. Compared to CNS,
this work is lack of log and event unified management and
detailed analysis of filtering rules on the middlebox, and
does not solves middlebox hotspots on FDCs. CoMb [39]
addresses key resource management and implementation
challenges that arise in exploiting benefits of consolidation
in middlebox deployments, but this work is almost difficult
to achieve CoMb system due to middleboxes’ closed system
and incompatible architecture, and large development costs.
SIMPLE [35], based on a SDN-based policy enforcement
layer, takes an explicit stance to work within the constraints
of legacy middleboxes and existing SDN interfaces, ensur-
ing that the traffic is directed through the desired sequence
of middleboxes and overcoming significant manual effort
and operator expertise. However, this work is lack of log
and event unified management and detailed analysis of fil-
tering rules on the middlebox, and does not provide secu-
rity service for cloud security.

Cloud computing + SDN + middleboxs: Split/Merge [37]
can be dynamically scaled out (or in) virtual middleboxs in
cloud computing, and enables load-balanced elasticity: Per-
flow state may be transparently split between many replicas

or merged back into one. However, this work mainly
focuses on how to dynamically scaled out (or in) virtual
middleboxs, and it does not provide customized network
security service in cloud computing according to cloud
user’s security requirements and unified management.

The above cloud-based integrated network security ser-
vice is lack of perfect fusion among middleboxes, cloud
computing and SDN, neither provides customized network
security for cloud service, nor considers maintenance costs
and management complexity.

3 DESIGN

Before the CNS design is demonstrated, it is envisioned that
hardware platform, hypervisor andVMs on cloud computing
are trusted and what is focused is network security of service
in cloud computing. TheCNS design dedicates three aspects:

� Preventing malicious attacks from external and internal
traffic: As shown in Fig. 1b, CNS prevents network
attacks from both external traffic and internal traffic
to ensure network security of service domains.
Whenever accessing to service domains, external
traffic or internal traffic needs to pass through a
desired sequence of filer domains (FDs) (e.g., FW–
WAF) to prevent malicious attacks (it is also called
VMs filter domains). The specific design and imple-
mentation are presented in x3.1 and x4.3.

� Customized network security service: Most cloud users
known clearly about security requirements for the
service in service domains and prefer specific meas-
ures according to their requirements. CNS adds cor-
responding security rules into FDs on a sequence of
FDs path and forwards traffic to go through this
sequence, which ensures network security. The spe-
cific design and implementation are presented in
x3.2 , x4.1 and x4.3.

� Reducing cost and complexity: It reduces device hard-
ware cost by migrating middleboxes to VMs in cloud
computing. Furthermore, automatic analysis about
cloud users’ customized network security require-
ments and unified log management from FDs lower
management complexity and costs. This section is
presented in x3.3, x4.1 and x4.2.

Unlike MtoVM [7], [8] that migrates all middleboxes to
the same VM, The CNS system migrates each middlebox to
a separate VM. As the comparison experiment demonstrates
in (x5.2), CNS gets much better performance than MtoVM.
Before the design is introduced, the notation of a desired
sequence of FDs is defined as filter domain chain.

Definition 1 (FDC). Filter domain chain (FDC) represents a
desired sequence of filter domains, and traffic must go through
FDC to ensure their network security before arriving at servers
in service domains. For example, FDC (FW ! WAF) of web
traffic goes through Firewall and WAF.

3.1 Component

As shown in Fig. 1b, CNS consists of the following several
components: a system domain (dom0), MDs, FDs, service
domains and virtual switch (vSwitch).
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� Dom0 We weaken dom0 privileges, it does not have
the permission to create/start and stop/destroy any
domain in FDs. However, these permissions are
reserved: it still has the privileges to operate every
domain in service domains and management
domains (MDs) and manage resources, including
scheduling time-slices and I/O quotas.

� MDs are composed of cental security management
domain (CSM) and event and log management
domain (ELM). CSM has permission to create/start
and stop/destroy any domain in FDs, manage and
control FDs, and provide security inspection path for
incoming/outgoing traffic of service domains. ELM
stores and manages security events and logs from
FDs and provides audit inquiry and attack statistics
for cloud users and cloud administrator.

� FDs are a real network security inspection performer
comprised of various virtual middleboxes. Network
security inspection (e.g., anti-virus, filtering), dec-
ryption and encryption are realized by FDs, and this
ensures that incoming/outgoing traffic to/from ser-
vice domains are secure and trusted. FDs flexibly
provide service domains with different security
inspections according to security needs of different

network-based service (called customized network
security service).

� Service Domains hosts multiple types of service
(e.g., FTP server, Web server) owned by cloud users.

� vSwitch receives forwarding rules from MD and
forwards external and internal traffic through FDs to
be filtered and inspected.

MDs and FDs cooperate jointly to provide customized net-
work security service for cloud users, of which MDs provide
incoming and outgoing traffic of service domains with their
corresponding FDCs as inspection path and FDs perform
security inspection when these traffic goes through FDCs.
The focus of customized network security service lies in the
fact that different service in service domains corresponds to
different FDCs. For example, as shown in Fig. 3b, the FTP
server corresponds to its FDCs, while Web server has corre-
sponding FDCs in Fig. 3c. Due to different security require-
ments, the same type of service also has different FDCs. For
example, the encrypted Email traffic passes through its corre-
sponding FDCs (FW–EDS–SSL/VPN), whereas the non-
encrypted Email passes through FW–EDS.

Fig. 1b shows that external and internal traffic must tra-
verses their corresponding FDCs before arriving at service
domains. When external traffic accesses the service in ser-
vice domains, it is subjected to security inspection through
a1, and then forwarded to service domains through a2;
Internal traffic can not directly access service domains, and
it must go through its corresponding FDCs (b1 and b2).

3.2 Customized Network Security Service

CNS provides customized network security service accord-
ing to cloud users’ various security requirements. Cloud
users who know clearly about security requirements of their
services in service domains only need to fill their security
requirements in accordance with security spec template
provided by cloud provider, and then deliver it to CNS. All
the rest will be accomplished by CNS which automatically
generates corresponding FDCs and security rules according
to users’ security spec and adds corresponding security
rules into filter domains on FDCs path. The traffic must
pass through FDCs to be inspected so as to ensure network
security before arriving at cloud users’ services.

As shown in Fig. 2, spec parser in the CSM analyzes
users’ spec and generates FDCs in both directions (incoming

Fig. 3. Examples of customized network security service for different services.

Fig. 2. CNS design.
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and outgoing traffic) and corresponding security rules. These
security rules are issued to FDs on FDCs path and incoming
and outgoing traffic pass through these security rules on
their FDCs to be filtered and inspected. For example, Web
server in service domains utilizes FW and WAF to protect
its network security. After analysis, security rules protecting
Web server are configurated to the FW and the WAF, and
FDC of its incoming traffic is FW!WAF, FDC of its outgo-
ing traffic is WAF ! FW due to the fact that most network
security middelboxs are stateful and need to process both
directions of a session for correctness. Refer to x5.1 for
detailed content and analysis of security spec.

There are many ways to realize the function that traffic
from/to service domains must go through their correspond-
ing FDCs, a more concise way is on based on forwarding
rules [23]. RouteGen in the CSM converts FDCs into for-
warding rules placed in vSwtich (x5.3). In order to fast find
forwarding rules, the vSwtich contains two forwarding
tables: Forward Route Table (FRT) and Backward Route
Table (BRT). Forwarding rules of incoming traffic is placed
in the FRT, forwarding rules of outgoing traffic is placed in
the BRT. The above Web server is considered as an example
of forwarding: when a client accesses the web server, the
vSwtich inquires forwarding rules from the FRT and Web
incoming traffic is first forwarded to the FW, then the WAF,
finally arrives at the web server; outgoing traffic is for-
warded oppositely. In the following, a few examples of cus-
tomized network security services are enumerated.

Example. It is assumed that a cloud user inquires cloud
provider to provide network security of both network-layer
(e.g., data link layer, network layer) and application-layer
(e.g., website) for Web server in service domains. The CSM
analyzes users’ security requirements in conjunction with
FDs topology: FW is used to protect network-layer security
so as to avoid DDOS attack, UDP and ICMP flood, etc, and
the WAF is used to protect application-layer security so as
to avoid SQL injection, cross-site scripting attacks, etc.
Therefore, an ordered combination of the FW and the WAF
is adapted to protect network security of Web server
required by cloud user. The specific FDCs are shown in
Fig. 3c. Table 1 envisages the situation in which cloud users
raise security requirements for various servers suffering

from network attacks and CNS provides corresponding sol-
utions shown in Fig. 3.

3.3 Unified Management

CNS provides unified management for FDs in terms of uni-
fied configuration management and unified log manage-
ment. In the traditional architecture, administrators have to
face much tedious configuration management from inde-
pendent vendors and different types of middleboxes. In
cloud computing, if the same problem as the traditional
architecture cannot be solved appropriately, it is almost an
impossible task for cloud administrators to configurate and
manage such a large diversity of FDs. As shown in Fig. 2,
CNS can provide automated configuration and unified
management to overcome these issues.

Automatic configuration CSM automatically analyzes user
security spec in conjunction with the FDs topology, and
then generates security rules directly configured into corre-
sponding FDs and corresponding FDCs directly delivered
to vSwitch by the method of forwarding rules, this process
does not require human intervention (except for post-
adjustment for special rules).

Unified log management ELM manages and counts all the
logs (e.g., system logs, audit logs, attack logs) generated by
FDs, and generates statistical reports based on attack logs.
Logs from FDs are sent to ELM, analyzed by log analysis
module in ELM, and placed in log database. To easily query
logs and attack statistics, ELM provides cloud administrator
and cloud users with GUI, and offers respective access privi-
leges for different users shown in Table 2. Cloud administra-
tor can access all the logs and statistics with high privileges,
while cloud user can only access corresponding statistics and
these logs are recordedwhen their service is under attack.

4 IMPLEMENT

The above design elaborates the principle of CNS and this
section presents the implementation of CNS in detail. First,
CNS automatically analyzes customized security require-
ment spec required by cloud users, thereby generating corre-
sponding security rules and FDCs. Second, unified logs
management proves to be conducive to facilitating event and
log query for cloud administrator and cloud user. Finally,
the FDCs implement is presented by forwarding rules.

4.1 Customized Network Security Service
Implementation

According to cloud users security requirements, CNS gener-
ates the corresponding security rules and forwarding rules
to ensure services’ network security. Section 3.2 shows the

TABLE 1
Corresponding Customized Network Security Service for
Security Requirements of Different Protected Servers

Service
Name

Attack Filter
Domains

Filter
Domain Chains

FTP
server

Session hijacking,
Bounce attack, etc.

UTM Fig. 3b

Web
server

DDOS HTTP-DOS
SQL injection XSS, etc

FW+WAF Fig. 3c

Bank
service

Date interception,
SQL injection,
Virus attack, etc

EDS+AV+WAF Fig. 3d

E-mail
server

Date interception,
Spammail, etc

EDS+AS Fig. 3e

Storage
service

Date interception,
etc

EDS Fig. 3f

TABLE 2
Actors and Operations in the Privilege Model

Log type Cloud Administrator Cloud User

System logs @
Audit logs @
Attack logs @ own services @
Statistical reports @ own services @

Each @ in the table denotes that the actor can perform the corresponding
operation.
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principle design of customization of network security serv-
ices, its focus is reflected in the implementation of security
spec analysis.

Security spec template: As shown in Fig. 4a, cloud provider
provides cloud users with customized security spec tem-
plate, in which they fill in security requirements according
to service requirements placed on service domains. The
filled security spec is transmitted after encrypted in order to
avoid being tampered by malicious cloud administrator
[16]. The following explains some items in the template and
presents some descriptive language for spec analysis. For
the sake of clarity, we list some used symbols in Table 3.

IP and port: They represent protected object. IP and port
fields in the basic information can be filled with one or more
IP and port pairs, that is, one or more protected servers.

Algorithm 1. Spec Analysis Algorithm

1: // Initialize corresponding security rules and FDC of
each service.

2: for each Si 2 S do
3: Ri f

4: Sði;fdcÞ  f

5: end for
6: R f

7: for each Si 2 S do
8: // Analyze the protected Si requiring security rules

and FDC.
9: for eachmj 2M do
10: // Add a security rule to the corresponding middelbox.
11: while each rk is yes do
12: Rmj

 Rðk;mjÞ \ Rmj

13: end while
14: // Security rules protected by Si.
15: Ri Rmj

\ Ri

16: // Add the needed middlebox to FDC.
17: if inspection item in base information is yes then
18: Sði;fdcÞ  Sði;fdcÞ \mj

19: end if
20: end for
21: R Ri \ R
22: end for

Network-layer, Anti-Virus, Anti-Spam, Web inspection and
Secure transmission: These items in the base information are

important parameters to determine which virtual middle-
boxes to provide protection for S security requirements, and
each item has a corresponding virtual middlebox. For exam-
ple, RFW and RWAF are respectively expressed as FW secu-
rity rules and WAF security rules to protect Website server
Sweb, that is, Sweb needs security rules Rweb = {RFW , RWAF } to
protect its network security.

Network-layer and Web security: They are the refinement of
network-layer and Web inspection items in the basic infor-
mation. Specifically, network-layer protection includes
DDOS and flood attack etc. If any item in network-layer
security is activated, Rði;FWÞ is used to express it, RFW =
{Rð1;FWÞ; Rð2;FWÞ � � �Rðn;FWÞ} indicates that FW consists of
multiple rules Rði;FW Þ. Similarly, RWAF = {Rð1;WAF Þ, Rð2;WAF Þ
. . .Rðn;WAF Þ}.

CSM accepts filled and encrypted spec from a cloud user.
Spec parser in CSM first decrypts the security spec, analyzes
it, and then generates FDCs of traffics in both direction and
security rules for the protected service domains. We show
the pseudocode about the spec analysis in algorithm 1. First,
security rules and FDCs of the protected objects are initial-
ized. That is, corresponding security rules of all the pro-
tected servers are set as Ri = {f} and R = {f} from 2 lines to 6
lines, and corresponding FDCs of Si is set as NULL, i.e.,
Sði;fdcÞ = {f}. Second, security rule Rðk;mjÞ is configured to
corresponding virtual middlebox mj to protect Si according

Fig. 4. (a) Cloud provider provides cloud users with customized security spec template in which cloud users fill in security requirements according to
service security requirements. (b) CNS analyzes Web security spec from cloud users and generates filter domain chains of traffics in both direction
and security rules.

TABLE 3
Spec Analysis Algorithm Needs the Symbol and its Explanation

Symbol Repression

S The set of servers filled in security spec;
Si A server that is a specific IP and port pair;

R
A collection of security rules to protect S,
Multiple Ri protect S by R, R ¼ fRiji 2 1 . . .ng;

Ri

A collection of security rules to protect Si,
and it may be dispersed in one or more
virtual middleboxes on its corresponding FDCs path;

M The set of virtual middleboxes;
mj Any one of M;
Rmj

Security rules whichmj contains to protect Si;

Rðk;mjÞ
Security rule configured to the corresponding
virtual middleboxmj to protect Si;

Sði;fdcÞ Corresponding FDCs of Si;
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to ’yes’ items in spec (lines 11-13). The same operation is
performed for all the involved virtual middleboxes (lines 9-
20). Third, these corresponding virtual middleboxes which
provide Si with network security are added into FDCs to
protect Si (lines 17-19). Finally, Ri is composed of security
rules provided by one or more virtual middleboxes to pro-
tect Si (lines 7-22).

Web example: Fig. 4b presents Web security spec provided
by a cloud user and specific content generated by analysis.
The left side in Fig. 4b shows that Web security spec enables
two items in base information: network-layer and Web
inspection. That is, Web server needs network-layer and
Web application-layer security protection. It is obvious that
a combination of FW and WAF meets security requirements
of web server: First, corresponding FDCs of Web server are
SðWeb;fdcÞ: FW ! WAF and WAF ! FW; Second, RWeb =
{RFW , RWAF } is configured to protect SWeb on FDCs path. All
items in network-layer security detail Web network-layer
security requirements, and Rð2;FWÞ and Rð3;FWÞ represent
specific security rules. Similarly, all the items from Web
security clarify application-layer ones and specific analytical
results present Rð2;WAF Þ, Rð3;WAF Þ etc.

4.2 Log Unified Management

Log unified management is also perceived as the CNS
research emphasis. If each FDs has its own management
user interface (UI) as what traditional way does, it is impos-
sible for cloud computing administrators to log in so many
UIs to view attack logs and statistics information due to
massive and tedious work.

Furthermore, most of the servers in service domains may
require multiple FDs to protect them, inspected attack logs
scattering in multiple FDs do not form integral statistics and
management, therefore, it is essential for log unified
management.

Algorithm 2. Log Classification Algorithm

1: // Classify every log.
2: if every log l then
3: // l is a system log.
4: switch (l:logtype)
5: case system log:
6: Lca Lca \ l
7: // l log belongmi logs.
8: if L:fdid = (mi 2M) then
9: Lmi

 Lmi
\ l

10: end if
11: break
12: // l is a attack or statistic log.
13: case attack log and statistic log:
14: Lca Lca \ l
15: // l log belong cui user.
16: if l:serverID = (cui 2 CU) then
17: Lcui  Lcui \ l
18: end if
19: break

20: end switch
21: end if

For events, logs and system information from FDs, ELM
performs unified management to provide cloud computing
administrators with convenient management and query. In
order to easily identify and standardize all logs from FDs,
FDs need to abide by a unified log format shown in Fig. 5.
LogType indicates log type (e.g., attack log, system log);
FDID is denoted as unique FD identifier; EventID is denoted
as event identifier (e.g., attack number); ServerID indicates
certain domain in service domains as unique identifier to
facilitate server log information statistics; SrcIP, SrcPort, Des-
tIP, DestPort, Protocol represent quintuple flow; Description
represents detailed information of the event.

After ELM receives logs, these logs are classified by log
parser in order to provide access on the basis of actor per-
missions in Table 2. Parameters in Table 4 are introduced to
facilitate the description of log classification algorithm.
Algorithm 2 offers log classification. A log l arrives at ELM,
If l is a system log, l is added into Lca (lines 6); If l belongs to
a log of mi, l is added into the corresponding Lmi

(lines 8-
10); If l is an attack log, l is added into Lca (lines 14); if l is
generated due to the attacked server owned by the ith cloud
user to be attacked, l is added into Lcui (lines 16-18). After
classification, cloud administrator queries all the logs from
FDs, cloud users only query their owner logs generated by
corresponding middleboxes when their owner servers are
being attacked.

4.3 FDCs Load Balancing Implementation

We have considered load balancing of each middlebox in
FDCs, and avoid each middlebox becoming a hospot.

FDCs is important part to realize customized network
security service for each service in service domains. Route-
Gen converts FDCs and the FDs topology into forwarding
rules and issues these rules to the vSwitch. CSM is consid-
ered as a SDN controller, and vSwitch is responsible for
forwarding packets to/from FDs and service domains
according to forwarding rules delivered by CSM. That is,
network security inspection is achieved on the basis of for-
warding rules in the vSwitch.

Traffic accessing to a server in service domains is divided
into two types of traffic: external traffic from Internet and
internal traffic between service domains in cloud comput-
ing. Incompetence internal or external traffic must go
through corresponding FDCs to ensure nework security of

Fig. 5. Log format.

TABLE 4
Log Classification Algorithm Needs the Symbol

and its Explanation

Symbol Repression

l A log;
CU All the cloud users;
Lca Log and statistics database queried by cloud

administrator;
cui The ith cloud user;
Lcui Log and statistics database only queried by the

ith cloud user;
Lmi

Log and statistics database from the ith virtual
middlebox;
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service domains. By default, forwarding rules from external
traffic have been stored in two route tables (FRT and BRT),
while there is no forwarding rules from internal traffic in
the mentioned route tables. The main reason goes that there
is very little communication between service domains. If
forwarding rules are added into route tables, it will result in
larger route table and take longer time to look up corre-
sponding forwarding rules from the route table, which
would lead to performance degradation. If the communica-
tion is established between service domains, the default
route in the vSwitch forwards the first packet between them
to CSM. RouteGen in the CSM generates forwarding rules
by FDCs of the accessed server and issues these rules to
vSwich, and subsequent traffic is forwarded in accordance
with forwarding rules in the vSwitch.

During FDCs generation process, we have to consider
two natural requirements: (1) Each chain FDC should have
enough virtual middelboxes assigned to it, so that we retain
sufficient freedom to achieve near-optimal load balancing
subsequently. (2) We ensure that we have sufficient degrees
of freedom; e.g., each FDC will have a guaranteed minimum
number of distinct physical sequences and that no middle-
box becomes a hotspot.

Minimize maxfLoadmj
g; subject to (1)

8c :
X

c�PathFDCs

Pc;mj
¼ 1 (2)

8j : Loadmj
¼

X

c:mj2PathFDCs

Pc;mj
� Tc � Footprintc;mj

ProcCapmj

(3)

8c; j : Pc;mj
2 ½0; 1� (4)

8j : MiddleboxUsedmj
¼

X

mj2PathFDCs

UsedNumbermj (5)

8j : MaxMiddleboxOccurs �MiddleboxUsedmj
(6)

Thus, we can consider the management problem in terms
of deciding the fraction of traffic belonging to each chain c (c
� FDCs) that each virtual middleboxes mj has to process.
Let Pc;mj

denote this fraction and let Tc denote the volume
of traffic for each chain c. The optimization problem can be
expressed by the linear program shown in Eqs. (1)–(6).
Eq. (2) simply specifies a coverage constraint so that the
fractional responsibilities across the virtual middleboxes on
the path for each c add up to 1. Eq. (3) models the stress or
load on each virtual middlebox in terms of the aggregate
processing costs (i.e., product of the traffic volume and the
footprints) assigned to this virtual middlebox. Here,

mj 2 PathFDCs denotes that virtual middlebox mj is on the
routing path for the traffic in Tc. At the same time, we want
to make sure that no virtual middlebox becomes a hotspot;
i.e., many chains FDCs rely on a specific virtual middlebox.
Thus, we model the number of chosen sequences in which a
middlebox occurs and also the maximum occurrences
across all middleboxes in Eqs. (5) and (6) respectively. Our
objective is to minimize the value of MaxMiddleboxOccurs
to avoid hotspots.

To summarize, CNS presents three important character-
istics: 1) preventing malicious attacks from external and internal
traffic: CNS prevents network attacks from external and
internal traffic to ensure network security of service
domains 2) Customized network security service: After cloud
users put forwards security requirements according to their
own server characteristics, CNS can be well adapted to
meet security service requirements. 3) Complexity and cost:
CNS can realize automatic configuration and management
in accordance with cloud users’ security spec without
human intervention, which includes security rules configu-
ration and FDCs and forwarding rules generation, and pro-
vide cloud administrators with unified logs management.
Besides, CNS can provide cloud user with low-cost security
service with respect to hardware and management costs of
middleboxes.

5 EVALUATION

In this section, there are four goals of the evaluation:

� valuate system benchmarks of CNS.
� evaluate the cost of CNS and the traditional

architecture.
� evaluate maintenance and management complexity

between CNS and the traditional architecture.
� evaluate performance between CNS and MtoVM,

between CNS-unbind-core and CNS-bind-core and
between with and without CNS.

Experimental environment Cloud platform is conducted on
aDell Server with 8 core, 3.42 GHz Intel CPU, 16GBmemory.
IXIA [31] and iperf are considered as a performance test
instruments. The XEN hypervisor version is 3.4.2, and the
dom0 system is fedora 16 with kernel version 2.6.31. We
used a 64bit fedora Linux with kernel version 2.6.27 as our
guest OS, and the vSwitch bandwidth is 1 Gigabit Ethernet;
CNS uses open source security softwares shown in Table 5.
For the next step, four simulation environments are installed.

� MtoVM simulation environment: Four kinds of open
softwares in Table 5 are moved to the same VM.

� CNS-unbind-core simulation environment: Each soft-
ware is moved to a separate VM in FDs.

� CNS-bind-core simulation environment: Each software
is moved to a separate VM in FDs, and each VM is
bound to a core, namely, each virtual middlebox
runs on a separate core.

� Without security protection.

5.1 System Benchmarks

We focus on four key metrics here: the time to analyze
spec, the time to install filter rules, the time to install for-
warding rules, the total communication overhead at the

TABLE 5
The List of Open Source Security Softwares

Product Name Open Source Software

FW IPFire [11]
WAF ModSecurity [26]
SSL/VPN OpenSSL [32]
AS PacketFence [44]
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controller, and the maximum load on any middlebox or
link in the network relative to the optimal solution. We
begin by running the topology from Fig. 2 on the Emulab
testbed. We did the comparison experiments according to
the middleboxes number of FDCs, whose results shown
are shown in Table 6.

Time to analyze spec. Table 6 shows the time taken by CNS
to proactively analyze spce according to the middleboxes
number from 1 to 10 of FDCs. The time to analyze increases
from 3.1 ms to 3.9 ms as middlebox number in FDCs
increases, but the increase is acceptable without large fluctu-
ations. The main causes here is that the controller spends
more time to analyzes more items in spec as middleboxes
number of FDCs increases.

Time to install filter rules. Table 6 shows the time taken by
CNS to install the filter rules for the FDCs. The time to
install changes from 5.1 ms to 32.0 ms as the middlebox
number of FDCs. The main bottleneck here is the controller
spends mort time to install more filter rules and send more
filter rules to each middlebox in FDC. We can reduce this to
70 percent overall with multiple parallel sending filter rules
to middlebox.

Time to install forwarding rules. The time to install for-
warding rules is very short and almost does not change as
as the middlebox number of FDCs. The main causes here is
that it takes short time for the controller to analyze forward-
ing rules and sends forwarding rules only to vSwtich.

Controllers communication overhead. The table also shows
the controllers communication overhead in terms of
Kilobytes of control traffic to/from the controller to install
filter and forwarding rules. Note that there is no other

control traffic during normal operation. These numbers
are consistent with the total number of rules that we need
to install.

5.2 Cost and Complexity

Cost. Since middleboxes (labeled as device-based) and FDs
(labeled as domain-based) from independent vendors and
different types of security devices or software have distinc-
tive costs, only rough estimation rather than accurate
assessment is conducted. Thus, thus the average cost of all
the middleboxes and FDs are considered as their cost.
Device-based and domain-based cost can be drawn accord-
ing to benchmark cost [38], [42]. It can be seen from
Fig. 6a that device-based cost is five times as that of
domain-based. That is, the average cost of a middlebox is
about $5,000, while the average cost of an FD is only $1,000.
This saves the cost to a deep extent.

Complexity. Complexity focuses on configuration, main-
tenance and management. CNS provides security spec
with automatic analysis without human intervention
(except for strategy adjustment) so as to avoid security
rules configuration complexity. This is especially useful
for complex network security service which requires mul-
tiple middleboxes to meet full security protection, Com-
plex network security service is a much difficult task
which takes a lot of time, taking manual configuration
and interactions between rules into consideration. In view
of post-maintenance and post-management, the tradi-
tional architecture (labeled as device-based) is facing the
complex and tedious work. For example, APLOMB [42]
has conducted a survey of 57 enterprise network adminis-
trators and it is found that managing many heterogeneous
middleboxes require broad expertise and consequently a
large management team. Even small networks with only
tens of middleboxes typically require a management team
of 6-25 personnel. Unlike the traditional architecture, CNS
proposes and implements automatic generation of secu-
rity rules and FDCs and forwarding rules, and offers uni-
fied logs management and query. Fig. 6b presents the
comparative data of management personnel between CNS
and the traditional architecture in the light of the com-
plexity: For CNS, only a few personnel are required to
maintain and manage FDs, while the traditional architec-
ture needs a management and maintenance team with
large-scale personnel who rapidly grows as the number of
applications increases. Especially, when the number of
middleboxes reaches 100, the traditional architecture
requires 50 personnel, whereas CNS only require 4
personnel.

TABLE 6
Time and Control Traffic Overhead to Install Customized

Network Security Service

Middlebox
Number of
each FDC

Time to
Analyze
Spec(ms)

Time to
Install
Filter

Rules(ms)

Time to
Install

Forwarding
Rules(ms)

Overhead
(KB)

1 3.1 5.1 1.1 6
2 3.2 6.3 1.2 10
3 3.2 7.6 1.2 14
4 3.3 8.5 1.3 22
5 3.5 10.1 1.3 30
6 3.5 14.8 1.5 38
7 3.6 18.9 1.6 47
8 3.8 23.3 1.6 67
9 3.8 25.7 1.7 89
10 3.9 32.0 1.9 108

Fig. 6. Cost and complexity comparison and between CNS and the tradition architecture.
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5.3 Performance Discussion

In this section, the CNS performance is evaluated with the
following goals:

� Why is CNS employed rather than MtoVM? The two
are compared to prove the conclusion, and the rea-
sons are analyzed.

� How to improve the CNS performance? What shall
be done to overcome the difficulties?

� Performance overhead with CNS is evaluated to
determine whether the overhead is acceptable.

Evaluation purposes are achieved by three sets of com-
parative experiments.

� The first experiment is that NCSS-unbind-core has
been compared with MtoVM in term of system per-
formance, and a better solution from comparison
results can be selected , and the reasons which affect
system performance are analyzed.

� The second experiment, some factors affecting CNS
performance are overcome, and optimization results
from the comparison between NCSS-unbind-core
and CNS-bind-core is viewed.

� The third experiment, CNS performance overhead is
evaluated, and related measurements on both the
case with CNS-bind-core and the case without CNS-
bind-core in cloud computing are performed, and
whether the overhead is within acceptable range is
assessed.

In order to response the comprehensive performance,
every experiment presents nine sets of comparative data
from three aspects of performance: latency, throughput,
and packet loss rate witch are important indicator [21] of
system performance about network security. The following
present the three experiments.

The Comparison between MtoVM and CNS-unbind-core This
is the first experiment to compare MtoVM with CNS-
unbind-core about latency, throughput and packet packet
loss rate. Their performances are compared by three types
of service: UDP forwarding (FW), Website (FW-WAF), and
Email service (FW-SSL/VPN).

In order to obtain comprehensive and correct perfor-
mance assessment, UDP packets are employed with differ-
ent sizes to evaluate system performance of MtoVM and
CNS-unbind-core. Figs. 7a and 7b) presents experimental
results about latency and throughput. In stress measure-
ment environment, regardless of packet size from 64bit to
1528 bit, 500 Mbit/s throughput is always kept to observe
packet loss. The experimental result is shown in Fig. 7c. In
short, Figs. 7a, b, and Fig. 7c indicates two points: First,
latency and throughput of UDP forwarding increase with
the increase of their sizes. Second, MtoVM and CNS-
unbind-core present the same performance, and the main
reason is that UDP packets only traverse FW on the VM
instead of all the virtual middleboxes on the VM although
MtoVM employs multiple virtual middleboxes from
Table 5 on a VM. Because CNS-unbind-core employs each
virtual middlebox on a stand-alone VM, udp packets with
CNS-unbind-core just go through FW according to FDC of
UDP service. Therefore, MtoVM and CNS-unbind-core
demonstrate the same performance in term of udp
forwarding.

Website access [20], [45] based on TCP protocol needs
FW and WAF to protect its network security. The experi-
ment method is similar to the UDP forwarding except for
http traffic and packets with larger size from 1024 bit to
65,536 bit. Figs. 7d, e, and Fig. 7f shows our experimental
results: First, the relationship between packet size and
performance is similar to the UDP forwarding. Second,
regardless of latency or throughput or packet loss rate,

Fig. 7. The performance comparison results between four cases: the traditional architecture, CNS-unbind-core, CNS-bind-core and without CNS.
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CNS-unbind-core is far higher than MtoVM in terms of
performance.

The main reason goes like the following: the advantage of
the MtoVM is that the entire inspection and filtering of Web
traffic are performed only on a single VM, and this avoids
the overhead of inter-VM communication and cache inva-
lidations which may arise as shared state is accessed by
multiple cores; compared with CNS-unbind-core, the
MtoVM also has its own disadvantage which cloud incur
overhead due to context switches and potential contention
over shared resources on a single VM, especially, filtering
rules and feature matching require a lot of CPU resources.
Since CNS-unbind-core employs FW and WAF respectively
on a stand-alone VM. Therefore, the advantages and disad-
vantages of CNS-unbind-core are opposite to MtoVM. A
conclusion is drawn from Figs. 7d, e, and Fig. 7f) that
resource contention and context switches extend greater
impact than inter-VM communication and cache invalida-
tions for MtoVM and CNS-unbind-core. If CNS is used on
multiple-core virtual platform to perform parallel inspec-
tion, it is possible to overcome resource contention (espe-
cially, CPU resource) competition, which significantly
improves system performance.

The importance of CPU resources for performance
impact between MtoVM and CNS-unbind-core is further
confirmed by e-mail encryption and decryption requiring
more CPU resources. As shown in Fig. 3e, e-mail needs AS
and SSL/VPN to protect its network security. Figs. 7g, h,
and Fig. 7i shows CNS-unbind-core has a better perfor-
mance than MtoVM in term of latency, throughput and
packet loss rate. Even in the worst case, latency of MtoVM
is twice than CNS-unbind-core at 64,000 bits.

In summary, regardless of UDP forwarding, Website
access, Email access, Fig. 7 has showed that CNS-unbind-
core realizes far higher system performance than that of the
MtoVM. The main reasons is that a large number of rules
and feature matching requires a lot of CPU resources which
extend a greater impact than the overhead of inter-VM com-
munication and cache invalidations for system perfor-
mance. Therefore, CNS-unbind-core rather than MtoVM is
adopted, which can achieve better system performance.

The Comparison between CNS-unbind-core and CNS-
bind-core Resource competition, especially CPU resources,
context switches, inter-VM communication and cache inva-
lidations are regarded as main factors that affect system

performance. CNS-unbind-core takes full advantage of sys-
tem resources, (especially, CPU resources) and overcomes
context switches over shared resources on a single VM.
Since inter-VM communication between FDs makes full use
of hardware-assisted I/O virtualization techniques such as
single root I/O Virtualization (SR-IOV) [4] and self-assisted
devices [36], it can reduce I/O virtualization overheads and
achieve good performance. Therefore, inter-VM communi-
cation overhead is considered. However, multi-core sched-
uling constantly switches between multiple VM to lead to
corresponding cache invalidations, which causes system
performance degradation. In order to overcome cache inva-
lidations, each FDs is binded to a CPU core, thus overcom-
ing the disadvantage of cache invalidations. Fig. 7 shows
our experimental results, as can be seen from nine sets of
data that CNS-bind-core reflects a more superior perfor-
mance than CNS-unbind-core.

The Comparison both With And Without CNS-bind-core in
Cloud Computing. This is the third experiment, there are cases
with the CNS and cases without the CNS in cloud comput-
ing. Fig. 7 presents the experimental comparison results indi-
cating that the case without CNS-bind-core are more efficient
than ones with CNS-bind-core. Although the case without
employing CNS-bind-core to protect network security
achives higher efficiency than one with CNS, it may lead to
incalculable losses if no protective measures are taken to pro-
tect cloud computing security. Therefore, it is essential to
protect network security of cloud computing so as to defend
various attacks from the network. Even if CNS-bind-core is
selected to protect cloud computing security, it is necessary
to consider whether its performance overhead can be
accepted. The following three experiments are still used to
evaluate the performance impact with CNS-bind-core from
three aspects: UDP forwarding, Website and Email service.

For UDP forwarding, Figs. 7a, b, and Fig. 7c shows Net-
SecCC gives little impact on system performance (specific
performance overhead is shown in Table 7), compared with
the case without NetSecCC, NetSecCC imposes 6.4 percent
of average latency overhead (ranging from 4.4 to 9.1 percent)
and 8.8 percent of average throughput drop (ranging from 0
to 13.4 percent). Packet loss rate suffers from the impact of
security inspection and filtering. It is inevitable for these per-
formance overhead to inspect and filter UDP traffic. Since
UDP traffic must go through FW to be inspected and filtered
before being forwarded to the UDP server in service
domains. During the process, traffic is required to match
hundreds of filtering rules in FW. This will take some time
and result in increased latency and decreased throughput.
Compared wtih MtoVM and CNS-unbind-core, CNS-bind-
core hasmade tremendous progress.

ForWebsite access, The results of this experiment showed
in Figs. 7d, e, and Fig. 7f present CNS-bind-core has related
impact on system performance. Compared with the case
without CNS, latency is more affected, while throughput is
hardly affected. Table 7 further illustrates that 16.3 percent of
average latency overhead (ranging from 12.4 to 18.9 percent),
0.7 percent of average throughput drop (ranging from 0 to
4.2 percent), 0.9 percent of average overhead of packet loss
rate (ranging from 0 to 6 percent). The main reason is like
this: Web traffic must go through FW and WAF to be
inspected and filtered before being forwarded to theWebsite

TABLE 7
CNS Performance Overhead Comparing to no Protective

Measures in Cloud Computing

Access method Performance Max (%) Min (%) Avg (%)

UDP packet
Latency 9.1 4.2 6.4

Throughput 13.4 0 8.8
Packet loss rate 0 0 0

Web page
Latency 18.9 12.4 16.3

Throughput 4.2 0 0.7
Packet loss rate 6 0 0.9

Encrypted mail
Latency 15.7 9.2 13.1

Throughput 5.1 0 0.8
Packet loss rate 2 0 0.3
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server in service domains. In this process, traffic is required
to match hundreds of filtering rules in FW and thousands of
signatures in WAF, which will take some time and hence
result in the increased latency and the decreased throughput.
In the case without CNS, Web traffic directly accesses to the
Website server to avoid inspection in terms of system over-
head. Therefore, compared with the cases without CNS,
latency becomes longer with CNS, throughput suffers from
the impact of latency. However, overall system performance
with CNS is within the acceptable range.

For e-mail access, the results of this experiment showed
Figs. 7g, h, and Fig. 7i) present encrypted emails with CNS
are affected. The impact of longer latency, lower throughput,
and bigger packet loss with CNS is mainly caused by the rea-
son that emails must be forwarded through AS and SSL/
VPN as shown in Fig. 3e. In addition, the encrypted emails
require encryption processing. This will take some time and
lead to performance degradation. Compared with the case
without CNS, specific data with CNS on the performance
overhead are shown in Table 7: the average cost of latency is
13.1 percent (ranging from 9.2 to 15.7 percent), the average
cost of throughput is 0.8 percent (ranging from 0 to 5.1 per-
cent), and the average cost of packet loss rate is 0.3 percent
(ranging from 0 to 2 percent). For security services, the pre-
ceding performance overhead is acceptable.

In summary, it is found that CNS-unbind-core is a more
preferred method in terms of performance by comparing both
MtoVM and CNS-unbind-core. On the basis of CNS-unbind-
core, it is further optimized to produce more efficient CNS-
bind-core and offer more efficient customized network secu-
rity service. At the same time, by the comparison of the case
with CNS-bind-core and the case without CNS-bind-core in
cloud computing, it is found that CNS-bind-core can provide
adequate network security protection for cloud computing
without sacrificing the high price of system performance.

6 CONCLUSION

Main problems caused by todays cloud security are high costs
and performance overhead, and management complexity,
especially the lack of customized network security services.
In this paper, we introduced a innovative architecture called
CNS, which provides customized network security for secu-
rity needs of suitable cloud services as well as the qualitative
benefits with respect to low performance overhead, easy to
maintenance and management, and reduction in middle-
boxes costs. Further, we gave a specific and detailed examples
and algorithms in the process of implementation in order to
leverage these benefits in practice. Next, we use CNS to offer
customized network security service for big data, enterprise
and outsourcing security through in-depth research.
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Doris: An Adaptive Soft Real-Time Scheduler
in Virtualized Environments

Song Wu ,Member, IEEE, Like Zhou, Xingjun Wang, Fei Chen, and Hai Jin , Senior Member, IEEE

Abstract—With the development of cloud computing and virtualization technologies, more andmore soft real-time applications, such as

Voice over Internet Protocol (VoIP) server and cloud gaming, are running in virtualized data centers. Though previous studies optimize

CPU schedulers of hypervisors to support these applications in virtualized environments, there are some important challenges in

designing an efficient CPU scheduler which is suitable for real-world clouds. On one hand, hypervisors do not knowwhether an

application in a virtual machine (VM) has real-time requirements, somanually setting the scheduling parameters is a common case for

CPU schedulers, which probably increases users’ burden, lacks flexibility, and causesmisconfigurations. On the other hand, it has been

reported that most of existing CPU schedulers designed for soft real-time applications have an obvious propensity to such applications

which prevents them from being applied in practical multi-tenant cloud environments. In this paper, we design and implement an adaptive

soft real-time scheduler based on Xen, namedDoris, to address these challenges. It identifies the VMs running soft real-time applications

(RT-VMs) and infers their scheduling parameters according to the communication behaviors of VMs adaptively. Then, it promotes the

priorities of VCPUs of the RT-VMs temporarily according to I/O events and the inferred scheduling parameters of RT-VMs to support soft

real-time applications adaptively whileminimizing the impacts on non-real-time applications. Finally, considering the importance of

privileged entities (such as Domain0 in Xen) in I/O processing,Doris sets their types and scheduling parameters dynamically, which

enables the adaptive scheduling of them to guarantee the performance of soft real-time applications. Our evaluation showsDoris can

support soft real-time applications adaptively and efficiently, and only introduces very slight overhead.

Index Terms—Cloud computing, virtualization, soft real-time, CPU scheduling

Ç

1 INTRODUCTION

1.1 Motivation

WITH the development of cloud computing and virtual-
ization technologies, more and more applications

with different features are running in virtualized data cen-
ters, including soft real-time ones, which are the real-time
applications with soft deadlines. That is to say, these appli-
cations should finish their tasks before their deadlines, but
are allowed to miss a few deadlines sometimes, like stream-
ing server [1], cloud gaming [2], VoIP server [3], and virtual-
ized desktop systems [4].

Traditional proportional fair share CPU schedulers of
hypervisors, such as Xen’s Credit scheduler [5] and KVM’s
CFS [6], cannot support soft real-time applications well,
because they usually do not consider the characteristics of
these applications [7], [8], [9], [10]. Aiming at this problem,
previous studies present some solutions to guarantee the per-
formance of these applications in virtualized environments,
including RT-Xen [8], laxity-based CPU scheduling [7], and
parallel soft real-time scheduling [9], [10].

However, these solutions cannot fit for multi-tenant cloud
environments, because they need administrators to manu-
ally set scheduling parameters for VMs, which probably
increases users’ burden, lacks flexibility, and causes miscon-
figurations. Besides, they usually have an obvious propen-
sity to soft real-time applications and ignores I/O models of
hypervisors [7], [9], [10]. Actually, it is essential for clouds to
support different types of applications adaptively because
users may run any applications they want in VMs. In order
to support soft real-time applications adaptively and effi-
ciently in clouds, we have to face some important challenges.

First, it is a challenge for hypervisors to determine which
VMs run soft real-time applications and get their scheduling
parameters adaptively. First of all, in order to guarantee the
performance of soft real-time applications, CPU schedulers
in hypervisors need to make proper scheduling decisions
according to these parameters, such as deadlines. However,
it is not easy to get such parameters even in traditional
native environments, because deadlines or other parameters
of soft real-time applications are implicit characteristics. In
order to overcome such challenge, Cucinotta et al. [11] pres-
ent an approach to inferring the activation period of a soft
real-time application by observing system calls generated
by MPlayer, but this approach needs to modify operating
systems’ kernel, and the activation period could be the
period of other block operations, such as disk I/O and sem-
aphores. More importantly, virtualized systems, such as
Xen [12], KVM [13], and VMware ESXi [14], add an addi-
tional layer, called hypervisor or virtual machine monitor
(VMM), between guest operating systems (guest OSes) and
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the underlying hardware, which causes hypervisors almost
know nothing about task information and system calls in
guest OSes. Although previous studies present some solu-
tions to get task information in hypervisors [15], [16], [17],
[18], they cannot get proper information for soft real-time
applications because of the difficulty of getting their dead-
lines in virtualized environments.

The second challenge is to schedule VMs running soft
real-time applications adaptively while minimizing the
impacts on other applications. Clouds are multi-tenant envi-
ronments, which should not allow any bias on some VMs.
This is one reason for the widespread use of proportional
fair shared schedulers, such as Xen’s Credit scheduler.
However, these schedulers ignore the characteristics of soft
real-time applications, which result in inadequate perfor-
mance for these applications. On the contrary, most of exist-
ing soft real-time schedulers always bias to RT-VMs [7],
which may affect the performance of other applications and
are not fit for practical cloud environments. Actually, soft
real-time applications only need to finish their tasks before
deadlines. CPU schedulers can defer the scheduling of
VCPUs of RT-VMs (RT-VCPUs) to some extent and are
allowed to schedule non-RT-VCPUs before RT-VCPUs. This
strategy can guarantee the performance of soft real-time
applications while minimizing the impacts on other applica-
tions. However, determining how long the scheduling
RT-VCPUs can be deferred is a challenge.

Finally, it is a challenge for hypervisors to schedule privi-
leged entities (such as Domain0 in Xen and QEMU [19] I/O
threads in KVM) adaptively to guarantee the performance of
soft real-time applications because the privileged entities
play an important role in I/O processing. Privileged entities
handle I/O operations for other VMs. For example, in the
split driver model of Xen, all the I/O operations of VMs need
to be processed by Domain0. Soft real-time applications run-
ning in cloud environments often provide services through
network, such as cloud gaming, streaming server, VoIP
server, and virtual desktop. If CPU schedulers only optimize
for RT-VMs but leave Domain0 unchanged, all the I/O oper-
ations of RT-VMs need to be processed by a non-RT-VM (i.e.,
Domain0). As a result, Domain0 becomes an important factor
affecting the performance of soft real-time applications. In
order to support soft real-time applications efficiently, we
need to schedule privileged entities adaptively. However,
most of previous studies [7], [8], [9] ignore the importance of
privileged entities and treat them as a non-RT-VM.

1.2 Our Contributions

In this paper, we design and implement an adaptive soft real-
time scheduler based on Xen, named Doris, to support soft
real-time applications that provide services through network
in virtualized environments. In the following, soft real-time
applications refer to the ones that provide services through
network and run on virtualized environment to serve user
requests. The adaptivity of Doris lies in three aspects. First,
there are lots of applications with different characteristics
running in clouds, but Doris can identify VMs running soft
real-time applications and adaptively infer their scheduling
periods, key scheduling parameters forDoris, through analyz-
ing packets sent by VMs. Second, Doris can schedule these
VMs adaptively according to the inferred scheduling periods

while minimizing the impacts on non-real-time applications,
which makes Doris suitable for multi-tenant cloud environ-
ments. Finally, Doris considers the importance of privileged
entities and set their scheduling periods dynamically accord-
ing to the scheduling periods of RT-VMs, which enables the
adaptive scheduling of privileged entities and guarantees
the performance of soft real-time applications further.

The main contributions of this paper are as follows.

� We propose communication-aware period detection
approach to inferring the scheduling periods of
RT-VMs according to their runtime characteristics.
Using this approach, users can run soft real-time
applications in virtualized environments without
setting parameters manually, which improves the
applicability of virtualization.

� We design application-boost mechanism to schedule
RT-VMs adaptively according to the inferred schedul-
ing periods of RT-VMs and I/O events while mini-
mizing the impacts on non-real-time applications. It
only promotes the priorities of RT-VCPUs temporar-
ily and preempts the current running VCPU when
needed. Otherwise, RT-VCPUs are treated as the
same as non-RT-VCPUs. This mechanism is a good
fit for multi-tenant cloud environments.

� We propose privileged entity specialization to change
the types of privileged entities and set their schedul-
ing periods dynamically according to the scheduling
periods of RT-VMs. By doing so, the CPU scheduler
can schedule privileged entities adaptively to guar-
antee the performance of soft real-time applications.

� We implement a prototype in the Xen hypervisor,
namedDoris, and use various real-world applications
to evaluate its effectiveness and overhead. The exper-
imental results show that Doris can support soft real-
time applications adaptively and efficiently, and only
introduces very slight overhead on network I/O and
ignorable impacts on non-real-time applications.

2 DESIGN

In this section, we introduce the design of Doris based on
Xen, a popular open source hypervisor. We first describe
the design principles and system overview of Doris. Then,
we describe each component of Doris in detail.

2.1 Overview

Doris is an adaptive soft real-time scheduler, which can sup-
port soft real-time applications that provide services
through network adaptively without setting scheduling
parameters by users manually. The design of Doris is
guided by the following principles:

� light-weight and high precision: the design should effi-
ciently identify RT-VMs and infer their scheduling
parameters in a light-weight and precise manner.

� adaptivity and low impacts on other applications: the
design should schedule RT-VMs adaptively to sup-
port soft real-time applications while minimizing the
impacts on other applications.

� privileged entities support: the design should consider
how to schedule privileged entities adaptively to guar-
antee the performance of soft real-time applications.
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We assume a VM hosts one application (may contain
multiple tasks or threads), which is a common case in real-
world cloud environments, and design Doris based on the
above principles. As shown in Fig. 1, Doris consists of three
major components: monitor, collector, and adaptive scheduler.
Because all the packets entering and leaving DomainUs are
processed by netback in Domain0 in Xen’s split driver
model, we add monitor to analyze all the headers of packets
sent by VMs and determine which VMs are RT-VMs that
sent real-time packets. (For simplicity, we call packets sent
or received by soft real-time applications as real-time pack-
ets.) Then, it gets the periods of sending real-time packets
by RT-VMs and uses them as the scheduling periods of
RT-VMs because soft real-time applications running in
RT-VMs often sent packets periodically. For example, a
cloud gaming server needs to send video frames of games
to the client periodically to guarantee that the client can see
a smooth video. Actually, the scheduling periods of RT-VMs
represent the desired scheduling parameters of soft real-
time applications running in these RT-VMs under our
assumption. Finally, monitor informs the hypervisor about
the types and scheduling periods of VMs, which are collected
by collector. In addition to collect such information, collector
sets the type and scheduling period of Domain0 according to
the collected information through privileged entity specializa-
tion, which enables Doris to schedule Domain0 adaptively
to guarantee the performance of soft real-time applications.
Adaptive scheduler schedules RT-VMs adaptively according
to the collected information, which uses application-boost
mechanism to support soft real-time applications while
minimizing the impacts on other applications.

2.2 How to Identify RT-VMs and Get Their
Scheduling Periods

In order to schedule VCPUs adaptively, CPU schedulers
need to know the scheduling parameters of RT-VMs. In this
section, we present communication-aware period detection
approach to distinguish which VMs are RT-VMs and infer
the scheduling periods of RT-VMs.

2.2.1 VM Type Determination

Methodology. Because CPU schedulers are critical compo-
nents of hypervisors, which need to make scheduling deci-
sions quickly, we design a lightweight approach to determine
the types of VMs and infer the scheduling periods of RT-VMs
precisely. Specifically, we devise a comprehensive method,
which consists of port-recognition and protocol-analysis, to
identify RT-VMs. Our proposed method uses lightweight
port-recognition as much as possible and uses protocol-analysis
to maintain high precision if port-recognition is ineffective,
which can achieve our goal (i.e., lightweight and precise).

Identify RT-VMs by Port-Recognition. When soft real-time
applications provide services to users, clients need to know
the port number used by these applications. Some applica-
tions use well-known ports or registered ports. For example,
Darwin Streaming Server (DSS) [1] uses Real Time Stream-
ing Protocol (RTSP) to establish, control, and terminate ses-
sions between clients and the server, which uses a well-
known port 554.

We propose port-recognition mechanism to analyze the
header of each packet sent by VMs, and find whether its
source port is related to a soft real-time application using
well-known ports or registered ports. In order to find the
relationship of port number and soft real-time applications
quickly, we maintain a set of port number that related to
soft real-time applications for each VM. For simplicity, we
call this set as PORT-SET, which can be set by users manu-
ally or protocol-analysismechanism.

Identify RT-VMs by Protocol-Analysis. Port-recognition
mechanism has some limitations. On one hand, some soft
real-time applications do not use well-known ports or
change the default port because of security or other reasons.
For example, VoIP servers use Real-time Transport Protocol
(RTP) for media stream delivery, but the port used by RTP is
not a well-known port. On the other hand, some soft real-
time applications only use well-known ports to establish
control connections, while establishing other connections
without specific ports to transmit data. For example, DSS
uses RTSP to establish control connections, but uses RTP to
establish other connections to deliver video or audio streams.
Therefore, we present protocol-analysismechanism to analyze
the header of packets, and identify real-time packets accord-
ing to the characteristics of application-layer protocols.

RTSP is an application-level protocol to control stream-
ing media servers, which is a representative explicit proto-
col. That is to say, the protocol provides explicit hints to
identify this protocol. We can identify RTSP easily accord-
ing to one of its characteristics that its header has RTSP ver-
sion with a keyword “RTSP”.

On the contrary, RTP is a representative implicit proto-
col. Though no explicit hint is available in the protocol, we
can also identify RTP packets through analyzing protocol
version, payload type, sequence number and synchroniza-
tion source identifier of packets according to the characteris-
tics of RTP [20].

Put Them Together. In order to identify RT-VMs in a light-
weight and precise way, our proposed comprehensive identifi-
cationmechanism preferably uses port-recognitionmechanism
to find real-time packets.When it fails, protocol-analysismech-
anism is used to analyze the header of packets. If a packet is
identified as a real-time packet, the comprehensive identification

Fig. 1. Architecture of Doris, including three modules colored in gray.
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mechanism updates PORT-SET with the source port of the
real-time packet. Then, port-recognition mechanism can iden-
tify the following packets using this port. As a result, the com-
prehensive identification mechanism can reduce overhead
effectively whilemaintaining high precision.

Note that, the types of VMs are set dynamically. When a
packet sent by a VM is identified as a real-time packet, the
VM is set as a RT-VM. If a RT-VM does not send any real-
time packet in a time period, its type is set as non-RT-VM.
Meanwhile, the port number in PORT-SET that updated by
protocol-analysismechanism will be cleared.

2.2.2 Period Detection

After identifying the types of VMs, we need to get the sched-
uling periods of RT-VMs. Because soft real-time applications
always send packets periodically, the period of sending
packets can be used as the scheduling periods of RT-VMs. For
example, if the period of a RT-VM is 1ms, hypervisors
believe soft real-time applications will send packets in every
1 millisecond. As a result, in order to guarantee the perfor-
mance of these applications, CPU schedulers need to sched-
ule VCPUs of the RT-VM according to its scheduling period.
Note that the period of sending packets by soft real-time
applications may change as time goes on and with the
variation of user requests. In this paper, we present
communication-aware period detection approach, which fol-
lows the change of sending packets’ period and adjusts
scheduling periods of corresponding RT-VMs. In this way, the
underlying CPU scheduler can schedule RT-VCPUs adap-
tively to support soft real-time applications. In the follow-
ing, we illustrate the periodicity of sending packets by soft
real-time applications and describe communication-aware
period detection approach in detail.

Periodicity of Sending Packets by Soft Real-Time Applications.
We conduct experiments with Asterisk [3] (a VoIP server),
DSS, and GamingAnywhere [21] (a cloud gaming server) to
illustrate the periodicity of sending packets by these appli-
cations. Two machines in the same LAN are used to conduct
these experiments. A machine runs these servers. The other
machine is a client, which generates loads to these servers.
Specifically, as to Asterisk, we use SIPp [22] to send RTP
packets to it, and Asterisk echoes voices. As to DSS, we use
StreamingLoadTool provided by DSS to simulate a user
requesting a movie file for 60 seconds. We use a GamingA-
nywhere client to establish a connection with the GamingA-
nywhere server. Then, we run Wireshark [23] on the server
machine to capture the packets sent by these application
servers, and calculate the time interval between two adja-
cent packets. The test results are shown in Fig. 2.

From the test results, we can see that all these applica-
tions send packets periodically but with different periods.
Asterisk needs to sample audio and send it to clients

periodically to guarantee call qualities, and its period is
around 20 ms as shown in Fig. 2a. DSS also needs to send
packets to client periodically to guarantee that the client can
see a smooth video, and its period is around 70 ms as shown
in Fig. 2b. Similarly, the GamingAnywhere server also
needs to send video frames of game to the client periodi-
cally, and its period is around 100 us as shown in Fig. 2c.

Communication-Aware Period Detection Approach. Monitor
shown in Fig. 1 records the system time of sending real-time
packets, and calculates the time interval between adjacent
packets. Then it predicts the relative time of sending
the next real-time packet, which is the scheduling period of a
RT-VM. Inspired by previous studies [16], [24], we use
Exponential Weighted Moving Average (EWMA), which is
a light-weight predication algorithm and can tolerate tran-
sient incorrect value, to calculate scheduling period. As shown
in Equation (1), in order to predict the current period pt, it
only needs to remember the latest historical period pt�1.
diff is the time interval between the last two packets. a is
weight with the value between 0 and 1. The more a closes to
1, the lower the weight of historical data is. When monitor
identifies a real-time packet, it calculates pt

pt ¼ ð1� aÞ � pt�1 þ a� diff: (1)

The pseudo-code of the communication-aware period detec-
tion algorithm is shown in Algorithm 1. The algorithm first
uses the comprehensive identification mechanism to analyze
packets sent by VMs (line 1�2). If a RT-VM does not send
any real-time packet in a time period, the algorithm uses a
hypercall added by us to set the RT-VM as a non-RT-VM.
Besides, it clears the port number in PORT-SET updated by
protocol-analysis mechanism (line 3�6). Then, the algorithm
updates PORT-SET to reduce the use of protocol-analysis
mechanism (line 9). Finally, it sets the VM sending packets
as a RT-VM if necessary, calculates pt and updates the sched-
uling period of the RT-VM. Because frequent hypercalls
introduce some overhead, the algorithm uses a timer to
update the scheduling period periodically, which can reduce
the overhead introduced by hypercalls (line 10�14).

2.3 How to Schedule VCPUs Adaptively

In this section, we present an adaptive soft real-time schedul-
ing algorithm to schedule VCPUs adaptively to reduce dead-
line misses of soft real-time applications according to the
scheduling periods inferred by monitor. The key idea behind
this scheduling algorithm is application-boost mechanism,
which only promotes the priorities of RT-VCPUs temporar-
ily and preempts the current running VCPU when needed.
Otherwise, the algorithm treats RT-VCPUs and non-
RT-VCPUs as the same. In the following, we first describe
the Credit scheduler briefly, and application-boostmechanism
in detail. Then, we explain the scheduling algorithm.

Fig. 2. Statistics of packets sent by soft real-time applications, which shows that they send packets periodically.
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Algorithm 1. Communication-Aware Period Detection
Algorithm

Input: packets sent by VMs
Output: types and scheduling periods of VMs.
1: port SOURCE_PORT(packet);
2: if PORT_RECOGNITION(port) &&

PROTOCOL_ANALYSIS(packet) then
3: if vm½id� is a RT-VM && vm½id� does not send any real-

time packet in a time periodthen
4: set vm½id� as a non-RT-VM through a hypercall;
5: clear the port number in PORT-SET updated by protocol-

analysismechanism;
6: end if
7: return;
8: end if
9: add port to PORT-SET;
10: if vm½id� is a non-RT-VMthen
11: set vm½id� as a RT-VM through a hypercall;
12: end if
13: get system time and calculate pt according to (1);
14: set a timer to call HYPERCALL(id, pt) periodically;

2.3.1 Credit Scheduler

The Credit scheduler is a proportional fair share scheduler,
which distributes CPU resources (or credits) to VMs at the
end of each accounting period (default 30 ms) according to
the weights of VMs specified by users.

There are three kinds of priorities in the Credit scheduler
(from high to low): boost, under, and over. If a VCPU has
remaining credits, its priority is under. Otherwise, its priority
is set to over. When a blocked VCPU with under priority
receives I/O events, its priority is promoted to boost. And
then, the VCPU preempts the current running VCPU (unless
they have the same priority). Boost priority is used to reduce
the latency of I/O processing. VCPUs on a run queue
are sorted according to their priorities. The scheduler picks
the first VCPU from the run queue to run, and VCPUs with
the same priority are scheduled in a round-robin manner.
When a VCPU is descheduled, the scheduler deducts its cred-
its, reassigns a priority according the remaining credits, and
inserts it back to the run queue according to the new priority.

Besides, the Credit scheduler supports Symmetric Multi-
Processing (SMP) platforms well. It automatically balances
VCPUs across all available physical CPUs (PCPUs). When a
PCPU becomes idle or its run queue has no VCPUwith boost
or under priority, it tries to steal a higher-priority VCPU
from peer PCPU’s run queue.

2.3.2 Application-Boost

In this paper, we introduce application-boost mechanism to
guarantee the performance of soft real-time applications. It
is a priority promotion mechanism for VCPUs according to
the I/O behaviors and scheduling periods of RT-VMs.
Because soft real-time applications do not need to be sched-
uled preferentially with permanent higher priorities and
they only need to finish their tasks before deadlines, applica-
tion-boostmechanism only promotes the priorities of VCPUs
temporarily, and recovers their priorities after they are
descheduled. Like boost mechanism in the Credit scheduler,

it can minimize the impacts on non-real-time applications,
which is essential for multi-tenant cloud environments.

In order to schedule RT-VCPUs immediately when they
must be scheduled, we introduce real-time priority, which is
the highest priority in the algorithm. VCPUs with real-time
priorities can preempt other VCPUs with lower priorities.
The priorities of RT-VCPUs can be promoted to real-time
only if they need to be scheduled instantly, and will be
degraded to lower priorities when they are descheduled.
Otherwise, the treatments for RT-VCPUs are the same as
non-RT-VCPUs. There are two situations that need to pro-
mote the priorities of RT-VCPUs to real-time, which are
described as follows.

The first situation is that RT-VMs receive I/O events,
such as user requests or disk operations of soft real-time
applications. Typically, these applications want to process
I/O events quickly. For example, when users click mouse in
virtual desktop or attack a monster in cloud gaming, they
hope the server can respond the requests immediately. In
this case, application-boost mechanism is activated to shorten
the response time of soft real-time applications. Compared
with boost mechanism in the Credit scheduler, application-
boost mechanism can also promote the priorities of VCPUs
in run queues when they receive I/O events, which can
achieve low response time for soft real-time applications.

The second situation is that deadlines of RT-VCPUs
arrive. The deadline of a RT-VCPU is the time of being
inserted into run queue plus its scheduling period. For exam-
ple, when a RT-VCPU with a period of 1ms is inserted into
run queue, its deadline is the current time plus 1 ms, that is
1ms later.When its deadline arrives, application-boostmecha-
nism is activated to schedule the VCPU. (Note that, since it is
hard to estimate the worst-case execution time in multi-
tenant cloud environments because of imperfect performance
isolation of clouds and unpredictable userworkloads running
in other VMs, the deadline of a RT-VCPU in this paper is the
deadline that the RT-VCPUneeds to be scheduled.)

In order to activate application-boost mechanism when
deadlines of RT-VCPUs arrive, we add a real-time queue to
each PCPU, which contains all the runnable RT-VCPUs in
the PCPU. The RT-VCPUs in the real-time queue are sorted
by their deadlines. The first RT-VCPU of the real-time
queue has the earliest deadline. When a RT-VCPU is
inserted into the run queue, it is also inserted into the real-
time queue according to its deadline. The behavior of insert-
ing a RT-VCPU into a run queue is the same as inserting
non-RT-VCPUs, which is inserted into the tail of the same
priority subregion. Fig. 3 illustrates an example of real-time

Fig. 3. Example of real-time queue, which is sorted according to the
deadlines of RT-VCPUs.
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queue. Deadlines of RT-VCPUs are positive number while
non-RT-VCPUs’ deadlines are 0. When a RT-VCPU with
under priority is inserted into run queue, it is inserted
behind V40. If its deadline is 150us, it is inserted into the
head of real-time queue. When a RT-VCPU is removed
from a run queue, it is also removed from the real-time
queue. If the real-time queue has RT-VCPUs, the deadline
of the first VCPU in the queue, such as V30 in Fig. 3, is used
to set a timer. When the timer times out, the deadline of the
VCPU is arrived and application-boost mechanism is acti-
vated to schedule this VCPU.

2.3.3 Adaptive Soft Real-Time Scheduling Algorithm

The adaptive soft real-time scheduling algorithm uses
application-boost mechanism, which relies on I/O events and
scheduling periods detected by analyzing packets sent by
VMs, to schedule VCPUs adaptively. In the following, we
describe how to calculate time slice in the algorithm and
explain the algorithm in detail.

In our proposed algorithm, each VCPU is allowed to run
at most a time slice, but its length is not fixed. Because
application-boost mechanism adopts timers to schedule RT-
VCPUs immediately when their deadlines arrive, which
introduces some overhead if timers are triggered frequently,
we present variable time slice mechanism to reduce the use of
timers. It increases the probability of scheduling the first
VCPU of real-time queue just before time out of the timer.
The calculation of the time slice is as follows. First, if there is
no RT-VCPU in a run queue, the time slice is the default time
slice, such as 30 ms in the Credit scheduler. In this case, the
behaviors of the scheduler is the same as the default sched-
uler. Second, if the priority of the second VCPU in the run
queue is real-time, it means at least two RT-VCPUs in a PCPU
should be scheduled immediately. We set the time slice as a
minimum time slice (MIN_TS), which allows the next RT-
VCPU to be scheduled after at most the minimum time slice.
Third, if the real-time queue is not empty, the time slice is the
deadline of the first VCPU in the real-time queue minus the
current system time. If the time slice is smaller thanMIN_TS,
it is set to MIN_TS, which can avoid too much context
switches caused by too short time slice.

The pseudo-code of the algorithm is shown inAlgorithm 2,
which consists of two functions: schedule() and timeout(). The
schedule() function inserts the current running VCPU into
queues and picks a VCPU to run. First, if the priority of the
current running VCPU is real-time (RT in the algorithm), its
priority needs to be degraded before inserting it into run
queue according to the principles of application-boost mecha-
nism (line 3�6). Second, if it is a RT-VCPU, the algorithm also
inserts it into real-time queue (rt-queue in the algorithm)
according to its deadline (line 7�9), and sets a timer to call
timeout() function if necessary (line 10�12). Finally, the sched-
ule() function picks a VCPU from the head of run queue as the
next running VCPU (line 14), and calculates its time slice
according to the method described in the previous paragraph
(line 15�22). The timeout() function is used to trigger applica-
tion-boostmechanism. It promotes all the RT-VCPUs with the
same deadline as the first RT-VCPU in real-time queue to real-
time priorities (line 26�29). If the priority of the first RT-
VCPU is higher than the current running VCPU, the RT-
VCPU preempts this VCPU through calling the schedule()
function (line 30�32).

Algorithm 2. Adaptive Soft Real-Time Scheduling
Algorithm

Input: queue information of a PCPU
Output: scheduling decision
1: function SCHEDULE()
2: cur current running VCPU;
3: if cur:priority ¼¼ RT then
4: cur:priority UNDER or OVER;
5: end if
6: insert cur into run queue;
7: if cur is a RT-VCPU then
8: cur:deadline nowþ cur:period;
9: insert cur into rt-queue according to cur:deadline;
10: if cur is the head of rt-queue then
11: set a timer to call TIMEOUT();
12: end if
13: end if
14: next remove a VCPU from the head of run queue;
15: if priority of the first VCPU of run queue is RT then
16: next:tslice MIN_TS;
17: else if rt-queue is not empty then
18: f  the first VCPU of rt-queue;
19: next:tslice MAXMIN_TS, f:deadline - now;
20: else
21: next:tslice DEFAULT_TS;
22: end if
23: return next
24: end function
25: function TIMEOUT()
26: first remove vcpu from the head of rt-queue;
27: remove VCPUs with the same deadline from rt-queue;
28: set the priorities of them to RT ;
29: insert them to run queue;
30: if first:priority > cur:priority then
31: SCHEDULE();
32: end if
33: end function

2.4 How to Treat Privileged Entities

In this section, we present privileged entity specialization to set
the types and scheduling periods of privileged entities (such
as Domain0 in Xen) dynamically, which makes the CPU
scheduler schedule privileged entities adaptively to guaran-
tee the performance of soft real-time applications running
in RT-VMs. In the following, we take Xen as an example to
describe the roles of privileged entities (i.e., Domain0) for
soft real-time applications. Then, we explain privileged entity
specialization in detail.

2.4.1 Split Driver Model of Xen

In Xen’s split driver model,each backend driver runs in an
isolated device driver (IDD) or Domain0, and each guest OS
uses a frontend driver to communicate with the backend driver.
All the requests and responses of the frontend driver are
processed by the backend driver.

Because soft real-time applications always provide serv-
ices through network, we take packet-sending operations as
an example to demonstrate the important role of Domain0
for these applications. In Xen’s split driver model, the
packet-sending operations can be divided into two major
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steps: 1) the CPU scheduler schedules the RT-VM that runs
soft real-time applications sending packets through netfront
after the scheduling of the RT-VM; 2) the CPU scheduler
schedules Domain0 and netback in Domain0 processes the
packets and sends them through the native driver.

2.4.2 Privileged Entity Specialization

As described in Section 2.4.1, Domain0 plays a very impor-
tant role in the I/O processing for RT-VMs in the Xen
hypervisor. However, previous studies [7], [8], [9], [10]
ignore the importance of Domain0. If real-time schedulers
only consider RT-VMs (i.e., DomainUs), and treat Domain0
as a non-RT-VM, I/O operations of RT-VMs (such as the
responses of user requests), which may have deadlines, are
handled by a non-RT-VM (i.e., Domain0) without real-time
guarantee. As a result, it may cause deadline misses of soft
real-time applications even if CPU schedulers schedule RT-
VMs before their deadlines.

In this paper, we consider the importance of privileged
entities (e.g., Domain0), and present privileged entity speciali-
zation to enable the adaptive scheduling of them. With privi-
leged entity specialization, the types of privileged entities are
set as RT-VMs if there are RT-VMs in the system. If all the
VMs are non-RT-VMs, privileged entities become non-RT-
VMs. However, because privileged entities have to handle
the I/O operations of the RT-VMs which may have different
scheduling periods, it is a challenge to set the scheduling periods
of privileged entities when they are RT-VMs.

In the split driver model, I/O operations of soft real-time
applications running in VMs are handled by frontend drivers
and backend drivers in virtualized environments, and backend
drivers are shared by multiple frontend drivers in VMs. In
order to process RT-VMs’ I/O operation with the earliest
deadline in time, both drivers need to be scheduled before
such deadline. As a result, privileged entity specialization sets
the scheduling period of privileged entity as the shortest
scheduling period of RT-VMs, which can process I/O opera-
tions with the earliest deadline in time.

3 SCHEDULER IMPLEMENTATION

We implement Doris based on the Credit scheduler of Xen-
4.0.1. In the following, we first describe how to modify net-
back to identify RT-VMs and calculate their scheduling periods.
Then, we add a new scheduler to Xen, called sched_doris, by
extending the Credit scheduler.

3.1 Modification to Netback

We modify the send operations in netback, and add a func-
tion named decodepackettx() to identify whether a packet is a
real-time one. In order to accelerate the port-recognition, we
use a bitmap to implement PORT-SET. So the time complex-
ity of port-recognition is O(1). Moreover, application-layer
protocols can be identified in our current implementation.
Doris can adaptively identify streaming server, VoIP server,
cloud gaming, etc.

We add a hypercall in the Xen hypervisor to set the types
and scheduling periods of VMs. If the first real-time packet sent
by a VM is identified, decodepackettx() set the VM as a RT-VM
through the hypercall. Because frequent hypercalls introduce
some overhead, we implement the calculation of scheduling

period in netback (the value of a is set to 0.2 empirically in
Equation (1)) and tell the hypervisor in every 30 ms through
the hypercall. If a RT-VM does not send any real-time packet
in the last one second, the VM ismarked as a non-RT-VM.

3.2 Modification to the Credit Scheduler

We implement Doris based on the Credit scheduler. The
details of the modification are as follows.

First, a new priority named CSCHED_PRI_TS_RT is
added as the real-time priority. We add structure members
to record necessary information, such as period, deadline, and
set the type and scheduling period of Domain0 dynamically
according to the information of DomainUs.

Second, we implement queue operations for real-time
queue. If a RT-VCPU is inserted at the head of real-time
queue or the first RT-VCPU of real-time queue is removed,
a timer needs to reset to call timeout() added by us, which
triggers the preemption if necessary.

Finally, we modify csched_schedule(), which is responsible
for selecting the next VCPU from the run queue, to realize
the scheduling of RT-VCPUs before their deadlines. If the
timer times out, timeout() promotes the priority of the first
RT-VCPU of real-time queue and other VCPUs with the
same deadline to CSCHED_PRI_TS_RT, and inserts them
into run queue again. The first RT-VCPU is probably
inserted at the head of run queue. As a result, csched_
schedule() will pick the RT-VCPU as the next VCPU to run,
and degrade its priority when it is descheduled. We set
MIN_TS to 0.1 ms, and calculate the time slice of the next
VCPU according to the descriptions in Section 2.3.3.

In summary, Doris does not need to modify guest OSes
and inherits all the advantages of the Credit scheduler. For
example, credits management in Doris is the same as the
Credit scheduler, and Doris supports SMP platforms and
RT-VMs with multiple VCPUs.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of Doris by
using various workloads and study the overhead intro-
duced by Doris. We first describe the experimental method-
ology, and then present the experimental results.

4.1 Experimental Methodology

We use real-world applications to evaluate Doris with some
user-aware metrics, which can represent deadline misses of
soft real-time applications.

(1) Experimental platformOur evaluation is conducted on a
server comprised of two quad-core 2.4 GHz Intel Xeon
CPUswith Hyper-threading disabled, 24 GBmemory,
1TB SCSI disk, and 1Gbps Ethernet card. The hypervi-
sor is Xen-4.0.1. Guest OSes are CentOS 5.5 with
Linux-2.6.31.8 kernel. The configurations of VMs run-
ning on the server are 2 GBmemory and 20 GB virtual
disk. Unless otherwise specified, RT-VMs have
1VCPU, which run soft real-time applications. We
always conduct experiments under interference con-
figurations to verify the effectiveness ofDoris inmulti-
tenant cloud environments. The interfering VMs have
8VCPUs, which run eight hungry-loop applications to
consume available CPU resources. In the evaluation,
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unless otherwise stated, 4 VMs are running on
the server simultaneously, and one is a RT-VM while
the others are interfering VMs. Machines in the
same LAN act as clients to generate loads to soft real-
time applications running in RT-VMs.

(2) Scheduling approaches We conduct experiments under
several scheduling approaches as follows:
� Credit: the default CPU scheduler of Xen

hypervisor.
� Doris: It schedules RT-VMs and Domain0

adaptively.
� Doris w/o Dom0: It only optimizes for RT-VMs

and leaves Domain0 unchanged, which is used
to demonstrate the importance of privileged enti-
ties (i.e., Domain0).

� Doris(10us), Doris(1ms), Doris(10ms): They set
their scheduling periods of RT-VMs and Domain0
to a fixed value (i.e., 10 us, 1 ms, and 10 ms),
which are used to show the performance disad-
vantages of manually setting methods. 10us is a
very short scheduling period, while the others are
two representative scheduling periods in
milliseconds.

� Poris(1 ms), Poris(10 ms): Poris is a parallel
soft real-time scheduler optimized for multi-
threaded and distributed soft real-time applica-
tions presented in our previous work [10]. It also
supports single-threaded ones. It uses higher pri-
ority and dynamic time slice to support these
applications, and needs users to set expected
latencies for VMs manually, which determines
the length of time slice. However, it cannot set
expected latencies below 1ms. Thus, we conduct
tests under Poris when expected latencies are set
as 1 and 10 ms.

(3) Classification of experiments Experiments can be
divided into two categories. On one hand, experi-
ments are conducted to evaluate whether Doris can

support soft real-time applications adaptively. On
the other hand, we conduct experiments to evaluate
the overhead caused by packet analysis and the
impacts on non-real-time applications. More details
of testing applications are shown in Table 1.

4.2 Experiments with Soft Real-Time Applications

In this section, we evaluate the performance of Doris with
three soft real-time applications and compare it with other
related CPU schedulers.

4.2.1 Experiments with VoIP Server

We run Asterisk in a RT-VM, and SIPp [22] on the client to
establish connections with the VoIP server via the SIP proto-
col and emulate many voice conversations using G.711
codec. We start up several concurrent calls that range from
5 to 90 to simulate the real world environment, and measure
their call quality. Specifically, the concurrent calls are estab-
lished at the rate of 10 calls per second instead of establish-
ing them simultaneously. Then we can evaluate our system
with dynamic server load. We conduct the test under differ-
ent CPU schedulers, and the test results are shown in Fig. 4.

Seen from Fig. 4, the average PESQ is around 4.4 despite
the number of concurrent calls under Doris. In other words,

TABLE 1
Testing Applications And Benchmarks Used to Evaluate the Effectiveness and Overhead of Doris

Category Application name Description Metric

Soft real-time
applications
used to evaluate
the effectiveness
of Doris.

Asterisk [3] a classic VoIP server, which is a voice
only soft real-time application.

The call quality is measured with ITU-T PESQ
[25]. If it is greater than 4, it means that the VoIP
service has good quality.

DSS [1] a widely used streaming media server,
which delivers both video and voice
to clients.

The stream quality is measured with average
bit rate. The higher the average bit rate, the
better the stream quality is.

GamingAnywhere [21] an open-source cloud gaming system,
which is an emerging soft real-time
application in cloud era and also
delivers both video and voice to clients.

The quality of GamingAnywhere is measured
with Frame Per Second (FPS). If the evaluated
FPS is closed to the set value, the performance
of GamingAnywhere is guaranteed.

Applications
used to evaluate
the overhead
introduced by
Doris.

ping a tool to evaluate network latency. The latency is measured with response time.
netperf [26] a tool to evaluate network throughput. The network throughput is measured with

TCP and UDP bandwidth.
kernel compilation a CPU-intensive application

that compiles Linux kernel.
Compilation time is used to measure the speed
of compilation.

Postmark [27] a disk I/O intensive benchmark. The performance is measured with the
processing rate of transactions.

Apache HTTP Server a common web server in clouds, which
is network I/O intensive application.

The performance is measured with response time.

Fig. 4. The call qualities of Asterisk.
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Doris guarantees the QoS of Asterisk without any manual
settings by users. When the concurrent calls are small, all
these schedulers can provide good call quality for users.
However, with the increase of concurrent calls, the call qual-
ities under the Credit scheduler and Doris w/o Dom0
decrease sharply. Although Doris w/o Dom0 is better than
the Credit scheduler, ignoring the important role of
Domain0 results in inadequate performance for Asterisk.
Doris with manually setting periods (i.e., Doris(10 us), Doris
(1 ms), and Doris(10 ms)) outperforms the Credit scheduler
and Doris w/o Dom0. Poris(1 ms) and Poris(10 ms) show simi-
lar results. Both of Poris use short time slice to schedule
VCPUs when we set expected latencies, which also benefits
Domain0, but Domain0 cannot get the benefit of higher pri-
ority in Poris. Poris and Doris with manually setting periods
behave very well in some cases (i.e., low concurrent calls),
but are not good enough in other cases (i.e., large concurrent
calls). Compared with the Credit scheduler, Doris improves
call quality by 92.4 percent according to the average PESQ
when we start up 90 concurrent calls.

We also plot the statistics of the call qualities of 90 concur-
rent calls under different strategies, which are shown in
Fig. 5. The box in the figure shows 25th, median, and 75th
percentile of statistics, and the whiskers show the minimum
andmaximumvalues of statistics. The call quality of Asterisk
underDoris is very steady.Most of PESQ are between 4.3 and
4.5. On the contrary, no point under the Credit scheduler and
Doris w/o Dom0 is greater than 4. It also means that these
schedulers cannot guarantee the quality of any call when
there are lots of concurrent calls. Poris and Doriswith manu-
ally setting periods behave not very well, because the quali-
ties of some calls are not guaranteed although the average
PESQ under these schedulers is greater than 4.

4.2.2 Experiments with Streaming Media Server

Streaming media server is a widely used soft real-time
application. In order to guarantee the quality of video or
audio services, it must transmit data to users continuously.

In this test, a RT-VM runs DSS as the streaming media
server. We use StreamingLoadTool on the client to simulate
different number of users, which range from 10 to 200. Each
user requests a movie file for 60 seconds, and the bit rate of
the file is 1 Mbps. The test results are shown in Fig. 6.

Seen from Fig. 6, DSS underDoris can provide video serv-
ices with stable quality. It can adapt to the change of users.

However, the quality of video services under the Credit
scheduler, Doris(1 ms), and Doris(10 ms) is decreased when
the number of users increases. An interesting observation is
that the performance of Doris is almost the same as that of
Doris(10 us). We believe it is mainly because DSS is an I/O
intensive application too, and short time slice benefits this
type of applications. Besides, we cannot simply treat 10 us as
the desired scheduling period for DSS, because it changes
according to the number of user requests, and becomes
smaller with the increase of number of users. As to Poris, the
performance of DSS is guaranteed if the number of clients is
small. When the number of clients is greater than 120, its per-
formance decreases sharply under Poris(1 ms) and Poris
(10 ms). This is probably because Poris ignores the importance
of Domain0, which becomes a bottleneck when I/O pressure
is high. As a result, the advantages of Poris are neutralized by
the ignorance of Domain0 if soft real-time applications have
lots of I/O operations. Compared with the Credit scheduler,
Doris achieves 22.6 percent improvement according to the
average bit ratewhenwe simulate 200 clients.

4.2.3 Experiments with Cloud Gaming

Cloud gaming is an emerging gaming model, which renders
an interactive gaming application remotely in the cloud and
streams the scenes as a video sequence back to a thin client
over the Internet [2]. In this test, we use GamingAnywhere
to conduct tests.

GamingAnywhere adopts the classic client-server archi-
tecture. The GamingAnywhere server waits for incoming
clients. If a GamingAnywhere client is connected with the
server, the server encodes audio and video streams in real-
time and sends the encoded frames to the client. The
GamingAnywhere client displays real-time game screens
based on the received frames, captures user inputs and
sends them to the server. The server also needs to handle
the user inputs in real-time. Like DSS, GamingAnywhere
uses RTSP to establish connections between clients and the
server, and uses RTP to deliver encoded frames if UDP is
the preferred transport layer protocol.

We run a GamingAnywhere server in a RT-VM, and run
OpenTTD [28], an open-source simulation game, in the RT-
VM. We modify the GamingAnywhere client to display the
frame rate in every second. The frame rate is set to 24 FPS in
OpenTTD.We conduct the same test under different schedu-
lers for 500 seconds, and the test results are shown in Fig. 7.

Seen from Fig. 7, the frame rate of OpenTTD under Doris
is very steady, and the average frame rate is 23.6. Although

Fig. 5. The statistics of 90 concurrent calls.

Fig. 6. Test results of DSS under different schedulers.
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the performance under Doris(1ms) is closed to that of Doris,
it still has some fluctuations. Besides, the performance is not
guaranteed under the Credit scheduler, Doris(10 us), and
Doris(10 ms). The frame rates under these schedulers are
fluctuated, and many frames are lost, which affect users
experience seriously. As to Poris, GamingAnywhere
behaves well under different expected latencies. In Poris
(1 ms), time slice used by Poris is 1 ms (the minimum time
slice adopted by Poris), while time slice is 2 ms in Poris
(10 ms) according to the time slice calculation method
described in [9]. This is why the test results are similar
under these strategies. I/O operations of GamingAnywhere
are relative small, so ignorance of Domain0 does not harm
its performance too much.

4.2.4 Experiments with Mixed Soft Real-Time

Workloads on Different VMs

In this test, we use two VMs to run soft real-time applica-
tions to verify Doris can adaptively support them running
on different VMs. Because it is much easier to simulate mul-
tiple clients with Asterisk and DSS, we run them in these
two RT-VMs and sent requests to them simultaneously
from different machines. Specifically, the requests for Aster-
isk ranges from 5 to 90 with a step of 5 and the requests for
DSS ranges from 10 to 180 with a step of 10. Since we have
already evaluated the performance of Asterisk and DSS
with different scheduling approaches previously, we only
conduct the tests under the Credit scheduler as a baseline
and Doris in this test, and the test results are shown in Fig. 8.

Seen from Fig. 8, the performance of Asterisk and DSS is
guaranteed under Doris despite the number of concurrent
user requests. On the contrary, the Credit scheduler per-
forms badly with the increase of requests. This test demon-
strates that Doris can support the scenario that multiple soft
real-time applications run on different VMs and their work-
loads changes dynamically.

4.2.5 Experimental Results Analysis

In this section, we analyze test results of the above experi-
ments, and conclude the following observations.

� The Credit scheduler does not consider the require-
ments of soft real-time applications, which causes
frequent deadline misses of these applications. So it
cannot support soft real-time applications well.

� Doris can guarantee the performance of soft real-time
applications adaptively no matter how user requests
change and also support multiple soft real-time
applications running on different VMs. For example,
as shown in Figs. 4 and 5, when the concurrent calls
change, Doris also changes scheduling period accord-
ingly, which is a prerequisite for scheduling the
RT-VM in time and guaranteeing the performance of
soft real-time applications. Otherwise, their perfor-
mance under Doris will degrade when the user
requests change, like Doris with manually setting
periods.

� Domain0 plays an important role in I/O processing
for DomainUs. As a result, the performance of soft
real-time applications may not be guaranteed if we
treat Domain0 as a non-RT-VM. The main reason is
that I/O operations of RT-VMs (such as the
responses of user requests), which may have dead-
lines, are handled by a non-RT-VM (i.e., Domain0)
without real-time guaranteed.

� Specifying scheduling periods manually requires prior
knowledge about the characteristics of soft real-time
applications. The desired scheduling periods of vari-
ous soft real-time applications are different, such as
10 us for DSS and 1 ms for GamingAnywhere under

Fig. 7. Test results of GamingAnywhere under different schedulers. High and stable FPS means good user experience.

Fig. 8. Test results of Asterisk and DSS running on different VMs when
clients send requests to them simultaneously.
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Doris. As a result, the performance of soft real-time
applications are determined by the parameters set
by users. A single scheduling period cannot guarantee
the performance of different applications, such as
1 ms in Doris and Poris as shown in Figs. 6 and 7.

� Real-time schedulers that require users to set param-
eters manually have different scheduling parame-
ters, such as laxity [7], expected latency [9], period
and budget [8]. Parameters with the same value
(such as 10ms in Doris and Poris) have different
meanings and result in different results as shown in
Fig. 7f and 7h.

� Compared to schedulers with manually settings,
Doris outperforms or has comparable performance
with them. This is because Doris can infer the correct
scheduling periods of soft real-time applications
dynamically and the CPU scheduler schedules corre-
sponding VCPUs adaptively according to the infer
scheduling periods.

4.3 Impacts of Doris

Doris analyzes the headers of packets to infer the scheduling
periods of VMs dynamically and schedules RT-VCPUs adap-
tively according to the scheduling periods. Therefore, it may
introduce overhead in packets processing and impacts on
non-real-time applications. In the following, we evaluate
them respectively.

4.3.1 Overhead Caused by Packet Analysis

In this test, we evaluate how much overhead is caused by
packet analysis. Because we only concern overhead caused
by packet analysis in this test, we run a VM with one VCPU
in the server and bind this VCPU to a PCPU (PCPU0), and
pin all the VCPUs of Domain0 to the other PCPUs (PCPU1-
7). As a result, no extra overhead is introduced by CPU
scheduler, which makes test results more precise. We use
ping with 0.1 second interval to measure the network
latency between the VM and the client, and use netperf to
evaluate both TCP and UDP network throughput. Both the
tests are conducted under Doris and the Credit scheduler.

The ping test lasts for 60 seconds. The average Round-
Trip Time (RTT) under the Credit scheduler and Doris are
0.476 and 0.481 ms respectively. As a result, Doris introdu-
ces very slight impacts on network latency (�1 percent).

The netperf test also lasts for 60 seconds, and evaluates
both TCP bandwidth and UDP bandwidth with different
message size. As shown in Fig. 9, network bandwidth is
almost the same under the Credit scheduler and Doris.

Although Doris analyzes each packet sent by DomainUs,
it only introduces very slight overhead, which even can be
ignored, to the network processing. This is because Doris
analyzes packets in constant time. For example, the time
complexity of port-recognition mechanism is O(1) because of
the adoption of bitmap. The protocol-analysis mechanism
only needs to check some fields in the packet header.

4.3.2 Impacts on Non-Real-Time Applications

In this test, we study the impacts of Doris on non-real-time
applications, which is important for multi-tenant cloud
environments.

We use 4 VMs (VM1�VM4) to conduct this test. Each has
one VCPU, and all the VCPUs are pinned to a PCPU, which
can measure the impacts of Doris on non-real-time applica-
tions more precisely. VM1 runs Asterisk. VM2 runs non-
real-time applications, including kernel compilation, Post-
mark, and Apache HTTP Server, which are run one by one
at each test. We run hungry-loop applications on VM3 and
VM4 to consume available CPU resources. We continuously
send 90 concurrent calls to Asterisk, and measure the per-
formance of non-real-time applications in VM2. The kernel
compilation compiles Linux-3.3.6 source code, and the per-
formance metric is the compilation time. Smaller compila-
tion time is better. We set the transactions of Postmark as
400,000, and concern the processing rates of transactions.
Bigger value is better. We use httperf [29] to measure the
average response time of Apache HTTP Server. This test is
conducted under Doris and the Credit scheduler. The test
results are shown in Fig. 10 where the bars are normalized
by the performance under the Credit scheduler.

Fig. 10 shows thatDoris introduces very slight impacts on
non-real-time applications, which also includes the overhead
introduced by Doris. Compared with the Credit scheduler,
Doris increases the kernel compilation time by 1.2 percent,
decreases the processing rate of Postmark by 1 percent and
increase the average response time of web server by 4.1 per-
cent. Because Doris only promotes the priorities of RT-
VCPUs to the highest priority temporarily when their dead-
lines arrive or I/O events come, non-RT-VCPUs can also run
before RT-VCPUs. As a result, the impacts introduced by
Doris on non-real-time applications are also acceptable.

Fig. 9. Netperf throughput evaluation results.

Fig. 10. The normalized performance of non-real-time applications under
the Credit scheduler and Doris.
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5 DISCUSSION

In this section, we discuss related issues about Doris.
(1) Why Doris uses VM-level identification?
Although a physical machine can host multiple VMs and

physical resources are shared by many different types of
applications, it is a common case that a VM hosts one appli-
cation in cloud environments. As a result, VM-level identifi-
cation is enough for Doris to support soft real-time
applications in multi-tenant cloud environments. Besides,
Doris supports multiple periodic tasks (belonging to a real-
time application) running in a RT-VM because they share
the same communication patterns. In this case, Doris treat
the RT-VM as a black box and get an aggregation of their
periods. The effectiveness is also validated in Sections 4.2.1
and 4.2.2. The VoIP server and DSS serve multiple clients,
which are processed by multiple periodic tasks. As a result,
compared to application-level identification, which typi-
cally requires heuristic algorithms and complicated imple-
mentations, VM-level identification is a more practical and
efficient way to achieve our goal.

(2) What is the applicability of Doris?
As to soft real-time applications do not use well-known

ports or protocols, we can implement monitor module
depicted in Fig. 1 as a framework to calculate period, and
allow developers to implement the port and protocol identi-
fication. The other option is to allow users to specify the
ports in the VM configuration files, and extend Doris to add
the ports to PORT-SET.

As to soft real-time applications that do not serve user
requests, it is also possible to extend Doris to support them.
What we need to do is to replacemonitormodulewith amod-
ule that can identify periods of these soft real-time applica-
tions. Themodules in the hypervisor do not need to change.

As a conclusion, although the prototype in this paper
only implements the identification on some well-known
ports and protocols to verify our idea,Doris can be extended
to support more soft real-time applications.

(3) Does Doris violate fairness in CPU scheduling?
In Credit scheduler, fairness is guaranteed by credits

management. Doris introduces application-boost mechanism
to schedule VCPUs in time. Like boost mechanism in the
Credit scheduler, application-boost mechanism is also built
upon the original credits management, which only boost
the priority of a VCPU temporarily if it has remaining cred-
its. Therefore, the impacts on other VMs are very slight,
which are validated in Section 4.3.2.

6 RELATED WORK

This paper studies how to find the VMs running soft real-
time applications and how to optimize CPU schedulers in
hypervisors. In the following, we survey related work about
both aspects.

Previous studies that try to get tasks or VMs information
in hypervisors can be classified into two categories: intru-
sive and non-intrusive approach. The intrusive approach
needs to modify guest OSes to obtain task information. On
the contrary, the non-intrusive approach infer the statuses
of guest OSes or tasks by collecting information in VMM.

Kim et al. [15] present a guest-aware priority-based VM
scheduling mechanism, which takes domain’s priority as

the highest priority of the active tasks in it. It modifies the
guest kernel to inform VMM of the priorities and statuses of
its tasks. Weng et al. [18] add a monitoring module to a
guest OS’s kernel to monitor the waiting times of spinlocks,
which is used to judge whether a task is a concurrent task.
Zhao et al. [30] present vSpec to classify VMs into five cate-
gories by monitoring the resource-consuming characteris-
tics, but it requires a process to collect information and is
too high-level to differentiate real-time applications.

Kim et al. [17] present a method to identify I/O-bound
tasks in guest OSes by observing low-level interactions
between the guest kernel and hardware. They also present a
method to estimate the frame rates of multimedia work-
loads by monitoring the frequency of frame buffer writes
and a GPU command queue [16]. Hwang et al. [31] analyze
port number of packets to find the VM that hosts virtual
desktop infrastructure (VDI). However, it is confined to
VDI and only sets the types of VMs. Chen et al. [32] present
a method to infer communication-intensive applications
through tracing the bus access events with the help of per-
formance monitor unit (PMU).

In summary, previous studies cannot identify different
soft real-time applications in cloud environments and infer
the scheduling parameters of corresponding VMs.

As to the real-time enhancements for CPU schedulers, Lee
et al. [7] introduce laxity, which denotes the deadline of a VM
to be scheduled, to improve the performance of soft real-
time applications in the Xen hypervisor. A real-time domain
with low laxity allows its VCPUs to be inserted in the middle
of the scheduler’s run queue, so that the VCPUs can be
scheduled within its desired deadline. RT-Xen [8], [33] intro-
duces a hierarchical real-time scheduling framework for
Xen, which bridges the gap between hierarchical real-time
scheduling theory and Xen and implements several real-
time scheduling algorithms. Our previous work [9], [10]
presents a parallel soft real-time scheduling algorithm,
which address both soft real-time constraints and synchroni-
zation problems simultaneously, to support parallel soft
real-time applications in virtualized environments. How-
ever, all these studies need users to set scheduling parame-
ters manually and ignore the importance of Domain0, which
cannot fit for practical multi-tenant cloud environments.

7 CONCLUSION

In this paper, we designed and implemented an adaptive soft
real-time scheduler, named Doris, in the Xen hypervisor,
which can support soft real-time applications adaptively
without setting types and scheduling periods of VMsmanually.
We introduced communication-aware period detection approach
to inferring scheduling periods of RT-VMs and presented appli-
cation-boost mechanism to schedule RT-VMs adaptively
according to the inferred scheduling periods of RT-VMs and
I/O events, which can minimize the impacts on non-real-
time applications. Considering the importance of privileged
entities (such as Domain0) in I/O processing of RT-VMs, we
proposed privileged entity specialization to change their types
and set their scheduling periods dynamically, which enables
Doris to schedule privileged entities adaptively to guarantee
the performance of soft real-time applications. We evaluated
the effectiveness and overhead of Doris through various
experiments. The experimental results shown that Doris
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supports soft real-time applications well and only introduces
very slight overhead. For example, compared to the Credit
scheduler, Doris improved call quality by 92.4 percent, but
only slowed down network latency by 1 percent and
increased the kernel compilation time by 1.2 percent.
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Energy-Aware Service Selection
and Adaptation in Wireless Sensor
Networks with QoS Guarantee

Endong Tong , Lan Chen, and Huizi Li

Abstract—Workflow-based Service-orientedWSNs have recently received a lot of attention from both academia and industry. With

well-defined service components, various flexibleWSN applications can be developed. However, the key characteristic ofWSNs is

resource constraints. Sensor nodes inWSNs have limited storage, computation and especially limited energy. As service components

inWSNs rely on the data gathered by sensor nodes, they are also resource-constrained. Unfortunately, traditional workflow

technologies (i.e., service selection, composition and adaptation) ignore the residual energy of services. This will bring unbalanced

energy consumption and furthermore shorten the network lifetime. In order to resolve this issue, we proposed an energy-aware

QoS-guaranteed workflow management mechanism. In this mechanism, a new QoSmodel is first presented to improve the QoS

evaluation. Then, based on this QoSmodel, an efficient service selection schema, which considers both the energy and the QoS of

services, is proposed. Furthermore, an adaptation mechanism for balanced energy consumption is also proposed. Experimental

evaluations demonstrate the capability of our proposed approach.

Index Terms—Wireless sensor network, energy-aware, quality of service, service selection, workflow management

Ç

1 INTRODUCTION

IN order to support the novel paradigms of Internet of
Things (IoT) and realize the collaboration between dis-

tributed autonomous applications in an open dynamic
environment, Service-Oriented Architecture (SOA) [1], [2]
has been used in the IoT’s underlying Wireless Sensor Net-
works (WSNs) [3], [4], [5], [6]. In WSNs, a large number of
sensor devices with communication and computation capa-
bilities will connect and interact with their surrounding
environment. The functionality cells (e.g., the provisioning
of online sensor data) offered by these devices can be
referred to as atomic services. Hence, SOA-based WSNs
logically view WSNs as service providers for user applica-
tions. SOA is a set of methodologies for designing and
developing applications in the form of interoperable ser-
vice components (i.e., atomic services). These atomic serv-
ices are well-defined and can be reused in various
applications. Among existing SOA technologies [7], work-
flow has become the key technology and achieved widely
use due to its efficiency and practicability. A workflow [8]
can be composed of a sequence of atomic services to satisfy
specified input and output requirements.

In real applications, the granularity of an atomic service
is usually small. For example, there will be an atomic ser-
vice that providing the sensed data of one specific sensor

node. WSNs have the great ability of data gathering, which
can support various types of services. Hence, in practical
SOA-oriented WSN applications, the number of atomic
services is huge and there may exist many atomic services
which implement the same function. Accordingly, how to
achieve the optimal atomic service selection, has become a
very important research issue. In actual service systems,
users will not only have functional requirements (i.e., imple-
ment the required function) but also have non-functional
constraints (i.e., guarantee better experience). For this issue,
Quality of Service (QoS), which refers to the common non-
functional characteristics of atomic services (e.g., execution
time, cost, reliability, availability and reputation [9]), has
been exploited [10]. Recently, many efforts [11], [12], [13]
have been made in order to choose the best candidate
atomic services that satisfy multiple QoS requirements.

During the running process of aworkflow, theQoS of some
component atomic services may degrade. This may result in
that the composedworkflow is no longerQoSguaranteed [14],
[15]. Hence, a dynamic adaptation for this workflow is neces-
sary, which is the key issue ofworkflowmanagement.

Much work has been done on workflow management in
web-based applications. While work on workflow manage-
ment (especially the energy efficient service selection and
adaptation mechanism with QoS guarantee) in WSNs is
fewer. In WSNs, energy is the most important resource.
Unlike traditional SOA applications which only try to maxi-
mize the overall QoS utility, the main aim of SOA-oriented
WSNs is to minimize the energy consumption and further-
more prolong the network lifetime.

Hence, in our paper, we will extend the traditional work-
flow management by taking each service’s residual energy
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into consideration, in order to be adapted to the resource-
constrainedWSNs.

1.1 Motivating Example

We begin with an environmental monitoring application
to show why the energy is important for service composi-
tion. Fig. 1a shows a practical application scenario, in
which many sensor nodes are deployed to monitor the
surrounding environment. Fig. 1b shows an environmen-
tal monitoring service composition instance which has
two possible execution pathes: {S1, S2} and {S3}. Each
abstract service Si can be replaced with one of its con-
crete atomic services (fSijg), which are same on function
but different on QoS. According to a user’s functional
requirements, a workflow which consists of a set of
abstract services will be constructed. While the selection
of concrete service for each abstract service will be real-
ized by our service computing engine. The QoS attribute
values of each concrete atomic service are shown in
Fig. 1c.

It is worth to note that, residual energy is usually not a
concern of a general user. Therefore, a general user will not
put forward requirements for residual energy. We assume
that a user’s QoS requirements are:

� execution time � 220
� cost � 160
� availability � 0:90

Due to the fact that each user has different preferences for
different QoS attributes, a utility function is used. The utility
function is defined asUtilityðcpiÞ ¼

Pn
j¼1 wj �QoSij, in which

cpi refers to the ith composition plan,QoSij refers to the value
of the jth QoS attribute of cpi and wj refers to the preference
weight for QoSij. However, different QoS attributes may
have different orders of magnitude. In order to resolve this
inconsistency, a normalization process should be first done.
In this example, we set w1 ¼ 0:3 for execution time, w2 ¼ 0:7
for cost and w3 ¼ 0:5 for availability. The optimal service
selection plan, which maximizes the sum of all component
services’ utilities, is {S12, S22} with a total utility of 117, an
execution time of 196, a cost of 144 and an availability of
91 percent. However, the residual energy of atomic service
S12 is only 41 percent. Long time execution of S12 will further
decrease its energy and furthermore make S12 energy
exhausted, which may affect the network connectivity. In
addition, the service deployed on S12 will be disabled, which
may bring the dysfunction of the environmental monitoring
application. If we take the residual energy into consideration,
the optimal service selection plan should be {S11, S22} with a
total utility of 109, an execution time of 216, a cost of 152 and
an availability of 93 percent, while the residual energy of S11

is 85 percent, S22 is 70 percent. The new plan also fulfills the
user’s QoS requirements, but it has higher residual energy
comparedwith the former one.

1.2 Research Issues

From the above example, we come to the conclusion that the
residual energy of atomic service is also an important factor
that should be considered for workflow construction and
management in resource constrained WSNs. Therefore,
energy-aware policies should be adopted in order to elimi-
nate the existing variations in the energy levels in order to
prolong the network lifetime. In this paper, we aim to real-
ize the energy-aware QoS-guaranteed workflow manage-
ment inWSNs by addressing the following key issues:

� Energy efficient service selection with QoS guaran-
tee. Based on the consideration of QoS attributes
and atomic services’ state (e.g., running status and
energy), we will develop a constrained multi-
objective service selection mechanism, which can sat-
isfy users’ QoS requirements and at the same time
own high energy.

� Multi-user lifetime-oriented dynamic workflow
management. During the workflow running process,
the residual energy of an atomic service will change
dynamically, and there may also be new users’
requests arrive. Hence, we will monitor the work-
flow state at runtime and re-plan the workflow plan
in case of necessity, in order to prolong the network
lifetime.

The rest of the paper is organized as follows. Section 2
discusses the preliminaries and relatedwork. Then, Section 3
proposes the energy-aware atomic service selection appr-
oach, followed byQoS degradation and reusing based work-
flow adaptation mechanism in Section 4. Section 5 provides
experiments that illustrate the benefits of the proposedwork-
flow management scheme. Finally, Section 6 concludes this
paper and discusses future research.

Fig. 1. Example of QoS-oriented service composition.
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2 PRELIMINARIES AND RELATED WORK

2.1 Preliminaries

2.1.1 QoS Model

Before the service selection, an appropriateQoSmodel is nec-
essary. Alrifai et al. [11] mentioned that QoS can be catego-
rized into two types: general QoS and domain-specific QoS.
General QoSmeans theQoS resolved in common applications,
such as response time, cost and availability; Domain-specific
QoS means the QoS resolved in special application domains,
such as “data accuracy”, “accessibility” and “timeliness” in
WSN applications. However, there also exists another type of
QoS that users may not concern, but it plays an important
role on the application experience. This type of QoS can be
categorized into Potential QoS. Accordingly, for resource con-
strained WSNs, we propose an extended QoS model which
consists of general QoS, domain-specific QoS and potential QoS.
In this paper, the potential QoSmainly refers to energy, which
consists of residual energy and energy consumption rate.

In WSNs, each atomic service will rely on the data gath-
ered by some sensor nodes. Although the energy is the attri-
bute of sensor nodes, it can affect the state of atomic
services. Hence, the energy is also the attribute of atomic
services. For simplicity, we use the service energy (denoted
as ES , the residual energy of atomic service S and DES , the
energy consumption rate of atomic service) in the following
part of this paper. To be pointed out that, an atomic service
S may rely on either one or more than one type of sensor
nodes. Then, if S relies on one type of sensor nodes which
has n redundant sensor nodes, then

ðDÞES ¼ maxfðDÞe1; ðDÞe1; . . . ; ðDÞeng (1)

As energy consumption means the decrease of energy,
DES is a negative value. While if S relies onm types of sensor
nodes and each type owns n redundant sensor nodes, then

ðDÞES ¼ minfmax1fðDÞe1; ðDÞe1; . . . ; ðDÞeng;
max2fðDÞe1; ðDÞe1; . . . ; ðDÞeng; . . . ;

maxmfðDÞe1; ðDÞe1; . . . ; ðDÞengg
(2)

where ei refers to the residual energy of the ith sensor
node and Dei refers to the energy consumption rate of the
ith sensor node. In practical SOA-oriented WSNs, there are
various methods that atomic services can be integrated to
build an workflow. The four basic modes are (1) sequential;
(2) parallel; (3) conditional; and (4) loop, as shown in Fig. 2.

Among the four modes, the sequential mode is the most
fundamental one. In this paper, all other modes will be con-
verted to the sequential mode. For a workflow, the perfor-
mance is evaluated in terms of its end-to-end quality. Hence,
we will discuss the corresponding computing methods for
the four basic composition modes. Many research has pro-
vided the computing methods for different QoS attributes
according to the specific mode, while the computation of
energy has been ignored. The energy of a workflow is deter-
mined by the energy of each individual atomic service as
well as itsmode. For the four basicmodes in Fig. 2, the energy
of the composite workflow can be computed as following:

ðDÞEW ¼

minððDÞES1 ; ðDÞES2 ; ðDÞES3 ; ðDÞES4Þ;
for sequential and parallel modes;

minððDÞES1 ; ðp1 � ðDÞES2 þ p2 � ðDÞES3Þ; ðDÞES4Þ;
for conditional mode;

ðDÞES1 ; for loop mode;

8>>>>>><>>>>>>:
(3)

Here, p1 and p2 indicate the probability that a user will
choose service S2 and S3 respectively.

According to the characteristics of different QoS attrib-
utes, the General QoS and Domain-specific QoS can be
divided into Multiplicative QoS and Additive QoS. The corre-
sponding aggregation approaches are listed in Table 1.

2.1.2 Network Model

We will first give an overview of the network model for bet-
ter understanding our study scenario. In our paper, the
mentioned WSNs are the networks of wireless smart sensor
nodes in the IoT, which have the following characteristics:
(1)The transmitted sensor data are usually short messages,
such as a temperature value or a location message; (2)The
transmission of sensor data is usually event-driven. Hence,
there is no need to intercurrently maintain large numbers of
connections between sensor nodes and their corresponding
sink node. Then, the sensor networks in our paper use hier-
archical sink nodes. Sink nodes are more powerful devices,
often a personal computer, that are in charge of gathering
the collected sensing data, further processing them, and
make them available to WSN applications. As shown in
Fig. 3, each sensor node will transmit its sensed data to its
cluster head directly, and this sink node then forwards the
received data to its parent sink node, then finally to the root
sink node.

Fig. 2. Four Basic Composition Modes

TABLE 1
QoS Aggregation Approaches

QoS Type Sequential Mode Parallel Mode Conditional Mode Loop Mode

Multiplicative QoS
Q

fS1�S4g QoSSi

Q
fS1�S4g QoSSi ðp1 �QoSS2 þ p2 �QoSS3Þ �

Q
fS1;S4g QoSSi QoSS1

n

Additive QoS
P

fS1�S4g QoSSi

P
fS1;S4g QoSSi þmaxfS2;S3gQoSSi p1 �QoSS2 þ p2 �QoSS3 þ

P
fS1;S4g QoSSi n �QoSS1
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For the energy model, we consider power for sensing,
power for receiving and power for transmitting. The energy
consumption formulas we use throughout this paper are as
follows:

PSense ¼ a1b;

PTx ¼ ðb1 þ b2r
nÞb;

PRx ¼ g1b;

where b (in bits/sec) is individual sensor node’s data rate.
The term rn accounts for the path loss, and the typical value
for n is 2 or 4. According to [16], some typical values for the
parameters are as follows:

a1 ¼ 60� 10�9J=bit;

b1 ¼ 45� 10�9J=bit;

b2 ¼ 10� 10�12J=bit=m2 ðwhen n ¼ 2Þ;
or;b2 ¼ 0:001� 10�12J=bit=m4 ðwhen n ¼ 4Þ;
g1 ¼ 135� 10�9J=bit:

2.1.3 Optimal Service Selection in WSNs

Based on a user’s functional requirements, an abstract
workflow which consists of a set of abstract services will be
constructed. Here, each abstract service is associated with a
set of pre-designed concrete atomic services with the same
function. Furthermore, based on a user’s QoS requirements,
a concrete atomic service selection process for each abstract
service should be done.

Definition 1 (Feasible Service Selection). For a given
abstract workflow AW ¼ AS1; AS2; . . . ; ASm and a vector of
global QoS constraints C ¼ C1; C2; C3; . . . ; Ch, we consider a
selection of concrete services to be a feasible selection, if it con-
tains exactly one concrete service for each abstract service
appearing in AW and its aggregated QoS values satisfy the
global QoS constraints.

In resource constrained WSNs, the effect of residual
energy on atomic service selection should be considered.
Therefore, it is necessary to take consideration of both
energy efficiency and QoS performance. That is to say, we
will ensure the QoS constraints guaranteed in terms of a
suboptimum way, and within the available power budget.

Definition 2 (Optimal Service Selection in WSNs). In
resource constrained WSNs, for a given abstract workflow
AW ¼ AS1; AS2; . . . ; ASm and a vector of global QoS con-
straints C ¼ C1; C2; C3; . . . ; Ch, we consider optimal

selection to be the feasible selection (see Definition 1) which
maximizes the overall network lifetime.

2.2 Related Work

In order to select the optimal services that satisfy a user’sQoS
constraints, many efforts have been made. A bulk of related
work can be mainly divided into the local QoS optimization,
the global QoS optimization and the approximate approach.

The local QoS optimization [17], [18] usually applied two
phases of normalization. The first one aims to measure QoS
attributes independent of units. While in the second one,
each QoS attribute is assigned with a weight, and the utility
value will be calculated by Simple Additive Weighting
(SAW) [19]. Furthermore, the service with largest utility will
be selected. However, service selection is a constrained
multi-objective problem. The local QoS optimization approach
selects the optimal service for each abstract service indepen-
dently, and cannotmake sure that the composedworkflow is
QoS guaranteed [17]. Hence, Yu et al. [13] modeled the ser-
vice selection in twoways: a multidimensionmultichoice 0-1
knapsack (MMKP) problem and a multiconstraint optimal
path (MCOP) problem. By solving these two problems, the
optimal service can be selected. Ardagna et al. [20] formal-
ized service selection as a mixed integer programming (MIP)
problem. Then negotiation techniques were exploited to
identify a feasible solution. Due to the global QoS optimization
approach has to traverse all the services which is NP-Hard,
Qi et al. [21] utilized the dependence membership among
services to filter the impossible ones, in order to decrease the
scale of candidate services. Li et al. [22] utilized trust-based
method to filter out untrustworthy services. Canfora
et al. [23] proposed a lightweight approach that uses genetic
algorithms for the optimal service selection. Myoung
et al. [24] proposed a constraint satisfaction based algorithm
that combines tabu search and simulated annealing meta-
heuristics. In addition, some research [11] turns to the approx-
imate approach, which could get the suboptimal service with
lower computation complexity.

However, WSNs are resource constrained, with lower
computation capability, less storage space, limited commu-
nication bandwidth and especially limited energy. Hence,
energy-efficient service selection and the corresponding
adaptation is critical inWSNs and has been the aim of many
research efforts. Jayapal et al. [25] proposed an adaptive ser-
vice selection protocol. The service selection protocol is
based on both the distance between the service requestor
and the service provider and the remaining lifetime of the
service provider. Zhang et al. [26] proposed a cross-layer
approach to select a service provider. They select services
according to a cost function which depends on the service
information such as the response time and the battery level.
Chien-Liang Fok et al. [27] presentedAdaptive Servilla, which
is a middleware that provided adaptive service selection
capabilities to coordinate the resources used by WSN appli-
cations. Based on the middleware, they proposed the energy
efficient service selection mechanism. In addition, they indi-
cated that service sharing can be integrated into the middle-
ware, if the results of one service also satisfymultiple users.

Indeed, traditional task/resource scheduling mecha-
nisms in WSNs succeed to realize the energy-efficient node
selection or task allocation. A strategy for energy saving is

Fig. 3. The network structure.
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to cleverly manage the duty cycle of sensors. Delicato
et al. [28] formalize the node selection problem as a knap-
sack problem and adopt a greedy heuristic to maximize
residual energy of selected nodes to extend the network life-
time. In [29], authors indicated that one application’s opera-
tions can be decomposed into tasks to be allocated to each
infrastructure component. Considering the energy cost of
each task, they proposed a lifetime maximization algorithm
based on an iterative and asynchronous local optimization
of the task allocations between neighboring nodes.
Although the above approaches accomplished the energy-
efficient service selection/task allocation in WSNs, which
can bring balanced energy consumption, they neglected to
consider multi-QoS constraints. Then, Li et al. [30] proposed
a mechanism that dynamically coordinate the sharing of the
available resources to optimize resource utilization while
meeting application requirements. However, they failed to
consider the workflow-based application inWSNs.

Although a number of efforts have been done on energy-
efficient service selection or task/resource allocation, they all
failed to resolve the simultaneous multi-constraints (users’
multi-QoS constraints) and workflow-based (aWSN applica-
tion consists of a list of sequential subtasks) service selection
problem. In order to resolve this problem, workflow-based
service selection with multi-QoS constraints should be fig-
ured out and the network lifetime should also be extended
as long as possible. In the adaptation mechanism, existing
research also failed to consider the multi-user service selec-
tion scenario, which can also be studied to improve energy
efficiency. Hence, existing research can not be directly
applied to the application scenario considered in this paper.
Therefore, in this paper, we will combine energy efficiency
and QoS constraints and propose an energy-efficient and
QoS oriented service selection and adaptationmechanism.

3 QOS-GUARANTEED ENERGY-EFFICIENCY

ATOMIC SERVICE SELECTION

Traditional service selection approaches try to achieve the
best QoS and fail to implement the balanced energy con-
sumption. Hence, in this paper, we will propose a QoS-
guaranteed energy-efficient service selection for resource
constrained WSNs. If we adopt the global service selection
approaches, we can consider the factor of service energy
and get the optimal w (w51) candidate services. But, the
computation complexity is high and we have to re-run the
entire procedure when adaptation. If we adopt local service

selection approaches, the global QoS constraints may not be
satisfied. Therefore, we will combine the global service
selection and the local service selection, in order to achieve
optimal QoS guaranteed service selection with low compu-
tation complexity inWSNs.

It is worth to note that, the service selection mechanism
should consider the effect coming from the underlying sen-
sor network, such as topology, communication and energy
model. Take the service selection for example, when we
select one service (i.e., S1), we should not only consider the
state of S1, but also consider the state of the corresponding
relay nodes. However, the main contribution of this paper
is to discuss the residual energy aware service selection and
adaptation. Hence, for simplicity, we also assume that each
sensor node in the network is deployed with only one ser-
vice. Under the above assumptions, we will discuss the ser-
vice selection and adaptation mechanism.

As shown in Fig. 4, our proposed approach can be
mainly divided into four steps: functionality-based service fil-
tering, global QoS constraints decomposition, energy-aware local
service selection and dynamic workflow adaptation. First, a fil-
tering process will be done to filter out the services with
unsatisfied function according to a users’ functional require-
ments; Second, we decompose the global QoS constraints
(for a workflow) into a set of local QoS constraints (each
local QoS constraints item for an abstract service); Then,
based on the set of local QoS constraints, the optimal service
for each abstract service will be selected by considering
both QoS and energy. Finally, the service energy will
decrease along with the service running. Hence, we will
also monitor the residual energy at runtime and invoke the
service reselection process when the specified conditions
are satisfied. The detailed description of the modules in
Fig. 4 will be represented in the following sections.

3.1 Candidate Service Clustering

In order to accomplish the QoS decomposition, we will first
perform a clustering process for each abstract service to
organize the large number of concrete atomic services. First,
we can run the global optimal service selection based on
clustered services but a single service. Then, a local optimal
service selection will be performed in each service cluster.
In this way, we can achieve optimal QoS guaranteed service
selection with low computation complexity. Among many
different clustering algorithms, K-means is a simple one to
cluster a data set with a pre-determined block number K.
Hence, we will use K-means to get atomic service clusters. In

Fig. 4. The flowchart for the proposed energy-aware service selection.
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this paper, we use the Euclidean distance to measure the dis-
tance between each two atomic services.

In order to avoid comparing different QoS attributes with
very different value ranges, a normalization procedure will
be done.

QoS0
i;jðSÞ ¼

QoSi;jðSÞ�QoSi min

QoSi max�QoSi min ; if QoSi;jðSÞ is positive;
QoSi max�QoSi;jðSÞ
QoSi max�QoSi min ; if QoSi;jðSÞ is negative;

8<:
(4)

where QoSi;jðSÞ means the value of the jth QoS attribute
of concrete service S in abstract service ASi, QoSi min rep-
resents the minimize value of the jth QoS attribute value in
ASi, and QoSi max represents the maximize value of the
jth QoS attribute value in ASi. A positive QoS means that
the larger the value is, the better the QoS (e.g., availability),
while a negative QoS means that the larger the value is, the
worse the QoS (e.g., response time). QoS0

i;jðSÞ is the normal-
ized QoSi;jðSÞ, and 0 � QoS0

i;jðSÞ � 1.
Suppose we have two atomic services Sa and Sb, the dis-

tance between Sa and Sb can be computed as

DistðSa; SbÞ ¼ 1

h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXh
i¼1

ðQoS0
i;jðSaÞ �QoS0

i;jðSbÞÞ2
vuut ; (5)

where h is the number of QoS attributes. The clustering
algorithm is shown in Algorithm 1. Here, the value of K is
set to 10. In fact, the optimal value of K is related to the dis-
tribution of the atomic service QoS.

Algorithm 1. Atomic Service Clustering Algorithm

Require: atomic service set S, the QoS attribute values of each
atomic service, and the residual energy of each atomic
services.

Ensure:atomic service clusters.
1: selectK atomic services from S;
2: Set each selected atomic service si as centroid of a cluster ci;
3: repeat
4: for si 2 S do
5: maxDist ¼ 0;
6: cIndicator ¼ 0;
7: for cj 2 C do
8: centroid ¼ CentoidðcjÞ;
9: ifmaxDist < Distðsi; centroidÞ then
10: maxDist ¼ Distðsi; centroidÞ;
11: cIndicator ¼ cj;
12: end if
13: end for
14: assign si to the cluster cIndicator;
15: end for
16: for ci 2 C do
17: update the cluster centroid of ci ¼ ð

P
QoSq;1ðsÞ02ci

jcij ;P
QoS0

q;2
2ci

jcij ; . . . ;

P
QoS0

q;h
2ci

jcij ;

P
EnergyðsÞ2ci

jcij Þ;
18: end for
19: until no change in clusters C
20: ReturnK atomic service clusters;

3.2 Decomposition of Global QoS Constraints

After the clustering process, we can get K service clusters
(c1; c2; . . . ; ck) and corresponding K cluster centroids

(c1:centroid; c2:centroid; . . . ; ck:centroid) for each abstract
service. Obviously, these K cluster centroids can represent
the service set in their clusters. Hence, based on these K
cluster centroids, we can divide the quality range of each
QoS attribute into a set of discrete quality values, which are
called quality levels. In this paper, the jth quality level for
the ith abstract service is set to

QLi;j ¼ 1

2
� fQoSiðcj:centroidÞ þ QoSiðcjþ1:centroidÞg (6)

Here, QoSiðcj:centroidÞ is a QoS attributes vector and can
be represented as fQoS1

i ðcj:centroidÞ; QoS2
i ðcj:centroidÞ;

� � � ; QoSh
i ðcj:centroidÞg, where h is the number of QoS attrib-

utes. In this way, we can get K � 1 discrete quality levels
for each abstract service. Then, these quality levels will be
used as candidate local constraints in the local service selec-
tion algorithm.

The most important issue of service selection is to find
the service that satisfies a user’s QoS requirements. How-
ever, in practical applications, users have different preferen-
ces on different QoS attributes. Therefore, we utilize a
preference matrix P to represent a user’s preferences:

P ¼ p1 p2 � � � phð ÞT

Then we can get the utility of an atomic service:

UtilityðASi;jÞ ¼ Qi � P ¼
Xh
u¼1

QoSu
i;j � pu (7)

Here, utility indicates a user’s satisfaction for QoS. The
larger the utility is, the better the service may satisfy a user’s
QoS requirements.

We assign a weight for each abstract service. An abstract
service with higher energy will be assigned with a smaller
weight, vice versa. In this way, the abstract service with
lower energy will have loose local QoS constraints. Hence,
there will be more concrete services to perform the balanced
energy consumption.

wi ¼ Emax � EASi

Emax � Emin

(8)

In which, wi is the weight of the ith abstract service ASi;

EASi ¼ 1
Ni

�PNi
j¼1 EASi;j . It represents the average energy of

all the services in ASi; Emax is the maximum average energy
among all the abstract services; Emin is the minimum aver-
age energy among all the abstract services. Hence, in order
to achieve the optimal decomposition, we have the follow-
ing assumptions,

� the best decomposition plan should make sure the
local QoS constraints can cover as many candidate
services as possible.

� the best decomposition plan should have the best
utility.

Based on the above two assumptions, we then assign
each quality level QLi;j with a value zi between 0 and 1,
which estimates the benefit of using this quality level as a
local constraint. This value is calculated as follows. First, we
compute NðQLi;jÞ (i.e., the number of candidate services
that would qualify if level QLi;j is used as the local con-
straint). Second, we calculate the utility of each candidate
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service in the service class using the utility function in For-
mula (7) and then get UðQLi;jÞ (i.e., the average utility value
that can be obtained by considering these qualified serv-
ices). Finally, in order to evaluate the quality of decomposi-
tion plan, zi can be calculated as

zi ¼ wi �NðQLi;jÞ
NðtotalÞ �

UðQLi;jÞ
UðmaxÞ ; (9)

where NðtotalÞ means the total number of atomic serv-
ices in an abstract service, while UðmaxÞ means the avail-
able highest utility in an abstract service.

Definition 3 (Optimal Decomposition). For a given set of
quality levels and a vector of global QoS constraints C ¼ C1;
C2; C3; . . .Ch, we consider optimal decomposition to be the
feasible selection (see Definition 1) that maximizes the overall zi.

We use mixed integer program (MIP) model to find the
best decomposition of global QoS constraints into local QoS
constraints. We use a binary decision variable xi;j for each
local quality level QLi;j such that xi;j ¼ 1 if QLi;j is selected
as a local constraint for abstract service ASi , and xi;j ¼ 0
otherwise. Therefore, we use the following allocation con-
straints in the model:

8i;
Xk�1

j¼1

xi;j ¼ 1; 14i4m: (10)

The objective function of our MIP model is to maximize
the overall z value (as defined in Formula. 9). Therefore, the
objective function can be expressed as follows:

maximize
Xm
i¼1

Xk�1

j¼1

zi;j � xi;j: (11)

The selection of the local constraints must ensure that
global constraints are still satisfied. Therefore, we add the
following set of constraints to the model:

8u;
Xm
i¼1

Xk�1

j¼1

QoSu
i;j � xi;j < Ci; 14u4h: (12)

By solving this model using any MIP solver methods, we
get a set of local quality levels. These quality levels are then
sent to the distributed set of involved service brokers to per-
form local selection.

3.3 Local Service Selection

After getting the optimal quality level (i.e., local QoS con-
straints) for each abstract service, we can perform local ser-
vice selection for each abstract service independently. Our
goal is to satisfy a user’s QoS requirements better, and pro-
long the network lifetime as long as possible.

It is worth to note that, traditional services are responsible
for the execution of specific tasks, such as computing. Over-
many requests will result in the overload of services. Hence,
load balance scheme should be done among services. Unlike
traditional services, services in SOA-orientedWSNs are most
data services, which respond to gathering the environment
information. When a service is running, another request for
this service will just get the copy of previous sensed data and
will not bring additional burden. Through service reusing,
we can decrease the number of activated services and fur-
thermore largely decrease the energy consumption.

To sum up, in resource constrained WSNs, local service
selection should consider the following issues,

� the QoS of the candidate service.
� the residual energy of the candidate service.
� the running state of the candidate service.
As shown in Fig. 5, Si

j represents the jth candidate ser-
vice of User i. The dashed line indicates that the linked two
services are indeed the same service. For example, S1

1 = S2
1 ,

S1
4 = S3

3 , S
2
3 = Sn

4 and S3
4 = Sn

2 .
For each group of candidate services, we consider both

QoS and energy.

8i; 9j;maximize

�
�1 �

Xh
u¼1

QoSuðSi;jÞ � puðSi;jÞ þ �2 � ESi;j

þ �3 � DESi;j

�
; 14i4m; 14j4n; �1 þ �2 þ �3 ¼ 1

(13)

Si;j means the jth concrete service of the ith abstract ser-
vice; QoSuðSi;jÞ represents the uth QoS attribute of Si;j; ESi;j

is the residual energy of Si;j; DESi;j is the energy consump-
tion rate of Si;j; �ð1=2=3Þ 2 ½0; 1	 is the weight. All the QoS and
energy attributes should be normalized to [0,1]. For the
applications which are sensitive to QoS, �1 can be set to a
larger one, vice versa.

There may exist the situation that one atomic service is
much better in QoS, but worse in energy. According to For-
mula (13), this atomic service will be still selected, though it
is nearly energy exhausted. In order to address this issue,
we adopt the best-R method. We will first select the best R
atomic services according to Formula (13). Then, two cases
will be considered. The first one is that some of the R serv-
ices are being used by other users. In this case, we will select
the services which are in the state of running and own the
best overall performance on QoS and energy. The second
one is that all the R services are idle. In this case, we will
furthermore select the atomic service that has the best
energy among these R atomic services.

4 QOS-GUARANTEED ENERGY-EFFICIENCY

DYNAMIC WORKFLOW ADAPTATION

By reusing the running service, the proposed service
selection approach can avoid the unnecessary energy con-
sumption. However, with the increased service requests,

Fig. 5. The service selection based on service reusing.
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the existing service selection plan may not be the optimal
one and adaptation should be activated in order to balance
the energy consumption. For example, as shown in Fig. 5,
suppose User1 select S1

1 according to Formula (13). Appar-
ently, User2 will select S2

1 . In this case, if User3 select S3
3 ,

there will be a decision problem as S1
4 and S3

3 are the same
service. There will be two service selection plans: (1) S1

1 , S
2
1

and S3
3 ; (2) S1

4 , S2
X and S3

3 . Here, S2
X will be specified

according to Formula (13). However, if User3 does not
select S3

3 , the above adaptation will not happen. Further-
more, long time running of S1

1 (i.e., S2
1) will consume its

energy quickly. Hence, changing the component services of
a workflow at runtime according to each component serv-
ice’s residual energy is necessary. However, frequently
changing the execution process of a workflow will also
bring great computation cost and result in low perfor-
mance. Therefore, a mechanism to trade-off the cost of the
execution process changing and the network lifetime
should be developed.

4.1 QoS Degradation Adaptation

During the workflow running process, QoSmay change and
no longer satisfy users’QoS constraints. Hence,QoS monitor-
ing should be proposed. QoS monitoring can be invoked in
two ways: periodically execution and passive invocation
upon a user’s feedback. The purpose of service selection is
to satisfy a user’s functional requirements with acceptable
QoS. Hence, a QoS guarantee mechanism is important for
the successful execution of a workflow. In the case of event-
driven applications, such as intrusion detection, users are
usually unaware when the application QoS is not guaran-
teed. Also, for less QoS sensitive applications (e.g., tempera-
ture control), users will not sense the QoS degradation
quickly. Last but not least, there exists the problem of user’s
reputation. Hence, users’ feedback is insufficient, and peri-
odical QoS monitoring should be used to verify whether the
QoS degradation occurs or not. In this paper, we adopt our
proposed QoS degree based QoS monitoring in [31] and per-
form the prediction of QoS degradation with a regression
model. On one hand, the QoSmonitoring processes are only
performed on the activated services. On the other hand, we
proposed the QoS degree based QoS monitoring. The moni-
toring frequency closely depends on the fluctuation of the
QoS degree. When the QoS is going to degrade, we will
receive more QoS information to predict possible degrada-
tion before it real happens. In most cases, QoS degree is
high and we will adopt a longer monitoring period to bring
lower additional burden.

WhenQoS degradation happens, the previous globalQoS
decomposition plan may not be optimal. Then, the adapta-
tion process will restart from candidate service clustering, and
perform global QoS constraints decomposition and local service
selection.

4.2 Energy-Based Adaptation

The services we mentioned are all long running services.
During the running process, the energy of the selected ser-
vice will be decreasing. Hence, an efficient approach should
be proposed to balance the energy consumption among dif-
ferent services.

In the service running process, we will monitor the resid-
ual energy of each running service and its corresponding
R� 1 services. The invoke condition of energy-aware adap-
tation is:

S0 < t � 1

R� 1
�
XR�1

i¼1

ESi : (14)

As shown in Formula. 14, for each running service,
we first compute the average residual energy of the other
R-1 services. In this paper, t is set to 80 percent. When the
energy of the running service is lower that the 80 percent of
the average energy, the adaptation program will be acti-
vated to re-select the optimal service according to
Formula (13).

4.3 Reusing-Based Adaptation

For a specific abstract service, different users may have dif-
ferent QoS constraints. Then, different users will have dif-
ferent candidate services. Reusing-based adaptation will
occur when more than one user uses the same abstract ser-
vice and their candidate service sets have intersection. Take
a simple case for example, service S3

3 is selected by User3.
Obviously, S3

3 is also the candidate service of User1, i.e., the
candidate service sets of User1 and User3 have an intersec-
tion. In this case, an evaluation program will be activated to
decide whether to start the reusing-based adaptation or not.
Reusing-based adaptation will occur when more than one
user uses the same abstract service and their candidate ser-
vice sets have an intersection. Hence, in order to perform
reusing-based adaptation, we should first check if a service
exists in other users’ candidate service set and furthermore
get the current user-service mapping relationship (i.e.,
which user uses which services).

4.3.1 Service Membership Query

Bloom filter (BF), conceived by Burton Howard Bloom [32]
in 1970, is a hashing-based data structure that succinctly
represents a set of elements to support membership queries.
Due to its temporal and spatial efficiency, BF can be utilized
in our service membership query.

The BF initializes a bit array with the size ofm, which are
all initialized to 0. For simplicity, we use B½m	 to represent
the BF. It uses f independent hash functions to hash an ele-
ment into f of m array positions. We will exploit the BF to
manage sensor nodes. We regard each node’s attribute as
an element represented as simply A. When inserting an ele-
ment Ai into the bit array, the element Ai will be hashed by
f hash functions to get array positions h1ðAiÞ, h2ðAiÞ . . .,
hfðAiÞ. The corresponding positions in the bit array will be
set to 1. Here, the position can be set to 1 multiple times, but
only the first change takes effect.

Definition 4 (Membership). Let A0 be the object to execute a
membership query. Given f independent hash functions and a
Bloom filter B½m	,A0 is the member of B[m] if and only if all the
hashed positionsh1ðA0Þ, h2ðA0Þ, . . . , hfðA0Þ inB½m	 are set to 1.
As shown in Fig. 6, we assume f = 3. As B½h1ðA0

2Þ	 =
B½h2ðA0

2Þ	 = B½h3ðA0
2Þ	 = 1, according to Definition 4, we

know that A0
2 is the member of B½m	. In the same way, due

to B½h1ðA0
1Þ	 = B½h2ðA0

1Þ	 = 0, A0
1 is not the member of B½m	.

836 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2020



By utilizing bloom filter, we can achieve the service mem-
bership query quickly. In order to utilize BF, we assign each
service a unique ID. By hashing a service ID, we can insert
the service into BF. Then, for all candidate services, we con-
struct a BF, as shown in Fig. 7. Compared to the standard BF,
each entry will consist of two parts: a bit and a connected
linked list. This design cannot only indicate the status of ser-
vice insertions, but also allow a pointer to connect associated
linked list for further string parsing and service ascription.
Suppose f ¼ 3, the service storage process is described as
follows. User1’s candidate services contain service1,
“Service1:ID” will be hashed into three entries b8, b12 and b15
respectively. In addition to setting the corresponding entries
to 1, the connected linked list of the first hashed entry b8 will
be added with a string “User1#Service1”. Then User2’s
Service1 comes, ‘Service1:ID” will be hashed into the same
entries as the ones of the first service. While the
“User2#Service1” will be added into the first shortest linked-
listL12 connected b12 for global storage balance of linked lists.
In a membership query, the service’s ID will be hashed and
the connected three linked lists will be received. From these
linked lists, we can get the user set who owns the certain ser-
vice by parsing the corresponding strings.

4.3.2 Adaptation Mechanism

In reusing-based service selection, the new service selection
may affect the existing service selection scheme as different
users usually own the same services. Hence, in order to
achieve the optimal service selection, we have the following
optimized goals:

� The energy should be maximized. By utilizing
the service with highest energy and lower energy

consumption rate at all time, we can avoid some ser-
vice exhausts its energy earlier.

� The number of services should beminimized. Smaller
service number can bring much more reusing effi-
ciency and reduce the overall energy consumption.

� Try to not change the existing service selection
scheme. During the service running process, we
should try to decrease the number of service adapta-
tion in order to reduce the complicacy.

In deed, the above three goals may not be all satisfied.
Our work is to try best to satisfy much more goals listed
above. Suppose there are n users that request the same
abstract service. Based on the n users, we have a group of
service sets (SS1; SS2; . . . ; SSn), in which SSi corresponds to
the candidate services of the ith user. We represent each ser-
vice in all the service sets as a node. In addition, for arbi-
trary two service sets (SSi and SSi�1), there is an arc from
SSi

j ðj ¼ 0; 1; . . . ;mÞ to SSi�1
j ðj ¼ 0; 1; . . . ;mÞ. The weight

of the arc can be computed as:

Wi
j;u ¼

0; if Si
j and S

i�1
u are the same service;

1
2 


E0i�1
max�E0

Si�1
u

E0i�1
max�E0i�1

min

; if Si�1
u is the selected

service currently;

0; if Si�1
u has been already selected in the

previous process;

1� 1
2 


E0
Si�1
u

�E0i�1
min

E0i�1
max�E0i�1

min

; others;

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
(15)

Fig. 6. Standard Bloom Filter.

Fig. 7. Service Storage in Linkedlist-extended BF.

Fig. 8. The service adaptation based on service reusing.
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Here, Wi
j;u means the arc weight between Si

j to Si�1
u ; E0

S ¼
�1 � ES þ �2 � DES ;E

0
Si�1
u

represents the energy of service Si�1
u ;

E0i�1
max represents the maximum energy among the services in

the ði� 1Þth service set; while E0i�1
max represents the minimum

energy among the services in the ði� 1Þth service set.
The overall model is shown in Fig. 8. As we can see, it is a

multi-layer directed graph. The service adaptation problem
can be represented as a single-pair (i.e., single source and
single destination) shortest path problem in graph theory. It
is worth to note that, D in Fig. 8 is only a fictitious node to
indicate the destination and the weights of arcs directed to
D are all 0.

Consider Fig. 8 as a directed graph ðV;AÞ with source
node Sn

2 , target node D, and cost wi;j for each arc (i, j) in A.
Then the resolution of the shortest path problem can be
translated to the linear programming (LP) issue. This LP
issue has the special property that it is integral. More specif-
ically, every basic optimal solution (when one exists) has all
variables equal to 0 or 1. Therefore, we use the following
allocation constraints,

8i;PR
j¼1 xi;j ¼ 1; i ¼ 1; n

8i;PR2

j¼1 xi;j ¼ 1; 24i4n� 2:

8<: (16)

Here, xi;j ¼ 0 or xi;j ¼ 1. xi;j ¼ 1 means that the jth arc in
Ai has been selected, while xi;j ¼ 0 means that the jth arc in
Ai has not been selected. Hence, Formula. 16 indicates that
for any Ai, there is one and only one arc will be selected.

The object function can be expressed as follows:

minimize
Xn
i¼1

XR
j¼1

wi;j � xi;j: (17)

In Formula (17), wi;j represents the jth arc in Ai. After
computing the minimum path from Sn

2 to D, the services on
the path will be selected. Then, based on the newly selected
services, adaptation will be achieved.

It is worth to note that, the layer of the model keep
increasing with the number of users that request the same
abstract service. However, it is complex and infeasible that
the adaptation activated just when a new user try to request
the same abstract service. The activation only happens
when the services selected by the new user have an intersec-
tion with the currently running services set.

5 EXPERIMENTS AND EVALUATIONS

By introducing the service energy to the service selection and
workflow adaptation in resource constrained WSNs, we try
to balance the energy consumption and network lifetime. To
evaluate the capability of our proposed workflow manage-
ment mechanism, a number of experiments on service selec-
tion andworkflow adaptation are carried out in this section.

5.1 Experimental Settings

Before the experiments, we should first get enough dataset of
services with corresponding QoS attributes. Some work [33],
[34] has provided real datasets which are collected from real
web services that exist on theWeb. Unfortunately, the scale of
these datasets is not large enough for our experiments. Hence,

in our experiments, the datasets are created by assigning arbi-
traryQoS values. For simplicity, we use only threeQoS attrib-
utes, i.e., execution time, cost and availability. Then, the values
of execution time, cost and availability are distributed in the
range between (60, 90), (120, 170) and (0.3, 1) respectively.

We utilize the open source Linear Programming (LP)
solve system: lpsolve version 5.5 [35] for solving the corre-
sponding programming problem in both approaches. Then,
the evaluation will be divided into two parts. In order to sim-
ulate the service selection time efficiency in large scale ser-
vice oriented WSNs, we perform the simulation in Java. In
this simulation, we design a service selection case with m
abstract services and n concrete services per abstract service.
By varying the values ofm and n, we will get a list of experi-
mental cases. The other part of evaluation will be performed
in OPNET in order to evaluate the QoS optimization and
energy efficiency considering of WSN characteristics. In the
OPNET experiments, we consider a stationary network with
40*40 nodes which are distributed uniformly over a planar
square region with 200m * 200m dimensions. Without losing
generalization, we assume the sink node is in the center of
the sensing region. The sink node has a constant power sup-
ply and so, has no energy constraints. It can transmit with
high power to all the nodes. Thus, there is no need for rout-
ing from the sink node to any specific node. For energy con-
sumption, we used the energy model in Section 2.1.2. Each
node has an initial energy of 2 joules. A node is considered
non-functional if its energy level reaches zero. Packet lengths
are 20 bit for data packets. The users’ service requests follow
the uniform distribution. That is to say, in every one second,
there is one user request arrives. When the service selection
procedure completed, the corresponding service execution
will go on for 5 minutes. Each user will be assigned with its
randomly generatedQoS constraints and preferences.

In order to select the optimal atomic services, one alterna-
tive approach is the global optimization approach, which will
traverse all the possible atomic services. Hence, the service
selection problem will be first solved by the traditional
global optimization approach and then solved by our pro-
posed constraints decomposition approach. Considering the
factor of randomicity, all the experimental cases will be run
10 times and the average will be calculated.

5.2 Evaluation on the Service Selection Time
Efficiency

In this section, we will evaluate the time efficiency of the
service selection process. The experiments will be carried
out by investigating the performance of the proposed
approach comparing with the global optimization approach.

Before the experiments, we analyze the time efficiency the-
oretically. Suppose there is an abstract workflow, which con-
sists of n abstract services, l alternative concrete atomic
services per abstract service and m global QoS constraints.
Apparently, the computation complexity of global optimization
approach isOðn �m � lÞ. Suppose the quality levels of our pro-
posed approach is d, then the computation complexity of our
approach isOðn �m � dÞ. If d < < l, our approach has smaller
computation cost than the global optimization approach.

Furthermore, by selecting different n, l,m and d, we did a
set of experiments and recorded the average computation
time. We performed this experiment in two cases: the first
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one is that n is set to 60 and l varies from 200 to 2000 with
step 200, while the second one is that l is set to 1200 and n
varies from 10 to 100 with step 10. In order to study the
effect of the chosen number of quality levels in our pro-
posed approach, we solved each experiment with different
number of quality levels. Due to the value of K affects the
performance of our proposed approach, we carried out
these experimental cases with a set of different K values
(i.e., 5, 10, 15, 20 and 25). For simplicity, we use GST to
denote the time for global optimization approach, HST to
denote the time for our proposed approach and HST-x
denotes the service selection time for our proposed
approach when the number of clusters is x.

The simulation results are shown in Fig. 9, where the ser-
vice number is axis-X and the service selection time is axis-
Y. Here, the service selection time contains the time con-
sumed in QoS normalization and linear programming. As
the service cluster in our proposed approach only executed
once in the initial part, we eliminate the clustering time
from the overall service selection time.

As we can see in Fig. 9, in both global optimization
approach and our proposed approach, the service selection
time increases with the number of abstract service. In addi-
tion, largerK results into longer service selection time.

5.3 Evaluation on the QoS Optimization

To implement the service selection, we adopt theQoS degra-
dation approach. However, it has the disadvantage that the
selected services may not be QoS optimized. In addition, we
introduced the energy into the service selection, which may

furthermore bring the QoS problem. Hence, in this section,
we will evaluate theQoS optimization of the selected service
by comparing it with the optimal service obtained by the
global optimization approach. As the QoS attributes, users’
preferences and QoS constraints are generated randomly,
the optimal utility values are not the same for different ser-
vice selection processes. This will bring unfair in compari-
son. Hence, in order to evaluate the QoS optimization, we
set the utility of global optimization approach to 1 and the
utility of our approach can be calculated as,

eUHS ¼ UHS

UGS
: (18)

Here, UGS is the utility of global optimization approach,
and UHS is the utility of our approach. Then, eUHS is the nor-
malized utility of our approach.

Take the service’s energy into consideration, the simula-
tion results are shown in Fig. 10. Here, we set R ¼ 5 and
�1 ¼ 0:3, �2 ¼ 0:6, �3 ¼ 0:1. GSDO denotes the runtime QoS
optimization of global optimization approach. In the simu-
lation process, we get the runtime QoS optimization value
every 100 user’s requests and form the curve of HSDO. By
calculating the average QoS optimization, we can get the
curve of HSDO-AVER. As we can see, the curve of HSDO
fluctuated during the simulation process. This is because
we weight service’s QoS and energy comprehensively in
service selection mechanism. Services with better QoS will
be priority selected, which consumes their energy heavily.
Some time later, services with worse QoS but higher energy
will replace the previous services to be selected, which bring
lower QoS optimization. This case happens to and fro and
brings the fluctuation of QoS optimization. However, the
curve of HSDO-AVER keeps descending. That is to say, by
considering the energy information, our selected services’s
QoS optimization keep descending with the energy con-
sumption. But, the average QoS optimization degree is also
higher than 89 percent, which is acceptable.

5.4 Evaluation on the Network Lifetime

In addition to the above results, we also evaluate whether
our proposed approach can prolong the network lifetime

Fig. 9. Service selection time comparison.

Fig. 10. The QoS optimization variation during the simulation process.
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compared with the traditional workflow management
approach and SACHSEN approach [30]. Before the experi-
ments, the definition of network lifetime should be unified.
In this paper, we adopt a simple but general definition of
the network lifetime, which is the time duration from the
time when the network starts running to the time when any
discontinued service occurs due to energy exhausted.

When selecting the optimal atomic service, our approach
takes into consideration of both QoS constraints and service
energy. Hence, our proposed approach has better energy
efficiency and furthermore longer network lifetime, which
makes it suitable for resource-constrained WSNs. Then, we
will make the qualitative analysis about the variation of the
energy. The experiment is run for 3000s and simulation
results are shown in Figs. 11 and 12. GSL denotes the life-
time of global optimization approach, SACHSEN denotes
the lifetime of SACHSEN approach and HSL denotes the
lifetime of our proposed approach.

As we can see in Fig. 11, our proposed approach extends
the network lifetime comparing with the global optimization
approach. After 6327 requests, there is one service exhaust its
energy and dead in global optimization approach. The first
discontinued service in SACHSEN approach appears after
48033 requests. While, the first discontinued service in our
proposed approach appears after 62325 requests. When
the simulation ends, the number of discontinued services is
16 in the global optimization approach and 4 in SACHSEN
approach, larger than the number 2 in the proposed approach.

As shown in Fig. 12, X axis and Y axis have no physical
significance. Axis-X varies from 1 to N (the number of con-
crete services of each abstract service), while axis-Y varies
from 1 toM (the number of abstract services). Each point rep-
resents one service and points with darker color have lower
residual energy, vice versa. As we can see in Fig. 12a, in the
global optimization approach, the service execution happens
on a fraction of total services. Then, these services consume
energy heavily while others still have subtotal energy. In
SACHSEN approach, the unbalanced energy consumption
has a certain degree of improvement. However, in our pro-
posed approach, the overall energy consumptionwas distrib-
uted among most of the total services, as shown in Fig. 12c.

Just because of this, our proposed approach can avoid energy
hotspots and furthermore prolong the network lifetime.

5.5 Discussion

From the above experiments, we can see that our proposed
workflow management mechanism have the important
characteristic of energy efficiency, which is more suitable
for resource-constrained WSN. On one hand, the proposed
approach adopts the QoS decomposition mechanism, which
decrease the time consumed for service selection with little
loss in QoS optimization. On the other hand, the proposed
approach takes both the serviceQoS and energy into consid-
eration. By realizing the balanced energy consumption
among services, the network lifetime was prolonged.

In order to achieve better performance, some parameters
should be considered carefully. In the QoS decomposition
process, different QoS attributes distribution makes the gen-
eral suitable value selection for K not an easy task. In addi-
tion, within the service selection process, � should be

Fig. 11. The number of discontinued services comparison during the
simulation process.

Fig. 12. Residual energy distribution and variation of proposed approach
compared with SACHSEN approach and global optimization approach
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chosen carefully as a trade off between theQoS optimization
and the network lifetime. Finally, the value of t in For-
mula (14) should also be set carefully. Larger t will bring
lower adaptation frequency, which may result in that some
services (especially the services with better QoS) consume
energy faster. When users’ requests with higher QoS
requirements arrives, services with better QoS will be acti-
vated inevitably, and then exhaust energy earlier. While
smaller t will bring higher adaptation frequency, which
will increase system complexity, meanwhile, frequent adap-
tation also bring unnecessary energy consumption.

6 CONCLUSIONS

Workflow management in resource-constrained WSNs is an
important issue which should be paid much more attention.
In this paper, we introduce the service energy to workflow
management in WSNs. First, we give the computation
method of service energy and extend the traditional QoS
model. Then, we adopt a QoS constraint decomposition
approach. By considering both service QoS and service
energy, global QoS constraints for workflow will be decom-
posed into a set of local QoS constraints for atomic services.
Finally, efficient local service selection will be achieved. It is
worth to note that, a service’s energy will be consumed con-
tinually in the running process. In addition, with the
increase of service requests, existing service selection
scheme is not appropriate. Hence, we propose a dynamic
workflow adaptation mechanism, which consists of the pro-
posed service reusing and improved bloom filter. Com-
pared with existing work on workflow management, the
proposed approach implements the balanced energy con-
sumption which is suitable for resource-constrainedWSNs.

Results from experiments indicate the proposed service
selection approach is efficient in time compared with the
traditional global optimization approach and task allocation
approach. In addition, the proposed adaptation implements
the balanced energy consumption and longer network
lifetime.
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Abstract—It is imperative for public cloud providers to guarantee performance targets for tenants’ virtual machines (VMs) while

respecting strict business confidentiality, e.g., having no information on applications nor their performance. A large body of related work

addresses the challenges of detecting performance interferences by leveraging client’s quality of service (QoS) metrics, e.g., latency,

and additional profiling servers. In this paper, we take the perspective of the cloud provider and propose a general black-box approach

that detects different resource contentions by throttling neighboring VMs. Specifically, we design a three-phase detection algorithm that

includes: (i) an alarm phase to identify statistical outliers using control charts; (ii) a passive clustering phase to match the current

sample to historical behaviors; and (iii) an active throttling phase to discern contentions from application phase changes via throttling.

The algorithm is specifically designed for scenarios where multiple co-located VMs request detection analysis simultaneously. We

implement and evaluate the proposed three-phase algorithm on four latency sensitive applications, i.e., Wikimedia and three

benchmarks from Cloudsuite. Our extensive experimental results show that we can reach an average detection accuracy above

90 percent while limiting the performance degradation experienced by offender workloads to short learning phases.

Index Terms—Contention detection, cloud, QoS

Ç

1 INTRODUCTION

VIRTUALIZATION is the key technology enabling the cloud
computing paradigm on infrastructure, where a large

amount of diverse resources are multiplexed together to
cater to an ever increasing number of services. Cloud pro-
viders boost system productivity, as well as lower their
operational costs, by hosting tenants via virtual machines
(VMs) [1]. A commonly seen practice is to collocate applica-
tions with disparate performance and resource require-
ments, such as latency sensitive applications and batch
applications. VMs have offered solutions to the problem of
software heterogeneity, but not necessarily to the problem
of performance isolation [2]. As a result, tenant’s perceived
Quality of Service (QoS), e.g., request throughput and
latency, often degrades on clouds [3], [4] due to underlying
resource contention, and substantial financial penalties may
be incurred by both cloud providers and their tenants. It is
of paramount importance for cloud providers to (pro)
actively manage resource contention [5].

The challenges of preventing resource contentions in the
cloud start right from the very first step - contention detec-
tion. To isolate tenants on the same infrastructure via a
virtualization layer, providers have a bird’s eye perspective
on resource consumption of all VMs but lack high-level

application performance metrics associated with the QoS
perceived by tenant’s. Providers are challenged to indirectly
infer application performance from simple low-level res-
ource metrics that preserve tenants’ business confidentiality.
Moreover, as the cloud enables a higher level of resource
multiplexing across heterogeneous VMs, the system com-
plexity and the volatility of workload dynamics drastically
increase. Contention detection is thus required to be adap-
tive to fast application dynamics, including examples of load
changes or internal application phases changes [6], [7], across
collocated VMs.

There is a significant body of prior art [8], [9], [10], [11],
[12], [13], [14], [15], [16] addressing the issues of resource con-
tention and performance interferences in Cloud. Their main
focus is to detect the QoS drop, either indirectly by inference
from low level metrics [8], [12], [14] or directly by measuring
the tenant’s perceived QoS [9], [10], [15]. The former centers
only on significant resource contention that can lead to obvi-
ousQoS drop. The latter implicitly requires application infor-
mation that might intrude on the business confidentiality of
tenants. One of the key ideas behind detecting contention is
to create an isolated execution environment, e.g., creating a
clone VM on a separate and dedicated server [8] or off-line
profiling [12], [15], so that one can clearly differentiate
between resource contention from inherent application
dynamics. In summary, the related work may fall short in
detecting a wide range of resource contention, some of which
might only have a minor impact on QoS, without requiring
additional tenant information and profiling servers.

In this paper, we aim to answer the following challenging
research question - how can cloud providers detect a wide
range of resource contentions of collocated VMs in an on-line
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and black-box fashion? To such an end, we develop a new
algorithm, which automates the processes of monitoring and
the proposed three-phase detection framework: (i) Alarming
behavior change, (ii) passiveClustering, and (iii) activeThrot-
tling diagnosis. Herein, the algorithmwill be referred as ACT
for short. Our main design idea is that we actively throttle
neighboring VMs whenever a behavior change is confirmed
after the second phase of ACT, to create an isolated execution
environment at a low overhead. ACT monitors low-level
resource metrics whose representative patterns are stored in
a slidingwindow fashion. To on-line differentiate the applica-
tion dynamics from contention, we employ a combination of
statistical and unsupervised machine learning techniques,
i.e., control chart, history look-up, and k-mean clustering,
using data from regular monitoring and active throttling. We
extensively evaluate the proposed ACT on a prototype cloud
that collocates different combinations of latency sensitive
applications, i.e., Wikimedia and CloudSuite, and batch-like
applications, i.e., PARSEC andCachebench.

Particularly, ACT executes on each physical server and
monitors metrics related to the shared resources on VMs in
discrete windows: CPU, cache, main memory, network and
disk. ACT consists of three phases, each of which requires
different computational complexity. First, an alarm phase
(detect) identifies statistical outlier sample units in the vic-
tim’s VM resource metrics based on control charts. Second,
a passive diagnosis phase (remember) tries to match the
outlier sample to historical behavior to minimize the detec-
tion impact. Third, an active learning phase (learn) throttles
neighboring VMs to distinguish contentions from VM
behavior changes. The computation overhead increases in
phases. ACT is able to parallel execute the first (alarm) and
second (cluster) phase on multiple VMs which are collo-
cated on the same physical node, whereas the throttle phase
can only be executed one at a time. Our evaluation results
show an average detection accuracy above 90 percent when
collocating Wikimedia with PARSEC and Cachebench. We
also show that the direct throttling overhead on neighboring
VMs can be as low as 15 percent of completion time increase
and further amortized across time.

Our scientific contribution is on methodology as well as
on experimental validation. We develop a novel and generic
three-phase detection algorithm, which can accurately
detect different resource contentions for collocated VMs by
active throttling. ACT preserves clients’ confidentiality and
incurs low detection overhead. Our evaluation is on a realis-
tic testbed executing representative workloads, i.e., a combi-
nation of interactive and batch applications.

The remainder of the paper is organized as follows.
Section 2 presents a motivation example, followed by the
system overview in Section 3. We detail the monitoring
component in Section 4 and the three-phase detection algo-
rithm in Section 5. In Section 6, we present our evaluation
results, followed by a discussion on related work in
Section 7. Section 9 concludes with a summary of our work.

2 MOTIVATION

Here, we visually illustrate the challenges in detecting
resource contention using a case study on the Wikimedia
application [17].

When collocating VMs, the applications contend for
shared physical resources which translates into changes in
key metrics. One such metric is the instructions per cycle
(IPC) used to measure program performance and conten-
tion [18], [19]. We deploy Wikimedia on a set of three VMs,
each of which is hosted on a separate physical server. The
detailed configuration of Wikimedia and servers can be
found in Section 6. Table 1 illustrates the QoS metrics of the
entire Wikimedia application together with the IPC mea-
sured on the Wikimedia frontend VM over time. We mark
the entire observation with three labels, namely normal,
contention and new phase. The contention period, from 900
to 1300 seconds, corresponds to the activation of a PARSEC
benchmark (Blacksholes) [20] inside a VM collocated with
the Wikimedia frontend VM. In addition, between 1500 and
1800 seconds, we drop the client request rate to emulate a
phase change in the application dynamics.

As the IPC and throughput show similar decreasing
patterns both during contention and new phase periods, it
is not straightforward to differentiate contention caused
by neighboring VMs from a new application phase: With a
black-box approach, the challenge is to differentiate con-
tention from application phase change only using hypervi-
sor level metrics. To tackle such difficulty, one of the key
elements in related work is to leverage the performance of
the victim VM, i.e., Wikimedia, in an isolated execution,
either by an initial profiling [12] or by cloning the VM on a
dedicated hardware [8]. However, additional hardware
and time are thus needed and this argues against the
advantages of cloud - efficient and economic resource pro-
visioning. Another observation worth noting is the non-
linear relationship between the QoS metrics and conten-
tion. QoS may only show a clear difference when there is a
high level of resource contention. For example, with the
shown Wikimedia frontend, the difference of IPC in nor-
mal and contention period is roughly 25 percent, whereas
the throughput and latency of the client requests show dif-
ferences around 10 and 20 percent, respectively. As the
CPU is rather saturated by the Wikimedia frontend VM
and PARSEC VM, there exists a risk of drastic QoS drops
when additional VMs appear. Low level resource metrics
are more sensitive to potential contention from neighbor-
ing VMs, compared to high level QoS. One can view low-
level resource contention as a necessary condition for
interference. We thus advocate that detecting resource
contention can be viewed as a conservative proxy for

Fig. 1. Ambiguity problem: Just observing low level metrics does not help
to differentiate contention from phase change.
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detecting QoS drops, without leveraging any application
information. The immediate challenges of detecting con-
tention arise from the large number of resource metrics,
and the distributed nature of applications in the cloud.

3 SYSTEM OVERVIEW

The contention detection system depicted in Fig. 2 operates
in parallel to the tenants’ VMs inside each hypervisor and is
made up of two main component types: monitors, one for
each running VM, and detectors, one for each hypervisor.
Each monitor periodically collects the resource contention
metric data of its coupled VM and feeds it to the detector
residing on the same hypervisor. The detector can execute
our three-phase detection algorithm for multiple VMs of
interest, such as latency-sensitive application VMs. Each
phase requires different degrees of computational complex-
ity and results in different levels of detection accuracy.
During the first phase (Alarm), each detector processes the
incoming monitoring stream to identify outliers signaling
the insurgence of a possible contention. If outlier sample
units are found, the detector goes into the second phase
(Clustering). This passive diagnosis phase tries to infer con-
tention by clustering the current contention sample to
known VM behaviors. If the sample can not be classified
using historical data, the active diagnosis phase (Throttling)
starts. During this phase the detector tries to remove any
contention by throttling all neighbouring VMs to emulate
an in-isolation run of the victim VM. If the sample before
and during throttling can be divided into two distinct
groups, the detector can classify the behavior as contention.

On the one hand, scale-out scalability is not an issue since
the detection algorithm runs independently in parallel on all
hypervisors. On the other hand, the throttle phase limits the
number of active diagnosis to one at a time affecting scale-in
scalability. In practice, this limitation is eased by the fact that
the active throttle phase is necessary only in a few cases.

3.1 Assumptions

The detection algorithm relies on a set of underlying
assumptions to work well. The main one is that the victim
VM is in a steady state during each phase of the diagnosis
process. By steady state we mean constant client load or
computation load. In practice, load-balanced client-facing
services and big batch workloads appear to be in steady

state when the observation window lasts a few tens of sec-
onds. Another assumption is that neighbouring VMs can
tolerate sporadic CPU capping. This is true for VMs running
batch jobs but might be an issue for latency sensitive appli-
cations. Finally, the algorithm assumes to know an initial
ground truth on the normal VM behavior. For the moment,
we rely on normal samples gathered in isolation conditions.
Lifting this last assumption is left for future work.

4 MONITOR

We rely on a monitoring system which consists of many
small monitor blocks, one for each running VM. Each VM is
monitored directly from the hypervisor level making the
whole monitoring infrastructure transparent to the VMs
themselves. Each monitor collects different metrics using
standard monitoring tools such as perf, tc and iostat.
These tools are contextualized to monitor only the specific
VM attached to the monitor. This is achieved by monitoring
either a specific virtual device attached to the VM or filter-
ing the thread group of the QEMU emulation process. The
main focus is on contention metrics used by ACT. Each
monitor is also able to collect load metrics. Table 1 summa-
rizes the metrics used by the diagnosis tool, the associated
monitoring tools and their contextualization.

As seen in Table 1, the focus is on metrics which allow
contention on shared resources to be highlighted, since con-
tentionmetrics aremore informative on possible interference
cases. To minimize measurement error, we limit the perf

metrics so as not to exceed the number of multi-purpose
hardware performance counters available on Intel1 i7 CPUs.

The main requirement of the monitor block is to induce
the least amount of overhead as possible. Each monitor can

Fig. 2. System architecture: Each VM resource usage is monitored and
fed into a three-phase detection algorithm, which relies on throttling VMs
to discern the ground truth.

TABLE 1
Monitored VM Metrics

Metric name Source Resource Context

Instructions retired
Per Cycle

perf All VM PIDs

CPU load buffer stalls
cycles ratio

perf Mem. & LLC VM PIDs

LLC miss per K
instructions

perf LLC VM PIDs

Net. card TX queue len.
in Bytes

tc Net. card TX Virt. iface name

Disk read queue avg.
wait time

iostat Disk Virt. disk name

Disk write queue avg.
wait time

iostat Disk Virt. disk name

1. Intel is a trademark or regsitered trademark of Intel Corporation
or its subsidiaries in the US or other countries. Linux is a registered
trademrk of Linus Torvalds in the US or other countries or both. Other
product and service names may be trademarks or service marks of IBM
or other companies.
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easily collect more metrics than the ones listed, including
load metrics, but each additional metric increases the mea-
surement overhead. Hence we limit ourself to this list.

Particular care has to be given to the set of metrics col-
lected via perf, since perf relies on hardware perfor-
mance counters. If the number of metrics exceed the
number of performance counters available within the pro-
cessor, perf time multiplexes the different metrics at the
expense of measurement accuracy. Each processor in our
testbed is equipped with four performance counters. Thus,
we limit the monitored metrics to IPC, Last Level Cache
(LLC) misses per K instructions and load buffer stalls. IPC
is a good overall measure of CPU stall produced by conten-
tion. LLC misses highlight cache conflicts and load buffer
stalls increase when the memory system is under heavy
contention. We investigated the possibility to monitor other
metrics such as L2 D/I misses or arithmetic unit stalls but
did not retain them due to the low detection accuracy
improvement over the retained metrics.

Limiting the number of low-level metrics collected by
perf to the number of available hardware performance
counters allows a new sample unit to be produced every
second without loss of accuracy. Moreover, from prelimi-
nary experiments the 1-second sampling frequency results
in a good compromise between accuracy, speed and moni-
toring overhead. All metrics are gathered at the same time
and stored in a vector where each element is the measured
value of each metric. This vector can be seen as a point in a
multidimensional space with one dimension per metric.

5 DETECTOR

The detector block collects the measurement data from all
VM monitors collocated under the same hypervisor and
runs the three-phase on-line detection algorithm. The detec-
tion algorithm can run in parallel on the monitored VMs
during the behaviour change detection and the passive diag-
nosis but only one VM can be actively diagnosed at a time
because of neighbouring VMs throttling. The algorithm aims
to detect VMs contending on shared resource(s). Contention
relates to a bad resource sharing which can mainly be
observed as a step change on related contentionmetric(s).

As an example we present a simplified case where we
consider only one metric. Fig. 3 depicts the IPC of a victim
VM across time. At the beginning, the server is in contention
free behavior (normal). We consider the sample as normal
when its values match isolation conditions. At 1000 seconds,
we have a behavior change in the server due to a neighbour-
ing VM starting a heavy CPU-intensive task (outlier). This
creates a change in the IPC trace. The first phase of the

algorithm continuously monitors the VM to identify such a
change between the normal and outlier parts across any of
the metrics. Once in the outlier part, the second phase of the
algorithm tries to classify the new behavior by collecting out-
liers and comparing them to historical data. In the case of
miss, the algorithm goes into the third and last phase: throt-
tling of the neighbouring VM(s) (isolation). The three-phase
detection loop is summarized in Algorithm 1, whereas each
phase is described in detail in the following sections.

The challenge is to differentiate contention from applica-
tion phase change. An application phase change can be
observed when the running code base inside the VM
changes creating different measurement patterns due to the
program entering a different part of its code. For latency
sensitive workloads, the variation of client load is also con-
sidered as a phase change. To find the ground truth, we iso-
late the VM from its neighbors by throttling. If it is an
application phase change, the measurements are not
affected by the neighbouring VMs and hence should remain
unchanged even in isolation. If it is contention, the measure-
ments should improve when in isolation. In Section 6 we
show that the throttling cost, even in terms of performance
drops of the neighbouring VMs, is limited.

Algorithm 1. ACT– Detector Loop

while true do
x = monitorVM()
updateSample(x,Wnormal)
if detectChange(Wnormal) == false then . Phase 1: Alarm
continue

end if
for i = 0; i < w; i++ do . Phase 2: Cluster
x = monitorVM()
updateSample(x,Woutlier)

end for
o = filterFalsePositives(Wnormal,Woutlier) . Phase 2.a
if o == falseAlarm then
continue

else if historyLookup(Woutlier) == match then . Phase 2.b
signal outcome of match

else
throttleNeighbourVMs() . Phase 3: Throttle
for i = 0; i < w; i++ do
x = monitorVM()
updateSample(x,Wisolation)

end for
unthrottleNeighbourVMs()
if classifyBehavior(Wnormal,Woutlier,Wisolation) != failure then
signal outcome of classification

end if
end if

end while

5.1 Alarm Phase (I): Behavior Change Detection

The goal of the first phase is to have a computational cheap
way of detecting behavior change to minimize the detection
overhead. In this phase, fast detection is preferred over
accuracy, since the accuracy will be achieved by the subse-
quent phases.

During this phase, the detector continuously monitors all
the metrics of all the VMs independently. We rely on

Fig. 3. Three-phase diagnosis cycle. Sample units are separated in three
types of intervals: Normal, outlier, and isolation, corresponding to alarm,
cluster, and throttle phase.
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Shewhart control chart [21] to detect operation anomalies on
any of the metrics. The basic idea is that during an anomaly
the measures will start deviating and the anomaly can be
detected by setting a threshold on the deviation. Shewhart
control chart is known as a robust statistical quality control
which does not make any assumption on the underlying
probability distribution. The method uses a moving win-
dow W ¼ fxt�1; xt�2; . . . ; xt�wg of size w containing the last
sample units to compute the moving sample mean x and
range meanMR as

x ¼ 1

w

Xw
i¼1

xi (1)

MR ¼ 1

w� 1

Xw
i¼2

jxi � xi�1j: (2)

When a new measurement xt arrives, an anomaly is sig-
naled if condition (3) is not satisfied

x� 2:66MR � xt � xþ 2:66MR; (3)

where 2.66 is the commonly recommended value given that
the moving range is estimated using two points [21]. In
practice this method works but is too sensitive to noise. To
make the detection resilient to noise, we count the number
n of consecutive outliers where sample units are labelled as
outliers based on the estimated mean x, standard deviation
s and the three-sigma rule, i.e., a new value xt is an outlier
if condition (4) is not satisfied

x� 3 s � xt � xþ 3 s; (4)

where

x ¼ 1

w

Xw
i¼1

xi; s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

w� 1

Xw
i¼1

ðx� xiÞ2
s

:

Since we monitor sets of metrics the above condition is
applied separately to each metric and the first to violate the
threshold raises the alarm.

Outlier sample units are counted but not immediately
added to the moving window W of size w containing the
last sample units W ¼ fxt�1; xt�2; . . . ; xt�wg. If n is greater
than a threshold nt, the next phase starts, otherwise the out-
liers are added to W. In the following, we set nt ¼ 5 and
jW j ¼ 30 which proved to be good choices in preliminary
experiments.

5.2 Clustering Phase (II): Passive Diagnosis

The goal of the second phase is twofold. The first goal is to
classify the outlier sample in the alarm phase as noise or
representative of a new system behavior, i.e., false positive
filtering. The second goal is to discern contention from
phase change based on historical data, i.e., history lookup,
to avoid the cost of an active diagnosis (throttling phase).
Please note that while phase 1 considers each metric inde-
pendently, from here on we consider the whole VM mea-
surement vector as a representation of a point in the
multidimensional metric space.

False Positive Filtering. The problem with phase 1 is that it
can easily capture noise and result in false alarms as
observed from preliminary experiments. To reduce the

number of false positives, phase 2 first performs a filtering
based on clustering. The algorithm accumulates measures
for the outlier sampleWoutlier from the new system behavior
identified by phase 1 having the same size w as the normal
sample Wnormal collected in the previous behavior. After
that, it runs K-means on the union Wnormal [Woutlier with
K ¼ 2. The rationale is that if phase 1 correctly detected a
new system behavior, clustering should highlight two very
distinct samples of roughly equal size (since jWoutlierj ¼
jWnormalj): one representing the previous normal behavior
mostly composed of normal sample units and one represent-
ing the new behavior mostly composed of outlier sample
units. On the contrary, if phase 1 triggered on noise, this clear
separationwill not be true.

Algorithm 2 details all the filtering steps. The leader() func-
tion, given as input a set of points and a threshold C, returns
the identifier of the cluster which is both the biggest cluster
in terms of number of points and comprises at leastC percent
of the total points. If no such cluster is found, a negative
value is returned. This ensures that the normal sample
clearly defines one cluster while the outlier sample clearly
defines the other cluster. More precisely, we never want a
negative return value from leader() and the return values on
the two sets should not be equal. The C parameter can be
considered as a characterization threshold over the cluster-
ing degree of a subset of points. In practice, we want a high
characterization on the normal cluster, hence Cnormal ¼ 70%,
while we want enough outlier sample units in the new clus-
ter to highlight a tendency rather than noise. We investigate
themeaning of enough in Section 6.3 by varyingCoutlier.

Algorithm 2. False Positive Filtering

P ¼ Wnormal [Woutlier

clusters = kMeans(P, 2)
n = clusters.leader(Wnormal, Cnormal)
o = clusters.leader(Woutlier, Coutlier)
if n ¼ �1 _ o ¼ �1 then
return falseAlarm

else if n ¼ o then
return falseAlarm

else
continue diagnosis

end if

History Lookup. For each VM the past known normal and
contention behaviors are stored in a history table populated
by phase 3. For storage compactness and computational
speed, we approximate each cluster as a sphere in a normal-
ized multidimensional space of the metrics. This allows us
to store each cluster k simply by its outcome, i.e., contention
or phase change, its centroid Ck and its radius rk, together
with normalization factors, i.e., mean mi;k and standard
deviation si;k, for each metric i. At this point a history
lookup of a new VM behavior simply translates into check-
ing if a majority of outlier sample units are within a cluster
radius from the VM history table based on the euclidean
distance between the cluster centroid and each of the nor-
malized sample units.

More formally, we first normalize each vector element xi

of sample unit vector x using mi;k and si;k of the cluster k to
obtain a normalized sample unit xnk
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xn
i ¼ xi � mi;k

si;k
: (5)

Once normalized, xnk is part of cluster k if

jjxnk � Ckjj < rk; (6)

under euclidean distance. mi, si and r are computed from
the cluster sample units during phase 3. While mi and si are
trivially the mean and standard deviation over those values,
to avoid ambiguous points the radius r is computed as the
90th percentile of the euclidean distance distribution of the
sample units. Note that normalization is necessary because
each metric has its own range of values and thus a direct
comparison across different dimensions would be difficult.
In practice, we require at least Chistory percent of outlier sam-
ple units to be part of a cluster to signal a lookup hit, where
Chistory is set to 70 percent. This operation is repeated over
all history table entries. In the case of a hit, the diagnosis is
stopped and the outcome stored in the history table is
returned. In the case of multiple hits, the cluster with the
highest percent of matching sample units is selected.
Finally, in the case of a miss, the active diagnosis phase is
invoked.

Over time the size of the history table grows as the detec-
tor identifies new VM behaviors. To avoid excessive slow-
downs and memory footprints, one can easily limit the
number of entries in the history table, but at the cost of extra
active diagnosis phases. In practice, this problem is limited
due to the fact that only a few new behaviors are discov-
ered, mainly at system startup, while later the algorithm
relies on history hits as seen in Section 6. The trade off
between the table size and the impact of extra throttling
phases is left as interesting future work.

5.3 Throttling Phase (III): Active Diagnosis

The goal of the third phase is to isolate the victim VM from
all neighbouring VMs to identify the ground truth. Contrary
to the related work, to isolate the VM we rely on throttling
which has several advantages. (i) It is easy to deploy: it does
not rely on any special feature not readily available in
most modern hypervisors. (ii) It is completely application
transparent: it does not require any prior knowledge on
or cooperation from the VMs. (iii) Throttling by itself bears
a minimal cost, especially compared to more complex
schemes such as priori off-line VM characterization or VM
cloning. The main disadvantage is the performance impact
on the applications running inside the throttled VMs.
However, in Section 6, we show that the impact, although
perceivable, can be maintained within limits both time-wise
and performance degradation-wise. Moreover, after some
initial learning phases to populate the history table, throt-
tling is mostly avoided.

In more detail, if phase 2 is not able to classify the outliers,
phase 3 throttles all the neighbouring VMs capping their CPU
usage and accumulating a new isolation sample Wisolation of
same size w. After that, the same principles used in phase 2
are applied to discern phase change from contention. Algo-
rithm 3 details the steps. We start with K-means usingK ¼ 2
on the union Wnormal [Woutlier [Wisolation, and identify the
main cluster in all three samples via the leader() function.
For an accurate diagnosis, we want a good characterization

on the isolation sample by setting Cisolated ¼ 70% to be noise
tolerant but keep the clusters sufficiently reliable.

Algorithm 3. Behavior Change Classification

P ¼ Wnormal [Woutlier [Wisolation

clusters = kMeans(P; 2)
n = clusters.leader(Wnormal; Cnormal)
o = clusters.leader(Woutlier; Coutlier)
i = clusters.leader(Wisolation; Cisolated)
if n ¼ �1 _ o ¼ �1 _ t ¼ �1 then
return diagnosisFailure

else if i ¼ n then
return contention

else if i ¼ o then
return newPhase

end if
return diagnosisFailure

If the cluster of isolation sample units matches the cluster
of normal sample units, the diagnosis classifies the outliers
as contention. The rationale is that, by removing/mitigating
the impact of the neighbouring VMs, the victim VM behaves
as normal because the behavior change was contention
induced. On the contrary, if the cluster of isolation sample
units matches the cluster of outlier sample units, then we
witness a new VM behavior because the neighbouring VMs
had no influence on the behavior change of the victim VM.
In either case, the diagnosis succeeded and the history table
is updated with a new entry. In the case of a contention, this
new cluster is based on the outlier sample, whereas in the
case of a new phase, the cluster is based on the isolation
sample. If neither condition is true, the diagnosis failed.
Independently of the outcome, the detection algorithm
restarts from phase 1 with its state reinitialized using the
last normal sample in the case of diagnosis failure or conten-
tion, or using the outlier sample in the case of phase change.

5.4 Parallel Analysis

We illustrate how to extend ACT to the scenario of multiple
VMs of interest and conduct a so-called parallel analysis. In
contrast to the previous section, ACT monitors the perfor-
mance metrics of, and detects contention across multiple
VMs concurrently. This introduces two additional complexi-
ties to be addressed by the detector. First, while the alarm
and cluster phases are completely passive and can easily be
performed in parallel on eachVMunder scrutiny, the throttle
phase is active and requires coordination across all the VMs.
Second, VMsmight switch between active and inactive states
during detection which can introduce extra perturbations to
the detector. In the following, we first illustrate an example
of applying ACT on three latency-sensitive VMs hosted on
the same physical server and then explain how to coordinate
throttling and handle VM state switches in practise.

3-VM Example. We apply ACT on the three VMs of inter-
est shown in Fig. 4. VM 1 and VM 2 are active during the
whole observation period, whereas VM 3 becomes activate
at time ta. We note that there might be other VMs collocated
on the same physical server which do not enter in the set of
VMs of interest, e.g., VMs running latency-insensitive batch
workloads. In our example VM 1 and VM 2 start in a condi-
tion classified as normal, until there is a change in the server
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load due to any of the hosted VMs. This change is first
detected by the alarm phase of VM 2 followed by VM 1
which independently switch to collecting outliers. Upon
collecting enough outliers for the passive diagnosis of the
cluster phase, ACT decides if an active throttle phase is
needed for individual VMs. In this example, ACT reaches
the decision of entering the throttle phase for VM 2 and
throttles all its neighbouring VMs on the same server for the
purpose of collecting the isolation sample.

Coordination of Throttle Phase. While the passive diagnosis
of the cluster phase of ACT can be operated in parallel on all
VMs of interest, ACT allows only one VM of interest to enter
the throttle phase. In other words, ACT waits for the cluster
phase for all VMs to finish before admitting one VM to the
throttle phase. When only one VM is investigated, the pas-
sive diagnosis lasts for the duration of collecting the VM
outlier sample. However, when multiple VMs are moni-
tored, the passive diagnosis may last longer. Indeed, when
a VM experiences a behaviour change on shared resources,
it is likely that the other VMs are affected too, see VM 2 and
VM 1 in our example. Thus, the cluster phase accepts other
VMs for investigation until all have both their normal and
outlier samples available, i.e., tt in our example. Then, based
on the outcome of the diagnosis of the cluster phase, if mul-
tiple VMs need to execute the active diagnosis, only one is
selected, and the others fall out the diagnosis iteration. We
prioritize the VM having the least active diagnosis count,
i.e., the smallest history.

Handling VM State Switches. We consider the VM activity
state when running the diagnosis. We define a sample unit
as active if at least one of the measured resources (i.e., CPU,
disk or network) has a utilization above a given threshold,
e.g., 1 percent in our experiments. During each diagnosis,
samples must have a majority (90 percent) of their sample
units marked as active. Otherwise, the diagnosis fails. Simi-
larly we define a VM as inactive after twenty consecutive
VM sample units are marked as inactive, and as active oth-
erwise. Once a VM becomes inactive we exclude this data
from the diagnosis. In contrast, a newly active VM may
already start in a contention scenario (see VM 3 in our exam-
ple). Hence the newly-active sample is considered as an out-
lier sample in the cluster phase. If the sample matches a
history entry marked as phase-change, the sample is consid-
ered as normal and the diagnosis finishes. Otherwise, we
need to collect an initial (ab)normal sample. We thus need
to enter active diagnosis and throttle neighbors for such a
VM so as to figure out if it starts with a normal sample.

6 EVALUATION

In this section, we present an extensive evaluation of ACT
on a prototype system that collocates latency sensitive and
batch-like applications. We show the effectiveness of ACT
in detecting resource contention for latency-sensitive appli-
cations under various collocation scenarios and parameter
settings. The specific metrics of interest are detection accu-
racy, delay, and overhead that is measured on the through-
put degradation of batch-like applications. We first show
detection rates and delay of scenarios where one latency-
sensitive is collocated with one batch-like application.
We then extend to parallel scenarios where multiple ACTs
monitor latency-sensitive applications in parallel. More-
over, via long-running time-varying experiments, we show
that ACT can effectively differentiate contention, from inter-
nal program change as well as workload dynamics.

6.1 Testbed Setup

The testbed is composed of four identical physical servers
connected via a star topology to a Gigabit switch. Each
server runs Ubuntu server 14.04 LTS and is equipped with
16 GB of DDR3 RAM, a 4-core Intel1 Core i7-3820 processor
@ 3.6 GHz with SMT, one 2-TiB Sata III 7200 rpm hard disk,
and one Gigabit Ethernet adapter. Three servers host the
VMs used to deploy the applications. We run QEMU v2.0
with KVM on top of Linux1 kernel 3.13 as the hypervisor.
Each VM comprises two virtual CPUs and 2 GB of RAM. In
most cases, we host two VMs on each server: (i) one VM
running latency-sensitive application or its component, and
(ii) the other VM running batch workloads to generate con-
tention. The fourth server is used as the experiment orches-
trator and load generator.

Latency-Sensitive Applications. We use Wikimedia as a rep-
resentative cloud workload [17]. Wikimedia is a latency-
sensitive three-tier web application composed of Apache
(v2.4.7) plus PHP (v5.5.9) as the application server frontend,
Memcached (v1.4.14) as the in-memory key-value store and
MySQL (v5.5.40) as the database backend. Each component
is deployed into separate VMs which in turn are hosted on
separate servers. As a reference, the maximum sustainable
throughput of this setup is 38 request/s.

We also use three of the Cloudsuite [22] latency-sensitive
workloads to further validate the effectiveness of ACT. First,
there is data-serving which runs Cassandra (v0.7.3), a dis-
tributed scale-out database. The second workload is data-
caching, a Memcached (v1.4.14) instance storing a twitter
data-set. The last workload, Media-Streaming, is a Darwin
Streaming server (v6.0.3) stressed by Faban RTSP clients.

Emulated Contention. To create contention, we spawn, in
parallel with Wikimedia and/or Cloudsuite workloads,
neighboring VMs running two different resource intensive
batch workloads resulting in two different types of conten-
tion. On the one hand we use a subset of scientific applica-
tions from PARSEC 3.0 [20], i.e., Fluidanimate, Blackscholes
and Freqmine, characterized by regular but intensive CPU
and memory usages. We run these benchmarks using the
native input dataset size. On the other hand we use Cache-
bench [23] which gradually pollutes the whole last-level
cache producing extremely noisy usage traces spanning
from low CPU and cache usage to full CPU and cache
usage. Since Cachebench has a very short runtime, we

Fig. 4. An illustration of ACT parallel analysis on three VMs of interest.
The alarm and cluster phases are executed independently for each VM,
whereas the active throttle phase is only allowed for VM 2.
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create longer contention periods running it in an infinite
loop and killing the loop after a timeout. Throttling is based
on the cgroup kernel module which allows the CPU usage
bounds to be specified based on process identifiers (PIDs).
Since each Wikimedia component is placed on a different
server and has different resource usages, this setup allows
multiple contention mixes to be studied at the same time.

6.2 Contention Analysis

Prior to presenting ACT results, we first conduct a detailed
contention analysis that provides the ground truth and root
cause on how latency-sensitive applications and batch
workload contend for different resources. Here, we consider
all 16 scenarios of combining four latency-sensitive applica-
tions and four batch workloads on a single server. We look
into three types of resources: CPU, memory and disk. We
analyze the contention patterns first from the perspective
of latency-sensitive applications and then of the batch
workloads.

Setup and Metrics. Specifically, we focus on three met-
rics: IPC, last-level cache misses per instruction (LMI),
and disk write wait time (DWW) which are indicators for
contention on three different resource types, i.e., CPU,
memory, and disk, respectively. To quantify the contention
effect from the neighboring batch workload, we use the
degradation of metrics, comparing its values before and
after having the neighboring batch workload. We thus use
offline profiling to compare these metrics collected on VMs
running a latency-sensitive application in isolation against
the collocated scenario with a neighboring VM running a
batch workload. In addition to Wikimedia, we use three
latency-sensitive Cloudsuite benchmarks: media streaming
(Darwin), data serving (Cassandra) and data caching
(Memcached). As for the batch workloads, we use Black-
scholes, Freqmine and Fluidanimate from PARSEC and
Cachebench [23].

From Latency-Sensitive Applications. Table 2 summarizes
the results for media streaming, data serving, data caching
and web serving, respectively. Each figure shows the met-
rics degradation/improvement in percentage after being
collocated with batch workloads. The degradation is com-
puted as the performance difference divided by the origi-
nal performance value. For the IPC, we compute the
difference by the value before collocation subtracted by the
value after collocation, whereas for LMI and DWW we
compute the difference by the value after collocation sub-
tracted by the value before collocation. This is to reflect
that a higher IPC value is deemed a better performance
but higher LMI and DWW values are deemed inferior

performance. Negative values of degradation mean that
there is actually a performance improvement after collocat-
ing with neighboring VMs.

From the results one can observe that VMs do interfere
with each other and the degree/type of interference
depends on specific combinations of applications and
benchmarks. Shown in Table 2, Memcached has the high-
est IPC degradation among all four applications. Though
Memcached can effectively use the memory space to boost
the data store, it is also known to have scaling issues
when increasing the number of threads [24], indicating
that both CPU and memory can be resource bottlenecks.
As for Wikimedia, it is sensitive to disk activities, a
counter-intuitive finding. Indeed, Wikimedia frontend
consists of Apache passing requests to a stateless middle-
ware script written in PHP without explicitly using disk.
However, the default configuration of Apache used in our
experiments records all requests to a log file on disk.
Table 2 shows that Cassandra’s DWW is less affected
because the workload used to stress the service is read
heavy. Darwin is the most memory sensitive application.
This is due to the fact that it uses in-memory caching of
the content and that the test videos are of comparable size
to the last-level cache.

From Batch Workloads. Freqmine, Fluidanimate and
Blackscholes represent compute-intensive real-world
applications and at the same time Freqmine and Fluidani-
mate (particularly) are also memory-intensive [20]. More-
over all three use the disk to either output their results
(Fluidanimate and Blackscholes) or load the input datasets
(Freqmine). As for Cachebench, it is a benchmark explic-
itly written to stress the cache, making it both memory-
and compute-intensive. These resource characteristics are
clearly visible across all four figures. Let us first focus on
the IPC degradation which is rather similar in call cases.
With a closed check one can see that Fluidanimate and
Cachebench typically cause higher IPC degradation, com-
pared to Freqmine and Blackscholes. This observation
demonstrates how all four batch workloads compete for
CPU with the latency-sensitive applications. In terms
of memory contention, Fluidanimate and Chachebench
create the highest LMI degradations as expected. It is
worth noting that sometimes the collocation of VMs can
bring seemingly beneficial effects. This is the case in
Table 2 which shows an improvement of the IPC and
DWW for Cassandra, i.e., the negative degradation num-
bers. We attribute this positive effect to the CPU power
governor which increases the clock frequency in response
to an overall higher load.

TABLE 2
Extensive Contention Analysis Measured via Percentage of Degradation on Instructions per Cycle (IPC), LLC Misses

per Instruction (LMI) and Disk Write Wait Time (DWW): Comparing Before and After Being Collocated with
Freqminie, Fluidanimate, Blackscholes, and Cachebench

Victim
Contender

Darwin Memcached Cassandra Wikimedia

IPC LMI DWW IPC LMI DWW IPC LMI DWW IPC LMI DWW

Freqmine 10.1 58.4 77.7 21.0 29.2 0 9.7 106.8 87.5 9.3 16.1 42,361.2
Fluidanimate 10.5 166.8 8.4 21.4 110.8 0 9.7 161.6 -13.2 13.5 17.4 6,815.3
Blackscholes 9.8 85.3 28,814.9 20.4 46.9 0 -14.6 74.6 76.7 15.6 27.5 76.8
Cachebench 10.2 166.3 105.0 20.5 114.6 0 -17.6 147.0 -5.8 11.7 36.3 17.4
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6.3 Effectiveness of ACT on Wikimedia

Here, we show a sensitivity analysis on the impact of the
ACT parameters on detecting resource contention caused by
the collocated batch applications for Wikimedia. First, the
sample sizes ofWoutlier andWisolation used in the passive and
active diagnosis phase, respectively. Intuitively, the bigger
the sample, the more time is required to collect it but the
lower the risk of considering noise as an actual trend. Note
that, on average, one sample unit is produced every 1.15 sec-
onds. Second, the CPU capping limit ThCPU imposed during
throttling. The higher the capping the less impact we have
on the neighboring VMs. Of course, with less capping the
sample of the victimVMwill not represent a perfect isolation
case and the diagnosis is more likely to fail. Third, the thresh-
old Coutlier used to find the outlier cluster. The higher this
threshold, the clearer the trend must be to generate alarms,
lowering the risk of false positives. However, ACT might
miss contention cases because the threshold is too restrictive.
While tuning one parameter we use the following conserva-
tive values for the other two: jWoutlierj ¼ jWisolationj ¼ 40
sample units, ThCPU ¼ 0:05 cores andCoutlier ¼ 50%.

Experiments consist of Wikimedia running at full load,
whilewe randomly spawnon each server an instance of either
PARSEC or Cachebench inside the neighboring VM. 2-minute
breaks are spaced out by offender intervals lasting between 3
to 4 minutes. There is an independent 50 percent probability
that the next interval will spawn a batch job on each server.
Whenever a batch job is spawned, contention systematically
occurs. Each run lasts 3 hours and is repeated 3 times. In the
followingwe present the average results across the runs.

6.3.1 Detection Rate

We first evaluate the detection rate defined as the ratio of
correctly identified contention intervals (true positives)
over all known contention intervals. We consider a conten-
tion interval to be correctly identified if one or more alarms
were raised in it. An ideal algorithm always correctly identi-
fies contention intervals, i.e., detection rate equal to 1. Fig. 5
shows how the detection rate changes under different tun-
able parameter values.

We start by varying the number of sample units
jWoutlierj and jWisolationj per diagnosis interval (see
Fig. 5a). The best results, detection rates equal or close to 1
across all three Wikimedia components, are obtained with
15-20 sample units. With less units the measurement noise
is higher and the diagnosis is more likely to fail. With
more units the noise effects are reduced, but since each
diagnosis takes longer, less diagnosis cycles can be
repeated in the case of diagnosis failures before the con-
tention disappears. Naturally this case is directly related

to the expected contention length. Both conditions result
in lower detection rates, especially for the Apache and
MySQL components.

Moving on to the impact of the outlier threshold Coutlier,
one can observe in Fig. 5b a clear decreasing trend: the
higher the threshold, the lower the detection rate. This is
true for all three Wikimedia components. Indeed, when we
require a clearer clustering, only the VMs under heavy or
obvious contention will maintain a high detection rate.
Memcached is especially affected with significant drops at
both 60 and 70 percent. This is because this VM has the least
resource usage and thus its sensitivity to neighboring VMs
contending for shared resources is the lowest.

Comparing the detection rate against the CPU capping
limit ThCPU , we observe that the active diagnosis phase does
not need to fully throttle the neighboring VMs to be able to
identify contentions. As highlighted in Fig. 5c, the detection
rate remains stable until ThCPU reaches 0.6 cores. Beyond
this, it rapidly degrades. However, even if we show the
average across both contention scenarios, PARSEC and
Cachebench have different influences. Apache is more sen-
sitive to the aggressive CPU usage of PARSEC, while the
other two Wikimedia components are more sensitive to
Cachebench. Using the more aggressive neighboring VM,
contention can be discerned even in low isolation condi-
tions, otherwise the detection collapses. The fact that even
low CPU throttling is sufficient to identify contention is
desirable because it directly reduces the performance
impairment experienced by the throttled VMs.

Parameter Tuning. Overall, the best detection rates are
obtained using 15 < jWoutlierj ¼ jWisolationj < 20 for the
best tradeoff between measurement noise and diagnosis
cycle rate. The CPU cap can be rather high as long as
ThCPU < 0:6 cores. Finally the cluster threshold should not
be too strict with Coutlier < 60%.

6.3.2 Detection Delay

Adetection system should not only be accurate, but also fast.
We define the contention detection delay as the time elapsed
between the start of a contention interval and the first alarm
raised by the detector. Fig. 6 shows the average detection
delay over all correctly identified contention intervals across
the same previously presented parameter sweeps.

Intuitively, the more sample units used for the diagnosis,
the longer the detection delay, since new points are sampled
periodically. Indeed, the theoretical minimum delay is
given by the number of sample units in the passive phase,
assuming a history hit is possible, multiplied by the effec-
tive sampling interval, i.e., 1.15 seconds in our experiments.
Fig. 6a shows both the minimum theoretical delay and the

Fig. 5. Contention detection rate under different parameter settings of ACT.

VALLONE ET AL.: MAKING NEIGHBORS QUIET: AN APPROACH TO DETECT VIRTUAL RESOURCE CONTENTION 851



measured ones partly confirming our intuition. However,
one can observe that the decreasing tendency quickly
reaches a lower bound. If the samples are too small, the
clusters are poorly characterized, hence diagnosis failures
are more likely. The increase in extra delay with fewer sam-
ple units introduced by failed and restarted diagnoses can
be clearly seen from the increasing relative distance to the
theoretical minimum, i.e., overhead, across all three Wiki-
media components. Taking Apache as an example, the rela-
tive overhead grows from 48 percent, corresponding to
approximately 1 extra diagnosis every 2, to 230 percent, cor-
responding to approximately 2 extra diagnoses for each.
Similar results hold for the other two components. Combin-
ing these results with our previous analysis where a sample
size is of 15 or 20 units gives a good trade-off between detec-
tion speed and accuracy.

A similar trend is shown in Fig. 6b. Increasing the outlier
threshold, increases the probability of failed diagnoses,
which in turn increases the detection delay since multiple
diagnosis cycles are necessary to raise the first alarm. How-
ever, here the influence is lower and the average overhead
across different values of Coutlier changes from 53 to 86 per-
cent for Apache and from � 60 to � 170 percent for Memc-
ached and MySQL which experience less contention due to
lower resource usages.

Finally, considering throttling, the detection delay stays
stable as long as the CPU capping limit is low enough for
the detection rate not to collapse (see Fig. 6c).

Parameter Tuning. The detection delay is mostly depen-
dent on the number of sample units collected and the suc-
cess/failure of a diagnosis. The best trade-off is obtained
with jWoutlierj ¼ jWisolationj ¼ 20 sample units, ThCPU ¼ 0:05
cores and Coutlier ¼ 50%. In our tests this translates into a
detection delay of 40 seconds and a detection rate never
below 90 percent.

6.3.3 Throttling Overhead

We quantify the throttling overhead as the increase in com-
pletion time experienced by the neighboring batch jobs.
More precisely, we concentrate on the longer running PAR-
SEC workloads. For each experiment run, we quantify the
relative time loss for each workload as the difference
between the mean execution time during throttled and non-
throttled intervals divided by the mean non-throttled execu-
tion times. Fig. 7 shows the mean results across the three
PARSEC workloads while varying the sample size and the
CPU capping limit. We see a clear trend with respect to both.
A larger isolation sample directly translates into longer throt-
tling intervals to collect the sample units, hence higher over-
heads, while shrinking the isolation sample size shrinks the
throttling time and overhead. In the case of the CPU capping
limit, the opposite is true. Higher CPU limits reduce the per-
formance impairment. Finally, the time loss is stable with
respect to Coutlier, since the parameter has no direct influence
on the throttling interval (not shown due to space issues).

Even in the worst case, i.e., highest number of sample
units and lowest CPU capping limit, the direct overhead is
limited to 33 percent, while for the more reasonable parame-
ter values, i.e., jWoutlierj ¼ jWisolationj ¼ 20 and ThCPU ¼ 0:3
cores, the overhead drops to 15 percent. Moreover one must
take into consideration that this overhead is only incurred
when ACT executes the active throttle phase. These phases
are a small fraction of the overall diagnosis cycles as shown
in Table 3. In most experiments, less than 10 percent of
detection cycles rely on the active diagnosis phase. Only in
the case of high outlier threshold Coutlier on Memcached did
ACT have difficulties. The reason is that Memcached creates
a light contention which is difficult to identify with a high
threshold. Combining the direct overhead with the fraction
of active diagnoses, the impairment across all intervals is
even smaller: 1.1 percent on average and 9.24 percent in the
worst case. Moreover, the active diagnosis phases mostly
happen at the system startup, when no history table is yet
available (see also Section 6.5). Thus, the longer the experi-
ment runs, the smaller the fraction of active diagnosis
phases, and the lower the average impact.

Fig. 6. Contention detection delay under different parameter settings of ACT.

Fig. 7. Average completion time overhead of throttled PARSEC neigh-
boring VM. X-axis: Sample size jWo:j ¼ jWi:j.

TABLE 3
Active Diagnosis Ratio

jWo:j ¼ jWi:j [#] ThCPU [cores] Coutlier [%]

10 20 40 0.05 0.3 0.6 50% 60% 70%

Apache 0.05 0.03 0.07 0.07 0.06 0.10 0.07 0.06 0.05
Memc. 0.03 0.04 0.06 0.06 0.03 0.10 0.06 0.09 0.28
MySQL 0.02 0.04 0.08 0.08 0.11 0.07 0.08 0.03 0.07
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Parameter Tuning. The throttling overhead is strictly tied
to the active throttle phase. Hence the important parameters
are jWisolationj and ThCPU . Considering the tradeoff with the
best values for detection we opt for jWisolationj ¼ 20 and
ThCPU ¼ 0:3 which translates into a throttle overhead of
15 percent. We note again that this overhead is paid only in
the few cases requiring the active diagnosis.

6.4 Effectiveness of ACT for Cloudsuite

In addition to Wikimedia, we further evaluate ACT on three
latency-sensitive benchmarks in Cloudsuite [22]: data-
serving, data-caching and media-streaming. Here, we con-
figure ACT with the best known parameters taken from
Wikimedia experiments: jWoutlierj ¼ jWisolationj ¼ 20 sample
units, ThCPU ¼ 0:3 cores and Coutlier ¼ 50%. The testbed and
experimental methodology is identical to the one presented
in previous sections. We summarize the results obtained
from Cloudsuite in Table 4.

On the one hand, the false alarm rate is kept way below
10 percent for all the workloads, again proving the effective-
ness of the false positive filtering step. On the other hand,
the detection rate drops to 94 percent for data-serving and
98 percent for data-caching. Moreover, the detection delay
for these workloads is slightly higher than the Wikimedia
nodes. This is because the parameters of ACT are optimally
tuned for Wikimedia. Hence, the diagnosis for Cloudsuite
tends to fail to form the clusters in the second phase and
thus ACT needs to collect more samples from different
intervals. Moreover, one can also observe the lowest detec-
tion rate of 88 percent at the media-streaming benchmark.
Media-streaming experiences light contention on the mem-
ory hierarchy and no contention at all with the network and
disk, while being very sensitive to CPU time sharing. If its
access to the CPU is impaired, the workload packet trans-
mission latency is affected. The relative lower detection rate

indicates that the current metrics collection of ACT is not
sufficient to capture the CPU time contention.

6.5 Long-Running Time-Varying Workload

The object here is to asses how ACT performs in realistic sce-
narios where request rates are time varying. We replace the
synthetic constant full load of previous experiments with the
load experienced by a real Wikimedia frontend [25] scaled to
the capacity of our system. Specifically, the load follows the
typical sinusoidal day-night pattern over 24 hours and we
scale the intensity such that the offered load oscillates
between 90 and 35 percent of the system capacity. In parallel
we spawn random batch workloads (both PARSEC and
Cachebench) as in our previous experiments, but also con-
sider two VM sizes to create different degrees of contention:
i.e., VMs with 2 virtual cores and 2 GB of memory (low con-
tention), and VMs with 8 virtual cores and 8 GB of memory
(high contention). In both, we set jWoutlierj ¼ jWisolationj ¼ 20
sample units, ThCPU ¼ 0:3 cores and Coutlier ¼ 50% based on
the results of the sensitivity analysis.

Results are shown in Fig. 8. We report the measured QoS
of Wikimedia, in terms of normalized throughput and
latency, together with the outcome of ACT on the Memc-
ached server, in terms of alarm rate and throttling events.
We only report the outcome of one server for readability
and chose Memcached because it has the lowest resource
usage making the contention most ambiguous and thus
stressing the detection algorithm the most.

From the QoS metrics one can easily infer the level of
contention. In the low contention case, shown in Fig. 8a, the
client QoS has only small spikes. Moreover, one can see the
influence of different Wikimedia loads. Indeed, the spikes
are mainly concentrated in the peak load regions and have
larger amplitudes. Similar results hold in the high conten-
tion case, shown in Fig. 8b, but with overall larger spikes.
The clearer the contention, the more contention alarms are
raised within a contention interval. Thus, a high density of
events, shown by the histograms at the bottom, means that
the contention is more obvious and vice-versa. Indeed in
Fig. 8b the contention hit density over time is more regular
due to the higher degree of contention.

Looking at the throttling events, shown by the crosses,
one can see that few contention events are detected using
the active diagnosis phase and mainly at system startup.
Indeed, after an initial learning phase to fill the history
lookup table, most detection cycles avoid the throttle phase.

TABLE 4
Contention Statistics for Six Workloads

Det. rate False alarm Det. delay [sec]

Data serving 0.94 0.02 40.4
Data caching 0.98 0.00 46.5
Media streaming 0.88 0.02 45.3
Wiki Apache 1.00 0.01 36.9
Wiki Memcached 1.00 0.00 39.5
Wiki MySQL 1.00 0.00 36.2

Fig. 8. 24-hour Wikimedia load with random batch jobs. Throughput and latency are normalized to 38 req/s and 330 ms.
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Comparing the low and high contention case, the latter
allows the table to be filled out faster, i.e., the throttling
events are all found within the first hour against the low
contention case where the last one is found after 7.3 hours.

6.6 Parallel Analysis

Wepresent howACT can detect resource contentions formul-
tiple latency-sensitive VMs in parallel. To such an end, we
consider the scenario where multiple latency-sensitive appli-
cations are collocated with PARSEC on the same physical
server. For each physical node, we first place two VMs from
those four applications such that the contention among them
is minimized. Via extensive experiments, we observe that a
lowly loaded data-serving benchmark (roughly 20 percent
utilization) from Cloudsuite can be collocated with any other
applicationswithout causingmuch contention. Therefore, we
place data-serving neighbor VMs to create the five VM pairs
shown in Table 5. We then randomly spawn PARSEC on
each physical node to inject the emulated contention as in
our previous experiments. One ACT runs on each physical
server and conducts detection analysis for collocated latency-
sensitive VMs simultaneously. We summarize how ACT can
detect resource contention caused by PARSEC across each
pair in Table 5, particularly in terms of detection rate, false
alarm rate, and detection delay.

The detection rate shown in Table 5 is around 95 percent
for data-serving paired with either wiki-Apache, wiki-
memcached or media-streaming, suggesting that ACT can
handle parallel analysis for multiple VMswell. However, the
detection rate drops to around 84 percent for the pairs of
wiki-MySQL or data-caching, as ACT tends to incorrectly
label contention as phase-change due to the following two
observations. First, wiki-MySQL does not reach the steady-
state, violating the assumption made in ACT. In contrast
to experiments in the previous sections, any of the three
Wikimedia VMs can be throttled while ACT conducts the
active throttling analysis for a collocated VM. As soon as any
of the Wikimedia VMs gets throttled, the loads at the other
Wikimedia components are also affected and thus the loads
fluctuate without staying at steady-state. Second, for data-
caching under lowusage, it is difficult forACT to differentiate
contention and isolation samples. These two observations are
further amplified by the history lookup. Once a contention
cluster is falsely labelled as phase change during the active
diagnosis, ACT automatically wrongly labels similar conten-
tion cases as phase change during the passive diagnosis.

The average value of the false positive rate shown in
Table 5 slightly increases, compared to the scenarios where
ACT only needs to detect contention for a single latency-
sensitive VMpresented in previous sections. In the collocated

experiments, as both latency-sensitive VMs run at low load
to avoid cross contention, the impact of contention caused
by PARSEC is thus low. As such, the difference between the
contention and normal samples is minimal and diagnosis of
ACT becomes more ambiguous. This observation is particu-
larly obvious for the pair of data-caching and data-serving.

Compared to the non-collocated case, the time spent to
detect the contention, so-called contention delay, is much
higher. The main reason is again the low impact of PARSEC
inference on lowly utilized latency-sensitive VMs. Thus,ACT
tends to fail its diagnosis. Another reason is that, with our
implementation of the parallel diagnosis, the window used
to collect the outlier sample has been purposely increased by
30 percent (25 sample units instead of 20) with respect to the
single VM analysis, to increase the detection accuracy.

7 RELATED WORK

Most related work focuses on interference characterization.
It can be differentiated by the types of input data, diagnosis
overhead, and detection strategy.

Input Data. To detect interference requires both hypervi-
sor and application performance metrics. While hypervisor
metrics are readily available to cloud providers, application
performance metrics, such as job completion time or request
latency, are hidden inside the VM. On the one hand, some
prior art [9], [10], [19], [26] explicitly ask such information to
be provided. On the other hand, low level metrics such as
IPC or CPI can help to predict client side performance [8],
[11], [12], [13], [22], [27] or detect phases [6], [7] without the
need for explicit feedbacks. Even though IPC can be used
for transactional workloads [28], it is not in general applica-
ble [18]. We approach the problem focusing on contention
rather than interference, thereby removing the issues of
application performance metrics.

Diagnosis Overhead. Completely passive diagnoses are
possible, but require more information than the active ones.
[11], [27] rely on a very large amount of statistical informa-
tion gathered on a per application and per platform type.
Alternatively, a human operator manually provides anoma-
lous VM signatures in [14]. Active approaches gather the
ground truth about anomalies by running the VMs in isola-
tion on dedicated platforms [8], [12], [13], [15]. We take
the approach of isolating the VMs by limiting the resource
allocation of neighboring VMs directly on production nodes
without the overhead of VM migration/cloning or the
need for dedicated platforms. A similar approach is taken
by [10], but with the objective of finding the optimal VM
resource allocation rather than contention detection.

Detection Strategy. Proactive approaches either estimate
interference between VMs by being aware of their sensitiv-
ity profile [12] or use predictive techniques to trigger an
action before interference occurs [9], [26]. Reactive solu-
tions [10], [11], [13], [14], [29] try to characterize the work-
loads in an on-line fashion and react to behavior anomalies.
Our approach is both reactive, since we detect contention
when it occurs, and proactive, since detected low contention
levels anticipate interference. Another category of related
work is simple off-line interference characterization of
workloads either running inside VMs or directly on bare
metal [27], [30], [31]. We rely on similar metrics to feed our
detection system, but strictly in an on-line fashion.

TABLE 5
Parallel Detection Analysis of ACT on Five Pairs

of Collocated Latency-Sensitive VMs

Det. rate False alarm Det. delay [sec]

Wiki Apache + Data serv. 0.98 0.04 50.2
Wiki Memc. + Data serv. 0.98 0.06 61.8
Wiki MySQL + Data serv. 0.83 0.02 56.8
Media stream. + Data serv. 0.96 0.01 60.9
Data caching + Data serv. 0.84 0.11 85.3
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8 DISCUSSION: RESOLVING CONTENTION

While the focus of ACT is to detect the contentions, particu-
larly the transient ones, here we provide a discussion on how
to leverage the findings of ACT in mitigating the contention.
Such a resource contention can be alleviated by various
resource management policies, such as changing the VM
consolidation plan [5], replicating the same jobs on multiple
servers [32] or migrating VMs to different hosts. We specifi-
cally present an example of migrating VMs from the con-
tended physical host to the non-contended one. We first
deploy Wikimedia together with one Blachscholes bench-
mark from PARSEC on three servers as in Fig. 9a. When
Blackscholes activates the contention on server 1, this results
in a 16 percent degradation in the page latency ofWikimedia.
Once this contention is detected by ACT, we can migrate
Blackscholes (to not disrupt the latency-sensitive Wikimedia
application) to either server 2 or server 3. Migrating Black-
scholes to the server 2 that hosts the MySQL VM reduces the
latency degradation to 2.2 percent (see Fig. 9b). In contrast,
migrating Blackscholes to server 3 that hosts theMemcached
VM even slightly improves the latency by 2.6 percent (see
Fig. 9c). These results show that migration is an effective
means to counter performance degradation from resource
contention and reflects well the observations from Sec-
tion 6.2. However, the performance difference between
migrating to server 2 or server 3 also underlines the difficulty
in resolving contention. To optimally mitigate the perfor-
mance degradation, it is critical that one can translate the
low level resource contention into high-level application
performance for all possible workload consolidation plans.
It is our future work to explore performance modeling tech-
niques to predict, resolve, and optimize collocated applica-
tion VMs in highly virtualized environments.

9 CONCLUSION

Virtualization in cloud computing aims to increase the over-
all system utilization but raises concerns over VM perfor-
mance isolation. In this paper, we propose an on-line
algorithm, ACT, to monitor and detect the problem of
shared resources contention for VMs of interest by only
leveraging low-level metrics and thus guaranteeing the ten-
ant’s business confidentiality. At the core is ACT, a three-
phase contention detection algorithm, that consists of an
alarm, passive clustering and active throttle phase involving
different tradeoffs of computation complexity and diagnosis
accuracy. Via throttling neighboring VMs, ACT can accu-
rately discern the contention caused by neighbors from
internal program changes. We extensively evaluate ACT
for latency-sensitive applications, namely Wikimedia and
Cloudsuite, hosted on a cloud testbed where different
batch-like applications are collocated. We exhaustively tune

the parameters of ACT against different system scenarios,
including time-varying workloads and collocated VMs.
Our evaluation results show that ACT detects contention in
90 percent of cases in short contention intervals with a direct
performance impairment to the collocated VMs as low as
15 percent which can be easily amortized over time.
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Minimizing Data Access Latencies for Virtual
Machine Assignment in Cloud Systems
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Abstract—Cloud systems empower the big data management by providing virtual machines (VMs) to process data nodes (DNs)

in a faster, cheaper and more effective way. The efficiency of a VM allocation is an important concern that is influenced by the

communication latencies. In the literature, it has been proved that the VM assignment minimizing communication latency in the

presence of the triangle inequality is 2-approximation. However, a 2-approximation solution is not efficient enough as data center

networks are not limited to the triangle inequality. In this paper, we define the quadrilateral inequality property for latencies such that

the time complexity of the VM assignment problem minimizing communication latency in the presence of the quadrilateral inequality

is in P (polynomial) class. Indeed, we propose an algorithm for the problem of assigning VMs to DNs to minimize the maximum

latency among allocated VMs in addition to DNs with their assigned VMs. This algorithm is latency optimal and 2-approximation for

networks with the quadrilateral inequality and the triangle inequality, respectively. Besides, the extension of the proposed method

can be applied to the cloud elasticity. The simulation results illustrate the good performance and scalability of our method in various

known data center networks.

Index Terms—VM assignment, data access, communication latency, elasticity

Ç

1 INTRODUCTION

THERE is an increasing need to manage and process large
and fast growing amount of data. Cloud computing

and its application in big data processing are becoming
more popular for big data management while cloud com-
puting offers important benefits like security, scalability
and economic benefits [1], [2].

Cloud environments consist of data centers that are con-
nected through networks and provide services. The most
important concern in such environments is the resource
management. In this regard, the virtualization technology
empowers the cloud computing to manage the resources
in a multi-user environment while a user receives its
requested services on demand from everywhere in any
time [3].

Hadoop (an implementation of MapReduce model) is
one of the platforms to process huge amount of data that
can be implemented in clouds [4] while cloud computing
revolutionizes big data management. In Hadoop, VMs are
provisioned by cloud systems to process data which are
stored in DNs. A good assignment of VMs for a user request
leads to provider’s benefit and user’s satisfaction. However,
resource management in cloud systems is not clear due to
the scale and uncertainty of future states. Proper models of
cloud environment, user requests and resource allocation
have to be formulated; then proper algorithms have to be
developed for cloud managers.

Various VM placement problems are considered in the
literature regarding cloud services and user criteria [5]. One
of the important aspects of a VM placement is communica-
tion latency. In services like MapReduce, process nodes
communicate with each other and access DNs to fulfill a
job. The time of each communication is crucial; thus, the
maximum latency between communicating nodes has to be
bounded in a VM assignment. The authors in [6] provided
the definition of the VM placement problem to optimize
communication latencies in cloud systems. The latency of a
candidate VM assignment in this problem is defined as the
maximum communication latency between any two
assigned VMs and any DN with its assigned VM.

In the literature, the VM placement problem (minimizing
latency) is addressed by assuming the triangle inequality
property on the network topology. The authors in [7]
showed that there is no solution better than 2-approxima-
tion for the VM assignment problem by considering the tri-
angle inequality. Also, they provided a 2-approximation
algorithm to find a VM placement with latency at most
twice of the minimum latency.

The triangle inequality has been assumed for the cloud
data center networks while there is not a discussion of how
accurate this assumption is. Since the triangle inequality
affects the bound on latency, it is not necessary to assume it
for the VM assignment problemwith known data center net-
works. It is possible to find other reasonable assumptions
about the properties of cloud data center networks rather
than the triangle inequality. In this way, better theoretical
bounds can be found which can lead to better practical solu-
tions. In this paper, a new property, called the quadrilateral
inequality, is defined. This property is motivated by the tree-
like structure of cloud networks and the Internet [8]. It is
worthwhile to mention that the considered VM assignment
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problem with this new property has an optimal solution
(minimizing latency) in tree networks.

In cloud systems, it is possible to have unforeseen
changes in a requirement or the environment (for example,
the addition of a DN or the failure of a VM). Such changes
have to be addressed by providing the suitable capacity.
This important property of adaptive capacity is called elas-
ticity [9] in which computing resources can be scaled up
and down easily by the cloud service provider [10]. Overall,
a change in the number of requested VMs has to be handled
in a proper VM allocation policy. In this paper, we consider
cloud elasticity by handling assignment of VMs to new
unmatched DNs. We add new matchings to the existing
assignment to minimize the maximum latency of overall
VM assignment.

The contribution of this paper is fourfold:

� First, we define a new property for network latencies
which is denoted by the quadrilateral inequality. This
property holds in tree networks while the topology of
several known cloud networks is tree-like. This prop-
erty resembles the triangle inequality which can be
assumed for cloud networks. Under the assumption
of the triangle inequality, there is not any polynomial
time algorithm for reaching the theoretical bounds of
minimum latency for the VM placement problem.
However, by considering the quadrilateral inequal-
ity, the considered VM assignment problem can have
a latency optimal solution.

� Second, we provide a perfect matching algorithm for
unbalanced weighted bipartite graphs that finds a
matching with minimum diam (maximum edge of
the matching). This algorithm finds an assignment of
VMs to DNs with a time complexity better than that
of the previously known matching algorithms.

� Third, we present the VMtoDNAssignment algo-
rithm to determine an assignment of VMs to DNs
with minimum latency. Our proposed algorithm is
latency optimal when the quadrilateral inequality is
assumed. Also, it is 2-approximation when the trian-
gle inequality is assumed. In addition to the theoreti-
cal proof, the simulation results indicate that the
proposed method returns a fairly well VM assign-
ment (minimizing latency) in practice. Indeed, these
results show that the proposed method finds better
assignment (minimizing latency) in comparison to
the existingmethods.

� Fourth, we extend the VMtoDNAssignment algo-
rithm to be applied to increase the number of
requested VMs after the initial VM allocation (elas-
ticity). In the prior studies of the VM assignment
problem, a change in number of VMs or DNs (after
the initial assignment) is not considered.

The rest of this paper is organized as follows: In Section 2,
we describe our problem in addition to the quadrilateral
inequality. An algorithm to find a perfect matching with
minimum diam in unbalanced weighted bipartite graph is
provided in Section 3. Then, we present an algorithm for the
VM assignment problem to minimize communication
latency in Section 4. In Section 5, our proposed algorithm is
extended to be applied to increase the number of requested

VMs. The experimental results are discussed in Section 6. In
Section 7, we give a brief review of the related work. Finally,
Section 8 concludes the paper.

2 PROBLEM OF VM ASSIGNMENT REGARDING THE

QUADRILATERAL INEQUALITY

In the considered cloud environment, there is a large num-
ber of computational nodes and storage nodes that are com-
posed of VMs and DNs, respectively. In this environment,
there are jobs that need VMs to access and process a set of
DNs; for example, the MapReduce jobs can be pointed out.
It is assumed that the set of DNs related to a job is known
beforehand while a set of VMs has to be selected and
assigned to DNs. In addition, it is possible that a set of DNs
or VMs encounters some changes during the job execution.
For example, these changes can be caused when aÞ a new
DN is added, bÞ a DN needs more assigned VMs and cÞ an
assigned VM to a DN goes down. All of these cases can be
considered as the addition of a new DN in which the VM
assignment of the considered job requires a revision.

Without loss of generality, we assume that the number of
needed VMs is equal to the number of DNs for a job. Also,
each VM is assigned to exactly one DN while each DN
needs exactly one assigned VM. If this assumption does not
hold for a VM/DN (that is, a VM can be assigned to more
than one DN or a DN needs more than one assigned VM), it
is enough to duplicate it in the problem formulation. For
example, when a DN needs three assigned VMs, we assume
three copies of this DN that each copy needs one VM. Also,
it is the same for VMs that can process more than one DN.

In the problem formulation, we consider one request at a
time, i.e., one job with a set of DNs. Therefore, several
requests at the same time are handled consecutively (not
simultaneously) in our model. Also, in the context of the VM
assignment problem, most of the studies assumed one
request at a time.However, a less optimal solution can be pro-
duced by considering (at the same time) requests separately
than considering them all together, therefore, wewill address
considering requests simultaneously in our futurework.

In this paper, the problem of VM assignment (for a job) is
defined as selecting n VMs (from the set of available VMs)
and assigning them to n DNs such that the latency of the
assignment of VMs to DNs be minimum. For example, let
consider a job J with three DNs DN1, DN2 and DN3 in
Fig. 1a. A sample VM assignment for job J is shown in
Fig. 1b. The edges of this assignment are shown by dashed
lines while the edge with maximum latency determines the
latency of the assignment. Further, the problem includes the
case of scaling up and down the number of allocated VMs
for an existing VM assignment after the initial assignment

Fig. 1. Cloud environment with a sample VM assignment and its revision.
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of VMs to DNs. In Fig. 1c, DNS of job J are increased by DN4
while new added edges to the existing VM assignment are
shown by black dashed lines. Here, decreasing the number
of VMs is clear, however, increasing the number of VMs
needs more attention. In the case of increasing the number
of VMs, free VMs are selected and assigned to unmatched
DNs such that the maximum latency regarding the initial
VM assignment (that is, the latency of overall VM assign-
ment) be minimum.

Assumed properties on the communication latencies in
the VM assignment problem have an important influence
on the proposed algorithms. Therefore, we define a prop-
erty on the communication latencies which is denoted by
the quadrilateral inequality. Assuming this property in the
VM assignment problem is an important aspect of the pre-
sented algorithm in Section 4. In what follows, first, we pro-
vide the definition of the quadrilateral inequality. Second,
we provide a theorem on the quadrilateral inequality prop-
erty in tree networks. Third, we discuss the assumption of
the quadrilateral inequality for known data center net-
works. At last, our considered problem regarding the quad-
rilateral inequality in comparison to the triangle inequality
is discussed.

Definition 2.1. Let consider four nodes a, b, c and d in a graph.
Also, let du;v denote the distance (or latency) between two nodes
u and v. The quadrilateral inequality states that if maxfda;c;
dd;c; da;b; dd;bg � db;c, then da;d � db;c. In other words, when
the quadrilateral inequality holds, if db;c is not less than da;c,
dd;c, da;b and dd;b then db;c is not less than da;d.

Theorem 2.2. Every tree graph has the quadrilateral inequality
property.

Proof. We show that the quadrilateral inequality is satisfied
for any four nodes a, b, c and d in a tree that maxfda;c;
dd;c; da;b; dd;bg � db;c. Let consider the paths that connect a,
b and c. Because there is not a cycle in a tree, these paths
are crossed in exactly one node. If we consider the node d
in addition to other nodes, one of the cases in Fig. 2 is
resulted. We discussed the case in Fig. 2a while other
cases are similar.

We can conclude the following inequalities from the
relations between latencies

da;c � db;c ) da;x þ dx;c � db;x þ dx;c ) da;x � db;x (1)

dd;b � db;c ) dd;y þ dy;b � db;y þ dy;c ) dd;y � dy;c: (2)

By substituting the inequalities (1) and (2) in da;d, the
following inequality is resulted

da;d ¼ da;x þ dx;y þ dy;d � db;x þ dx;y þ dy;c � db;c

) da;d � db;c:
(3)

Therefore, the quadrilateral inequality is satisfied for
any four optional nodes a, b, c and d that maxfda;c;
dd;c; da;b; dd;bg � db;c. tu

Here, we briefly discuss the assumption of the quadrilat-
eral inequality for the cloud networks. Hierarchical, Tree,
VL2, Fat-tree and BCube are five known data center net-
works in cloud systems [11]. If we assume that these net-
works are symmetric (that is, for a connection, different
choices of links and switches at the same level have equal
latencies), then it is possible to connect racks in these net-
works by a tree such that the latency between two optional
racks in a tree remains the same as the initial network. In
such cases, the mentioned networks have the quadrilateral
inequality. However, these networks are not always sym-
metric and the degree that a network can be approximated
to have the quadrilateral inequality is dependent to its
structure and its components latencies. The practical perfor-
mance of assuming the quadrilateral inequality for the
known data center networks (regarding the VM assignment
problem) is reported in Section 6.

Moreover, it is worthwhile to mention that the quadrilat-
eral inequality is defined to avoid the triangle inequality
assumption. Prior studies consider the VM allocation prob-
lem with the triangle inequality assumption on latencies
[6], [7]. The authors in [7] showed that there is no solution
better than 2-approximation in the presence of the triangle
inequality. However, the time complexity of this problem
with the assumption of the quadrilateral inequality is in P
class (it can be solved in polynomial time) since we present
a latency optimal algorithm for it in Section 4. Besides, our
proposed algorithm is 2-approximation for the assumption
of the triangle inequality. Theorems 4.1 and 4.2 show that
our proposed algorithm is optimal and 2-approximation for
the quadrilateral inequality and the triangle inequality,
respectively.

Table 1 summarize the notations and definitions that are
used in this paper.

3 PERFECT MATCHING IN UNBALANCED WEIGHTED

BIPARTITE GRAPHS

In this section, we present an algorithm to find a perfect
matching with minimum diam in an unbalanced weighted
bipartite graph. This algorithm is used in next section to
provide an assignment of VMs to DNs. Using this algorithm

Fig. 2. The paths between four nodes in a tree.

TABLE 1
Notation Definitions

Notation Definition

diam The edge with maximum weight in a
matching.

du;v The distance between two nodes u and v.
Note that du;v ¼ dv;u.

de The latency of the edge e.

dS The diameter of the set S.

A VM assignment a subset of VMs in addition to a match-
ing from DNs to these VMs.

The latency of the
assignment of VMs
to DNs

The maximum latency among allocated
VMs in addition to DNs and their
assigned VMs.

The quadrilateral
inequality

Ifmaxfda;c; dd;c; da;b; dd;bg � db;c, then
da;d � db;c.
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rather than the existing methods improves the time com-
plexity of VM allocation.

Amatching in a graph is defined as a subset of edges such
that no vertex has more than one neighbor. Let consider an
unbalanced weighted bipartite graph G :¼ ðD;V ;EÞ such
that the set D [ V is its vertices (jDj < jV j) and the set E is
its edges fromD to V . A perfect matching in the graphG is a
subset of the set E such that each vertex in the set D has
exactly one neighbor in the set V . In the context of matching
problem, an alternating path is a path in which the edges
belong alternatively to thematching and not to thematching.
Also, an augmenting path is an alternating path that starts
from and ends on unmatched vertices. The cardinality of a
consideredmatchingM is increased by taking the symmetric
difference of an augmenting pathwithM.

Our matching algorithm is presented in Section 3.1. The
main idea of this algorithm is to construct a particular tree
to find augmenting paths faster. Such trees are construc-
ted iteratively by adding vertices from the set D [ V and
the edges from the set E. An example of the MinMatching
Algorithm, its correctness and its time complexity are given
in Sections 3.2, 3.3, and 3.4, respectively.

3.1 MinMatching Algorithm

The MinMatching algorithm takes as input the unbalanced
weighted bipartite graph G :¼ ðD;V ;EÞ which D is smaller
part of vertices and V is the bigger one. It is assumed that
the set E ¼ fdi;jji 2 D and j 2 V g is sorted ascending (other-
wise, this set can be sorted in time OðjEj � logjEjÞ). The
algorithm reports as output a perfect matchingM with min-
imum diam (which it is from the setD to the set V ).

The MinMatching algorithm constructs a tree T and uses
it to find augmenting paths in the graph G. Initially, the tree
T consists of a vertex rd as its root (this vertex is not in the
set D [ V ) and all vertices in the set D are added as children
of the vertex rd (note that the vertices in the set V are not in
the tree T at first). Subsequently, a set F is considered to
construct the tree T (which is empty at first and is a subset
of the set E).

Iteratively, an edge of the set E (next smallest edge) is
added to the set F . In each iteration, the development of the
tree T is examined by checking the new added edge to the
set F . If the new edge has exactly one end in the tree T , then
its other end is added to the tree T . Whenever a new vertex
can be added to the tree T , an algorithm similar to DFS is
called to add other vertices that can be reached (regarding
the set F ) from this new vertex and are not in the tree T .
Whenever a new vertex (and probably some other new ver-
tices which are reached from it) is added to the tree T , the
existence of an augmenting path is checked. If there is an
unmatched vertex from the set V in the Tree T , then there is
an augmenting path in T . Therefore, the new added subtree
is checked to find an unmatched vertex from the set V .

The algorithm MatchUpdate is called to add the reach-
able vertices from the new added vertices while it checks
the existence of an augmenting path simultaneously. When
this algorithm finds an augmenting path, it stops the pro-
cess of adding the vertices and updates the found augment-
ing path (switch the edges along the augmenting path from
in to out of the the matching M while the cardinality of the
matching M is increased). After updating an augmenting

path, the tree T is reconstructed and the next iteration is
run. Finally, when all vertices in the setD have one matched
vertex in the set V , the algorithm concludes. The details of
the MinMatching algorithm and the MatchUpdate algo-
rithm are illustrated in Algorithms 1 and 2, respectively.

Algorithm 1.MinMatching Algorithm

Require: An unbalanced weighted bipartite graph
G :¼ ðD;V ;EÞ

1: T  a tree with root rd and all d 2 D as children of rd
2: M  null, F  null
3: while there is an unmatched vertex inD do
4: ði; jÞ  next smallest member of E ði 2 D; j 2 V Þ
5: F  F [ fði; jÞg
6: if i 2 T and j =2 T then
7: T  T [ fj as a child of ig
8: ifMatchUpdateðjÞ equals to 1 then
9: T  a tree with root rd and all unmatched d 2 D as

children of rd
10: DFSlist all unmatched d 2 D
11: while DFSlist is not null do
12: df  next member of DFSlist
13: Ne fneighbors ðdfÞg � T (according to the set F )
14: for each n 2 Ne do
15: T  T [ fn as a child of dfg
16: if n has a match then
17: add its match to DFSlist
18: add its match to T as a child of n
19: end if
20: end for
21: end while
22: end if
23: end if
24: end while
25: returnmatchingM

Algorithm 2.MatchUpdate Algorithm

Require:a vertex j
1: if j is unmatched (i.e., there is an augmenting path from j)

then
2: update the matching M regarding the found augmenting

path
3: return 1
4: end if
5: i matchðjÞ, T  T [ fi as a child of jg
6: for each k 2 fneighborsðiÞg � fjg (according to the set F ) do
7: if k =2 T then
8: T  T [ fk as a child of ig
9: end if
10: ifMatchUpdateðkÞ equals to 1 then
11: return 1
12: end if
13: end for
14: return 0

3.2 An Example of the MinMatching Algorithm

Here, we provide an example of theMinMatching algorithm.
The input setsD, V and weights of the edges in the set E are
illustrated in Fig. 3a. The different states of the tree T and the
matching M (regarding the While statement in Line 3 of the
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MinMatching algorithm) are illustrated in Figs. 3b, 3c, 3d, 3e,
3f, 3g, 3h, 3i, 3j, 3k, and 3l. In these figures, the tree T is drawn
in left, which is rooted by the node rd and the edges sof the
matching M are determined by solid lines. In following, the
steps of the considered example (regarding Figs. 3b, 3c, 3d,
3e, 3f, 3g, 3h, 3i, 3j, 3k, and 3l) are explained:

The initial tree T is constructed in Line 3 of theMinMatch-
ing algorithm as shown in Fig. 3b. The While statement in
Line 3 of the MinMatching algorithm considers the edges
regarding their weights. These edges are fðDN3; VM1Þ; ðDN3;
VM2Þ; ðDN4; VM1Þ; ðDN1; VM3Þ; ðDN4; VM6Þ; ðDN4; VM5Þ;
ðDN1; VM1Þ; ðDN2; VM3Þ; ðDN1; VM2Þ; . . .g.
� The edge ðDN3; VM1Þ is added to the set F (Line 5):

This edge is added to the tree T (Line 8) as shown
in Fig. 3c. MatchUpdate(VM1) (which is called in
Line 9) adds the edge ðDN3; VM1Þ to the matching
M. Then Lines 10-23 reconstruct the tree T . The
result is shown in Fig. 3d.

� The edge ðDN3; VM2Þ is added to the set F (Line 5):
The IF statement in Line 7 does not hold. The result
is shown in Fig. 3e.

� The edge ðDN4; VM1Þ is added to the set F (Line 5):
Line 8 and MatchUpdate(VM1) reconstruct the tree T
as shown in Fig. 3f. The last recursive call of the
MatchUpdate algorithms is MatchUpdate(VM4) that
leads to find the augmenting path fðDN4; VM1Þ;
ðVM1; DN3Þ; ðDN3; VM2Þg. The update of this aug-
menting path in addition to the reconstruction of
tree T (Lines 10-23) is shown in Fig. 3g.

� The edge ðDN1; VM3Þ is added to the set F (Line 5):
This edge is added to the tree T (Line 8) as shown in
Fig. 3h. Again, the MatchUpdate algorithm adds the
edge ðDN1; VM3Þ to matching M and Lines 10-23
reconstruct the tree T . The Result is shown in Fig. 3i.

� The edges ðDN4; VM6Þ, ðDN4; VM5Þ and ðDN1; VM1Þ
are added to set F by the While statement (Line 3):

The tree T and matching M do not change. The
result is shown in Fig. 3j.

� The edge ðDN2; VM3Þ is added to the set F (Line 5):
Line 8 and MatchUpdate(VM3) reconstruct the tree T
as shown in Fig. 3k. The last recursive call of the
MatchUpdate algorithms is MatchUpdate(VM6) that
leads to find the augmenting path fðDN2; VM3Þ;
ðVM3; DN1Þ; ðDN1; VM1Þ; ðVM1; DN4Þ; ðDN4; VM6Þg.
The update of this augmenting path in addition
to the reconstruction of tree T (Lines 10-23) is shown
in Fig. 3l.

Now, all vertices in the set D are matched and the
MinMatching algorithm is finished. Overall, the edges of
the perfect matching with minimum diam are ðDN1; VM1Þ,
ðDN2; VM3Þ, ðDN3; VM2Þ and ðDN4; VM6Þ.

3.3 Correctness of the MinMatching Algorithm

Let the perfect matching with minimum diam be the set
MOpt ¼ fe1 � e2 � � � � � ejDjÞg and the output of the Min-
Matching algorithm be the setMalg. Also, letMc

alg be the com-
puted matching in Line 2 of the MatchUpdate algorithm
when F ¼ Fc ¼ feje 2 E and de � decg (that is, after the edge
ec 2Mopt is added to the set F in Line 5 of the MinMatching
algorithm). To show the correctness of the MinMatching
algorithm, it is enough to show that the set M

jDj
alg has the car-

dinality jDj. In following, we use mathematical induction to
show thatMc

alg has cardinality at least c (0 � c � jDj).
The base case of the induction: the set M0

alg has cardinal-
ity 0 when c ¼ 0. The proof is clear.

The inductive step of the induction: the setMc
alg has cardi-

nality at least c if the setMc�1
alg has the cardinality at least c� 1.

The proof of the induction hypothesis: if jMc�1
alg j � c, then

the proof is complete, therefore, we consider the case that
jMc�1

alg j ¼ c� 1. We examine the number of augmenting
paths in the graph G :¼ ðD;V ;FcÞ. By considering the
matching MOpt, there are at least c disjoint augmenting
paths in the set Fc when no edge from this set is considered
as a matching edge. We iteratively add an edge of the set Fc

(regarding the matching Mc�1
alg ) to the matching Mc. When

the role (i.e., be in matching or not) of an edge from the set
Fc is changed, the number of augmenting paths is decreased
by one. That is because when an edge is added to the match-
ing, two disjoint augmenting paths become one augmenting
path or an augmenting path is updated to an ordinary path.
Hence, at least one augmenting path remains in the set Fc

when c� 1 edges from the matching Mc�1
alg in the set Fc are

added to the matchingMc
alg.

Now, it is enough to show that the remained augmenting
path (which is denoted by Paug) leads to a matching with
cardinality jcj. Let the edge ðdi; viÞ 2 Fc be the last edge that
is added to the path Paug. This edge is not in the matching
Mc

alg because it is recently added to the set Fc. The vertex di
is in the tree T and the vertex vi is not in the tree T , other-
wise, before the addition of this edge, there is an augment-
ing path that consists of a path from vi to rd and a path from
vi to the unmatched vertex v (one end of the path Paug).
Hence, the MatchUpdateðviÞ is called in Line 8. The Match-
Update recursively calls itself regarding the tree T until it
reaches the end of the path Paug. Therefore, an unmatched
vertex is found that leads to find the augmenting path Paug.

Fig. 3. An example of the MinMatching algorithm.

MALEKIMAJD AND MOVAGHAR: MINIMIZING DATA ACCESS LATENCIES FOR VIRTUAL MACHINE ASSIGNMENT IN CLOUD SYSTEMS 861



Finally, this path is updated and as a result the cardinality
of the matchingMc

alg is increased.
Overall, the MinMatching algorithm finds a matching

with jDj edges (i.e., a perfect matching) after the edge ejDj is
added to the set F . This matching has the diam dejDj , there-
fore, the output of the MinMatching algorithm is a perfect
matching with minimum diam.

3.4 Time Complexity

The time complexity of the MinMatching algorithm is mainly
related to theWhile statement in Line 3 that is iterated atmost
jEj times. However, to have a better estimation, independent
of the number of iterations of the While statement in Line 3,
we examine the time complexity of the If statement in Line 8
(i.e., the time complexity of all calls of the MatchUpdate algo-
rithm) and the While statement in Line 11. In following, the
time complexity of all calls of the MatchUpdate algorithm
and the reconstruction of the tree T (i.e., lines 8-22) are stated.

The MatchUpdate algorithm checks edges (and adds
them to the tree T ) that have one matched vertex from the
set V . This algorithm recursively calls itself until there are
no more edges to check or it encounters an edge with one
unmatched vertex from the set V . When this algorithm
meets an edge that has an unmatched vertex from the set V ,
this means that an augmenting path is found. The number
of edges with matched vertices from the set V is OðjDjÞ.
Also, updating an augmenting path is OðjDjÞ. As the tree T
is not reconstructed between two updates of augmenting
paths, we can conclude that the time complexity of multiple
calls of the MatchUpdate algorithm between two updates of
augmenting paths is OðjDjÞ (that is, OðjDjÞ edges are exam-
ined and a path with OðjDjÞ edges is updated). As there are
OðjDjÞ augmenting paths, all the calls of the MatchUpdate
algorithm have the time complexity OðjDj � jDjÞ.

The MatchUpdate algorithm returns 1 at most OðjDjÞ
times. That is because it returns 1 when it finds an augment-
ing path and there are jDj augmenting paths. The body of
the If statement in Line 8 reconstructs the tree T whenever
the MatchUpdate algorithm returns 1. Therefore, the body
of the If statement (moreover the While statement in
Line 11) is executed OðjDjÞ times. Indeed, each execution of
the While statement in Line 11 has the time complexity
OðjDjÞ because the number of vertices of the tree T is
OðjDjÞ. Overall, the time complexity of all executions of the
body of the If statement in line 8 is OðjDj � jDjÞ.

It is concluded that the time complexity of the MinMatch-
ing algorithm is OðjEjÞ because each part of it has the time
complexity OðjEjÞ or OðjDj � jDjÞ. It is good to note that
the time complexity of the MinMatching algorithm is
OðjEj logðjEjÞÞ if the set E is not sorted. As far we know,
there is not any algorithm in the literature for the perfect
matching with minimum diam and our proposed algorithm
is the first one. Also, the best time complexity of the mini-
mum perfect matching in unbalanced weighted bipartite
graphs is OðjDj � ðjEj þ jDj � logðjDjÞÞÞ [12]. However, this
algorithm is not helpful in this paper, because the sum of
the edges is considered instead of the diam.

4 ASSIGNMENT OF VMS TO DNS

In this section, we provide an algorithm to find a set of
VMs and assign them to the considered set of DNs such

that the latency of the assignment of VMs to DNs (as
defined in Table 1) be minimum. Our proposed algorithm
which is denoted by the VMtoDNAssignment algorithm,
is described in Section 4.1. This algorithm finds an optimal
assignment when the quadrilateral inequality holds in
the communication latencies. Also, it is a 2-approximation
algorithm when the communication latencies satisfy the
triangle inequality. The optimality and time complexity
of the VMtoDNAssignment algorithm are discussed in
Sections 4.2 and 4.3, respectively.

The main idea of the VMtoDNAssignment algorithm is
to examine all pairs of VMs as the diameter of the solution.
The examination is performed by calculating the best per-
fect matching from DNs to a subset of VMs with the consid-
ered diameter. Overall, the best VM assignment for a job is
selected by comparing calculated VM assignments. A VM
assignment includes a subset of VMs in addition to a match-
ing from DNs to these VMs.

4.1 VMtoDNAssignment Algorithm

Let the set of available VMs and the set of DNs be denoted by
V and D, respectively. The VMtoDNAssignment algorithm
examines each pair ðvi; vjÞ 2 V � V that dvi;vj is less than the
latency of the best found VM assignment (which holds in the
algorithm and updated after each examination). The exami-
nation of the pair ðvi; vjÞ is started by calculating a maximal
set smax � V such that fvi; vjg � smax and dsmax ¼ dvi;vj .

The maximal set smax is calculated by calling the Maxi-
malSet algorithm which takes two nodes ðvi; vjÞ and returns
the set fuju 2 V , du;vi � dvi;vj and du;vj � dvi;vjg. Note that the
output of the MaximalSet algorithm has the maximal cardi-
nality as its diameter is ðvi; vjÞ. If the set smax has enough
number of VMs (i.e., jsmaxj � jDj), then the VMtoDNAssign-
ment algorithm calculates an optimal assignment of the set
smax to the set D by the MinMatching algorithm. Overall,
the examination of the pair ðvi; vjÞ leads to a VM assignment
(if it exists) that its latency is maximumðdvi;vj ; the diam
of the matching from D to smaxÞ. The best found VM assign-
ment is updated whenever a new possible VM assignment
with better latency is found. Note that a VM assignment
consists of a subset of the set smax with cardinality jDj
that its nodes are matched to the nodes of the set D. At
last, when all pairs ðvi; vjÞ 2 V � V are examined, the
VMtoDNAssignment algorithm reports the best found VM
assignment as output. The details of the VMtoDNAssign-
ment algorithm and the MaximalSet algorithm are illus-
trated in Algorithms 3 and 4, respectively.

4.2 Optimality

Initially, we prove that the set maxSet in Line 7 of the
MaximalSet algorithm is maximal while the edge ðvi; vjÞ is
its diameter. Subsequently, Theorem 4.1 is asserted that
the VMtoDNAssignment algorithm is latency optimal
in the presence of the quadrilateral inequality. Moreover,
Theorem 4.2 is asserted that the VMtoDNAssignment
algorithm is 2-approximation in the presence of the triangle
inequality.

The proof of the correctness of the MaximalSet algorithm
has two parts. First, there is not a node that it is not in the
set maxSet but can be added to it, i.e., the set maxSet is
maximal. That is because each node ts 2 V �maxSet
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increases the diameter of the set maxSet regarding Line 3 of
the MaximalSet algorithm. Second, the diameter of the set
maxSet equals to dvi;vj . Let assume two optional nodes
fo1; o2g � maxSet. If we consider these two nodes in addi-
tion to vi and vj regarding the quadrilateral inequality, we
can conclude do1;o2 � dvi;vj and, therefore, the diameter of
the setmaxSet is dvi;vj .

Algorithm 3. VMtoDNAssignment Algorithm

Require: a setD (DNs), a set V (available VMs) and
fdu;vjðu; vÞ 2 ðD [ V Þ � ðD [ V Þg

1: L sorted list fdu;vju 2 D and v 2 V g
2: candidateSet a random VM assignment
3: for each ðvi; vjÞ 2 V � V do
4: if dvi;vj > latency of candidateSet then
5: continue
6: end if
7: smax  MaximalSetðvi; vjÞ
8: if jsmaxj � jDj then
9: LD;smax  sorted list fdu;vju 2 D and v 2 smaxg
10: M  MinMatching(D, smax, LD;smax )
11: A VM assignment related toM
12: if A is better than candidateSet then
13: candidateSet A
14: end if
15: end if
16: end for
17: return candidateSet

Algorithm 4.MaximalSet Algorithm

Require:a set V , a pair ðvi; vjÞ 2 V and fdu;vjðu; vÞ 2 V � V g
1: maxSet null
2: for each u 2 V do
3: if du;vi � dvi;vj and du;vj � dvi;vj then
4: maxSet maxSet [fug
5: end if
6: end for
7: returnmaxSet

Theorem 4.1. The VMtoDNAssignment algorithm, in the pres-
ence of the quadrilateral inequality, finds an assignment of
VMs to DNs such that the latency of this VM assignment be
minimum.

Proof. We assume, by contradiction, that there is an assign-
ment of VMs to DNs with a latency less than the latency
of the output of the VMtoDNAssignment algorithm. Note
that an assignment of VMs to DNs means that a subset of
the set V is selected and their nodes are matched to DNs.
Let the best VM assignment and the selected VMs in this
VM assignment be denoted by cnt and Vcnt, respectively.
Two cases for the edge with maximum latency in the VM
assignment cnt have to be considered. First, both ends of
this edge are VMs. Second, one end is a VM and another
one is a DN. Each case is discussed separately in the
following.

First case, let consider ðt1; t2Þ 2 V � V is the diameter
of the VM assignment cnt and, therefore, the latency of
cnt equals to dt1;t2 . When the nodes t1 and t2 are exam-
ined in Line 3 of the VMtoDNAssignment algorithm,

a maximal set smax with the diameter ðt1; t2Þ is calculated.
The set smax is a superset of the set Vcnt due to the maxi-
mality of the set smax. In addition, we consider that
ðdn; vdnÞ 2 D� V is the diam of the matching from the
set D to the set Vcnt in the VM assignment cnt. The maxi-
mum latency between DNs and their assigned VMs in
Vcnt (i.e., the diam of the matching) equals to ddn;vdn
(which is the latency between the node dn 2 D and its
matched node vdn 2 V ). The VMtoDNAssignment algo-
rithm finds a perfect matching with diam at most ddn;vdn
because there is a perfect matching from the set D to the
set Vcnt and the MinMatching algorithm in Line 10
reports the optimal matching. Overall, the VMtoDNAs-
signment algorithm examines at least one VM assign-
ment as good as the VM assignment cnt and, therefore,
the contradiction assumption is not true.

Second case, let consider two nodes s1 2 Vcnt and s2 2 D
such that the latency of the VM assignment cnt equals to
ds1;s2 and the edge ðt1; t2Þ 2 Vcnt � Vcnt is the diameter of
the set Vcnt. When two nodes t1 and t2 are examined in
Line 3 of the VMtoDNAssignment algorithm, a maximal
set including t1 and t2 is calculated that is denoted by Sp
and it is a superset of the set Vcnt. Similar to the prior case,
the VMtoDNAssignment algorithm finds the perfect
matchingwithminimumdiam from the set Sp to the setD.
This matching is not worse than the matching in the VM
assignment cnt because any perfect matching for the set
Vcnt is a perfect matching for the set Spwhen Sp is a super-
set of the set Vcnt. Hence, the related matching of the set Sp
is not worse than the matching in the VM assignment cnt.
Overall, the VMtoDNAssignment algorithm examines at
least one set which its VM assignment is as good as the VM
assignment cnt and, therefore, the contradiction assump-
tion is not true. tu

Theorem 4.2. The VMtoDNAssignment algorithm, in the pres-
ence of the triangle inequality, is a 2-approximation algorithm,
i.e., it finds an assignment of VMs to DNs with latency at most
twice of the latency of the optimal assignment.

Proof. Let consider the optimal VM assignment consists
of the setOptSet � V and the edge ðt1; t2Þ is the diameter of
the set OptSet. All members of the set OptSet are added to
the set smax in Line 7 of the VMtoDNAssignment algorithm
(i.e., OpeSet � smax) due to the maximality of the set smax.
Hence, the optimal perfect matching from the set D to the
set OptSet (which is denoted byMMopt) is a perfect match-
ing from the set D to the output of MaximalSetðt1; t2Þ.
Therefore, the optimal perfect matching related to the set
smax (which is denoted by MM) is not worse than the
matchingMMopt. The matchingMM is examined as a can-
didate set in Line 12 and, therefore, the output of the
VMtoDNAssignment algorithm is equal or better than it.
Finally, it is enough to show that the latency of the VM
assignment related to the matching MM is at most twice
the latency of the optimal VMassignment. To show this, we
verify the latency between two optional nodes u and v in
the VMassignment related to thematchingMM.

� First case: When both of nodes u and v are
VMs (fu vg � smax), we have du;t1 � dt1;t2 and
dv;t1 � dt1;t2 regarding Line 3 of the MaximalSet
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algorithm. Moreover, we have du;v � du;t1 þ dv;t1
regarding the triangle inequality between three
nodes u, v and t1. By putting together these three
inequalities, we have

du;v � du;t1 þ dv;t1 � dt1;t2 þ dt1;t2 � 2� dt1;t2 : (4)

� Second case: du;v (ðu; vÞ 2MM) is equal or less than
the diam of the matching MMopt because we
showed that the diam ofMMopt is not less than the
diam of the matchingMM. Overall, the maximum
latency related to the output of MaximalSetðt1; t2Þ
and the matchingMM is not greater than 2� dt1;t2 .
Therefore, the VMtoDNAssignment algorithm
returns a 2-approximation VM assignment of the
optimal VM assignment. tu

4.3 Time Complexity

The list L in Line 1 of the VMtoDNAssignment algorithm is
sorted in time OðjEjlogðjEjÞÞ. The For loop in Line 3 of the
VMtoDNAssignment algorithm is iterated at most OðjV j2Þ.
The MaximalSet algorithm and the MinMatching algorithm
are called in each iteration of this loop. The time complexity
of the MaximalSet algorithm is OðjV jÞ because the For loop
in Line 2 of the MaximalSet algorithm is iterated OðjV jÞ
times. The list LD;smax in Line 9 of the VMtoDNAssignment
algorithm can be sorted in time OðjEjÞ with regard to the
sorted list L. The time complexity of the MinMatching
algorithm (which stated in Section 3) is OðjEjÞ. Hence, the
time complexity of the VMtoDNAssignment algorithm is
OðjEjlogðjEjÞ þ jV j2 � ðjV j þ jEj þ jEjÞÞ. As jEj ¼ jV j � jDj
and logðjEjÞ ¼ logðjV j 	 jDjÞ � jV j2, the time complexity of
the VMtoDNAssignment algorithm equals to OðjV j3 � jDjÞ.

It is worthwhile to mention that, however, the time com-
plexity of the VMtoDNAssignment algorithm seems to be
high for cloud networks, it is less than the time complexity
of the existing algorithms, e.g., the proposed algorithm in
Ref. [7]. Indeed, the VMtoDNAssignment algorithm runs in
reasonable time in simulation experiments.

5 CAPACITY ADAPTABILITY

There are situations that a job which already has a VM
assignment, needs more VMs to continue its execution
properly; for example, when some new DNs are added or
some DNs need more assigned VMs [13]. The adaptability
of the allocated capacity for a job is related to the concept of
elasticity which is one of important and outstanding charac-
teristic of cloud systems. In this section, we present the Elas-
ticityAssignment algorithm to handle this adaptability. We
assume that the initial VM assignment for a job is calculated
by the VMtoDNAssignment algorithm and the secondary
changes for the VM assignment related to a job are handled
by the ElasticityAssignment algorithm.

The general idea of the ElasticityAssignment algorithm is
the same as the VMtoDNAssignment algorithm. Each pair
of possible VMs is examined (as the diameter) to find a com-
plementary VM assignment for the new added DNs. At last,
the algorithm selects the best candidate VM assignment
such that the maximum latency of the overall VM assign-
ment (i.e., the complementary VM assignment in addition
to the existing VM assignment) be minimum.

5.1 ElasticityAssignment Algorithm

The ElasticityAssignment algorithm handles the changes
related to an existing job in the from of increasing the num-
ber of allocated VMs and assigning them to new DNs. This
algorithm considers the current VM assignment of the job
and assigns a subset of available VMs to unmatched DNs to
minimize communication latency of the overall VM assign-
ment. In the rest of this section, let V , Vinit, Dinit, Dnew and
MM be the set of available VMs, the set of assigned VMs,
the initial set of DNs, the set of new added DNs and the
matching from Vinit toDinit, respectively.

The ElasticityAssignment algorithm searches for a set
Vnew � V and a matching from Dnew to Vnew, such that the
maximum latency of the set Vinit [ Vnew and their assign-
ment to Dinit [Dnew be minimum. Initially, the algorithm
finds the diameter of the set Vinit which its end nodes are
denoted by dmr1 and dmr2. Then, the algorithm examines
possible VM assignments for every pair ðvi; vjÞ 2 ðV � V Þ[
ðV � VinitÞ [ fðdmr1; dmr2Þg. If the set MaximalSetðvi; vjÞ
contains the set Vinit, then the perfect matching with mini-
mum diam for the MaximalSetðvi; vjÞ is calculated by call-
ing the MinMatching algorithm. The latency of the overall
assignment (i.e., Vinit and a subset of MaximalSetðvi; vjÞ
with their assignment to Dinit [Dnew) is compared with the
latency of the best found VM assignment. The best found
candidate is updated if its latency is greater than the latency
of this overall assignment. Finally, when all mentioned
pairs are examined, the best found VM assignment is
returned. The detail of the ElasticityAssignment algorithm
is illustrated in Algorithm 5.

Algorithm 5. ElasticityAssignment Algorithm

Require: a set Vinit (allocatedVMs), a setDnew (newDNs), a set
V (availableVMs) and fdu;vjðu; vÞ 2 ðDnew [ V Þ� ðDnew [ V Þg

1: candidateSet a random VM assignment
2: L sorted list fdu;vju 2 Dnew and v 2 V g
3: ðdmr1; dmr2Þ  diameter of Vinit

4: for each ðvi; vjÞ 2 ðV � V Þ [ ðV � VinitÞ [ fðdmr1; dmr2Þg do
5: smax  MaximalSetðvi; vjÞ
6: if Vinit 6� smax then
7: continue
8: end if
9: if jsmaxj � jDnewj then
10: LDnew;smax  sorted list fdu;vju 2 Dnew and v 2 smaxg
11: M  MinMatching(Dnew, smax; LDnew;smax )
12: A VM assignment related toM
13: if A is better than candidateSet then
14: candidateSet A
15: end if
16: end if
17: end for
18: return candidateSet

5.2 Optimality

In this section, a theorem is provided to show the optimality
of the ElasticityAssignment algorithm.

Theorem 5.1. The ElasticityAssignment algorithm finds a VM
assignment from Vnew 2 V to Dnew such that the latency of the
overall VM assignment Vnew [ Vinit to Dnew [Dinit be mini-
mum when the quadrilateral inequality is satisfied on latencies.
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Proof. We assume, by contradiction, that there is a VM
assignment C with a latency less than the latency of the
output of the ElasticityAssignment algorithm. In the
assignment C, the set of new assigned VMs and the corre-
sponding matching are Vc and MMc, respectively. Also,
the diameter of the set Vc is ðdi1c; di2cÞ.

Let consider the VM assignment C that is concluded
from the examination of the pair ðdi1c; di2cÞ in Line 4 of
the ElasticityAssignment algorithm. The VM assignment
C exists because smax is a superset of the set Vc and the If
statement in Line 5 is not satisfied. Also, let consider the
VM assignment C included the set Vc of VMs and the
matchingMMc.

Here, the latency of the assignment C in addition to
the initial VM assignment is verified. This latency is the
maximum of the latency Vc [ Vinit and the latency
MMc [MM. As Vc �MaximalSetðdi1c; di2cÞ and Vinit �
MaximalSetðdi1c; di2cÞ (Line 6 of the ElasticityAssign-
ment algorithm), the latency Vc [ Vinit equals to ddi1c;di2c .
Also, the latency of the matchingMMc is not greater than
the latency of the matching MMc because the set Vc is
selected regarding a matching from the set Dnew to the
set MaximalSetðdi1c; di2cÞ while the matching MMc is a
possible candidate for it. Therefore, the latency of
MMc [MM is not less than the latency ofMMc [MM.

Overall, it is concluded that the candidate set from
checking ðdi1c; di2cÞ in Line 4 of the ElasticityAssignment
algorithm does not have greater latency in comparison to
the VM assignment C.

The maximum latency can be one of the following
cases (which are verified in Line 4 of the ElasticityAssign-
ment algorithm) when the VM assignment C is consid-
ered in addition to the initial VM assignment. Note that
in all the cases the diameter of the set Vinit [ Vc is exam-
ined by the ElasticityAssignment algorithm:

� Anedge inVinit that has tobe the sameas thediame-
terofthesetVinit andisverifiedasfðdmr1;dmr2Þg.

� An edge in Vc that is verified as an edge in V � V
because Vc � V ,.

� A member in Vinit � Vc that is verified as an edge
in V � Vinit.

� In the case of an edge in MMc or MM , the diame-
ter of Vinit [ Vc is one of the three above cases.

Overall, the existence of the VM assignment C is a
contradiction. That is because the VM assignment C is
not worse than the VM assignment C while the output of
the ElasticityAssignment algorithm is not worse than the
VM assignment C. tu

5.3 Time Complexity

The discussion of the time complexity of the ElasticityAs-
signment algorithm is similar to the VMtoDNAssignment
algorithm. The diameter of the set Vinit in Line 3 is found in
OðjVinitj2Þ. Further, the number of iterations of the main
loop is OðjV j2Þ. Each iteration has the time complexity
OðjV j þ jEjÞ regarding the MaximalSet algorithm and the
MinMatching algorithm. Hence, the ElasticityAssignment
algorithm is executed in OðjV j3jDjÞ.

Note that it is possible to remove heuristically some
nodes from the set V to reduce the run time. For example,

after the execution of the VMtoDNAssignment algorithm,
there are VMs that are far from the set Vinit and can be
flagged not to consider in the executions of the ElasticityAs-
signment algorithm for a particular job.

6 EVALUATION

In this section, we conduct experiments to evaluate the per-
formance of the VMtoDNAssignment algorithm. We
assume a data center setup with 1,024 racks. We consider
five topologies inside data centers. These topologies are
Hierarchical, Tree, VL2, Fat-tree and BCube. The properties
of these topologies are discussed in references [6], [7], [11].
The communication latency between two nodes (in these
topologies) is related to the number of switches between
them while the effect of link latency is considered in the
number of switches. The number of switches between two
nodes in rack intervals {[1-16], [1-64], [1-256], [1-1024]} are
{1, 3, 5, 7} in Hierarchical topology, {1, 3, 3, 5} in Tree topol-
ogy, {1, 5, 5, 5} in VL2 topology, {3, 3, 5, 5} in Fat-tree topol-
ogy and {1, 3, 3, 3} in BCube topology.

In Section 6.1, we provide two scenarios to evaluate the
performance and scalability of the VMtoDNAssignment
algorithm regarding 1Þ the number of VMs and 2Þ the relation
between latency and the number of switches (in a communi-
cation path). In Section 6.2, we compare the VMtoDNAssign-
ment algorithm with the rVMPDN algorithm [7] which is an
algorithm for the considered problem. The comparison is
based on the proposed scenario in Ref. [7]. In Section 6.3, a
scenario is presented to evaluate the performance of the Elas-
ticityAssignment algorithmwith regard to the different num-
ber of VMs. Finally, in Section 6.4, we provide a study on the
performance variation of our proposed algorithms in the con-
sidered scenarios.

In all scenarios, we compare the output latency of our pro-
posed algorithm (which denoted by our latency) with the
optimal latency (which denoted by OPT). Note that OPT can
be obtained by examining all possible VM assignments. Each
comparison result is reported as the difference between our
latency and OPT that is expressed as a percentage relative to
OPT. We run 100 experiments for each case and the average
andmaximumof its standard deviation are reported.

6.1 Performance Evaluation of the
VMtoDNAssignment Algorithm

In the first scenario, we consider the number of DNs is 10
and the number of available VMs takes different values
from 10 to 80 (by steps 5). The placement of VMs and DNs
are selected randomly from the set of 1,024 racks (each rack
is a node that can be one VM or one DN). The latency
between two racks is taken as a random number from inter-
val ½0:9� 1:1
 times the number of switches between
them [14]. This scenario is repeated for each topology that
the results are reported in Fig. 4. The results show that the
distance of our latency from OPT is reduced by increasing
the number of VMs in Tree and Hierarchical topologies
(from 25 VMs in this scenario). Also, the diagram of the
mentioned distance for other topologies have a smaller
slope for larger number of VMs. In Section 6.4, we discuss
the reason that the performance of our proposed algorithms
varies according to the number of VMs.
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In the second scenario, we consider the number of DNs
and the number of available VMs are 10 and 60, respectively.
The placements of VMs and DNs are selected randomly
from the set of 1,024 racks. The latency between two racks is
taken as a random number from interval ½r1 � r2
 times the
number of switches between them. The interval ½r1 � r2
 has
seven following cases: ½1:0� 1:0
, ½0:95� 1:05
, ½0:9� 1:1
,
½0:85� 1:15
, ½0:8� 1:2
, ½0:75� 1:25
 and ½0:7� 1:3
. The
results of this scenario are reported in Fig. 5. These results
show that the performance of the VMtoDNAssignment algo-
rithm is related linearly to the proportion of latency to the
number of switches, i.e., it works better when the latencies of
different switches (and different links) differ less. More dif-
ference between latency of various switches is model by
larger intervals. The mentioned intervals indicate howmuch
the considered latencies can be differ from the latencies of a
network that the quadrilateral inequality holds (for interval
[1.0-1.0], the quadrilateral inequality holds and shorter inter-
vals lead to better estimation of the quadrilateral inequality).

6.2 Comparisons with an Existing Algorithm

In this section, we compare the VMtoDNAssignment algo-
rithm with the rVMPDN algorithm by conducting the simu-
lation as described in Ref. [7]. In this scenario, there are 120
and 40 VMs and DNs, respectively. The placements of
nodes are selected randomly from the set of first 1,024 racks,
256 racks, 64 racks and 16 racks while the latency between
two racks is taken as a random number from interval
½0:9� 1:1
 times the number of switches between them. The
worst ratios of the maximum access latency of the two con-
sidered algorithms with regard to different topologies are
illustrated in Fig. 6. Note that the ratios related to the

rVMPDN algorithm is taken from Ref. [7]. The worst ratio
of the maximum access latency of the VMtoDNAssignment
algorithm to LB (lower bond) ranges from 1.01 to 1.06 while
this ratio of the rVMPDN algorithm to LB ranges from 1.17
to 1.22. Also, our simulation results show that the run time
of the VMtoDNAssignment algorithm (like the time com-
plexity) is lower than the run time of the rVMPDN algo-
rithm. Overall, the VMtoDNAssignment algorithm runs
faster and finds a VM assignment with smaller latency in
comparisons to the rVMPDN algorithm.

6.3 Performance Evaluation of the Elasticity
Assignment Algorithm

In this scenario, the performance of the ElasticityAssign-
ment algorithm is evaluated. The number of available VMs
takes different values from 10 to 80 (by steps 5). Also, the

Fig. 4. The distance of our latency from OPT (the optimal latency) for dif-
ferent numbers of available VMs.

Fig. 5. The distance of our latency from OPT (the optimal latency) for
various proportions of latency to the number of switches.

Fig. 6. The worst ratios of the maximum access latencies of the VMtoD-
NAssignment algorithm and the rVMPDN algorithm.
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placements of VMs and DNs are selected randomly from
the set of 1,024 racks. This scenario is repeated for each
topology while the latency between two racks is taken as a
random number from interval ½0:9� 1:1
 times the number
of switches between them. We consider the initial number
of DNs is 7; then 3 new DNs are added to the set of DNs.
The initial assignment of VMs to 7 DNs is calculated by the
VMtoDNAssignment algorithm. Then the assignment of 3
new added DNs is calculated by the ElasticityAssignment
algorithm. The result of this scenario is illustrated in Fig. 7.
The results show that the performance and the scalability of
the ElasticityAssignment algorithm are similar to the
VMtoDNAssignment algorithm. In Section 6.4, we discuss
the reason that the performance of our proposed algorithms
varies according to the number of VMs.

6.4 On the Performance of the Proposed Algorithms

In this section, we discuss the performance variation of our
proposed algorithms which is limited by the approxima-
tion of the quadrilateral inequality. Note that our pro-
posed algorithms find the optimal latency when the
quadrilateral inequality holds in a network. In what fol-
lows, initially, we state when the quadrilateral inequality
can be approximated well in a generated network. Subse-
quently, we examine the randomly generated networks of
different topologies. Finally, we conclude this section by
discussing the performance variation of our proposed
algorithms in Figs. 4 and 7.

In our simulation, we select a subset of nodes (as VMs)
from the set of racks and randomly select the distances
between them (regarding the number of switches between

them) to generate the communication graph. If the values of
the number of switches between any two selected nodes
are the same, then the generated graph can be any random
graph. Therefore, the quadrilateral inequality is not approx-
imated well in the generated network, necessarily. For
example, if 16 nodes are selected and all of them be in a
same rack interval #16, then there is one switch between
any two nodes and the assumed distances between nodes
are random numbers from interval ½0:9� 1:1
.

Let assume a generated graph that the values of the num-
ber of switches between selected racks can be one, three and
five. The generated graph is not any general graph as
assumed distances related to the case of one switch, three
switches and five switches are distinguishable from each
other. The quadrilateral inequality can be approximated
better in such graphs in comparison to a general graph.
That is because it is possible to sort the distances and
assume the quadrilateral inequality between them. Let con-
sider two cases for selecting 16 nodes. First case, 16 nodes
are in a rack interval #16, therefore, there is one switch
between any two nodes. There is low probability that the
quadrilateral inequality can be approximated well in the
generated graph. Second case, 16 nodes are in different rack
intervals #64, therefore, the values of the number of
switches between nodes are various and the quadrilateral
inequality can be approximated well. Overall, with high
probability, the quadrilateral inequality can be approxi-
mated better in the first case than the second case.

Let assume Hierarchical topology. If there are less than
17 nodes, then they can be in one rack interval #16 such
that there is one switch between any two nodes. But, if there
are more than 16 nodes, then they can not be in one rack
interval #16, therefore, all the distances are not related to
the case of one switch. Also, if there are more than four
nodes, then there are two nodes in one rack interval #16 or
in two different rack intervals #64, therefore, all the distan-
ces are not related to the case of only three switches. The
case of only five switches is similar to the case of only three
switches. Overall, when the number of selected nodes are
more than 16, the values of the number of switches between
nodes are not the same (e.g., if 256 nodes in Hierarchical
topology are selected, then the values of the number of
switches between nodes can be one, three and five).

In Hierarchical and Tree topologies, when the number of
VMs is less than or equal to 16, there are a lot of possible
generated graphs that the quadrilateral inequality can not
be approximated well in them. Hence, when the number of
VMs is in interval ½10� 16
, the distance from OPT is more
for larger number of VMs. By increasing the number of
VMs from 16, there are more generated graphs that the
quadrilateral inequality can be approximated well in them,
therefore, the distance from OPT starts to diminish.

In VL2 and BCube topologies, if one node is selected
from each rack interval #16 (i.e., 64 nodes from different
rack intervals #16), then the number of switches between
any two nodes is the same (three for BCube and five for
VL2) and any general graph can be generated. For Fat-tree
topology, if 64 nodes are selected from a rack interval #64,
then the number of switches between any two nodes is
three. In these topologies, increasing the number of selected
VMs (from 10 to 64) leads to more generated networks

Fig. 7. The impact of the number of VMs in the ElasticityAssignment
algorithm.
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which the quadrilateral inequality can not be approximated
well. Hence, the distance from OPT is more for larger num-
ber of VMs when the number of selected nodes is in interval
½10� 64
. However, by increasing the number of VMs from
64, the values of the number of switches between selected
racks are various and the quadrilateral inequality can be
approximated better for larger number of VMs.

Overall, in Figs. 4 and 7, the reason of the perfor-
mance variation is that the number of selected nodes
determines the probability of a good approximation of
the quadrilateral inequality. When the number of VMs is
low (which its threshold is different for the considered
topologies), the selected nodes can be in a rack interval
(that there is the same number of switches between any
two nodes), hence, the random generation does not bene-
fit from the quadrilateral inequality in initial topology of
racks. However, When the number of VMs is high
(which its threshold is different for the considered topol-
ogies), the links between nodes have different numbers
of switches, therefore, randomly generated distances are
distinguishable and the quadrilateral inequality approxi-
mation benefits from it.

In the considered topologies, by increasing the number of
VMs from 10, the performance of the proposed algorithms
first decreases and then increases. For example, in Fig. 4b
the performance decreases in interval ½10� 25
 and incr-
eases in interval ½25� 40
. However, all of the performance
changes are not shown in Figs. 4 and 7 as our simulation is
limited to 80 VMs. For example, the peak of performance is
not shown in Fig. 4e. In each diagram, the maximum stan-
dard deviation is related to the peak of diagram. Hence, the
maximum standard deviations related to VL2 and BCube
topologies are less than the others as their peaks are not in
the diagrams. However, average standard deviations of
Hierarchical and Tree topologies are less than the others.
That is because when there are more than 40 VMs, the stan-
dard deviation is approximately zero. These zeros reduce
the average of the standard deviation.

7 RELATED WORK

More recently, VM placement in cloud data centers has been
addressed in various aspects [5], [15], [16]. Some of the
important aspects are energy [17], [18], [19], network [20],
[21], [22] and service reliability [23], [24]. Network-aware
VM allocation minimizing the latency of the communication
and data access needs intelligent VM placement. For exam-
ple, in applications like MapReduce, VMs are assigned to
DNs while the communication latencies are important and
have to be bounded [25], [26], [27], [28]. The problem of VM
placement with respect to the latency is a combination of
the resource allocation and the assignment problem (that is,
a subset of VMs are allocated to a request by considering
their assignment to DNs). Further, the considered problem
can be applied to the cloud elasticity as handling future
changes in a VM request.

The studies on the network-aware VM allocation are
widely available in literature like [11], [29], [30], [31], [32],
[33]. More specifically, the communication latency of a VM
assignment has been considered in literature like [6], [7],
[34], [35], [36], [37]. Several authors examined the VM

placement under the assumption that the triangle inequality
holds in the communication latencies. Alicherry et al. [36]
gave the first version of the problem to minimize the net-
work diameter of a VM allocation. They showed that their
problem is NP-hard and provided a 2-approximation algo-
rithm for it. As an extension of VM allocation to consider
the data access, Alicherry et al. [6] defined the problem of
the assignment of VMs to DNs to minimize the maximum
latency between VMs and the latency between DNs to their
assigned VMs. Kuo et al. [7] showed that this problem with
the triangle inequality assumption does not have a solution
better than 2-approximation and provided a 2-approxima-
tion algorithm.

In this paper, we define a new property for communica-
tion latency such that, in contrast to mentioned studies, our
problem definition is not limited to the triangle inequality.
Our defined property holds in tree topologies and is well
estimated for the cloud networks. Similarly, Ref. [37] is not
limited to the assumption of the triangle inequality such
that it presented an algorithm to find a latency optimal VM
allocation in tree networks (not include data access).

The sub problem of assigning selected VMs to consid-
ered DNs can be considered as a perfect matching with
minimum diam (the edge with maximum weight) in
unbalanced weighted bipartite graph. The Hopcroft-Karp
algorithm produces as output a maximum cardinality
matching for a bipartite graph. The mentioned matching
is obtained by calling this algorithm in binary fashion
on the sorted list of edges. However, the time complexity
can be improved. Besides, the maximum/minimum per-
fect matching in unbalanced weighted bipartite graph is
defined as selecting a subset of edges such that each
node in smaller part has exactly one match in larger
part while the total weight of selected edges is maxi-
mum/minimum [38]. In this definition, the total weight of
edges is considered while in our problem the edge with
maximum weight is important. The best solution for max-
imum/minimum perfect matching in unbalanced weig-
hted bipartite graph was provided in Ref. [12], however,
it is not applicable for our problem due to the different
definition of the optimal matching. Overall, in this paper,
we present an algorithm (to find a perfect matching with
minimum diam in unbalanced weighted bipartite graph)
that its time complexity is better than the time complexity
of the existing methods.

Another important aspect of the VM placement problem
(regarding the dynamic environment of cloud systems) is
the support of future changes in job requirements or job
resources. Elastic computing is a concept in cloud computing
in which computing resources have to be scaled up and
down easily by the cloud service provider [9]. The elasticity
of resources can be in the form of different items like process-
ing power, storage and bandwidth. The elasticity in VM
placement has been received attention in the literature [39],
[40]. For example, Ref. [41] proposed an elasticity-aware
hierarchical VMplacement algorithm.However, considering
the literature, the VM placement needs more attention
regarding elasticity. Our method can be applied to increase
the number of allocated VMs and provides a complementary
VM assignment with overall good latency while there are
not similar studies in the literature.
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8 CONCLUSION AND FUTURE WORK

Prior studies on the problem of assigning VMs to DNs,
assumed the triangle inequality on the communication and
access latencies while they showed that there is no approxi-
mation better than two for this problem. However, the
assumption of the triangle inequality can be substituted by
a more suitable one. Here, we define the quadrilateral
inequality property which applies to tree and hierarchical
topologies. The problem of VM placement with the quadri-
lateral inequality is P. In this paper, an algorithm is pro-
posed to find an assignment of VMs to DNs with minimum
communication latency while the hardness of the problem
is changed by considering the quadrilateral inequality
rather than the triangle inequality. For example, this algo-
rithm can be used in application like MapReduce. The theo-
retical proof shows that the proposed algorithm finds
minimum latency in topologies like tree and hierarchical.
Further, the experimental results validate the scalability
and performance of the proposed algorithm for several
known data center networks. Therefore, this algorithm can
be used in the scale of cloud systems.

Overall, the novelty of this paper is fourfold. First, we
revise the assumption of the triangle inequality by the quad-
rilateral inequality. Second, we provide an algorithm to find
a perfect matching with minimum diam in unbalanced
weighted bipartite graphs. Third, we present a method to
return an assignment of VMs to DNswith minimum latency.
Fourth, we extend our method to be utilized for increasing
the number of requested VMs (elasticity). Further, as a future
work, one can present an algorithm to serve several requests
simultaneously and consolidate the allocated VMs.
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Abstract—Reliability is widely identified as an increasingly relevant issue in heterogeneous service-oriented systems because

processor failure affects the quality of service to users. Replication-based fault-tolerance is a common approach to satisfy application’s

reliability requirement. This study solves the problem of minimizing redundancy to satisfy reliability requirement for a directed acyclic

graph (DAG)-based parallel application on heterogeneous service-oriented systems. We first propose the enough replication for

redundancy minimization (ERRM) algorithm to satisfy application’s reliability requirement, and then propose heuristic replication for

redundancy minimization (HRRM) to satisfy application’s reliability requirement with low time complexity. Experimental results on real

and randomly generated parallel applications at different scales, parallelism, and heterogeneity verify that ERRM can generate least

redundancy followed by HRRM, and the state-of-the-art MaxRe and RR algorithm. In addition, HRRM implements approximate

minimum redundancy with a short computation time.

Index Terms—Fault-tolerance, heterogeneous service-oriented systems, quality of service, reliability requirement, replication

Ç

1 INTRODUCTION

1.1 Background

CLOUD-BASED service is a new service-based resource
sharing paradigm [1], [2]. In X as a service (XaaS) clouds,

resources as services (e.g., infrastructure, platform and soft-
ware as a service) are sold to applications such as scientific
and big data analysis workflows [1], [3], [4], [5], [6]. Mean-
while, cloud computing systems becomemore heterogeneous
as old, slow machines are continuously replaced with new,
fast ones. Heterogeneous computing systems consist of
diverse sets of processors interconnected with a high-speed
network, and are applied in business-critical, mission-critical,
and safety-critical scenarios to achieve operational goals [7].
Applications in the system are increasingly parallel and the
tasks in an application have obvious data dependencies and
precedence constraints [1], [8], [9], [10], [11]. Examples of par-
allel applications are Gaussian elimination and fast Fourier

transform [9]. A parallel application with precedence con-
strained tasks at a high level is described by a directed acyclic
graph (DAG) [1], [8], [9], [10], [11], where nodes represent
tasks, and edges represent communicationmessages between
tasks. Such application is usually called DAG-based parallel
application [12].

The current cloud-based service systems are actually
heterogeneous service-oriented systemswhere resourceman-
agement is a considerable challenge owing to the various con-
figurations or capacities of the hardware or software [13]. The
processing capacity of processors in heterogeneous service-
oriented systems has been developed to provide powerful
cloud-based services, whereas failures of processors will
affect the reliability of systems and quality of service (QoS) for
users [2]. Reliability is defined as the probability of a schedule
successfully completing its execution, and it has been widely
identified as an increasingly relevant issue in service-oriented
computing systems [2], [14], [15], [16], [17], [18].

Fault-tolerance by primary-backup replication, which
means that a primary task will have zero, one, or multiple
backup tasks, is an important reliability enhancement mech-
anism. In the primary-backup replication scheme, the pri-
mary and all the backups are called replicas. Although
replication-based fault-tolerance is an important reliability
enhancement mechanism [14], [15], [19], [20], [21], any
application cannot be 100 percent reliable in practice. There-
fore, if an application can satisfy its specified reliability
requirement (also named reliability goal or reliability assur-
ance in some studies), then it is considered to be reliable.
For example, assume that the application’s reliability
requirement is 0.9, only if the application’s reliability
exceeds 0.9, will the application be reliable. Specifically,
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reliability requirement has been defined in some reliability
related standards (e.g., IEC 61508 [22] and ISO 9000 [23]),
and it is one of the most important QoS in cloud and serv-
ices computing systems [14], [15]. Therefore, reliability
requirement must be satisfied from standards and QoS per-
spectives. However, as pointed out in [2], many cloud-based
services failed to fulfill their reliability requirements due to
processor failures in practice.

1.2 Motivation

Users and resource providers are the two types of roles with
different requirements for service-oriented systems [24]. For
users, satisfying application’s reliability requirement is one of
the most important QoS requirements, for which replication-
based fault-tolerance is a common approach. For resource
providers, minimizing resource redundancy caused by repli-
cation is one of the most important concerns [14], [15]. How-
ever, adding more replicas (including primary and backups)
could increase both reliability and redundancy for a parallel
application. Therefore, both criteria (low redundancy and
high reliability, short schedule length and high reliability) are
conflicting, and optimizing them is a bi-criteria optima prob-
lem [19]. In Fig. 1, each point x1-x7 represents a solution of a
bicriteria minimization problem [19]. The points x1, x2, x3, x4,
and x5 are Pareto optima [25]; the points x1 and x5 are weak
optima, whereas the points x2, x3, and x4 are strong optima.
The set of all Pareto optima is called the Pareto curve [19].
Many studies have dealt specifically with the bi-criteria
(i.e., minimizing schedule length and maximizing reliability)
problem to obtain such an approximate Pareto curve for a
DAG-based parallel application [19], [20], [21], [26], [27], [28].
In [26], [27], [28], the approaches increase reliability by effi-
cient task scheduling without using replication. In [19], [20],
[21], the approaches presented replicate tasks to increase
reliability.

However, for heterogeneous service-oriented systems,
resolving the above bi-criteria is not strictly required for the
following reasons:

(1) Clouds allow flexible and dynamic resource alloca-
tions based on a pay-as-you-go scheme [29], where
users pay only for the reliability requirement they
apply and will not pay additional fees for the reli-
ability that surpasses their reliability requirement.

(2) The application cannot be 100 percent reliable as
mentioned earlier. The most common component of
service-level agreement (SLA) between resource pro-
viders and the users is that the services (reliability

requirement in this study) should be provided to the
users as agreed upon in the contract [30]. Therefore,
satisfying application’s reliability requirement is the
service level objective.

In summary, considering the actual demand, the theoret-
ical bi-objective optimization problem could be degradated
to a constrained single-objective optimization problem in
most cases. In other words, reliability is not the higher the
better, but as long as you can satisfy the reliability require-
ment from a practical perspective. Therefore, the reliability
problem of service-oriented systems is mainly to satisfy
application’s reliability requirement while still reducing the
resource as far as possible.

The approaches related to our work are [14] and [15], in
which the authors presented the MaxRe and RR algorithms
to minimize redundancy of a parallel application to satisfy
application’s reliability requirement on heterogeneous dis-
tributed systems. The main procedures of the MaxRe and
RR are follows:

(1) The reliability requirement of the application is trans-
ferred to the sub-reliability requirements of the tasks.
In this way, as long as the sub-reliability requirement
of each task can be satisfied, the application’s reliabil-
ity requirement can be satisfied, such that a heuristic
replication can be used in the following.

(2) MaxRe and RR iteratively assign the replicas of each
task to the processors with maximum reliability val-
ues until the sub-reliability requirement of the task is
satisfied.

However, the essential limitation of MaxRe and RR is
that the sub-reliability requirements of tasks are too high,
thereby causing them need unnecessary redundancy to
satisfy the sub-reliability requirements.

1.3 Our Contributions

Similar to the state-of-the-art MaxRe and RR, this study
aims to implement redundancy minimization to satisfy
application’s reliability requirement for a parallel applica-
tion on heterogeneous service-oriented distributed systems.
Our contributions comparing to the MaxRe and RR are sum-
marized as follows:

(1) We present the just enough replication for redun-
dancy minimization (ERRM) algorithm to satisfy
application’s reliability requirement by two-stage
replications. The first stage involves obtaining the
lower bound on redundancy (i.e., the minimum
required number of replicas) for each task; the second
stage is iteratively selecting the available replicas and
corresponding processors with the maximum reli-
ability values until application’s reliability require-
ment is satisfied.

(2) To overcome the high time complexity of ERRM
algorithm, we propose the heuristic replication
for redundancy minimization (HRRM) algorithm to
deal with large-scale parallel applications. Similar to
the MaxRe and RR algorithms, HRRM first transfers
the reliability requirement of the application to the
sub-reliability requirements of the tasks. Then,
HRRM iteratively assign the replicas of each task to
the processors with maximum reliability values until

Fig. 1. Pareto optima and pareto curve for a bicriteria minimization prob-
lem [19].

872 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2020



the sub-reliability requirement of the task is satisfied.
The main improvement of HRRM over MaxRe and
RR is that it can obtain lower sub-reliability require-
ments for most tasks, such that HRRM generates less
redundancy than MaxRe and RR.

(3) Experimental results on real and randomly generated
parallel applications at different scales, parallelism
degrees, and heterogeneity degrees validate that
ERRM can generate the least redundancy followed by
HRRM, the state-of-the-art MaxRe and RR algorithm.
In addition, HRRM implements approximate mini-
mum redundancywith a short computation time.

The rest of this paper is organized as follows. Section 2
reviews related research. Section 3 presents the reliability
modeling and problem statement. Section 4 explains the
state-of-the-art MaxRe and RR algorithms. Sections 5 and 6
proposed the ERRM and HRRM algorithms, respectively.
Section 7 verifies the ERRM andHRRM algorithms. Section 8
concludes this study.

2 RELATED WORK

The widely-accepted reliability model was presented by
Shatz and Wang [31], where each hardware component
(processor) is characterized by a constant failure rate per
time unit � and the reliability during the interval of time t
is e��t. That is, the failure occurrence follows a constant
parameter Poisson law [31]. This law is also known as the
exponential distribution model [19]. This section mainly
reviews the related research on reliability and fault-
tolerance of DAG-based parallel applications.

Two main types of primary-backup replication app-
roaches exist in current: active replication [14], [15], [20], [21]
and passive replication [32], [33], [34], [35]. For the active rep-
lication scheme, each task is simultaneously replicated on
several processors, and the task will succeed if at least one
of them does not fail. For the passive scheme, whenever
a processor fails, the task will be rescheduled to proceed on a
backup processor. When a processor crashes, it is subse-
quently restarted to continue from the checkpoint just as if
no failure had occurred; such scheme is called checkpoint
and restart scheme, and can be considered as an improved
version of the passive scheme [14], [15]. Meanwhile, accord-
ing to the number of the backups, three types of primary-
backup replication approaches exist; single backup for each
primary, fixed " backups for each primary, and quantitative
backups for each primary.

The single backup for each primary approach is a simple
method. Main representative methods include efficient
fault-tolerant reliability cost driven (eFRCD) [33], efficient
fault-tolerant reliability driven (eFRD) [34], and minimum
completion time with less replication cost (MCT-LRC) [35]
et al. Regarding their limitations, first, these approaches
assume that no more than one failure happens at one
moment; they are too ideal to tolerate potential multiple fail-
ures. Second, although passive replication also supports
multiple backups for each primary [32], it is unsuitable
for service-oriented applications; the reason is that once a
processor failure is detected, the scheduler should resched-
ule the task located on the failed processor, and reassign it
to a new processor, such that the QoS for the application is
uncertain.

The fixed " backups for each primary approach is an
active replication approach, and is suitable for service-
oriented systems because it can directly shield the failed
tasks in performing, and the failure recovery time is almost
close to zero [19], [20], [21]. In [19], the authors presented
bicriteria scheduling heuristic (BSH) to minimize the sched-
ule length of the application while taking the failure rate as
a constraint; BSH can generate a Pareto curve of non-
dominated solutions, among which the user can choose the
compromise that fits his requirements best. However, the
time complexity of BSH is as high as O(n� 2u), where n is
the number of replicas and u is the number of processors. In
[20], Benoit et al. presented the fault-tolerant scheduling
algorithm (FTSA) for a parallel application on heteroge-
neous systems to minimize the schedule length given a
fixed number of failures supported in the system based on
the active replication scheme. In [21], Benoit et al. further
designed a new scheduling algorithm to minimize schedule
length under both throughput and reliability constraints for
a parallel application on heterogeneous systems based on
the active replication scheme. The main problem in [20],
[21] is that they need " backups for each task with high
redundancy to satisfy application’s reliability requirement.
Although application’s reliability requirement can be satis-
fied by using active replication scheme, high redundancy
causes high resource cost to resource providers.

Considering that fixed " backups for each primary
approach has high redundancy, recent studies begun to
explore quantitative backups for each task approach to satisfy
application’s reliability requirement [14], [15]. Quantitative
backups means different primaries have different numbers
of backups, and the quantitative approach has lower resource
cost than the fixed " backups for each task based on active
replication [14]. In [14] and [15], the authors proposed fault-
tolerant scheduling algorithms MaxRe and RR; both MaxRe
and RR incorporate reliability analysis into the active replica-
tion and exploit a dynamic number of backups for different
tasks by considering each task’s sub-reliability requirement.
As discussed in Section 1.2, both MaxRe and RR have limita-
tions in calculating the sub-reliability requirements of tasks.
In [15], the authors also presented the DRR algorithm that
extends RR by further considering the deadline requirement
of a parallel application; however, we are only interested in
satisfying reliability requirement in this study.

3 RELIABILITY MODELING AND PROBLEM

STATEMENT

Table 1 gives the important notations and their definitions
as used in this study.

3.1 Application Model

Let U ¼ fu1; u2; . . . ; ujUjg represent a set of heterogeneous
processors, where jU j is the size of set U . In this study, for
any set X, jXj is used to denote size. A development life
cycle of a service-oriented system usually involves the anal-
ysis, design, implementation, and testing phases. In this
study, we focus on the design phase. Therefore, we assume
that the processor and application parameter values are
known in the design phase, because these values have been
already calculated in the analysis phase.
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As mentioned earlier, a parallel application running on
processors is represented by a DAG G=ðN , W , M, C) with
known values.

(1) N represents a set of nodes in G, and each node
ni 2 N is a task with different execution time values
on different processors. In addition, task executions
of a given application are assumed to be non-
preemptive which is possible in many systems [8],
[14]. predðniÞ is the set of immediate predecessor
tasks of ni, while succðniÞ is the set of immediate suc-
cessor tasks of ni. Tasks without predecessor tasks
are denoted by nentry; and tasks with no successor
tasks are denoted by nexit. If an application has multi-
ple entry or multiple exit tasks, then a dummy entry
or exit task with zero-weight dependencies is added
to the graph. W is an jN j � jUj matrix in which wi;k

denotes the execution time of ni running on uk.
(2) M is a set of communication edges, and each edge

mi;j 2M represents a communication from ni to nj.
Accordingly, ci;j 2 C represents the communication

time of mi;j if ni and nj are assigned to different
processors because two tasks with immediate pre-
cedence constraints need to exchange messages.
When both tasks ni to nj are allocated to the same
processor, ci;j becomes zero because we assume
that the intra-processor communication cost is neg-
ligible [14], [15].

Fig. 2 shows a motivating parallel application with tasks
and messages [9], [10], [11], [12]. The example shows
10 tasks executed on 3 processors fu1; u2; u3g. The weight
18 of the edge between n1 and n2 represents communication
time, denoted by c1;2 if n1 and n2 are not assigned to the
same processor.

Table 2 is the execution time matrix jNj � jU j of tasks on
different processors of the motivating parallel application.
For example, the weight 14 of n1 and u1 in Table 2 repre-
sents execution time of n1 on u1, denoted by w1;1=14. We
can see that the same task has different execution time val-
ues on different processors due to the heterogeneity of the
processors.

Themotivating examplewill be used to explain theMaxRe,
RR, and the proposed LBR, ERRM, and HRRM algorithms in
the paper.

3.2 Reliability Model

There are two major types of failures: transient failure
(also called random hardware failure) and permanent
failure. Once a permanent failure occurs, the processor
cannot be restored unless by replacement. The transient
failure appears for a short time and disappear without
damage to processors. Therefore, this paper mainly takes
the transient failures into account for our research. In
general, the occurrence of transient failure for a task in a
DAG-based application follows the Poisson distribution
[14], [15], [19], [31], [36]. The reliability of an event in unit
time t is denoted by

R tð Þ ¼ e��t;

where � is the constant failure rate per time unit for a proces-
sor. We use �k to represent the constant failure rate per time
unit of the processor uk. The reliability of ni executed on uk

in its execution time is denoted by

R ni; ukð Þ ¼ e��kwi;k ; (1)

TABLE 1
Important Notations in this Study

Notation Definition

ci;j Communication time between the tasks ni and nj

wi;k Execution time of the task ni on the processor uk
wi Average execution time of the task ni

rankuðniÞ Upward rank value of the task ni

jXj Size of the setX

�k Constant failure rate per time unit of the processor uk
numi Number of replicas of the task ni

NRðGÞ Total number of the replicas of the applicationG

lbðniÞ Lower bound on number of replicas of the task ni

nx
i xth replica of the task ni

uprðnx
i
Þ Assigned processor of the replica nx

i

Rðni; ukÞ Reliability of the task ni on the processor uk
RðniÞ Reliability of the task ni

RðGÞ Reliability of the applicationG

RseqðGÞ Reliability requirement of the applicationG

RseqðniÞ Sub-reliability requirement of the task ni

Rup seqðniÞ Upper bound on reliability requirement of the task ni

TABLE 2
Execution Time Values of Tasks on Different Processors

of the Motivating Parallel Application [9], [10], [11]

Task u1 u2 u3

n1 14 16 9
n2 13 19 18
n3 11 13 19
n4 13 8 17
n5 12 13 10
n6 13 16 9
n7 7 15 11
n8 5 11 14
n9 18 12 20
n10 21 7 16

Fig. 2. Motivating example of a DAG-based parallel application with 10
tasks [9], [10], [11], [12].
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and the failure probability for ni without using the active
replication is

1�R ni; ukð Þ ¼ 1� e��kwi;k : (2)

However, each task has a number of replicas with the active
replication. We define numi (numi4jU j) as the number of
replicas of ni. Hence, the replica set of ni is fn1

i ; n
2
i ; . . . ; n

numi
i g

where n1
i is the primary and others are backups. As long as

one replica of ni is successfully completed, then we can rec-
ognize that there is no occurrence of failure for ni, and the
reliability of ni is updated to

R nið Þ ¼ 1�
Ynumi

x¼1
1�R nx

i ; uprðnxi Þ
� �� �

; (3)

where uprðnx
i
Þ represents the assigned processor of nx

i . The
difference between R ni; ukð Þ and R nið Þ is below: R ni; ukð Þ
is the value before task replication, whereas R nið Þ is the
value after task replication.

The reliability of the parallel application with prece-
dence-constrained tasks should be [14]

RðGÞ ¼
Y
ni2N

RðniÞ: (4)

In [15], both communication and computation failures
are considered; however, some communication networks
themselves provide fault-tolerance. For instance, routing
information protocol (RIP) and open shortest path first
(OSPF) are designed to reroute packets to ensure that they
reach their destination [37]. Therefore, similar to some
studies [14], [35], [38], this study only considers processor
failure and excludes communication failure (i.e., the com-
munication is assumed to be reliable in this study). In addi-
tion, we mainly focus on the redundancy minimization
of tasks, which is not directly related to communication.

3.3 Problem Statement

As discussed in Section 1, any application cannot be
100 percent reliable, but if the system can satisfy
application’s reliability requirement, then the application is
considered reliable. The problem addressed in this study
can be formally described as follows. Assume that we are
given a parallel application G and a heterogeneous proces-
sor set U . The problem is to assign replicas and correspond-
ing processors for each task, while minimizing the number
of replicas and ensuring that the obtained reliability of the
application RðGÞ satisfies the application’s reliability
requirement RseqðGÞ. The formal description is to find the
replicas and processor assignments of all tasks to minimize

NRðGÞ ¼
X
ni2N

numi; (5)

subject to

RðGÞ ¼
Y
ni2N

R nið Þ5RreqðGÞ;

for 8i : 14i4jN j.

4 STATE-OF-THE-ART APPROACHES

4.1 Task Prioritizing

A fault-tolerant scheduling algorithm generally consists of
three steps: 1) task prioritizing, 2) processor selection, and
3) task execution. Therefore, we should first compute the
task priority before processor selection. Similar to state-of-
the-art studies [14], [15], this study uses the famous upward
rank value (ranku) of a task (Eq. (6)) as the task priority stan-
dard. In this case, the tasks are ordered by descending order
of ranku, which are obtained by Eq. (6) [9], as follows:

rankuðniÞ ¼ wi þ max
nj2succðniÞ

fci;j þ rankuðnjÞg; (6)

in which wi represents the average execution time of task ni

and is calculated as follows:

wi ¼
XjUj
k¼1

wi;k

 !,
jU j:

Table 3 shows the upward rank values of all the tasks in
Fig. 2. Note that only if all the predecessors of ni have been
assigned, will ni prepare to be assigned. Assume that two
tasks ni and nj satisfy rankuðniÞ > rankuðnjÞ; if no prece-
dence constraint exists between ni and nj, ni does not neces-
sarily take precedence for nj to be assigned. Therefore, the
task assignment order in G is fn1; n3; n4; n2; n5; n6; n9; n7;
n8; n10g.

4.2 Existing MaxRe Algorithm

As the application reliability is the product of all the
task reliability values, such problem is usually solved by
transferring application’s reliability requirement to the sub-
reliability requirements of tasks [14], [15], [39]. In the MaxRe
algorithm [14], the sub-reliability requirement for each task
is calculated by

RreqðniÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjNj

q
: (7)

If the sub-reliability requirement of each task can be satis-
fied by active replication below

RðniÞ5RreqðniÞ;
then obviously the application’s reliability requirement can
be satisfied. Therefore, the main idea of the MaxRe algo-
rithm is to iteratively select the replica nx

i and processor
uprðnx

i
Þ with the maximum Rðnx

i ; uprðnx
i
ÞÞ until the actual reli-

ability value is larger than or equal to the sub-reliability
requirement of the task, namely,

RðniÞ5RreqðniÞ:

Moreover, this policy was also employed by the authors
in [39].

TABLE 3
Upward Rank Values for Tasks of the Motivating

Parallel Application

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

rankuðniÞ 108 77 80 80 69 63.3 42.7 35.7 44.3 14.7
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Example 1. Assume that the constant failure rates for three
processors are �1 ¼ 0:0010, �2 ¼ 0:0015, and �3 ¼ 0:0018,
respectively.Moreover, assume that the reliability require-
ment of the parallel application in Fig. 2 is RseqðGÞ ¼ 0:94.
Note that the above values are not the representatives of
a real deployment, but are used to explain the example
clearly.

Table 4 shows the task assignment for each task of the
motivating parallel application using the MaxRe algorithm.
Each row shows the selected processors (denoted with bold
text) and corresponding reliability values. For example, the
sub-reliability requirement of n1 is Rreqðn1Þ ¼

ffiffiffiffiffiffiffiffiffi
0:9410
p ¼

0:99383156; to satisfy the sub-reliability requirement, MaxRe
selects the processors u1 and u3 with the maximum and sec-
ond maximum reliability values, respectively (i.e., num1 ¼
2). Then, the actual reliability value of n1 is 0.99977659, which
is calculated by Eq. (3). The remaining tasks use the same
pattern with n1. Finally, the number of replicas are 19 and
the actual reliability value of the applicationG is 0.99298048,
which are calculated by Eqs. (5) and (4), respectively.

4.3 Existing RR Algorithm

Obviously, the main limitation of the MaxRe algorithm is
that the sub-reliability requirements of all tasks are equal
and high, such that it needs more replicas with extra
redundancy to satisfy the sub-reliability requirement of
each task. To solve such problem, the authors presented
the RR algorithm to lower down the sub-reliability require-
ment of tasks while still satisfying the application’s reliabil-
ity requirement [15] as follows.

First, the sub-reliability requirement for the entry task is
still calculated by

Rreqðn1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjN j

q
:

Second, for the rest of tasks (i.e., non-entry tasks), unlike
prior MaxRe algorithm [14], sub-reliability requirements in
the RR algorithm are calculated continuously based on the
actual reliability achieved by previous allocations

RreqðnseqðjÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RreqðGÞQj�1
x¼1 RðnseqðxÞÞ

jN j�jþ1
s

; (8)

where nseqðjÞ represents the jth assigned task. Clearly, such
single improvement can reduce the sub-reliability require-
ments of non-entry tasks.

Example 2. The same parameter values (�1 ¼ 0:0010,
�2 ¼ 0:0015, �3 ¼ 0:0018, and RseqðGÞ ¼ 0:94) with Exam-
ple 1 are used. Table 5 shows the task assignment for
each task of the motivating parallel application using the
RR algorithm. Each row shows the selected processors
(denoted with bold text) and corresponding reliability
values. The sub-reliability requirement and task assign-
ment of n1 using the RR algorithm is similar to the MaxRe
algorithm. However, the remaining tasks are different.
For example, as the actual reliability value for n1 is
0.99977659, then the sub-reliability requirement for n3

should be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:94
0:99977659

9
q

¼ 0:99317319. When assigning n7

and n8, the sub-reliability requirements are reduced to
0.98013824 and 0.97161077, respectively. That is, only one

replica for each of n7 and n8 will be able to satisfy individ-

ual sub-reliability requirements. Finally, the number of

replicas and the actual reliability value of the application

G are 17 and 0.97609982 (calculated by Eqs. (5) and (4)),

respectively, which still satisfy application’s reliability

requirement, but their values are less than those obtained

with the MaxRe algorithm.

5 ENOUGH REPLICATION FOR REDUNDANCY

MINIMIZATION

Although the RR algorithm can reduce the sub-reliability
requirements of tasks, the reduction ranges of tasks near the
entry task are much lower than those of the tasks near the exit
task. That is, the actual sub-reliability requirements show
unfairness among tasks, such that the RR algorithm still
requires unnecessary redundancy to satisfy application’s
reliability requirement. To further reduce redundancy, we
first present good enough replication approach in this section,
and then propose a heuristic replication approach in the next
section.

5.1 Lower Bound on Redundancy

Considering that application reliability is the product of all
task reliability values, the reliability value of each task should
be higher than or equal to RreqðGÞ; otherwise, if one task has

TABLE 5
Task Assignment of the Motivating Parallel Application

Using the RR Algorithm

ni RreqðniÞ Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.99383156 0.98609754 0.97628571 0.98393051 2 0.99977659
n3 0.99317319 0.98906028 0.98068890 0.96637821 2 0.99978874
n4 0.99234932 0.98708414 0.98807171 0.96986344 2 0.99984594
n2 0.99128298 0.98708414 0.97190229 0.96811926 2 0.99963709
n5 0.98989744 0.98807171 0.98068890 0.98216103 2 0.99978721
n6 0.98793125 0.98708414 0.97628571 0.98393051 2 0.99979245
n9 0.98498801 0.98216103 0.98216103 0.96464029 2 0.99968177
n7 0.98013824 0.99302444 0.97775124 0.98039473 1 0.99302444
n8 0.97511487 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.97161077 0.97921896 0.98955493 0.97161077 1 0.98955493

NRðGÞ ¼ 17, RðGÞ ¼ 0:97609982

TABLE 4
Task Assignment of the Motivating Parallel Application

Using the MaxRe Algorithm

ni RreqðniÞ Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.99383156 0.98609754 0.97628571 0.98393051 2 0.99977659
n3 0.99383156 0.98906028 0.98068890 0.96637821 2 0.99978874
n4 0.99383156 0.98708414 0.98807171 0.96986344 2 0.99984594
n2 0.99383156 0.98708414 0.97190229 0.96811926 2 0.99963709
n5 0.99383156 0.98807171 0.98068890 0.98216103 2 0.99978721
n6 0.99383156 0.98708414 0.97628571 0.98393051 2 0.99979245
n9 0.99383156 0.98216103 0.98216103 0.96464029 2 0.99968177
n7 0.99383156 0.99302444 0.97775124 0.98039473 2 0.99986324
n8 0.99383156 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.99383156 0.97921896 0.98955493 0.97161077 2 0.99978294

NRðGÞ ¼ 19, RðGÞ ¼ 0:99298048
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RðniÞ < RreqðGÞ, then no matter how many replicas for any
other tasks, RreqðGÞ cannot be satisfied. Therefore, the lower
bound on reliability requirement of the task ni is

Rlb reqðniÞ ¼ RreqðGÞ: (9)

In this way, there should be a lower bound on the number
of replicas for each task that satisfies

RðniÞ5Rlb reqðniÞ:

In other words, we can determine the lower bound on the
number of replicas lbðniÞ for task ni to satisfy

1�
YlbðniÞ
x¼1
ð1�Rðnx

i ; uprðnx
i
ÞÞÞ � Rlb reqðniÞ; (10)

according to Eq. (3).
We use the following steps to select the replica and the

corresponding processor with the minimum number of
replicas.

(1) Calculate the R ni; ukð Þ of each task on all available
processors (if a replica of ni has been assigned to the
processor, then this processor is unavailable for ni;
otherwise, it is available for ni).

(2) To minimize the number of replicas, select the rep-
lica nx

i of the task ni and the corresponding processor
uprðnx

i
Þ with the maximum Rðnx

i ; uprðnxi ÞÞ.
(3) Repeat Steps (1) and (2) until Eq. (10) is satisfied.

5.2 The LBR Algorithm

On the basis of the above steps, we propose the lower
bound on redundancy (LBR) algorithm (Algorithm 1) to
generate the lower bound on the number of the replicas of
each task.

Algorithm 1. The LBR Algorithm

Input: G ¼ ðN;W;M;CÞ, U , RreqðGÞ
Output: RðGÞ,NRðGÞ and its related values
1: for ði ¼ 1; i <¼ jN j; iþþÞ do
2: Rlb reqðniÞ  RðGÞ;
3: numi ¼ 0;
4: RðniÞ ¼ 0; // initial value is 0
5: while (RðniÞ < Rlb reqðniÞ) do
6: Calculate R ni; ukð Þ for the task ni on all available pro-

cessors using Eq. (1);
7: Select replica nx

i and the processor uprðnx
i
Þ with the max-

imum reliability value Rðnx
i ; uprðnx

i
ÞÞ;

8: numi++;
9: Calculate RðniÞ using Eq. (3);
10: end while
11: CalculateNRðGÞ using Eq. (5);
12: Calculate RðGÞ using Eq. (4);
13: end for

The core idea of the LBR algorithm is that each task itera-
tively selects the replica and available processor with the
maximum reliability value Rðnx

i ; uprðnxi ÞÞ for each task until
the task’s lower bound on reliability requirement is satis-
fied. The details are explained as follows:

(1) In Line 2, LBR has obtained the lower bound on reli-
ability requirement of the current task before it pre-
pares to be assigned.

(2) In Lines 5-10, LBR iteratively selects the replica and
available processor for each task with the maximum
reliability value until the task’s lower bound on
reliability requirement is satisfied. Specifically, the
following details are made: 1) Line 5 compares the
actual reliability value and lower bound on reliability
requirement of the current task; 2) Lines 6-7 calculate
and select the replica and available processor with the
maximum reliability value for the current task; and
3) Line 9 calculates the actual reliability value of the
current task.

(3) In Lines 11-12, LBR calculates the final number of
replicas and the actual reliability value of the appli-
cation, respectively.

5.3 Time Complexity of the LBR Algorithm

The time complexity of the LBR algorithm is analyzed as
follows:

(1) Calculating the reliability of the application must tra-
verse all tasks, which can be done within O(jNj) time
(Lines 1-13).

(2) The total number of replicas for each task must be
lower or equal to the number of processors, which
can be done within O(jUj) time (Lines 5-10).

(3) Selecting the replica and available processor with the
maximum reliability value for the current task must
traverse all processors, which can be done in
O(logjU j) time (Line 7).

Thus, the time complexity of the LBR algorithm is
O(jNj � jU j � logjU j).

5.4 Example of the LBR Algorithm

Example 3. The same parameter values (�1 ¼ 0:0010, �2 ¼
0:0015, �3 ¼ 0:0018, and RseqðGÞ ¼ 0:94) with aforemen-
tioned examples are used. Table 6 lists the replicas, selected
processor, and reliability value of each task (denoted with
bold text). We find that the reliability value of each task is
higher than the application’s reliability requirement of
0.94. However, the current obtained reliability value of the

TABLE 6
Task Assignment of the Motivating Parallel Application

Using the LBR Algorithm

ni RreqðniÞ Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.94 0.98609754 0.97628571 0.98393051 1 0.98609754
n3 0.94 0.98906028 0.98068890 0.96637821 1 0.98906028
n4 0.94 0.98708414 0.98807171 0.96986344 1 0.98807171
n2 0.94 0.98708414 0.97190229 0.96811926 1 0.98708414
n5 0.94 0.98807171 0.98068890 0.98216103 1 0.98807171
n6 0.94 0.98708414 0.97628571 0.98393051 1 0.98708414
n9 0.94 0.98216103 0.98216103 0.96464029 1 0.98216103
n7 0.94 0.99302444 0.97775124 0.98039473 1 0.99302444
n8 0.94 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.94 0.97921896 0.98955493 0.97161077 1 0.98955493

NRðGÞ ¼ 10, RðGÞ ¼ 0:89092057
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parallel application is only RðGÞ ¼ 0:89092057 (calculated
by Eq. (4)), which is much lower than 0.94 (application’s
reliability requirement). Hence, application’s reliability
requirement is not satisfied by merely using the LBR
algorithm.

5.5 Enough Replication

Considering that all the tasks merely satisfy R nið Þ �
Rlb reqðniÞ by using the LBR algorithm (Algorithm 1), we
should addmore new replicas for tasks to satisfy application’s
reliability requirement. However, choosing the remaining
replicas is a complex work, because different replicas of dif-
ferent tasks may cause different reliability values on different
processors.

Given that the current number of replicas for ni is
h ¼ numi and the application reliability is RðGÞ, if a new
replica nhþ1

i is assigned to the processor uk ¼ u
prðnhþ1

i
Þ for

ni, then the number of replicas is changed to hþ 1 and the

new task reliability is changed to

RnewðniÞ ¼ 1�
Yhþ1
x¼1
ð1�Rðnx

i ; uprðnx
i
ÞÞÞ: (11)

Then, the application reliability is enhanced because of the

reliability enhancement of ni and is changed to

RiðGÞ ¼ RnewðniÞ �
Y

nj2N;i 6¼j
RðnjÞ: (12)

To minimize the number of replicas for each task, we use
the following steps to obtain enough minimum redundancy
of the application.

(1) Each available task (if the replicas of a task have been
assigned to all the processors, then this task is unavailable;
otherwise, a task is available) is assumed to be replicated
once on an available processor with the maximum Rðni; ukÞ
(Eq. (1)), and the new task sub-reliability is changed to
RnewðniÞ (Eq. (11)).

(2) Calculate the application reliability RiðGÞ because of
the reliability enhancement of each task (Eq. (12)).

(3) Select the replica nx
i and corresponding processor

uprðnx
i
Þ that generate the maximum RiðGÞ from the generated

replicas in Step 2), namely,

RiðGÞ ¼ max R1ðGÞ; R2ðGÞ; . . . ; RjN jðGÞ
on
: (13)

(4) Repeat Steps (1), (2), and (3) until application’s reli-
ability requirement (Eq. (4)) is satisfied.

5.6 The ERRM Algorithm

In this section, we propose the ERRM algorithm to minimize
redundancy to satisfy application’s reliability requirement,
and describe the steps in Algorithm 2.

The core idea of the ERRMalgorithm is that all the tasks are
first assumed to be replicated once on an available processor
with the maximum reliability values; then ERRM selects the
replica nx

s and corresponding processor uprðnxs Þ that generate
the maximum application reliability value RsðGÞ until
application’s reliability requirement is satisfied in the iterative
replication process. The details are explained as follows:

(1) In Line 1, ERRM calls the LBR algorithm (Algorithm 1)
to obtain the initial reliabilityRðGÞ and related values.

(2) In Lines 2-11, ERRM iteratively selects the replica
and available processor that generate the maximum
application reliability value until application’s reli-
ability requirement is satisfied. Specifically, the fol-
lowing details are made: 1) Line 2 compares the
actual reliability value and the reliability require-
ment of the application; 2) Lines 3-7 pre-replicate all
tasks once on an available processor with the maxi-
mum reliability values; 3) Line 8 selects the replica
and corresponding processor that generate the maxi-
mum application reliability value; and 4) Line 10
updates the application’s reliability value.

(3) In Line 13, ERRM calculates the final number of rep-
licas of the application.

Algorithm 2. The ERRM Algorithm

Input: G ¼ ðN;W;M;CÞ, U , RreqðGÞ
Output:RðGÞ, NRðGÞ and its related values
1: Call the LBR algorithm (Algorithm 1) to obtain the initial

reliability RðGÞ and related values;
2: while (RðGÞ < RreqðGÞÞ do
3: for ði ¼ 1; i <¼ jN j; iþþÞ do
4: Pre-replicated the replica of ni on an available proces-

sor with the maximum reliability value Rðni; ukÞ;
5: Update the task’s sub-reliability value to RnewðniÞ

(Eq. (11));
6: Calculate the application reliability RiðGÞ after the reli-

ability enhancement of ni (Eq. (12));
7: end for
8: Select the replica nx

s and corresponding processor uprðnxs Þ
that generate the maximum application reliability value
RsðGÞ (Eq. (13));

9: numi þþ;
10: RðniÞ  RnewðniÞ;
11: RðGÞ  RiðGÞ;
12: end while
13: Calculate NRðGÞ using Eq. (5);

5.7 Time Complexity of the ERRM Algorithm

The time complexity of the ERRM algorithm is analyzed as
follows:

(1) The maximum number of iterative replication process
is jN j � jUj, which can be done within O(jN j � jU j)
time (Lines 2-12).

(2) Each task must be assumed to be replicated once on
an available processor, which can be done in O(jNj)
time (Lines 3-7).

(3) Selecting the replica and available processor with the
maximum reliability value must traverse all process-
ors, which can be done in O(logjU j) time (Line 4).

(4) Updating the task’s new sub-reliability value can be
done in O(jUj) time (Line 5).

(5) Calculating the application’s new reliability value
can be done in O(jN j) time (Line 6).

(6) Obtaining the maximum application reliability value
can be done in O(jN j) time (Line 8).

Considering that (3), (4), and (5) are not nested in the
algorithm, the time complexity of the ERRM algorithm is
O(jN j2 � jU j2 þ jN j3 � jU j).
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Considering that the time complexity of the LBR algo-
rithm (i.e., O(jNj � jUj � logjUj)) is less than that of the
ERRM algorithm, using the LBR algorithm in advance can
improve the efficiency of the replication compared with
only using the ERRM algorithm. The reason is that the LBR
algorithm can obtain an initial reliability value greater than
zero, such that the number of iterative process of the ERRM
algorithm can be reduced. Considering the motivating
example, the reliability value obtained is 0.89092057, shown
in Table 6, then the initial reliability value is not 0, but
0.89092057. Compared to starting from 0, 0.89092057 is close
to the actual reliability requirement of 0.93.

5.8 Example of the ERRM Algorithm

Example 4. The same parameter values (�1 ¼ 0:0010, �2 ¼
0:0015, �3 ¼ 0:0018, and RseqðGÞ ¼ 0:94) with aforemen-
tioned examples are used. Table 7 lists the selected proces-
sor and reliability pairs of each task in each step by using
Algorithm 2, where the underlined values indicate those
that have the maximum RnewðniÞ (Eq. (11)) and RsðGÞ
(Eq. (13)), and the replica is selected to enhance the reli-
ability of the application in each step. For example, in Step
(1), n9 and u2 are selected, because they can generate the
maximum value of 0.9068. In Step (4), the reliability value
is larger than or equal to application’s reliability require-
ment 0.94. Hence, application’s reliability requirement is
satisfied, and the replication process successfully ends.

Table 8 lists the final replicas, selected processor, and
reliability value for each task of the parallel application in
Fig. 2. We find that the final reliability value of each task
is larger than or equal to 0.94. Moreover, the current reli-
ability value is RðGÞ ¼ 0:94307237 (calculated by Eq. (4)),
which is larger than 0.94. Hence, application’s reliability
requirement is satisfied, and the application proves

reliable in this situation. Meanwhile, the final resource
consumption isNRðGÞ ¼ 14 (Calculated by Eq. (5)).

6 HEURISTIC REPLICATION FOR REDUNDANCY

MINIMIZATION

Although the ERRM algorithm can implement enough
redundancy minimization, it has high time complexity and
thereby it is time-consuming for a large-scale parallel appli-
cation. To reduce the redundancy of a large-scale parallel
application within an acceptable computation time, this sec-
tion presents a heuristic algorithm.

6.1 Upper Bound on Reliability Requirement

Although the RR algorithm can achieve more redundancy
reduction than theMaxRe algorithm by recalculating the sub-
reliability requirement, the redundancy reduction ranges of
the tasks near the entry task is much lower than those of the
tasks near the exit task (see Table 5). The main reason for the
discrepancy is that unfair sub-reliability requirements among
tasks are generated. In fact, the tasks that are after nseqðxÞ’s
allocations (i.e., unassigned tasks) can also be presupposed as
assigned tasks with known reliability values.

We find that all the sub-reliability requirements of tasks
using the RR algorithm do not exceed 0.99383156 (see
Table 5), which is the sub-reliability requirement of each
task using the MaxRe algorithm (see Table 4). Thus, we letffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RreqðGÞjN jp be the upper bound on task’s reliability require-
ment, namely,

Rup reqðniÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjN j

q
: (14)

Then, we have the following heuristic strategy: assume
that the task to be assigned is nseqðjÞ (nseqðjÞ represents the jth
assigned task as mentioned earlier), then fnseqð1Þ; nseqð2Þ; . . . ;
nseqðj�1Þg represents the task set with assigned tasks, and
fnseqðjþ1Þ; nseqðjþ2Þ; . . . ; nseqðjNjÞg represents the task set with
unassigned tasks. To ensure that the reliability of the applica-
tion is satisfied at each task assignment, we presuppose that
each task in fnseqðjþ1Þ; nseqðjþ2Þ; . . . ; nseqðjN jÞg is assigned to the
processor with reliability value on upper bound (Eq. (14)).
Hence, when assigning nseqðjÞ, application’s reliability
requirement is

RreqðGÞ ¼
Yj�1
x¼1

RðnseqðxÞÞ � RreqðnseqðjÞÞ �
YjNj

y¼jþ1
Rup reqðnseqðyÞÞ:

Then, the sub-reliability requirement for the task nseqðjÞ
should be

RreqðnseqðjÞÞ ¼ RreqðGÞQj�1
x¼1 RðnseqðxÞÞ �

QjN j
y¼jþ1 Rup reqðnseqðyÞÞ

: (15)

TABLE 7
Selected Processor and Reliability Pairs (Denoted with Underline Text) of Each Task in Each Step of the Motivating

Parallel Application Using the ERRM Algorithm

Step n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

(1) (u3; 0:9033) (u2; 0:9023) (u2; 0:9006Þ (u1; 0:9015) (u3; 0:9015) (u3; 0:9024) (u3; 0:89714) (u2; 0:8953) (u2; 0:9068) (p1; 0:9001)
(2) (u3; 0:9194) (u2; 0:9183) (u2; 0:9166) (u1; 0:9176) (u3; 0:9176) (u3; 0:9185) (u2; 0:9131) (u2; 0:9113) (u3; 0:9071) (u1; 0:9162)
(3) (u2; 0:9196) (u2; 0:9311) (u2; 0:9294) (u1; 0:9303) (u3; 0:9303) (u3; 0:9312) (u3; 0:9257) (u2; 0:9239) (u3; 0:9197) (u1; 0:9289)
(4) (u2; 0:9314) (u2; 0:9431) (u2; 0:9413) (u1; 0:9423) (u3; 0:9423) (u2; 0:9314) (u3; 0:9376) (u2; 0:9358) (u3; 0:9315) (u1; 0:9409)

TABLE 8
Task Assignment of the Application in Fig. 2 Using

the ERRM Algorithm

ni Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.98609754 0.97628571 0.98393051 2 0.99977659
n3 0.98906028 0.98068890 0.96637821 1 0.98906028
n4 0.98708414 0.98807171 0.96986344 1 0.98807171
n2 0.98708414 0.97190229 0.99963709 2 0.98708414
n5 0.98807171 0.98068890 0.98216103 1 0.98807171
n6 0.98708414 0.97628571 0.98393051 2 0.99979245
n9 0.98216103 0.98216103 0.96464029 2 0.99968177
n7 0.99302444 0.97775124 0.98039473 1 0.99302444
n8 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.97921896 0.98955493 0.97161077 1 0.98955493

NRðGÞ ¼ 14, RðGÞ ¼ 0:94307237
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6.2 The HRRM Algorithm

On the basis of the aforementioned new sub-reliability
requirement calculation for each task (Eq. (15)), we present
the heuristic algorithm HRRM described in Algorithm 3 to
minimize redundancy and satisfy application’s reliability
requirement.

Algorithm 3. The HRRM Algorithm

Input: G ¼ ðN;W;M;CÞ, U , RreqðGÞ
Output:RðGÞ, NRðGÞ and its related values
1: Order tasks according to a descending order of rankuðni; ukÞ

using Eq. (6);
2: for ðj ¼ 1; j <¼ jNj; jþþÞ do
3: Calculate RðnseqðjÞÞ using Eq. (3);
4: numseqðjÞ ¼ 0;
5: RðnseqðjÞÞ ¼ 0; // initial value is 0
6: Calculate RreqðnseqðjÞÞ using Eq. (15);
7: while (RðnseqðjÞÞ < RreqðnseqðjÞÞ) do
8: Calculate RðnseqðjÞ; ukÞ for the task nseqðjÞ on all each

available processor using Eq. (1);
9: Select replica nx

seqðjÞ and the processor uprðnx
seqðjÞÞ with the

maximum Rðnx
seqðjÞ; uprðnx

seqðjÞÞÞ;
10: numseqðjÞ++;
11: Calculate RðnseqðjÞÞ using Eq. (3);
12: end while
13: end for
14: CalculateNRðGÞ using Eq. (5);
15: Calculate RðGÞ using Eq. (4);

The core idea of HRRM is that the reliability requirement
of the application is transferred to the sub-reliability
requirement of each task. Each task just iteratively selects
the replica and available processor with the maximum reli-
ability value until its sub-reliability requirement is satisfied.
The details are explained as follows:

(1) In Line 6, HRRM has obtained the reliability require-
ment of the current task before it prepares to be
assigned.

(2) In Lines 7-12, HRRM iteratively selects the replica
and available processor with the maximum reli-
ability value for the current task until its sub-
reliability requirement is satisfied. Specifically, the
following details are made: 1) Line 7 compares
the actual reliability value and sub-reliability
requirement of the current task; 2) Lines 8-9 calcu-
late and select the replica and available processor
with the maximum reliability value for the current
task; and 3) Line 11 calculates the actual reliability
value of the current task.

(3) In Lines 14-15, HRRM calculates the final number of
replicas and the actual reliability value of the appli-
cation, respectively.

Compared with MaxRe and RR algorithms, the main
improvement of the presented HRRM is that it recalculates
the sub-reliability requirement of each task based not only on
its previous assignments (fnseqð1Þ; nseqð2Þ; . . . ; nseqðj�1Þg), but
also on succeeding pre-assignments fnseqðjþ1Þ; nseqðjþ2Þ; . . . ;
nseqðjN jÞg, whereas MaxRe algorithm has a fixed and equal
sub-reliability requirements for all tasks and RR algorithm is
merely based on previous assignments.

6.3 Time Complexity of the HRRM Algorithm

The time complexity of the HRRM algorithm is analyzed as
follows:

(1) Calculating the reliability of the application must
traverse all tasks, which can be done within O(jNj)
time (Lines 2-13).

(2) Calculating the sub-reliability requirement of the
current task must traverse all tasks, which can be
done within O(jNj) time (Line 6).

(3) The number of replicas must be lower or equal to the
number of processors, which can be done within
O(jU j) time (Lines 7-12).

(4) Calculating the reliability value of the current task
must traverse all assigned processors, which can be
done in O(jUj) time (Line 11)

Considering that (2) and (3) are not nested in the
algorithm, the time complexity of the HRRM algorithm is
O(jN j2 þ jN j � jUj2), which is similar to those of MaxRe and
RR algorithms. Thus, HRRM implements efficient fault-
tolerance without increasing time complexity.

6.4 Example of the HRRM Algorithm

Example 5. The same parameter values (�1 ¼ 0:0010,
�2 ¼ 0:0015, �3 ¼ 0:0018, and RseqðGÞ ¼ 0:94) with afore-
mentioned examples are used. Table 9 shows the task
assignment for each task of the motivating parallel appli-
cation using HRRM algorithm. Each row shows the
selected processors (in red) and corresponding reliability
values. The sub-reliability requirement and task assign-
ment of n1 using HRRM algorithm is similar to those
using MaxRe and RR algorithms. However, the remain-
ing tasks are different. For example, when assigning n3,
the actual reliability value for n1 is 0.99977659, and suc-
ceeding pre-assignments with reliability requirements areffiffiffiffiffiffiffiffiffi

0:9410
p ¼ 0:99383156, then the sub-reliability requirement
for n3 should be 0:94

0:99977659�0:993831568 ¼ 0:98792188. Com-

pared with the RR algorithm, an obvious improvement

for the HRRM algorithm is that it shows relative fair reli-

ability requirements among tasks; furthermore, most sub-
reliability requirements of tasks using HRRM are less

than those using the RR algorithm. Finally, the number of

replicas and the actual reliability value of the application

TABLE 9
Task Assignment of the Motivating Parallel Application

Using the HRRM Algorithm

ni RreqðniÞ Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.99383156 0.98609754 0.97628571 0.98393051 2 0.99977659
n3 0.98792188 0.98906028 0.98068890 0.96637821 1 0.98906028
n4 0.99268768 0.98708414 0.98807171 0.96986344 2 0.99984594
n2 0.98671636 0.98708414 0.97190229 0.96811926 1 0.98708414
n5 0.99346128 0.98807171 0.98068890 0.98216103 2 0.99978721
n6 0.98754331 0.98708414 0.97628571 0.98393051 2 0.99979245
n9 0.98165546 0.98216103 0.98216103 0.96464029 1 0.98216103
n7 0.99331998 0.99302444 0.97775124 0.98039473 2 0.99986324
n8 0.98732777 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.98615598 0.97921896 0.98955493 0.97161077 1 0.98955493

NRðGÞ ¼ 15, RðGÞ ¼ 0:94323987
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G are 15 and 0.94323987 (calculated by Eqs. (5) and (4)),
respectively, which are lower than those with MaxRe and

RR algorithms.

7 EXPERIMENTS

7.1 Experimental Metrics and Parameter Values

Considering that this study aims to implement redundancy
minimization with replication to satisfy application’s reliabil-
ity requirement, performance metrics selected for compari-
son should be the actual reliability value and total number of
replicas of the application. Meanwhile, computation time
should be included from a time complexity perspective. The
computation time is measured from the start time to the end
time of an algorithm to schedule an application.

Algorithms compared with the proposed ERRM and
HRRM algorithms are the state-of-the-art MaxRe [14] and
RR [15] algorithms. MaxRe and RR algorithms address the
same problem of minimizing resource redundancy of a par-
allel application to satisfy application’s reliability require-
ment on heterogeneous distributed systems.

Considering that this study focuses on the design phase,
the processor and application parameters used in this
phase are known. In other words, these values have been
obtained in the analysis phase and are as follows [15]:
10,000 s 4wi;k4 100,000 s, 10,000 s 4ci;j4 100,000 s, and
0:0000014�k40:000009. The aforementioned values are
generated with uniform distribution.

The parallel applications will be tested on a simulated het-
erogeneous system based on the above real processor and
application parameter values to reflect a real deployment. A
main advantage of simulation is that it can greatly reduce
development cost during the design phase and effectively
provide certain optimization guide to the implementation
phase. The simulated multiprocessor system is configured 64
heterogeneous processors by creating 64 processor objects
based known parameter values using Java on a standard
desktop computerwith 2.6 GHz Intel CPU and 4GBmemory.

Meanwhile, real parallel applications with precedence
constrained tasks, such as fast Fourier transform and Gauss-
ian elimination applications, are widely used in distributed
systems [9], [15]. The Fourier transform and Gaussian elimi-
nation application are two typical parallel applications with
high and low parallelism, respectively. To verify the effec-
tiveness and validity of the proposed algorithms, we use
the two types of real parallel applications to compare the
results of all the algorithms.

A new parameter r is used as the size of the fast Fourier
transform application. The total number of tasks is

jNj ¼ ð2� r� 1Þ þ r� log 2
r, where r ¼ 2y for some integer

y [9]. Fig. 3a shows an example of the fast Fourier transform
application with r=4. Notably, r exit tasks exist in the fast
Fourier transform application with the size of r. To adopt
the application model of this study, we add a virtual exit
task, and the last r tasks are set as the immediate predeces-
sor tasks of the virtual exit task. A new parameter r is used
as the matrix size of the Gaussian elimination application,
and the total number of tasks is jNj ¼ r2þr�2

2 [9]. Fig. 3b
shows an example of the Gaussian elimination parallel
application with r=5.

7.2 Fast Fourier Transform Application

Experiment 1. This experiment compares the actual reli-
ability values and the total number of replicas of a small-
scale fast Fourier transform application with r ¼ 32 (i.e.,
jNj ¼ 223) for varying reliability requirements. RseqðGÞ is
changed from 0.9 to 0.99 with 0.01 increments. Note that
computation time values of all the algorithms are within
one second for the small-scale application and we no lon-
ger list such values in this experiment.

Note that the plotted values in Figs. 4a and 4b are obtained
by executing one run of the algorithms for one application.
Many applications with the same parameter values and
scales are tested and show the same regular pattern and rel-
atively stable results as Figs. 4a and 4b. In other words,
experiments are repeatable and do not affect the consistency
of the results. Therefore, the plotted values are the actual
values rather than the average values during the runs.

Fig. 4a shows the actual reliability values of the small-
scale fast Fourier transform application on different reliabil-
ity requirements. We can see that all the algorithms can
satisfy the given reliability requirements in all cases. Specifi-
cally, MaxRe generates the maximum reliability values
followed by RR, HRRM, and ERRM. The overrunning reli-
ability values (i.e., RseqðGÞ-RðGÞ) reach 0.0613 and 0.0246
for MaxRe and RR, respectively. On the contrary, the over-
running reliability values are very small for HRRM (0.0001-
0.0008) and ERRM (0.0001-0.0006) in all cases. Considering
no additional fees will be paid for the overrunning reliabil-
ity values, more resources are wasted for resource providers
in using MaxRe and RR.

Fig. 4b shows the total number of replicas of the small-
scale fast Fourier transform application on different reliabil-
ity requirements. As expected, MaxRe generates the maxi-
mum numbers of replicas followed by RR, HRRM, and
ERRM in all cases. The reason is thatMaxRe has obtained the
maximum actual reliability values followed by RR, HRRM,
and ERRM in Fig. 4a, whereas optimizing reliability and

Fig. 3. Example of real parallel applications.

Fig. 4. Results of the small-scale fast Fourier transform application on
different reliability requirements (Experiment 1).
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redundancy is a bi-criteria optima problem as discussed in
Section 1.2.

The same regular pattern for the actual reliability values
is shown in Fig. 4a. As evident from Fig. 4b, the numbers of
replicas using HRRM and ERRM are very similar and are
much lower than those using MaxRe and RR, especially on
relatively low reliability requirements. For example, when
RseqðGÞ40:94, both ERRM and HRRM outperform MaxRe
and RR by about 18 and 7 percent, respectively.

Experiment 2. This experiment compares the actual reli-
ability values, the total number of replicas, and the com-
putation time of a large-scale fast Fourier transform
application with r ¼ 128 (i.e., jNj ¼ 1151) for varying reli-
ability requirements. RseqðGÞ is also changed from 0.9 to
0.99 with 0.01 increments.

Fig. 5a shows the actual reliability values of the large-
scale fast Fourier transform application on different reli-
ability requirements. All the algorithms can satisfy the
given reliability requirements in all cases. Similar to the
results of the small-scale application in Fig. 4a, MaxRe still
generates the maximum reliability values followed by RR,
HRRM, and ERRM. Maximum differences between actual
reliability and given reliability requirement are 0.0747
(RseqðGÞ ¼ 0:9) and 0.0184 (RseqðGÞ ¼ 0:90) for MaxRe and
RR, respectively. On the contrary, in all cases the differen-
ces remain the minimum and close to application’s reliabil-
ity requirements using HRRM (0.0001-0.0003) and ERRM
(0.0001-0.0002).

Fig. 5b shows the total number of replicas of the large-
scale fast Fourier transform application on different reliabil-
ity requirements. Similar to Fig. 4b in small-scale, MaxRe
still generates the maximum numbers of replicas followed
by RR, HRRM, and ERRM in all cases. The numbers of repli-
cas using HRRM and ERRM are still very close and are
much lower than those using MaxRe and RR in most cases.

Fig. 5c shows the computation time values of the large-
scale fast Fourier transform application for reliability
requirements. The values show that computation time is
within 2.1 second using MaxRe, RR, and HRRM, whereas
those using ERRM are 80-120 times longer. Such results indi-
cate that ERRM is time-consuming for large-scale applica-
tions, as analyzed earlier.

An interesting phenomenon is that the computation time
values using ERRM for large scale applications are not
increased but reduced as the application’s reliability require-
ments increase in most cases, shown in Fig. 5c. The reason is
that when using ERRM, it first calls the LBR algorithm
(Algorithm 1) to obtain the initial reliability values of the
application. A higher reliability requirement of the applica-
tion may lead to higher initial reliability values with very
short time by using LBR in these cases, such that the total
computation time is not increased, but reduced with the
application’s reliability requirements increase.

The results of Figs. 4a, and 5c show that ERRM and
HRRM algorithms generate less redundancy than the state-
of-the-art MaxRe and RR algorithms. Specifically, results
of HRRM algorithm are very similar to those of ERRM algo-
rithm indicating that HRRM implements approximate opti-
mal redundancy with minimum time, whereas the enough
optimal ERRM algorithm is time-consuming for large-scale
parallel applications.

7.3 Gaussian Elimination Application

Experiment 3. This experiment compares the actual reli-
ability values and the total number of replicas of in a
small-scale Gaussian elimination application with r ¼ 21
(i.e., jN j=230). The total number of task for the Gaussian
elimination is similar to that of the fast Fourier transform
application for varying reliability requirements. RseqðGÞ
is also changed from 0.9 to 0.99 with 0.01 increments.
Similar to small-scale fast Fourier transform in Experi-
ment 1, the computation time values using all the algo-
rithms are also within one second for the small-scale
Gaussian elimination. Therefore, we also no longer list
such values in this experiment.

Figs. 6a and 6b show the actual reliability values and total
number of replicas of the small-scale Gaussian elimination
application on different reliability requirements. In general,
Experiment 3 shows similar pattern and values as Experi-
ment 1 for the total number of replicas for all the algorithms.

The results of Experiments 1 and 3 indicate that different
parallelism degrees of applications in the same small-scale
will generate similar actual reliability values and total num-
ber of replicas. In other words, parallelism degrees do not
affect the scopes of actual reliability values and total num-
ber of replicas. The reason is that the reliability value of the
application is the product of that of each task according to
Eq. (4); considering that the number of tasks, the reliability
requirement, and computation time are approximate equal,
the actual reliability values and total number of replicas are
also approximate equal.

Fig. 5. Results of the large-scale fast Fourier transform application on
different reliability requirements (Experiment 2).

Fig. 6. Results of the small-scale Gaussian elimination application on dif-
ferent reliability requirements (Experiment 3).
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Experiment 4. This experiment compares the actual reli-
ability values, the total number of replicas, and the com-
putation time of a large-scale Gaussian elimination
application with r ¼ 47 (i.e., jN j ¼ 1; 127) for varying reli-
ability requirements. RseqðGÞ is also changed from 0.9 to
0.99 with 0.01 increments.

Figs. 7a, 7b, and 7c show the actual reliability values,
total number of replicas, and computation time of the large-
scale Gaussian elimination application on different reliabil-
ity requirements. Experiment 4 shows similar pattern and
values as Experiment 2 in actual reliability values and total
number of replicas for all the algorithms. The results of
Experiments 2 and 4 further indicate that parallelism
degrees do not affect the scopes of actual reliability values
and total number of replicas.

7.4 Randomly Generated Parallel Application

To extensively demonstrate the benefits of the proposed
algorithms, we consider randomly generated parallel appli-
cations by the task graph generator [40]. Considering that
the objective platform is heterogeneous processors, hetero-
geneity degrees may also affect the redundancy of applica-
tion. Heterogeneity degree is easy to be implemented for
randomly generated parallel applications as long as adjust
the heterogeneity factor values. Randomly generated paral-
lel applications are generated depending on the following
parameters: average computation time is 50,000 ms, com-
munication to computation ratio (CCR) is 1, and shape
parameter is 1. The heterogeneity degree (factor) values
belong to the scope of (0,1] in the task graph generator,
where 0 and 1 represent the lowest and highest heterogene-
ity factors, respectively. Without loss of generality, we use
large-scale randomly generated parallel application with
1,140 tasks, which are approximate equal to those of fast
Fourier transform and Gaussian elimination applications in
Experiments 2 and 4.

Experiment 5. This experiment compares the actual reli-
ability values and the total number of replicas of a large-
scale low-heterogeneity (with the heterogeneity factor
0.1) randomly generated parallel application with
jNj ¼ 1; 140 for varying reliability requirements. RseqðGÞ
is also changed from 0.9 to 0.99 with 0.01 increments.

Figs. 8a and 8b show the actual reliability values and total
numbers of replicas the large-scale low-heterogeneity ran-
domly generated parallel application on different reliability
requirements. It is easy to see that Experiment 5 shows simi-
lar pattern and values as Experiments 2 and 4 using all the
algorithms. The main differences are as follows:

(1) The actual reliability values and total numbers of rep-
licas obtained byMaxRe in Experiment 5 are relatively
stable for different reliability requirements. The rea-
son is that the execution time values are relative stable
on the same processor for a low-heterogeneity parallel
application and the reliability requirement using
MaxRe is the same for all tasks, such that the values
for the application do not changedmuch.

(2) The actual reliability values and total numbers of
replicas obtained by RR, ERRM, and HRRM are rela-
tively close in the same reliability requirement. The
reason is still that the execution time values are rela-
tive stable on the same processor for a low-heteroge-
neity parallel application.

Experiment 6. This experiment compares the actual reli-
ability values and the total number of replicas of a large-
scale high-heterogeneity (with the heterogeneity factor 1)
randomly generated parallel application with jN j ¼ 1140
for varying reliability requirements. RseqðGÞ is also
changed from 0.9 to 0.99 with 0.01 increments.

Figs. 9a and 9b show the actual reliability values and total
numbers of replicas the large-scale high-heterogeneity ran-
domly generated parallel application on different reliability
requirements. It is easy to see that Experiment 6 shows simi-
lar pattern and values as Experiment 5 using all the algo-
rithms. The main difference is that the high-heterogeneity
application needs fewer replicas than the low-heterogeneity
application. The total numbers of replicas for the former is
only 60 percent of those for the latter using all the algorithms.
The reason is that the actual reliability values for a task on dif-
ferent processors change much in a high-heterogeneity appli-
cation, and these algorithms tend to choose the processor

Fig. 7. Results of the large-scale Gaussian elimination application on dif-
ferent reliability requirements (Experiment 4).

Fig. 8. Results of the large-scale low-heterogeneity randomly generated
parallel application on different reliability requirements (Experiment 5).

Fig. 9. Results of the large-scale high-heterogeneity randomly generated
parallel application on different reliability requirements (Experiment 6).
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with the maximum reliability value for each task replication.
Moreover, different from the low-heterogeneity application
where the total numbers of replicas obtained by RR, ERRM,
and HRRM are relatively close, ERRM and HRRM generate
much less replicas than RR for the high-heterogeneity appli-
cation. The reason is still that the actual reliability values for a
task on different processors changemuch.

7.5 Summary of Experiments

Based on the above experimental results, summarizations
are as follows.

(1) The proposed redundancy minimization algorithms,
ERRM and HRRM, can generate less redundancy
than the state-of-the-art MaxRe and RR algorithm at
different scales, parallelism degrees, and heterogene-
ity degrees.

(2) Results of the HRRM algorithm are very similar to
those of the ERRM algorithm. HRRM implements
approximate optimal redundancy with minimum
computation time, whereas the enough optimal
ERRM algorithm is time-consuming for large-scale
parallel applications.

(3) According to the analysis of the number of active pro-
cessors, parallelism degrees do not affect the scopes
of reliability values and total number of replicas for
different types of applications in the same-scale.

(4) If the parallel application is small, then ERRM can be
utilized to minimize redundancy; otherwise HRRM
is the preferred alternative for reducing redundancy
with minimum computation time.

(5) RR, ERRM, and HRRM obtain relatively close num-
bers of replicas for a low-heterogeneity application,
whereas ERRM and HRRM obtain much less replicas
than RR for the high-heterogeneity application. In
other words, ERRM and HRRM are better suitable
for high-heterogeneity applications than for low-
heterogeneity applications.

8 CONCLUSION

We developed enough and heuristic replication algorithms
ERRM and HRRM to minimize the redundancy for a paral-
lel application in heterogeneous service-oriented systems.
The ERRM algorithm can enough minimize redundancy by
presenting two-stage replications. To decrease the time
complexity of the time-consuming ERRM algorithm, the
HRRM algorithm was also presented to deal with large-
scale parallel applications within a short time. The main
advantage for HRRM is its capability to obtain lower sub-
reliability requirements for most tasks compared with
MaxRe and RR, such that HRRM can generate less redun-
dancy than MaxRe and RR. Results of our experiments on
real and random generaed parallel applications at different
scales, parallelism degrees, and heterogeneity degrees vali-
date that both ERRM and HRRM generate less redundancy
than the state-of-the-art MaxRe and RR algorithms. Experi-
ment results also show that the HRRM implements approxi-
mate optimal redundancy with a short computation time.
We believe that the proposed algorithms can effectively
facilitate a reliability-aware design for parallel applications
in heterogeneous service-oriented systems.

Resource usage and shortest schedule length are also
important concern in high-performance computing sys-
tems. In fact, minimum redundancy does not mean mini-
mum resource usage and shortest schedule length for a
parallel application on heterogeneous systems because
the same task has different execution time values on dif-
ferent processors. In our future work, we will consider
the resource usage and schedule length minimization in
such environment.
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Mining Deficiencies of Online
Reputation Systems: Methodologies,

Experiments and Implications
Hong Xie ,Member, IEEE and John C.S. Lui , Fellow, IEEE

Abstract—Online reputation systems serve as core building blocks in various Internet services such as E-commerce (e.g., eBay) and

crowdsourcing (e.g., oDesk). The flaws and deficiencies of real-world online reputation systems have been reported extensively. Users

who are frustrated about the system will eventually abandon such service. However, there is no systematic and formal studies which

examine such deficiencies. This paper presents the first attempt, which develops a novel data analytical framework to uncover online

reputation system deficiencies from data. We develop two novel measures to quantify the efficiency of online reputation systems:

(1) ramp up time of a new service provider, (2) long term profit gains for a service provider. We present a new data analytical framework

to evaluate these two measures from data. We show that inherent preferences or personal biases in expressing feedbacks (or ratings)

cause the computational infeasibility in evaluating the ramp up time and the long term profit gains from data. We develop two

computationally efficient randomized algorithms with theoretical performance guarantees to address this computational challenge.

We apply our methodology to analyze real-life datasets (from eBay, Google Helpouts, Amazon and TripAdvisor). We extensively

validate our model and we uncover the deficiencies of online reputation systems. Our experimental results uncovers insights on why

Google Helpouts was eventually shut down in April 2015 and why eBay is losing some sellers heavily.

Index Terms—Online reputation systems, ramp up time, long term profit gains, approximation algorithms

Ç

1 INTRODUCTION

WITH the advancement of Internet technologies, a vari-
ety of online services are booming. E-commerce sys-

tems such as eBay [7] and Taobao [25] of Alibaba are
representative examples. In an E-commerce system,
buyers can purchase products from strangers and transac-
tions are conducted online. Another typical Internet
service is online product review website such as TripAdvi-
sor [27], etc. In such websites, customers share their expe-
riences on products, so that other customers can make
purchasing decisions based on these experiences. Crowd-
sourcing services such as Google Helpouts [9] and
oDesk [20] are another form of Internet services, where
requester can outsource a task to different workers. One
common characteristic of the above services is that transac-
tions are usually carried out between two “strangers”, and
there is a risk because sellers may sell low quality goods
while workers may provide low quality solutions. To over-
come such risk, Internet service companies deploy reputa-
tion systems [21].

In general, an online reputation system involves two par-
ties: “service providers” and “customers”. A service provider
can be a seller in eBay, a worker in Google Helpouts, or a

hotel chain in TripAdvisor. A customer can be a buyer in
eBay, a task requester in Google Helpouts, or a traveller in
TripAdvisor. A transaction can be a buyer purchasing a
product from a seller, a requester paying a worker to solve
a task, or a customer spending an evening in a hotel. When
a transaction is completed, a customer gives a feedback rat-
ing to indicate the quality of a service. For example, eBay
adopts a three-level cardinal rating metric: f“negative”,
“neutral”, “positive”g. Each service provider is associated
with a reputation score, which is the aggregation of all its
feedback ratings. The reputation score reflects the “overall
quality” of service providers, and each service provider’s
reputation is accessible by all customers.

Many reports have indicated that existing online repu-
tation systems have critical flaws, which result in losing
users and putting Internet service companies at the risk
of significant revenue loss. For example, it was reported
in [29] that the eBay reputation system frustrates sellers.
More concretely, the eBay reputation system forces some
sellers out of the business because it makes them difficult
to attract customers. In fact, eBay was reported to have a
significant user loss [12], [23], [26]. Similarly, Google
Helpouts was eventually shut down in April 2015 due to
poor business [8]. It is important to formally explore these
phenomena: What are the key factors which influence the effi-
ciency of online reputation systems? How to uncover the defi-
ciencies of online reputation systems from data? Exploring
these questions not only can help us to uncover potential
risks of online reputation systems, but we also can gain
important insights to improve them.
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Despite its importance, there is no formal study to
explore deficiencies of online reputation systems. This
paper aims to fill this void. However, there exists at least
three challenges: (1) What is the right performance measure
to quantify the efficiency of online reputation systems? (2)
How to efficiently process online reputation datasets and
apply these measures to analyze them? (3) How to address
computational challenges arose in large scale reputation
data analysis? This paper addresses these challenges. Our
contributions are:

� We propose two measures: ramp up time and long
term profit gains, to quantify the efficiency of feed-
back-based online reputation systems.

� We show that preferences or personal biases in assign-
ing feedbacks (or ratings) cause the computational
infeasibility in evaluating our proposed measures
from data. We propose computationally efficient
randomized algorithms (with theoretical performance
guarantees) to address the above computational
challenge.

� We apply our methodology to real-life datasets from
eBay, Google Helpouts, Amazon and TripAdvisor.
We extensively validate our model. We discover the
deficiencies of online reputation systems: (1) the
ramp up time is more than 500 days; (2) reducing
ramp up time can improve the long term profit gains
significantly, e.g., an 80 percent reduction on ramp
up time leads to at least 50 percent (as high as 100
percent) improvement in long term profit gains. Our
experimental results also uncovers insights on why
Google Helpouts was eventually shut down in April
2015 and why eBay is losing sellers heavily.

This paper organizes as follows. In Section 2, we present the
system model for online reputation systems. In Section 3 we
formulate our problem. In Section 4, we present a novel data
analytical framework to evaluate reputation systems. In
Section 5We then extend our framework to incorporate prefer-
ences or personal biases in assigning feedbacks (or ratings). In
Section 6we present the design of two randomized algorithms
to approximate ramp up time and long term profit gains
respectively. In Section 7 we present experimental results
using datasets from eBay and Google Helpouts. Related work
is given in Section 8 andwe conclude in Section 9.

2 SYSTEM MODEL

We present a general model to characterize online reputation
systems,which are deployed in different types of Internet serv-
ices, e.g., electronic commerce like eBay [7], crowdsourcing
services like Google Helpouts [9], and hotel review websites
like TripAdvisor [27]. In general, such Internet services consist
of “service providers”, “customers” and a “reputation system”.

� Service Providers: we define “service providers” as
users that supply items. A service provider can be a
seller in eBay, a worker in Google Helpouts, or a
hotel chain in TripAdvisor.

� Customers: we define “customers” as users that pur-
chase items. A customer can be a buyer in eBay, a
task requester in Google Helpouts, or a traveller in
TripAdvisor.

Customers conduct transactions with service providers.
To encourage transactions among customers and service
providers, Internet service companies use reputation sys-
tems to reflect the “overall quality” of service providers, and
each service provider’s reputation is accessible by all cus-
tomers. Clearly, a service provider having a high reputation
can attract more customers, which leads to larger revenue.
Table 1 lists all the key notations.

2.1 Transaction Model

A customer pays a fee, which we call the price, to a service
provider in order to complete a transaction. For example, a
buyer pays a seller some money to buy a product, or a
requester pays a worker some money to have a task solved.
Without loss of generality, we focus on a normalized price,
i.e., price 2 ½0; 1�. A service provider incurs a cost 2 ½0; 1�, in
providing a service to a customer, i.e., a product has a
manufacturing cost, or solving a task has a cost. The internet
service company (e.g., eBay, Taobao, Google Helpouts),
charges a transaction fee 2 ½0; 1� for each transaction. Our
analysis also applies for a transaction fee, which is propor-
tional to the price, because the focus of this paper is not on
the pricing strategies. Thus, for brevity, we consider a fixed
transaction fee. A service provider receives a unit profit
gain of g for a completed transaction

g , price� cost� transaction fee: (1)

To incentivize service providers to participate, we must
have g > 0, which yields transaction fee < price� cost.

2.2 Model for Online Reputation Systems

Many Internet service companies deploy reputation systems
to reflect the overall quality of service providers. For exam-
ple, eBay maintains a reputation system to reflect the trust-
worthiness of sellers. In general, such reputation systems
are composed of a “feedback rating mechanism” and “a rating
aggregating policy”.

When a transaction completes, a customer expresses a
feedback rating to indicate the quality of a service. One
most commonly adopted rating metric is the m-level cardi-
nal rating metric f1; . . . ;mg, where m � 2. For example,
eBay adopts a three-level cardinal rating metric: f1 =

TABLE 1
Main Notations

g unit per product profit gain
rðtÞ the average rating up to time slot t
Rð�Þ the rating mapping function
m the total number of rating levels
niðtÞ the number of level i rating up to time slot t

Q; bQ the intrinsic, perceived quality of a service provider
g; Nh threshold on average rating, total number of ratings
�1; �2 transaction rate before, after ramping up
�ðtÞ transaction rate at time slot t
Tt; E½Tr� ramp up time, expected ramp up time
G expected long term profit gainsbE½Tr�; bG estimated ramp up time, long term profit gains
hi the probability of receiving a level i rating
d the discounting factor
� the relative estimation error
� the fail probaibility
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“negative”, 2 = “neutral”, 3 = “positive”g, while TripAdvi-
sor adopts a five-level cardinal rating metric: f1=“Terrible”,
2 = “Poor”, 3 =“Average”, 4=“Very good”, 5=“Excellent”g.
Each rating level is associated with a numerical score,
which is used to compute reputation scores for a service
provider. Let R : f1; . . . ;mg ! R denote a map which pre-
scribes a score for each rating level, i.e., eBay adopts
Rð1Þ ¼ �1;Rð2Þ ¼ 0;Rð3Þ ¼ 1, and TripAdvisor adopts
RðiÞ ¼ i; 8i ¼ 1; . . . ; 5.

Each service provider is associated with a reputation
score, which is an “aggregation” of all its feedback ratings.
The reputation score quantifies the overall reputation of a
service provider. One most widely adopted rating aggregat-
ing rule is the average score rule. Let r denote the reputation
score of a service provider. Let ni denote the number of rat-
ings that are of rating level i, where i ¼ 1; . . . ;m, we have

r ¼
Pm

i¼1 niRðiÞPm
i¼1 ni

: (2)

The reputation score r is a public information accessible by
all customers. For the ease of presentation, this paper
focuses on the average score rule. We will see later, the
results can be extended to the weighted average score rule.

We now describe the reputation updating process. Let
ðr; n1; . . . ; nmÞ be the reputation profile for a service pro-
vider. In order to assist customers to assess the overall repu-
tation of service providers, Internet service companies
publish reputation profiles to the public. We use a discrete
time system to characterize the reputation updating process.
Let ðrðtÞ; n1ðtÞ; . . . ; nmðtÞÞ be the reputation profile of a ser-
vice provider at time slot t 2 f0; 1; . . . ;1g, where rðtÞ is its
reputation score up to time slot t, and niðtÞ is the cumulative
number of level i ratings up to time slot t. Each service pro-
vider is initialized with ð0; 0; . . . ; 0Þ. Let NiðtÞ denotes the
number of transactions completed in time slot t that lead to
the level i rating. In real-world reputation systems, reputa-
tion updating has delays. We assume that the delay is one
time slot. The reputation profile is updated as follows:

rðtþ 1Þ ¼ rðtÞ
Pm

i¼1 niðtÞþ
Pm

i¼1RðiÞNiðtÞPm

i¼1 niðtÞþ
Pm

i¼1 NiðtÞ
;

niðtþ 1Þ ¼ niðtÞ þNiðtÞ; for all i ¼ 1; . . . ;m:

8<: (3)

For brevity, we drop the time stamp t in our analysis when
there is no confusion.

2.3 Model for Rating Behavior

Each service provider has an intrinsic quality, which indi-
cates his true overall service quality. For example, a high
quality seller in eBay sells high quality products and pro-
vides fast shipment. Let Q 2 ½Rð1Þ;RðmÞ� denote the intrin-
sic quality of a service provider. After completing a
transaction, a customer perceives the quality of a service
provider, which is denoted by Q̂ 2 ½Rð1Þ;RðmÞ�. Customers
pick the rating level, which is the most accurate one in
reflecting the perceived quality Q̂. Formally, we have

feedback rating ¼ argmini2f1;...;mg RðiÞ � Q̂
��� ���; (4)

where the feedback rating denotes the individual rating
assigned by a customer. For example, consider m ¼ 5 and
RðiÞ ¼ i for all i 2 f1; . . . ; 5g. When Q̂ ¼ 4:7, the feedback
rating will be 5. When Q̂ ¼ 4:4, the feedback rating will be 4.
Consider Q̂ ¼ 4:5, then according to Equation (4), both rat-
ing 4 and 5 are valid. In such ties, we pick the larger one,
e.g., here we pick 5 to model that customers are lenient in
assigning ratings. This choice will not influence the results
for this paper.

For the purpose of illustrating intuitions and key ideas,
we first assume that there are no errors in perceiving qual-
ity, i.e., Q̂ ¼ Q. We will extend our model to accommodate
quality perceiving errors (i.e., Q̂ 6¼ Q) in Section 5.

2.4 Model for Transaction’s Arrival Rate

We now quantify the impact of a reputation system on ser-
vice providers’ revenue. The reputation system builds trust
among customers and service providers. This trust is critical
in attracting transactions. More precisely, customers aim to
minimize the risk in service purchase and they prefer to
interact with reputable service providers.

Based on the reputation profile, we categorize service pro-
viders into two types: “reputable”, and “average”. Note that
each service provider is initialized with ð0; 0; . . . ; 0Þ. To earn
a reputable label, a service provider must improve his repu-
tation to meet two requirements. The first one is that the rep-
utation score r must be larger than or equal to a threshold
g 2 ½Rð1Þ;RðmÞ�. This requirement shows that a service pro-
vider can provide services with a high overall quality. The
second requirement is that the number of feedback ratings
must be larger than or equal to a threshold Nh. This require-
ment guarantees that the reputation score is statistically sig-
nificant. Otherwise, a service provider is labeled as average.

Definition 1. A reputable service provider must satisfy the fol-
lowing two conditions: r � g and

Pm
i¼1 ni � Nh. A service

provider is labeled as an average service provider if and only if
r < g or

Pm
i¼1 ni < Nh.

Note that a new service provider is initialized with
ð0; 0; . . . ; 0Þ. Hence, a new service provider is always labeled
as “an average service provider”. We need both the rating scale
and score scale in order to make our model practical,
because in real-world applications such as eBay and Google
helpouts both of these two scales are be displayed to users.
These two scales are two important indicators of a service
provider’s reputation.

A service provider’s label (i.e., reputable, or average
label) is critical to its revenue. Customers are more willing
(unwilling) to conduct transactions with reputable (average)
service providers. Let �1 and �2 be the transaction’s arrival
rate when a service provider is labeled as average and repu-
table respectively. The transaction’s arrival rate satisfies
�1 < �2, which signifies that a reputable service provider
can attract more transactions.

Definition 2. Denote �ðtÞ the transaction’s arrival rate at time
slot t. Formally we can express it as

�ðtÞ ¼ �1; if rðtÞ < g or
Pm

i¼1 niðtÞ < Nh;

�2; if rðtÞ � g and
Pm

i¼1 niðtÞ � Nh:

(
(5)
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Let NðtÞ denote the number of transactions that arrive
to a service provider in time slot t. Then we have
E½NðtÞ� ¼ �ðtÞ. This paper focuses on that NðtÞ follows a
Poisson distribution with parameter �ðtÞ. This point is veri-
fied on real-world dataset in Section 7.4.

Remark. Our model focuses on two types of rates, i.e.,
�1; �2, in order to strike a good balance between simplic-
ity and practicability. It is important to keep the simplic-
ity of our model, since it enables us to present the
key ideas and insights in a clear fashion. Note that our
model is practical enough as well. To uncover the deficien-
cies a reputation system, it is reasonable to examine the
average rate to service providers (either average or reputa-
ble provider). The transactions’ rate �1 and �2 can be inter-
preted as the average rate to average service providers
and reputable service providers respectively. These two
types of rates are sufficient to capture the key impact of a
reputation system on the profit of service providers.

3 PROBLEM STATEMENT

We formulate two novel measures to quantify the efficiency
of online reputation systems: (1) ramp up time Tr, (2) expected
long term profit gainsG for a service provider.We pose a ques-
tion of how to infer these two measures from real-world
online reputation systems’ datasets and how to uncover inef-
ficiencies and limitations of real-world reputation systems.

3.1 Ramp Up Time

The number of time slots that a new service provider needs
so to ramp up his reputation (or attain a “reputable” label) is
critical to his revenue and it also affects the transaction gains
of the Internet service company. Recall that each new service
provider is initializedwith an average label, while customers
are more willing to conduct transactions with reputable ser-
vice providers than average labeled service providers.
Hence, it is critical for a service provider to earn a reputable
label quickly so as to increase the transaction volume. Fur-
thermore, the Internet service company will have a higher
transaction gain when transaction volume increases. We
next state the ramp up condition and the ramp up process.

Definition 3. A new service provider’s reputation profile is
ð0; 0; . . . ; 0Þ. To earn a reputable label, he must collect enough
high feedback ratings. We define the process of earning a reputa-
ble label, i.e., increasing his reputation to r � g andPm

i¼1 ni � Nh, as the ramp up process. Furthermore, we say
that a service provider satisfies the ramp up condition iff r � g

and
Pm

i¼1 ni � Nh.

Recall that a service provider’s reputation profile at time
slot t is ðrðtÞ; n1ðtÞ; . . . ; nmðtÞÞ. In the following, we formally
define the ramp up time.

Definition 4. The ramp up time is the minimum number of time
slots that a service provider must spend to earn a reputable
label. Let Tr denote the ramp up time

Tr , argmin
t

rðtÞ � g and
Xm
i¼1

niðtÞ � Nh

( )
: (6)

The ramp up time quantifies the minimum time that a
service provider must spend to earn a reputable label. It

reflects how difficult it is for a service provider to start a
business. If the ramp up time is large, a service provider
may drop out or change to some other Internet service com-
panies. We therefore consider the following problem.

Problem 1. How to infer the ramp up time from real-world repu-
tation system datasets and how it influences the efficiency of
real-world reputation systems?

3.2 Long Term Profit Gains

Profit gains are critical to service providers. They serve as
one important incentive for service providers to maintain
their business and they are one of the key motivations for
service providers to join an Internet service company. If ser-
vice providers have large profit gains, this also implies that
the Internet service company (e.g., eBay or Alibaba) will
have higher profit. On the other hand, service providers
may quit if there is only a small profit gain, and this may
lead to losses to an Internet service company.

We now formally quantify profit gains. Recall that a ser-
vice provider earns a unit profit gain of g for completing
one transaction (refer to Equation (1)). Note that NðtÞ is a
random variable which has a Poisson distribution with
parameter �ðtÞ, where �ðtÞ is expressed in Equation (5).
Hence, on average, a service provider earns a profit gain of
gNðtÞ in the time slot t. Using micro-econometric analysis,
we use a discounted long term profit gain to quantify ser-
vice providers’ total profit gains in time slot 0; 1; . . . ;1. Let
d 2 ð0; 1� be the discounting factor.

Definition 5. Denote G the expected long term profit gains for a
service provider. We can express it as have

G , E
X1
t¼0

dtgNðtÞ
" #

: (7)

We consider the following problem.

Problem 2. How to infer the long term profit gains G from real-
world reputation system datasets and reveal its impact on the
real-world reputation systems?

4 BASELINE DATA ANALYTICAL FRAMEWORK

We first develop a data analytical framework to uncover
deficiencies of online reputation systems. We then develop
theoretical foundations for such framework, i.e., derive ana-
lytical expressions for the ramp up time Tr and the expected
long term profit gains G. This gives us important insights to
develop efficient algorithms to evaluate Tr and G from data.

4.1 Data Analytical Framework

Our baseline data analytical framework consists of three
steps. In the first step, we infer model parameters, i.e.,
m; g;R; Nh; �1 and �2, from data. In the second step, we
input them into our model, and apply our model to eval-
uate system efficiency measures, ramp up time Tr and
long term profit gains G. In the third step we empirically
analyze the ramp up time Tr and expected long term
profit gains G so as to uncover deficiencies of online rep-
utation systems. We outline this baseline data analytical
framework in Algorithm 1.
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Algorithm 1. Baseline Data Analytical Framework

1: Parameter inference. Infer model parameters m; g;R; Nh; �1

and �2 from data.
2: Quantifying system efficiency. Evaluating the ramp up

time Tr and expected long term profit gains G based on
these inferred parameters.

3: Uncover system deficiencies. Uncover deficiencies of online
reputation systems via empirical studies on Tr and G.

In the remaining of this section, we focus on step two of
the above framework, i.e., quantifying the system efficiency
(we will present the details of step 1 and step 3 of the above
framework in Section 7). More specifically, we derive ana-
lytical expressions for the ramp up time Tr and expected
long term profit gains G, assuming that model parameters
m; g;R; Nh; �1 and �2 are given. Then we apply them to
develop efficient algorithms to evaluate Tr and G from data.

4.2 Algorithm to Evaluate Ramp Up Time

Recall that customers can perceive the intrinsic quality of
service providers, i.e., Q̂ ¼ Q. Applying Equation (4), we
obtain that a service provide will receive argmini2f1;...;mg
jRðiÞ �Qj level ratings. This means that the reputation
score of a service provider will be of r ¼ Rðargmini2f1;...;mg
jRðiÞ �QjÞ. By Definition 4, a service provider can get
ramped up if and only if r � g, which yields Rðarg
mini2f1;...;mgjRðiÞ �QjÞ � g. We can then introduce the nota-
tion of intrinsically reputable and average service providers
respectively.

Definition 6.We say a service provider is intrinsically reputable
if and only if his intrinsic quality satisfies Rðarg
mini2f1;...;mgjRðiÞ �QjÞ � g, otherwise we say a service pro-
vider is intrinsically average.

We express the analytical expression for ramp up time Tr

in the following theorem. This will give us important
insights to develop algorithms to evaluate Tr from data.

Theorem 1. Consider an intrinsically average service provider,
the ramp up time can be expressed as

Tr ¼ 1: (8)

Consider an intrinsically reputable service provider, the
expected ramp up time can be expressed as

E½Tr� ¼
X1
t¼1

XNh�1

k¼0
e�ðt�1Þ�1

ððt� 1Þ�1Þk
k!

: (9)

Remark. All proofs to lemmas and theorems are in the sup-
plementary file, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSC.2017.2730206. An intrinsically aver-
age service provider never gets ramped up. As long as
we can infer �1 and Nh from data, we can evaluate the
ramp up time E½Tr� by applying Equations (8) and (9).
However, one technical issue is that we have to per-
form a summation of infinity number of terms in order
to evaluate Equation (9). In the following theorem we
address this issue via truncation. Let Ê½Tr� denote an
estimation of E½Tr�.

Theorem 2. Let t̂ 2 f1; . . . ;1g and let � > 0 denote the rela-
tive error. Suppose

Ê½Tr� ¼
X̂t

t¼1

XNh�1

k¼0
e�ðt�1Þ�1

ððt� 1Þ�1Þk
k!

:

If t̂ > 2maxfð� lnð1� e�0:5�1Þ þ ln 1
� � lnNh

�1
Þ=�1; 4

Nh�1
�1
þ 1

2g,
then jÊ½Tr� �E½Tr�j � �E½Tr�.

Remark. The above theorem states an closed-form accurate
estimation of the ramp up time. And the estimation error
� can be arbitrarily small by selecting a large enough t̂. It
is interesting to observe that t̂ increases linearly in ln 1=�.

Based on Theorem 2, we develop an efficient algorithm to
evaluate the ramp up time in Algorithm 2. The computa-
tional complexity of Algorithm 2 is Qðd2maxfð� lnð1 �
e�0:5�1Þ þ ln 1

� � lnNh
�1
Þ=�1; 4

Nh�1
�1
þ 1

2geNhÞ ¼ QðNh ln
1
�Þ. This

implies that Algorithm 2 is highly efficient. To apply Algo-
rithm 2, we need to infer model parameters �1; Nh;R and g

from data (we will infer them in Section 7).

Algorithm 2. Evaluating Ramp Up Time

Input: Model parameters �1; Nh;R and g. Accuracy factor �.
Intrinsic quality Q.

Output: Ê½Tr�
1: ifRðargmini2f1;...;mgji�QjÞ < g then

2: Ê½Tr� ¼ 1
3: else
4: Ê½Tr�  0.
5: t̂ d2maxfð� lnð1� e�0:5�1Þ þ ln 1

� � ln Nh
�1
Þ=�1; 4

Nh�1
�1
þ 1

2ge.
6: for t ¼ 1 to t̂ do

7: for k ¼ 0 toNh � 1 do

8: Ê½Tr�  Ê½Tr� þ e�ðt�1Þ�1 ððt�1Þ�1Þ
k

k!

9: end for
10: end for.
11: end if

4.3 Algorithm to Evaluate Long Term Profit Gains

To gain some insights in evaluating long term profit gains
from data, we first close-form expression for them.

Theorem 3. Consider an intrinsically average service provider,
the long term profit gains can be expressed as

G ¼ g�1

1� d
: (10)

Consider an intrinsically reputable service provider, the
expected long term profit gains can be expressed as

G ¼ g�2

1� d
þ ð�1 � �2Þg

X1
t¼0

XNh�1

k¼0
dte��1t

ð�1tÞk
k!

: (11)

Remark. The implication of this theorem is that as long as
we can infer �1; �2 and Nh from data, we can characterize
the long term profit gains G by applying Equations (10)
and (11). However, to compute G for intrinsically reputa-
ble service providers (i.e., Equation (11)) we have to per-
form a summation of infinity number of terms. In the
following theorem we address this issue via truncation.
Let Ĝ denote an estimation on the long term profit gains.
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Theorem 4. Denote t̂ 2 f1; . . . ;1g. Consider an intrinsically
reputable service provider, i.e., Rðargmini2f1;...;mgji�QjÞ � g.
Suppose

Ĝ ¼ g�2

1� d
þ ð�1 � �2Þg

X̂t

t¼0

XNh�1

k¼0
dte��1t

ð�1tÞk
k!

;

If t̂ > maxfðln 1�de�0:5�1
1�d þ ln �1

�2��1 þ ln �Þ=ðln d� 0:5�1Þ �
1; 8Nh�1

�1
g, then jĜ�Gj � �G.

Remark. The above theorem states a closed-form accurate
estimation of the long term profit gains. And the estima-
tion error � can be arbitrarily small by selecting a large
enough t̂. It is interesting to observe that t̂ increases line-
arly in ln 1=�.

Based on Theorem 4, we outline an algorithm to evaluate
the ramp up time in Algorithm 3. The computationally com-

plexity of Algorithm 3 is Qðdmaxfðln 1�de�0:5�1
1�d þ ln �1

�2��1 þ ln �Þ=
ðln d� 0:5�1Þ � 1; 8Nh�1

�1
geNhÞ ¼ QðNh ln

1
�Þ. This shows that

Algorithm 3 is highly efficient. To apply Algorithm 3, we
need to infer model parameters �1; �2; Nh and Q from data
(we will infer them in Section 7).

Algorithm 3. Evaluating Long Term Profit Gains

Input: Model parameters �1; �2; Nh;R; g and d. Accuracy factor
�. Intrinsic quality Q.

Output: Ĝ
1: ifRðargmini2f1;...;mgji�QjÞ < g then

2: Ĝ ¼ g�1
1�d

3: else
4: Ĝ g�2

1�d.
5: t̂ ¼ dmaxfðln 1�de�0:5�1

1�d þ ln �1
�2��1 þ ln �Þ=ðln d� 0:5�1Þ � 1; 8Nh�1

�1
ge

6: for t ¼ 0 to t̂ do

7: for k ¼ 0 toNh � 1 do

8: Ĝ Ĝþ ð�1 � �2Þgdte��1t ð�1tÞ
k

k!

9: end for
10: end for.
11: end if

4.4 Summary

Wedeveloped a baseline data analytical framework to charac-
terize the ramp up time Tr and the expected long term profit
gainsG from data. Note that our framework so far assumes a
perfect scenario that customers never commit errors in per-
ceiving service providers’ intrinsic quality, i.e., Q̂ ¼ Q. How-
ever, customers may commit errors due to human factors like
biases, preferences, etc. We next extend our data analytical
framework to incorporate such human factors.

5 HUMAN FACTORS

We now present a probabilistic model to capture human fac-
tors in rating such as biases and preferences. To incorporate
them into our data analytical framework (stated in Algo-
rithm 1), and we show that it is computationally difficult to
evaluateE½Tr� andG from any data set due to human factors.
This computational challengemotivates us to design efficient
randomized algorithms which have theoretical performance
guarantees to approximateE½Tr� andG in Section 6.

5.1 Model for Human Factors

Customers may have personal preferences in expressing
feedback ratings due to various human factors, e.g.,
inherent biases. More precisely, a critical customer may
assign lower ratings while a lenient customer may assign
higher ratings.

To illustrate, let us focus on just one service provider
which we denote by S. S provides “high quality” (“low
quality”) services but may receive low (high) rating. We use
the following probabilistic model to capture the collective
rating behavior under such personal preferences

Pr½S receives a level i rating� ¼ hi; for all i ¼ 1; . . . ;m;

where hi denotes the probability of receiving a level i rating
and

Pm
i¼1 hi ¼ 1. One can vary the mean of the m-tuple

ðh1; . . . ; hmÞ to reflect different level of personal preferences.
The higher (lower) themean implies that customers aremore
likely to be lenient (critical) ones. We point out that when all
customers are unbiased, then ðh1; . . . ; hmÞ reflects the intrin-
sic quality of a service provider. The impact of inherent
biases is to shift ðh1; . . . ; hmÞ towards a higher or lowermean.
One of our objectives is to examine the impact of such human
factors on the efficiency of online reputation system.We next
extendDefinition 6 to incorporate such human factors.

Definition 7. In the presence of human factors, we say a service
provider is intrinsically reputable if and only if

Pm
i¼1 hi

RðiÞ � g, otherwise we say a service provider is intrinsically
average.

To incorporate them into the baseline data analytical
framework (stated in Algorithm 1), we first need to infer
some extra parameters, i.e., h1; . . . ; hm, in step 1 of Algo-
rithm 1. Then in step 2 of Algorithm 1 we need to evaluate
ramp up time and long term profit gains in the presence of
human factors. We outline this extended data analytical
framework in Algorithm 4.

Algorithm 4. Improved Data Analytical Framework

1: Parameter inference. (1) Infer rating distribution h1; . . . ; hm
from data. (2) Infer model parameters m; g;R; Nh; �1 and �2

from data.
2: Quantifying system efficiency. Evaluating the ramp up

time Tr and expected long term profit gains G in the
presence of human factors, i.e., h1; . . . ; hm.

3: Uncover system deficiencies. Uncover deficiencies of online
reputation systems via studying the ramp up time Tr and
expected long term profit gains G.

We will present the details of step 1 and step 3 of the
above framework in Section 7. In this section we focus on
addressing step 2 of Algorithm 4.

5.2 Two Rating Levels

We first consider a special case of two rating levels, i.e.,
m ¼ 2. This will illustrate the key idea of our derivation as
well as its underlying computational complexity.

� Ramp up time: Note that the ramp up time Tr is a ran-
dom variable due to dynamics in a reputation
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updating process. The following lemma states the
closed-form expected ramp up time E½Tr�.

Lemma 1. Suppose the number of rating levels is two, i.e.,
m ¼ 2. The expected ramp time can be expressed as

E½Tr� ¼
X1

t¼0 t
X

ðN1ð0Þ;N2ð0Þ;...;N1ðt�1Þ;N2ðt�1ÞÞ2N2t�2Yt�1
‘¼0 fðN1ðiÞ; N2ðiÞ; �ðiÞÞIfrðtÞ�g;n1ðtÞþn2ðtÞ�Nhg

ð1� If9j< t;rðtÞ�g;n1ðjÞþn2ðjÞ�NhgÞ;
(12)

where �ðtÞ is derived in Equation (5), and function f is
fðx; y; zÞ ¼ ðxþyy Þhx1hy2e�zzxþy=ðxþ yÞ!.

Theorem 5. The computational complexity of evaluating E½Tr�
derived in Equation (12) is VðP1

t¼0 tÞ:
� Long term profit gains: Note that G , E

P1
t¼0 d

t
�

gNðtÞ� ¼P1
t¼0 d

tgE½NðtÞ�. This implies that we have
to compute E½NðtÞ� for all t ¼ 0; 1; . . . ;1. The fol-
lowing lemma states the analytical expression for G.

Lemma 2. When the number of rating levels is two (m ¼ 2), the
long term profit gains G can be expressed as

G ¼
X1
t¼0

dtg �1

X1
n1ðtÞ¼0

Xbn1ðtÞac
n2ðtÞ¼0

XPt�1
i¼0 N1ðiÞ¼n1ðtÞ

��
XPt�1

i¼0 N2ðiÞ¼n2ðtÞ
þ
X

n1ðtÞþn2ðtÞ<Nh

XPt�1
i¼0 N1ðiÞ¼n1ðtÞXPt�1

i¼0 N2ðiÞ¼n2ðtÞ
�
XNh

n1ðtÞ¼0
Xminfbn1ðtÞac;Nh�n1ðtÞg

n2ðtÞ¼0XPt�1
i¼0 N1ðiÞ¼n1ðtÞ

XPt�1
i¼0 N2ðiÞ¼n2ðtÞ

�
þ �2

�X1
n1ðtÞ¼0X1

n2ðtÞ¼maxfNh�n1ðtÞ;dn1ðtÞaeg
XPt�1

i¼0 N1ðiÞ¼n1ðtÞXPt�1
i¼0 N2ðiÞ¼n2ðtÞ

��Yt�1
i¼0 fðN1ðiÞ; N2ðiÞ; �ðiÞÞ;

(13)

where �ðtÞ is derived in Equation (5), function f is fðx;
y; zÞ ¼ ðxþyy Þhx1hy2e�zzxþy=ðxþ yÞ!, and a ¼ g�Rð1Þ

Rð2Þ�g.

Theorem 6. The computational complexity of evaluating G
derived in Equation (13) is VðP1

i¼0
P1

j¼0ðiþjj ÞÞ:
� Summary of observations: Let us summarize our obser-

vations thus far in analyzing the special case of two
rating levels (m ¼ 2): (1) We derived analytical
expressions for E½Tr� and G; (2) the analytical expres-
sions indicate extremely large computational com-
plexity (based on Theorems 5 and 6), and they are
computationally infeasible. To overcome such prob-
lem, we propose efficient randomized algorithms (in
Section 6) which have theoretical performance guar-
antees in computing E½Tr� and G.

5.3 Extensions to More Than Two Rating Levels

One can extend Lemmas 1 and 2 to obtain closed-form
expressions for E½Tr� and G. Due to page limit, we will not
present the derivation here but it is reasonable to expect
that the underlying complexity is huge, so it makes naive
computation of E½Tr� and G impractical. Let us focus on
developing a practical approach to tackle the challenges in
evaluating E½Tr� and G.

6 RANDOMIZED ALGORITHMS

We showed in the last section that it is computationally
infeasible to evaluate E½Tr� and G in the presence of human
factors. Here, we propose computationally efficient ran-
domized algorithms which have theoretical performance
guarantees to approximate E½Tr� and G.

6.1 Approximating Ramp Up Time

One can compute E½Tr� via stochastic monte carlo methods
[19]. The basic idea of stochastic monte carlo methods is
estimating a probabilistic metric via sample average. Specif-
ically, we can simulate the reputation updating process for
K 2 N rounds. Each round produces one sample of the
ramp up time (Tr). We use the average of these K samples,
which we denote as Ê½Tr�, to estimate E½Tr�. For each sample
path of Tr, we simulate the reputation updating process
until a service provider ramps up. The stochastic monte
carlo method is depicted in Algorithm 5. More concretely,
line 2 initializes the setting to consider a new seller. Line 3
checks whether the ramp up condition is satisfied and it
stops the iteration until the condition is satisfied. Line 6 gen-
erates the number of transactions and updates the total
number of ratings. Line 7 to 10 generate a feedback rating
for each transaction. Line 11 updates the average score.

Algorithm 5. Randomized Algorithm for E½Tr�
Input:Model parameters h1; . . . ; hm, �1; Nh;m andR.
Output: Ê½Tr�
1: for i ¼ 1 toK do
2: r 0; n1  0; . . . ; nm  0; T i

r  0

3: while r < g or
Pm

‘¼1 n‘ < Nh do

4: T i
r  T i

r þ 1
5: � �1

6: N � Poissonð�Þ
7: for j ¼ 1 to N do
8: ‘ �Multinomialðh1; . . . ; hmÞ
9: n‘  n‘ þ 1
10: end for
11: r Pm

k¼1 nkRðkÞ=
Pm

‘¼1 n‘

12: end while
13: end for

14: Ê½Tr�  
PK

i¼1 T
i
r=K

We next analyze the computational complexity (Theo-
rem 7) of Algorithm 5 and derive the number of simulation
rounds (K) needed to guarantee an accurate value of E½Tr�
(Theorem 8).

Theorem 7. Suppose a service provider is intrinsically reputable,

i.e.,
Pm

i¼1 hiRðiÞ � g. The expected computational complexity

for Algorithm 5 is OðKNh þK ðRðmÞ�Rð1ÞÞ4
ð
P

i
hiRðiÞ�gÞ4

Þ.
Theorem 8. Suppose a service provider is intrinsically reputable,

i.e.,
Pm

‘¼1 h‘Rð‘Þ > g. If the number of simulation rounds sat-

isfies K ¼ Oð 1
��2N2

h

ð RðmÞ�Rð1ÞP
‘¼1 h‘Rð‘Þ�g

Þ6Þ; then Algorithm 5 guaran-

tees that jÊ½Tr� � E½Tr�j � �E½Tr� with probability of at least
1� �, where � � 0 denotes the fail probability.

To illustrate the bound of K. Let us consider � ¼ 0:1 and
� ¼ 0:1, i.e., to guarantee the approximation error is less
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than 0:1E½Tr�with probability of at least 0.9. Supposem ¼ 5,
RðiÞ ¼ i,

P
‘¼1 h‘Rð‘Þ � g ¼ 0:2 and Nh ¼ 100. Then we

have thatK ¼ 2:44	 107.

Remark. Algorithm 5 is computationally efficient and can
determine E½Tr�with arbitrarily small error.

6.2 Approximating Long Term Profit Gains

We compute G via stochastic monte carlo methods. We sim-
ulate our model for K 2 N rounds. Each round produces
one sample of the long term profit gains G. The average of
theseK samples, which we denote as Ĝ, to estimate G. Note
that to obtain one sample of G, one needs to simulate all
transactions completed in time slot 0; 1; . . . ;1. This is com-
putationally expensive (and theoretically infeasible). To
address this challenge, we show that one only needs to sim-
ulate M time slots, i.e., time slot 0 to M, and can tightly
“bound” the error in estimating G. This stochastic monte
carlo method is presented in Algorithm 6. More concretely,
line 2 initializes the setting to consider a new seller. Line 3
stops the loop when the number of time slots hits M. Line 4
to 7 generate the transaction rate. Line 8 generates the num-
ber of transactions in a time slot. Line 9 updates the long
term profit gain. Line 10 to 13 generates the feedback rating
for each transaction and updates the total number of ratings.
Line 14 updates the average score.

Algorithm 6. Randomized Algorithm for G

Input:Model parameters h1; . . . ; hm, �1; Nh;m andR.
Output: Ĝ
1: for i ¼ 1 toK do
2: r 0; n1  0; . . . ; nm  0; Gi  0
3: for t ¼ 0 toM do

4: switch (r;
Pm

‘¼1 n‘) do

5: case r < g or
Pm

‘¼1 n‘ < Nh: � ¼ �1

6: case r � g and
Pm

‘¼1 n‘ � Nh: � ¼ �2

7: ends switch
8: N � Poissonð�Þ
9: Gi  Gi þNgdt

10: for j ¼ 1 to N do

11: ‘ �Multinomialðh1; . . . ; hmÞ
12: n‘  n‘ þ 1
13: end for

14: r Pm
k¼1 nkRðkÞ=

Pm
‘¼1 n‘

15: end for
16: end for

17: Ĝ PK
i¼1 Gi=K

We now analyze the computational complexity (Theo-
rem 9) of Algorithm 6 and derive the appropriate K and M
to guarantee an accurate approximation of G (Theorem 10).

Theorem 9. The expected computational complexity for Algo-
rithm 6 is OðKM�2Þ.

Theorem 10. If the number of simulation rounds satisfies

K ¼ Oð 1
�2

�2
�2
1

1
�Þ; and M satisfies M ¼ Oðln ��1

�2
= ln dÞ, then

Algorithm 6 guarantees that jĜ�Gj � �G holds with proba-
bility of at least 1� �.

Remark. Algorithm 6 is computationally efficient and can
compute Gwith arbitrarily small error.

7 EXPERIMENTS ON REAL-WORLD DATA

We present experimental results on reputation rating for
the datasets from eBay and Google Helpouts. We first
infer model parameters from the data, and input these
inferred values to our framework so to characterize the
ramp up time and long term profit gains. We show that
the existing ramp up time in eBay and Google Helpouts
are long: around 791 days and 1327 days respectively.
This shows the inefficiency of online reputation systems
since the ramp up time can significantly influence the
long term profit gains, i.e., a 80 percent reduction on
ramp up time leads to 80 percent (eBay) and 100 percent
(Google Helpouts) improvement in long term profit
gains respectively. Lastly, we discover from the data
that around 78.7 percent sellers have ramped up in
eBay, but only 1.5 percent workers have ramped up in
Google Helpouts.

7.1 Datasets

We crawled historical online reputation data (refer to
Table 2). from four representative applications of reputation
systems, i.e., electronic commerce (eBay), crowdsourcing
(Google Helpouts), product review (Amazon), travel web-
site (TripAdvisor).

eBay. Eay is a popular electronic commerce system,
where buyers purchase products from online stores and
when a transaction is completed, a buyer expresses a rating
to indicate whether a seller is trustworthy or not. It deployes
a three-level cardinal metric, i.e., f�1 (“negative”), 0
(“neutral”), 1 (“positive”)g. Ratings are public and accessi-
ble to all buyers and sellers. We crawled the historical rat-
ings of 4,586 sellers received from the first day that a seller
joins the eBay till April 2013.

Google Helpouts. Google Helpouts provides online
crowdsourcing services. In Google Helpouts, service pro-
viders (or workers) offer various types of services, e.g.,
teaching piano, teaching cooking, etc. Workers advertise
the service that they can provide, e.g., a service provider
provides piano teaching service. Requesters select workers
to provide a service based on workers’ reputation. When a
transaction is completed, requesters express a rating to
indicate the quality of the service using a five-level cardi-
nal rating metric f1 (“Terrible”), 2 (“Poor”), 3 (“Average”),
4 (“Very good”), 5 (“Excellent”) g. Ratings and overall rat-
ing statistics for each worker are public and accessible to
all users. We crawled historical transactions of 858 work-
ers received from the first day that a worker joins Google
Helpouts till January 2015.

TripAdvisor. TripAdvisor is a popular travel website,
where users express ratings to hotels, restaurants, etc., to
reflect the quality (or reputation) of these items. It uses the

TABLE 2
Statistics for Reputation Rating Datasets

# of service providers # of ratings

eBay 4,586 19,217,083
Helpouts 858 10,454
Amazon 32,888 5,066,070
TripAdvisor 11,543 3,114,876
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same rating system as that of Google Helpouts. We crawled
ratings of 11,543 hotels received from the first day that a
hotel joins this web site till April 2013.

Amazon. Amazon is a typical product review system,
where users express ratings (or reviews) on products to
reflect the product quality (or reputation). It uses the same
rating system as that of Google Helpouts. We crawled rat-
ings of 32,888 products received from the first day that a
product joins this web site till April 2013.

7.2 Inferring Model Parameters

We now infer the parameters of our model, which are sum-
marized in Tables 4 and 3. A time slot is one day. From
Table 2 we observe that eBay adopts a three-level rating
metric and the other three adopt a five-level rating metric
respectively. Hence we have m ¼ 3 for eBay and m ¼ 5
for Google Helpouts, Amazon and TripAdvisor. Further-
more, from Table 2, we obtain the rating map R as fRð1Þ ¼
�1;Rð2Þ ¼ 0;Rð3Þ ¼ 1g for eBay and fRð1Þ ¼ 1; . . . ;R
ð5Þ ¼ 5g for Google Helpouts, Amazon and TripAdvisor.
Each rating level is associated with a physical meaning,
e.g., in eBay, we have f�1 (“negative”), 0 (“neutral”), 1
(“positive”)g. We therefore set the reputation threshold
as g ¼ 0þ1

2 ¼ 0:5. Similarly, for Google Helpouts, Amazon
and TripAdvisor we have f1 (“Terrible”), 2 (“Poor”), 3
(“Average”), 4 (“Very good”), 5 (“Excellent”)g. We set the
reputation threshold as g ¼ 4. Xie and Lui studied rating
sufficiency conditions for online rating systems [31], and
they revealed that around 100 ratings can reflect the true
quality of a product. In other words, the aggregate rating
is statistically significant if an service provider has
around 100 ratings. We therefor set Nh ¼ 100. We will
justify that this selection on g is reasonable in Section 7.3
via extensive experiments on our datasets. Apply the
inferred g and Nh on our datasets, we infer the trans-
actions’ rate �1 (�2) as average number of transactions’
per day completed by “average” (“reputable”) service
providers

�1 ¼ #½transations by average service providers�
#½days to accumulate these transactions� ; (14)

�2 ¼ #½transations by reputable service providers�
#½days to accumulate these transactions� : (15)

Applying these two rules on our data set, we obtain the
transactions’ rate before ramping up and after ramping up.
We summarize them in Table 3. Note that hi denotes the
probability of an intrinsically reputable service provider
receives a level i rating. We say a service provider is intrin-
sically reputable if it has at least Nh ¼ 100 ratings and its
average rating is above the inferred g. We therefore infer hi

as the fraction of level i ratings across all intrinsically repu-
table service providers

hi ¼
#½level i ratings across all intrinsically reputable SPs�

#½ratings across all intrinsically reputable SPs� ;

where SPs denote service providers for short. Performing
this rule on our datasets, we have hi presented in Table 4.

7.3 Justifications of the Inferred Parameters

We conduct extensive experiments to justify that the
inferred value of two building block parameters, i.e., g and
Nh are reasonable. These two parameters determine all
other parameters like transactions’ rate, the cumulative
probability mass function of the number of transactions that
arrive to a service provider per day. Our experimental
results show that the inferred value of g is an accurate esti-
mation on its true value and the inferred threshold Nh is a
typical value and selecting it does not loss any generality.

In particular, we study the impact of g and Nh on the dis-
tribution of the the number of transactions per day to a ser-
vice provider. This is because this distribution is the most
fundamental one, since it determines the transactions rate
and the per-day profit gains. With the above inferred
parameters, we infer the cumulative probability mass func-
tion of the number of transactions that a service provider
(average service provider and reputable service provider)
receives in one day from data. Consider average labeled ser-
vice providers, we infer the corresponding probability mass
function via computing the fraction of days that they receive
at most i transactions, where i ¼ 0; 1; . . . ;1, i.e.,

Pr½ASP receive at most i transactions�

¼ #½days that ASP receive at most i transactions�P
j #½days that ASP receive j transactions� ;

where ASP refers to average service providers. Similarly,
we infer the cumulative probability function for reputable
service providers.

We first study the impact of g on the inferred the cumula-
tive probability mass function of the number of transactions
per day to a service provider almost remain unchanged. For
Google Helpouts, Amazon and TripAdvisor we vary the
value of g from small to large, i.e., g ¼ 3:5, g ¼ 4 and
g ¼ 4:5. Notice that in experience g ¼ 3:5 (g ¼ 4:5) is so
small (large) for Google Helpouts that the true value of g
should be smaller (larger) than it. For eBay, we vary the
value of g from small to large, i.e., g ¼ 0:1, g ¼ 0:5 and
g ¼ 0:9. Notice that in experience g ¼ 0:1 (g ¼ 0:9) is so
small (large) for Google Helpouts that the true value of g
should be smaller (larger) than it. For each value of g we
infer the cumulative probability mass function, setting Nh

TABLE 4
Inferredm and h1; . . . ; hm

fh1; . . . ; hmg
eBay f0:0023; 0:0034; 0:9943g
Helpouts f0:0150; 0:0039; 0:0211; 0:0950; 0:8650g
Amazon f0:0452; 0:0335; 0:0674; 0:1967; 0:6572g
TripAdvisor f0:0172; 0:0295; 0:0822; 0:3242; 0:5468g

TABLE 3
Inferred g; Nh; �1 and �2

m g Nh �1 �2

eBay 3 0.5 100 0.1742 2.4883
Helpouts 5 4 100 0.0689 0.4076
Amazon 5 4 100 0.1067 0.8916
TripAdvisor 5 4 100 0.0723 0.3831
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as that inferred in Section 7.2. Fig. 1 depicts the cumulative
probability functions for Google Helpouts, where the hori-
zontal axis presents the number of transactions that a ser-
vice provider receives in one day, and the vertical axis
shows the corresponding cumulative mass probability.
Consider average labelled service providers in Google help-
outs, Fig. 1a presents the probability mass functions for
average labeled service providers in Google helpouts. It
contains three curves corresponding to g ¼ 3:5; g ¼ 4 and
g ¼ 4:5 respectively. One can observe that these three
curves overlap. This means that the cumulative probability
mass function for average labeled service providers in
Google Helpouts remains unchanged as we vary g from
small to large. This statement also holds for reputable ser-
vice providers in Google helpouts as one can observe in
Fig. 1b. Therefore, for Google helpuots the cumulative prob-
ability function for the number of transactions that a service
provider receives in one day remains unchanged as g varies
from small to large. This shows that the inferred g is an
accurate estimation on its true value. This statement also
holds for the eBay, Amazon and TripAdvisor dataset, as
shown in Figs. 2, 3, and 4.

We now study the impact of Nh on the inferred the
cumulative probability mass function of the number of

transactions per day to a service provider. We will show
that as we perturb Nh by one percent from its inferred value
in Section 7.2, the inferred model parameters, i.e., trans-
actions’ rate �1; �2 and the cumulative probability mass
function of the number of transactions per day, varies
slightly. This means that the inferred Nh is a representative
value and selecting it does not loss any generality. Again, it
boils down to show that the cumulative probability mass
function varies slightly. We perturb the value of Nh by one
percent from its inferred value, i.e., setNh ¼ 90; 100 and 110.
For each value of Nh we infer the cumulative probability
mass function of the number of transactions received in one
day setting g as that inferred in Section 7.2. Fig. 5 depicts the
cumulative probability functions inferred form the Google
Helpouts dataset, where the horizontal axis presents
the number of transactions that a service provider receives in
one day, and the vertical axis shows the corresponding
cumulative mass probability. Fig. 5a presents the corre-
sponding probability mass functions for average labeled ser-
vice providers. It contains three curves corresponding to
Nh ¼ 90; Nh ¼ 100 and Nh ¼ 110 respectively. One can
observe that these three curves almost overlap. This means
that the cumulative probability mass function for average
labeled service providers in Google Helpouts varies slightly
as we perturbNh by one percent from its inferred value. This
statement also holds for reputable service providers in Goo-
gle helpouts as shown in Fig. 5b. Therefore, for Google help-
uots the cumulative probability function for the number of
transactions per day varies slightly as as we perturb Nh by
one percent from its inferred value. The same observations
can be obtained for the eBay, Amazon and TripAdvisor data-
set as shown in Figs. 6, 7, and 8.

7.4 Model Validation

We validate that the number of transactions that a service
provider receives in one day follows a Poisson distribution.

Fig. 1. Impact of g on the transactions’ distribution in Google Helpouts.

Fig. 2. Impact of g on the transactions’ distribution in eBay.

Fig. 3. Impact of g on the transactions’ distribution in Amazon.

Fig. 4. Impact of g on the transactions’ distribution in TripAdvisor.

Fig. 5. Impact ofNh on the transactions’ distribution in Google Helpouts.
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In particular, we show that the inferred probability mass
function are almost the same as the probability mass
function of a Poisson distributions with the inferred
transaction rates �1 and �2. Fig. 9 depicts the cumulative
probability mass functions, where the horizon axis
presents the number of transactions that a service pro-
vider receives in one day and the vertical axis shows the
corresponding cumulative probability. It has two sub-fig-
ures corresponding to average labeled and reputable ser-
vice provider respectively. Each sub-figure contains two
curves corresponding cumulative probability mass func-
tions inferred from day and generated by the Poisson
distribution respectively. From Fig. 9a we observe that
these two curves almost overlap. This shows that for
average labeled service providers in Google helpouts,
the distribution of the number of transactions per day
follows a Poisson distribution. This statement also holds
for reputable service providers as one can observe from
Fig. 9b. Therefore for Google Helpouts, the distribution
of the number of transactions per day follows a Poisson
distribution. This statement also holds for the eBay,
Amazon and TripAdvisor dataset as shown in Figs. 10,
11, and 12.

7.5 Characterizing Ramp Up Time

We apply Algorithm 5 to compute the ramp up time.

Applying Theorems 7 and 8, we set K ¼ 108 since it guar-

antees jÊ½Tr� � E½Tr�j � 0:01E½Tr� with probability at least
0.99. We input the above inferred parameters to Algorithm 5
and obtain the expected ramp up times for eBay, Google
Helpouts, Amazon and TripAdvisor respectively and they
are stated in Table 5. From Table 5 we observe that for
Google Helpouts the expectation of the ramp up time is
1454 days. This means that on average, a worker needs to

Fig. 6. Impact ofNh on the transactions’ distribution in eBay.

Fig. 7. Impact ofNh on the transactions’ distribution in Amazon.

Fig. 8. Impact ofNh on the transactions’ distribution in TripAdvisor.

Fig. 9. Transaction distribution validation for Google Helpouts.

Fig. 10. Transaction distribution validation for eBay.

Fig. 11. Transaction distribution validation for Amazon.

Fig. 12. Transaction distribution validation for TripAdvisor.
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spend 1454 days to get ramped up. This is quite a long time,
which may lead to that some workers get dropped out and
discourages new workers to join. The implication for Google
Helpouts is that the reputation imposes a negative impact
on increasing the user population and it needs extra strate-
gies to recruit new workers effectively so as to increase user
population in its early stage. Consider eBay, the expectation
of the ramp up time is E½Tr� ¼ 576 ðdaysÞ. Namely, on aver-
age, it takes 576 days for a seller to get ramped up, which is
a long duration. As a consequence, some sellers may get
dropped out before getting ramped up or they shit to other
online selling platforms and new sellers may get discour-
aged to join. The implication for the eBay is that it needs to
deploy some mechanisms to help new sellers to attract
buyers so as to get ramped up quickly. For Amazon and Tri-
pAdvisor, the expected ramp time are 943 days and 1383
days respectively. This implies that the Amazon (or TripAd-
visor) website needs to deploy incentive mechanisms to
attract users to assign ratings or reviews to new products
(or hotels) so that high quality products can be identified in
a shorter time. This will benefit users which in turn benefit
the website by attracting more users. Lastly, from Table 5,
we also observe that the ramp up time for eBay is the short-
est and the ramp up time for Google Helpouts is the longest.
This implies that the online reputation system in eBay is the
most efficient one while the online reputation system in
Google Helpouts is the most inefficient one.

We now apply our framework to investigate the fraction
of service providers that have got ramped up. This fraction
service providers is an important indicator for an Internet
service platform and based on it we obtain deeper insights
and implications to improve the Internet service platforms.
Formally, let framp denote fraction of service providers that
have got ramped up

framp ,
#½service providers having r � g;

Pm
i¼1 ni � Nh�

#½service providers� :

Recall that the inferred condition for a service provider to
get ramped up is ðg; NhÞ ¼ ð0:5; 100Þ for eBay, and
ðg; NhÞ ¼ ð4; 90Þ for Google Helpouts, Amazon and TripAd-
visor. Applying this condition to our dataset, we obtain the
empirical values of framp, which is presented in Table 6.
From Table 6 we observe that for Google Helpouts we have
framp ¼ 1:5%. Namely, only 1.5 percent of workers have got
ramped up. One possible reason is that Google Helpouts is
only around one year old and its ecosystem is still at the
infancy. Recall that the ramp up time is quite long, i.e., 1454
days. The long ramp up time and small framp uncovers

uncovers a deficiency of the reputation system of Google
Helpouts in increasing the number of workers. This defi-
ciency uncovers a key reason why Google Helpouts was
eventually shut down in April 2015. Consider eBay, we
observe that framp ¼ 84:5%. This means that a large fraction
of users have got ramped up. One reason is that eBay is over
ten years old and sellers who remain in eBay have sufficient
time to ramp up. There are still many workers have not got
ramped up, i.e, around 16 percent. Recall that ramp up time
is also long, i.e., 576 days. This uncovers a key reason
why eBay is under a significant user loss [12], [23], [26]. For
Amazon and TripAdvisor we have framp ¼ 21:0% and
framp ¼ 26:8%. Namely, most products (or hotels) have not
got ramped up yet in Amazon (or TripAdvisor). Recall that
the ramp up time for Amazon and TripAdvisor are long, i.e.,
943 and 1383 days respectively. This implies that to identify
more high quality products (or hotels) in a shorter time, the
Amazon (or TripAdvisor) website needs to incentivize users
to assign ratings to averaged labeled products (or hotels).

7.6 Characterizing Long Term Profit Gains

Now we study the impact of ramp up time on the long term
profit gains. In particular, we would like to know to what
extend reducing ramp up time can improve the long term
profit gains. Through this we reveal whether reducing
ramp up time is meaningful for service providers. We apply
Algorithm 6 to compute long term profit gains. We set the
discounting factor as d ¼ 0:999, the unit profit gain to be
g ¼ 1. Applying Theorems 9 and 10 we set K ¼ 108 and
M ¼ 50000 since they guarantee jĜ�Gj � 0:01Gwith prob-
ability at least 0.99. We input the inferred parameter into
Algorithm 6 to compute G. To show the potential improve-
ment of long term profit gains via reducing the ramp up
time, we also compute the theoretical maximum long term
profit gains denoted by Gmax, which is attained when Nh is
equal to zero. Table 7 presents numerical results on G;Gmax

and G=Gmax. One can observe that for the long term profit
gains, Google Helpouts only achieves 36.61 percent, eBay
only achieves 59.74 percent, Amazon achieves 46.81 percent
and TripAdvisor achieves 40.01 percent of its maximum
possible value Gmax. This shows that there is a great oppor-
tunity to improve the long term profit gains via reducing
the ramp up time. Namely, it meaningful to reduce the
ramp up time for service providers.

Let us now study how the ramp up time influences the
long term profit gains, since this will give us important
insights on why some service providers drop out, and why
some new service providers participate. We examine the
impact of Tr on G by varying Tr. We consider the scenario
that the Internet service company can control Nh, and we
want to find our how G can be improved if we reduce Tr (Tr

can be reduced by reducing Nh). We define reduction ratio

TABLE 5
Expected Ramp Up Time E½Tr�

Helpouts eBay Amazon TripAdvisor

E½Tr� 1454 (days) 576 (days) 943 (days) 1383 (days)

TABLE 6
Fraction of Ramped Up Service Providers

Helpouts eBay Amazon TripAdvisor

framp 1.4 % 84.5 % 21.0% 26.8%

TABLE 7
Long Term Profit Gains (g¼1; d¼0:999)

G Gmax G=Gmax

Helpouts 147.5 402.8 36.61%
eBay 1477.3 2472.6 59.74%
Amazon 413.8 884.0 46.81%
TripAdvisor 151.1 377.6 40.01%
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of ramp up time

DE½Tr� ¼ ðE½Tr� � eE½Tr�Þ=E½Tr�;
where E½Tr� is the ramp up time without reduction on Nh,eE½Tr� is the new ramp up time with some reduction on Nh.
We define improvement ratio on the long term profit gains

DG ¼ ð eG�GÞ=G;

where G is the long term profit gains without reduction on
Nh, eG is the new long term profit gains with some reduction
on Nh. Fig. 13 shows the impact of DE½Tr� on DG, where the
horizontal axis represent DE½Tr� and the vertical axis shows
the corresponding DG. One can observe that as we reduce
ramp up time, we increase the long term profit gains. When
we reduce E½Tr� by 80 percent, the improvement of G is
around 100 percent for Google Helpouts, 50 percent for
eBay, and around 80 percent for Amazon and TripAdvisor.
It shows that reducing E½Tr�, we can significantly improve
the long term profit gains.

7.7 Implications

Our findings can benefit both the practice and theory of rep-
utation systems. For eBay like e-commerce systems they
need to deploy some extra mechanisms or refine the design
of their reputation system to reduce the ramp up time so
that they can reduce the probability that sellers drop out
and attract more sellers. For newly start up systems like
Google helpouts, they need to to deploy some reputation
systems having short ramp up time, because in the early
stage ramp up users is critical. For practical reputation sys-
tem design, they should be aware of the ramp up time.
Lastly, our frameworks can serve as important building
blocks to identify deficiencies of reputation systems.

8 RELATED WORKS

Reputation systems [21] is an important research topic in net-
work economics. Research on reputation system can be cate-
gorized into three typical aspects: (1) reputation formulation
and calculation, e.g., [11], [16], (2) attacks and defense techni-
ques design e.g., [3], [10], and (3) effectiveness and efficiency
of reputation systems [5]. A survey is given in [13].

Many theoretical works explored reputation metric for-
mulation and calculation. There are two typical reputation
formulating models, i.e., the rating-based model [11], [24]
and the transitive trust model [3], [4]. The rating-based

reputation formulating model aims to solicit explicit human
feedbacks (or ratings) [2], [11], [24], [33]. It computes a repu-
tation score for each user by summarizing his feedback rat-
ings. The transitive trust reputation model [3], [4], [16], [22],
[32] captures the propagation of trust among users. Graph
model is applied to quantify users’ reputation, i.e., each
user is abstracted as a node, and each weighted directed
link, e.g., from B to A, measures the trust that B expresses
to A. Several algorithms were proposed to compute the rep-
utation score for users [3], [4], [16], [22], [32]. The key differ-
ence between our work and theirs is that we conduct a data-
oriented study to uncover the inefficiency of real-world
online reputation systems, while theirs are theoretical in
nature. Our work enriches theoretical studies by uncovering
the importance of ramp up time.

A number of defense techniques have been developed
for reputation systems. One typical potential attack is
dishonest feedbacks. Peer-prediction mechanisms were pro-
posed to address this attack [14], [15], [18]. Another poten-
tial attack is reputation inflation, and number of techniques
have been proposed to address this attack [3], [10], [28],
[32]. A nice survey on the state-of-the-art attack and defense
techniques is [10]. Our work propose a general framework
to investigate the efficiency of defense techniques. We pro-
pose an important factor, i.e., ramp up time, that various
defense techniques need to be aware of.

Several works explored the effectiveness of reputation
systems [1], [5], [6], [17]. In [5], authors tried to improve the
efficiency of eBay reputation computation by proposing an
algorithm which relies on buyer friendship to filter out
unfair ratings. The work [5] explored how buyers’ rating
biases (i.e., leniency or criticality) may influence sellers’
product advertising behavior in eBay. Authors in [17] con-
ducted a measurement study on the impact of negative
feedbacks on eBay reputation system. Our work is different
form theirs in that their works only applies to eBay reputa-
tion system, while our work applies to general rating-based
reputation systems. We examine ramp up time and propose
randomized algorithms to carry out large scale data analyt-
ics to uncover the deficiencies of online reputation systems.

9 CONCLUSIONS

This is the first paper which presents a data driven
approach to uncover the deficiencies of real-world online
reputation systems. We proposed two measures to quantify
the efficiency of online reputation systems: (1) ramp up
time of a new service provider, (2) long term profit gains for
service providers. We present a novel data analytical frame-
work to evaluate these two measures from data. We showed
that it is computationally infeasible to evaluate these two
measures due to inherent preference or personal biases in
expressing feedbacks (or ratings). We developed computa-
tionally efficient randomized algorithms with theoretical
performance guarantees to address this computational chal-
lenge. We apply our methodology to real-life datasets from
eBay, Google Helpouts, Amazon and TripAdvisor. We
extensively validate our model. We discover the deficiencies
of online reputation systems: (1) the ramp up time is more
than 500 days; (2) reducing ramp up time can improve the
long term profit gains significantly, e.g., an 80 percent

Fig. 13. Impact of ramp up time Tr on G.
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reduction on ramp up time leads to at least 50 percent (as
high as 100 percent) improvement in long term profit gains.
Our experimental results also uncover insights on why
Google Helpouts was eventually shut down and why eBay
is losing sellers heavily.
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Model-as-You-Go for Choreographies:
Rewinding and Repeating
Scientific Choreographies

Andreas Weiß , Vasilios Andrikopoulos, Michael Hahn, and Dimka Karastoyanova

Abstract—Scientists are increasingly using the workflow technology as a means for modeling and execution of scientific experiments.

Despite being a very powerful paradigm workflows still lack support for trial-and-error modeling, as well as flexibility mechanisms that

enable the ad hoc repetition of experiment logic to enable, for example, the convergence of results or to handle errors. In this respect, in

our work on enabling multi-scale/field (multi-*) experiments using choreographies of scientific workflows, we contribute a method

comprising all necessary steps to conduct the repetition of choreography logic across all workflow instances participating in a multi-*

experiment. To realize the method, we contribute i) a formal model representing choreography models and instances, including the

re-execute and iterate operations for choreographies, and based on it ii) algorithms for determining the rewinding points, i.e., the

activity instances where the rewinding has to stop and iii) enable the actual rewinding to a previous execution state and repetition of the

choreography. We present the implementation of our approach in a message-based, service-oriented system that allows scientists to

model, control, and execute scientific choreographies as well as perform the rewinding and repeating of choreography logic. We also

provide an evaluation of the performance of our approach.

Index Terms—Ad Hoc changes, flexible choreography, workflow, multi-* experiment, choreography rewinding, choreography re-execution

and iteration

Ç

1 INTRODUCTION

WORKFLOW technology offers an approach for the
design and implementation of in-silico experiments

such as scientific simulations. By means of scientific work-
flows, it supports the goal of eScience to provide generic
approaches and tools for scientific exploration and discovery
in different fields of natural and social sciences [1]. More spe-
cifically, scientific workflows are used to specify the control
and data flow of in-silico experiments and orchestrate scien-
tific software modules and services. Through the use of
workflow technology in eScience, a significant body of
knowledge and tools from the business processmanagement
domain becomes available to natural scientists. However, at
the same time scientists have different requirements on
workflow modeling and enactment than users in the busi-
ness domain. For instance, eScience experiments often
demand a trial-and-error based modeling [2] supporting the
use of incomplete, partially defined workflowmodels, or the
repetition of the execution of specific experiment steps with

different sets of parameters. In this context, natural scientists
are both the designers and users of a workflowmodel.

In order to address these requirements, previous work
[3] proposed theModel-as-you-go approach for workflows. A
key aspect of this approach is that it hides the differences
between workflow model and instance by abstracting from
technical details such as deployment. This works towards
creating the impression of one coherent experimentation
phase where scientists can iteratively model and execute a
scientific workflow. Model-as-you-go also supports two
types of user-initiated operations allowing the ad hoc repeti-
tion of parts of the workflowmodel without the a priori defi-
nition of execution control artifacts [4]. The iterate operation
allows repeating workflow logic without undoing previ-
ously completed work. This is helpful for scientists to
enforce the convergence of results by repeating some steps
of the scientific workflow. The re-execute operation allows
repeating parts of already executed workflow logic after
undoing, or compensating already completed work. This
allows scientists, for example, to reset the execution envi-
ronment in case of detected errors or even when a complete
redo of a simulation is needed.

A known limitation of this approach, however, is the
insufficient support for multi-scale/multi-field, also known
as multi-* experiments, that recent works are addressing [5],
[6]. Multi-scale experiments couple different length or time
scales within the same experiment, e.g., part of the overall
simulation simulates a natural phenomenon on the atomic
scale with nanometer length and transfers the results to
another simulation application simulating structures with
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millimeter length. Multi-field experiments use different sci-
entific fields in the same experiment, for example physics,
biology, or chemistry. In order to provide better support for
these types of in silico experiments, we proposed the use of
choreographies [7]. Every scale and every distinct field is
modeled as an independent choreography participant. This
corresponds to the fact that multi-* experiments typically
involve scientists from different disciplines and organiza-
tions having diverse expertise [5].

Fig. 1 shows a simplified example of a multi-scale
experiment studying the simulation of thermal aging of
iron-copper alloys and emerging effects on the mechani-
cal behavior of the alloys [8]. The coupling of two simula-
tion methods allows for carrying out simulations on
multiple time and length scales. The first method is a
Kinetic Monte Carlo (KMC) Simulation and simulates the
formation of copper atom clusters (precipitates) in an
atom lattice and stores the intermediate results in snap-
shots at discrete time steps. The generated snapshots are
analyzed and sent to a Molecular Dynamics (MD) simula-
tion workflow if the atom clusters have an appropriate
size. The MD simulation workflow and the services
implementing the activities apply forces on each snapshot
to test material behavior after thermal aging. Each
received snapshot triggers the creation of a new workflow
instance of the MD simulation. The results are sent back
to the KMC simulation workflow to generate an overall
graphical plot for each simulation snapshot. Together, the
two simulation workflows form a choreography with
each simulation method being represented by an inde-
pendent choreography participant.

Let’s assume now that a scientist started the coupled
simulation workflows and they already have calculated a
simulation snapshot, applied forces on the atom lattice,
and visualized the result graphically. The scientist discov-
ers that the visualization does not show a plausible graph
and wishes to re-run parts of the overall multi-scale simu-
lation. These could be, for example, a change of the criteria

that are used to select an appropriate KMC simulation
snapshot, the re-sending of snapshots, and the re-run of
the MD simulation. Essentially, this requires the capability
that allows scientists to select a point in the KMC or MD
workflows up to which the execution of the simulations
has to be rewound before applying any desired changes
and repeating the execution of this part of the simulation.
Repeating part of the execution instead of discarding all
intermediate results and starting from scratch saves a lot
of time and effort for the scientists, especially in the case of
typically long running experiments.

Toward supporting such type of control over scientific
experiments, in this work we build on the concepts we
introduced in previous work [4], [5], [6], and present the
complete Model-as-you-go for Choreographies approach
that allows for rewinding and repetition in choreogra-
phies. For this purpose, in Section 2 we present a formal
description of choreography models and instances, which we
extended from [6] to incorporate loop constructs typically
used in acyclic choreography and workflow models.
Furthermore, the formal model accounts for the so-called
participant sets that can be used to model a participant
that can be instantiated an arbitrary number of times.
Subsequently, in Section 3, we introduce a new method
comprising all steps necessary to rewind and repeat cho-
reography logic, from determining the rewinding points,
through rewinding the choreography, enacting a repeat
or iteration of its logic, and to resuming the choreography
execution. In the same section we present the algorithm to
determine the rewinding points, which is a combination of
its basic version as introduced in [6] and a significant
extension to support loop activity instances and instances
of participant sets. Rewinding points are activity instan-
ces in the participating workflows up to which the state
has to be rewound and where the repetition begins. We
enable the repetition or iteration of choreography logic by
defining and implementing two operations: iterate and re-
execute. For the actual rewinding at the choreography

Fig. 1. An example of a choreographed multi-scale simulation of thermal aging of iron-copper alloys and their material behavior. Adapted from [5].
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participants, i.e., the resetting or compensation of activi-
ties in each involved participant instance, we resort to the
concepts of [4], about which we provide the necessary
background details. As with the previous works, the con-
cepts introduced in this article are independent of a par-
ticular choreography or workflow language and therefore
reusable across technologies. Section 4 describes how the
concepts and algorithms for repetition are realized into a
message-based and service-oriented system, the ChorSys-
tem, that supports the modeling, execution, and control of
scientific choreographies and implements the method we
introduced in Section 3. In Section 5, the proposed
approach is experimentally evaluated in terms of perfor-
mance. Finally, Section 6 compares our approach to
related ones and Section 7 concludes the article.

2 FORMAL MODEL

In this section, we define the underlying formal model for
our approach in two parts: modeling and execution.

2.1 Modeling Phase

Typically, choreography models show only the publicly vis-
ible communication behavior, because the details of the
workflows implementing the choreography participants are
considered as sensitive information. The usually non-exe-
cutable models are defined collaboratively and used to gen-
erate representations of the choreography participants in an
executable workflow language. The collaborating organiza-
tions then refine the resulting workflow models they own
with business logic [9].

A choreography model consists of at least two partici-
pants, which are represented by service orchestrations,
workflow models, or process models. A process model is
a directed, acyclic graph (DAG) whose nodes represent
activities. Control flow is explicitly modeled by edges
denoted as control flow connectors linking activities. Data
flow is implicitly described through the manipulation of
variables as input and output of activities. The partici-
pants communicate with each other via message links, a
second type of edges.

A process model is formally defined as in [10]:

Definition 1 (Process Model, GG). A process model is a
DAG G ¼ ðm;V; i; o; A; LÞ, where m 2M is the name of the
process model, V �M � S (M = set of names; S = set of data
structures) is the set of variables, i is the map of input variables,
o is the map of output variables, A is the set of activities, and L
is the set of control flow connectors (control flow links).

The set of activities A contains both basic and loop activities
(cf. Definition 2 below). Input variables providing data to
activities can be assigned using an input variable map
i : A! PðV Þ. Output variables to which activities may write
data to are described by the output variable map o : A!
PðV Þ. Finally, the set of control flow connectors is L � A�
A� C. A control flow connector l 2 L is a triple l ¼ ðas; at;
t j as; at 2 A; t 2 C ^ as 6¼ atÞ connecting a source and a tar-
get activity, and its transition condition t (where C is the set
of all conditions) is evaluated during run time. Note that
the transition conditions allow to model typical workflow
patterns such as parallel split and exclusive choice [11]. An

activity a 2 A� is called start activity if it is not the target of a
control flow link: A� � A :¼ fa j a 2 A ^ 8l 2 L; a 6¼ p2ðlÞg:1

Loops in the formal model for process models are
expressed as complex activities that execute the loop as a
sub-process according to a defined exit condition [10]. More
formally:

Definition 2 (Loop Activity, aal). A loop activity al 2 AL is
a tuple al ¼ ðm;A; L; �Þ, where m 2M is the name of the loop
activity, A is a set of activities, L is a set of control flow connec-
tors, and � is a function � : AL ! C that assigns an exit condi-
tion to a loop activity.

A loop activity is a container activity for other activities, reg-
ular (i.e., non-loop) as well as nested loop activities, and
control flow connectors. The loop activity represents a do-
until loop, which is executed at least once before the exit
condition is evaluated. Our definition of a choreography
model integrates the process model tuple as part of its par-
ticipant definition:

Definition 3 (Choreography Model, CC). A choreography
model is a directed, acyclic graph denoted by the tuple
C ¼ ðm;P; Pset;MLÞ, where m 2M is the name of the chore-
ography model, P is the set of choreography participants, Pset

is the set containing participant sets, ML is the set of message
links between the choreography participants.

A choreography participant p 2 P is a triple
p ¼ ðm; type;GÞ, where m 2M is the name of the partici-
pant, type : P ! T is the function assigning a type tp 2 T to
the participant, and G 2 Gall is a process model graph,
where Gall is the set of all process model graphs.

Typing the participant allows for several participants of
the same type in the same choreography. Participants of the
same type always possess the same process model graph.
The set of all participants is denoted by Pall. A participant set
pset 2 Pset is described by pset � Pall. This modeling construct
is used to model a set of choreography participants whose
number can be determined only during run time [12].

The set of message links ML is denoted as ML � ðP [
PsetÞ � P �A�A� C. A message link ml 2ML is a tuple
ml ¼ ðps; pr; as; ar; tÞ, where ps; pr are the sending and
receiving participants, which must not be identical: ps 6¼ pr.
This also holds for as 2 p5ðps:GÞ and ar 2 p5ðpr:GÞ, which
are the sending and receiving activities: as 6¼ ar. The transi-
tion condition t 2 C is evaluated during run time.

2.2 Execution Phase

Choreography models are typically not directly execut-
able [7], [13]. Instead, the refined process/workflow models
implementing the choreography participants are instanti-
ated. Together, they form an overall virtual choreography
instance. The virtual choreography instance at any given
point in time can be created by reading monitoring informa-
tion, i.e., the execution traces of each process instance. We
use the definitions of activity and process instance from [4]
and extend them for choreography instances. Note that for

1. Note that we use the projection operator pn to access the nth ele-
ment of a tuple starting from index 1. PðXÞ denotes the power set of
the set X including the empty set ;. py:X accesses element X (poten-
tially a set) of element py.

WEIß ET AL.: MODEL-AS-YOU-GO FOR CHOREOGRAPHIES: REWINDING AND REPEATING SCIENTIFIC CHOREOGRAPHIES 903



our purposes it is sufficient to have a rather static notion of a
choreography instance capturing only the accrued state at a
certain point in time and not the advancement of the execu-
tion. This is due to the fact that the execution progress is
suspended when we apply our algorithm, as we discuss in
the following section.

Definition 4 (Process Instance, pg). An instance of a process
model is a tuple pg ¼ ðV I; AA;AF ; LEÞ, where V I is the set of
variable instances, AA is the set of active activity instances, AF

is the set of finished activity instances, and LE is the set of eval-
uated links.

For the set of variable instances it holds that: V I ¼ fðv; c;
tÞ j v 2 V; c 2 DOMðvÞ; t 2 Ng. A variable instance provides
a concrete value c from the domain of v (DOMðvÞ) for a vari-
able v at a particular point in time t. The set of activity
instances is defined as AI ¼ fðid; a; s; t; sÞ j id 2 ID; a 2 A;

s 2 S; t 2 N; s 2 Sg, where ID is a set of unique identifiers,
A is the set of activities, S is the set of states, N is the set of
natural numbers indicating time, and S is the set of variable
snapshot instances. A variable snapshot instance s 2 S is
defined as the triple s ¼ ðid; V I

s ; tÞ j id 2 ID; V I
s � V I; t 2 N.

The set S ¼ fS;E;C; F; T; Cmp;Dg contains the execution
states an activity instance can take at any point in time t. Note
that we describe states with the following abbreviations: (S =
scheduled, E = executing, C = completed, F = faulted, T =
terminated, Cmp = compensated, D = dead, Sus = sus-
pended). Completed activity instance have been successfully
carried out their intended work, while terminated ones were
forcefully aborted during execution.

The state of an activity instance ai 2 AI can be determined
by the function stateðaiÞ, whereas its model element is
retrieved by the functionmodelðaiÞ. The set of activity instan-
ces AI contains both non-loop and loop (cf. Definition 6)
activity instances. For the set of active activity instances the
following holds:AA � AI; 8ai 2 AA : stateðaiÞ 2 fS;Eg. If an
activity is executed in a loop, a new instance is created for
each iteration, i.e., there is at most one activity instance ai of
an activity a in the set of active activitiesAA. For the set of fin-
ished activity instances the following holds: AF � AI; 8ai 2
AF : stateðaiÞ 2 fC;F; T;Dg. Compensated activity instances
(state = Cmp) are not in the set AF because their effects have
been semantically undone. For the set of evaluated control
flow links the following holds: LE ¼ fðl; c; tÞ j l 2 L; c 2 ftrue;
falseg; t 2 Ng. Evaluated links already have an truth value c
assigned at time t determining if the link has been followed
during execution. Furthermore:

Definition 5 (Instance Subgraph, ggi). An instance sub-
graph is a directed, acyclic graph represented by a tuple
gi ¼ ðV I; AA;AF ; LEÞ, where gi �gi pg.

The �gi operator means that the elements of the tuple gi are
a subset or equal to the corresponding elements in the pro-
cess instance tuple pg. We include the instance subgraph
definition in order be able to algorithmically handle the pro-
cess graph and any subgraphs of it in the same way.

Definition 6 (Loop Activity Instance, aail). A loop activity
instance is a tuple ail ¼ ðid; al; AA;AF ; LE; ctr; s; tÞ, where
id 2 ID is a unique identifier of the instance, al is the loop
activity, AA is the set of active activity instances, AF is the set

of finished activity instances, LE is a set of evaluated control
flow links, ctr 2 N is the loop counter of the loop activity
instance, s 2 S is the current state of the instance, t 2 N is the
instance’s execution time.

It then follows:

Definition 7 (Choreography Instance, cci). A choreography
instance is the pair ci ¼ ðPI;MLEÞ, where PI is the set of par-
ticipant instances belonging to the choreography instance and
MLE the set of evaluated message links.

The set of participant instances PI contains pairs of the form
pi ¼ ðm; pgÞ, wherem is the name of the participant instance

and pg 2 Pall
g is a process instance. For MLE the following

holds: MLE ¼ fðml; c; tÞ jml 2ML; c 2 ftrue; falseg; t 2 Ng,
i.e., MLE contains the instantiated message links having a
truth value c indicating the outcome of the transition condi-
tion evaluation at execution time t.

3 REWINDING & REPEATING CHOREOGRAPHIES

In this section we present our overall approach for rewinding
and repeating choreography logic in a choreography instance.
We introduce the method our approach follows and the algo-
rithm for automatic identification of rewinding points.

3.1 Prerequisites

A basic assumption for the Model-as-you-go for Choreogra-
phies approach is the existence of a monitoring infrastruc-
ture capturing the execution events and providing
information about instance states of the process models dis-
tributed across different execution engines. These states are
correlated with the corresponding choreography model,
both in the supporting middleware and in the graphical
modeling and monitoring environment a scientist uses.
Based on the life cycle for scientific choreographies, which
we introduced in [13], it is possible to switch between the
levels of choreography and workflows during execution for
monitoring purposes on different degrees of detail and to
perform adaptation actions as well starting the repetition on
both levels. Each scientist has access to a common choreog-
raphy model and at least to the workflow models she has
refined by herself. This includes the monitoring of the exe-
cution state. Access to all other refined workflow models
and the execution events depends on the access rights given
to the particular scientist by the owner of the workflow
model. Furthermore, scientists must be able to control the
execution of the choreography instance. Choreography
instance control entails the starting, suspending, resuming,
and terminating of participating workflow instances in a
coordinated fashion in order to be enable to react to devia-
tions and errors, and to perform adaptation actions.

3.2 Concepts & Method

One way to enable reaction to deviations and errors is
through repeating workflow/experiment logic using either
of two operations we defined for individual (scientific)
workflows. Iteration is the repetition of parts of the logic in a
workflow instance without undoing already completed
work. The executed activities and links in the engine inter-
nal representation are simply reset; note that historical data
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are kept and past state changes are not overwritten. Option-
ally, the scientist may decide to load stored variable snap-
shots for the re-run and not use the current values.
Basically, iteration resembles the execution semantics of a
loop construct without having it explicitly modeled. Re-
execution denotes the operation of repeating workflow logic
in a single workflow instance after undoing the already
completed work by invoking compensation activities in the
reverse order for executed service invocations, resetting
control flow links, and by loading stored variable snapshots
for the start activity [4]. In the context of (scientific) choreog-
raphies, we analogously define iteration in a choreography
instance as the repetition of logic in the enacting workflow
instances without undoing already completed work. The
workflow instances participating in the choreography
instance are collectively reset. Re-execution in a choreography
instance is the repeat of logic after compensating already
completed work. That means the choreography instance is
reset to a state of its past. The involved workflow instances
have however to be compensated collectively. The rewind-
ing and repetition of choreography logic can be conducted
by adhering to the steps of the method depicted in Fig. 2.
The steps involved are explained in the following sections
making use of several conceptual figures2 (Figs. 3, 4, and 5).

3.2.1 Step 1: Suspending of the Choreography

Instance

This is done either by a scientist or by the workflow engines
reaching the end of the defined workflow models. The user-
initiated suspend has to be conducted in a coordinated fash-
ion with all relevant workflow engines by using reliable
messaging [14] and/or transactional concepts [15]. It
implies that no further execution progress in any of the
involved workflow instances occurs until they are collec-
tively resumed again (cf. Step 8).

3.2.2 Step 2: Selection of a Start Activity Instance

Repeating parts of the logic of choreography instances is
triggered by the scientist choosing a start activity in a start
participant instance (activity c1 of Participant1 in Fig. 3) dur-
ing run time via a graphical modeling and monitoring envi-
ronment. As multiple (completed) instances for one model
element might exist, especially inside loop activities, the
modeling and monitoring environment must support a

convenient selection, for example by using a graphical wiz-
ard that leads the user through the selection step by step.
The selection can either take place on the level of the chore-
ography or on the workflow level depending on the access
rights of the scientist.

When monitoring the scientific choreography instance,
data, i.e., the variable values, of the workflow instances is
one factor scientists have to consider for the repetition of
logic. Similar to database logs for recovery [16], in our exist-
ing work [4] we log variable changing events into stable
storage. A snapshot-enabled workflow engine stores the
snapshot instances with every variable-changing activity in
its database. Moreover, it offers a service interface to the
outside to retrieve the snapshot instances related to any
given activity. A snapshot instance contains references to all
variables visible for a particular activity, the current vari-
able values, and a creation timestamp. Fig. 4 shows the sim-
plest (i.e., sequential) selection case in a workflow instance.
If it is to be repeated from activity instance c, the snapshot
instance attached to activity instance b has to be loaded. It is
the nearest snapshot instance, i.e., has the most recent time-
stamp (t ¼ 2), on the execution path to activity instance c.
The selection of snapshot instances from parallel execution
paths are also considered in [4], however, we do not recapit-
ulate these concepts here due to space limitations.

We base our data handling on this concept and allow the
user to select either manually or automatically the stored
snapshot instance with the most recent timestamp for the
start activity instance. This means the corresponding

Fig. 2. Method for rewinding and repetition of choreography logic.

Fig. 3. Example of a choreography instance without loops.

Fig. 4. Data handling in the sequential case. Adapted from [4].

2. In the following, the subscript of an element denotes a part of the
element name, while the superscript indicates the instance id. How-
ever, we only show the instance id if there are more than one instances
of the same element.
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workflow engine is queried for all snapshot instances
related to the selected start activity instance and the results
are presented to the user in a graphical manner. The option
is provided for both iteration and re-execution. In case of re-
execution, the compensation logic is only responsible for
undoing state which is external to the participant. There-
fore, a snapshot instance is has to be selected and loaded to
provide the desired variable values, which are part of the
internal state of the workflow instance, before starting the
re-execution. In case of iteration it is optional.

The refinement of the choreography participants might
introduce variables which are not part of the choreography
model. Two cases can be distinguished: (i) A scientist
wishes to start the repetition of a choreography instance
from the choreography or workflow level where he/she
has access to the refined workflow model. In this case,
graphical facilities are provided to select the desired snap-
shot instance and all or a subset of the variables visible for
the start activity instance. (ii) A scientist wishes to start the
repetition on the level of the choreography from a partici-
pant instance where he/she does not have access to the
refined workflow. Here, the manual selection of snapshots
should not be offered. Instead, the engine internally uses
the most recent variable snapshot instance preceding the
start activity instance from the corresponding workflow
engine’s database as shown in Fig. 4. The same approach
is employed for all calculated rewinding points outside the
start participant instance.

3.2.3 Step 3: Determination of the Rewinding Points

An important concept is the notion of iteration body. In [4],
the iteration body is defined as the instantiated activities

and evaluated links reachable from a user-selected start
activity instance of a single process instance. In Fig. 3, the
iteration body of Participant1 consists of the activities c1, d1,
e1; f1, g1, h1, i1, and the control flow connectors between
them. Note that the path c1 ! d1 has not been chosen during
execution and is marked as dead. However, it may be
included into the iteration body when starting a repetition
from activity c1. In the context of choreographies, the itera-
tion body spans across process instances and includes mes-
sage link instances between them. In Fig. 3, in addition to
the already enumerated ones, the activities a2, b2, c2, the
control flow links between them as well as the control flow
link c2 ! d2, and the message link instance ml1 are part of
the choreography iteration body. In other words, the choreog-
raphy iteration body contains all activity, control flow, and
message link instances reachable from the start activity
instance. The repetition of logic starting in one particular
participant instance affects at least all participant instances
that are part of the choreography iteration body.

Here, two cases can be distinguished. In the first case, the
start participant instance is connected, directly or transi-
tively, to other participants that are reachable from the man-
ually selected start activity instance (c1 in Fig. 3). That means,
the start participant instance contains completed sending
activity instances that have sent messages to other partici-
pant instances which themselves may have invoked further
ones. Already completed activity instances on the execution
path must be rewound, i.e., either be reset (iteration) or com-
pensated (re-execution) across the affected choreography
participant instances. While the start activity instance for the
repetition is simultaneously the so-called rewinding point in
the start participant instance, the rewinding points in the

Fig. 5. Loop examples. (a): Choreography instance with loops and instantiated participant set. (b): Choreography instance with synchronizing loops.
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connected instances have to be identified separately. Each
rewinding point indicates where the resetting or compensa-
tion of activities has to be stopped. In the example, activity a2
is the rewinding point of Participant2.

In the second case, participant instances that are not
reachable from the start activity instance may still be
affected by the repetition of logic in other participant instan-
ces. Messages that are not the reply to previous requests and
have been transmitted over incoming message links to the
affected participant instances must be available again in the
case of repetition. This can be done by storing and replaying
previously sent messages by the workflow engine or a mid-
dleware component responsible for the respective partici-
pant instance. An example for this case are Participant3 and
the message link instanceml2 in Fig. 3.

The concept for determining the rewinding points in cho-
reography instances is refined in this work to also consider
multiple instances of the same participant, i.e., instantiated par-
ticipant sets (cf. Definition 3), as well as loop activity instances
as part of the participant instances. Fig. 5a shows an example
of a choreography instance containing both loop activity
instances and two instances of a choreography participant
modeled with the participant set construct. In order to find
the rewinding points in all participant instances, all itera-
tions of an instantiated loop activity have to be traversed.
The iterations of a loop activity instance can be seen as inde-
pendent instance subgraphs (cf. Definition 5) where each has
to be traversed sequentially. We call this the loop instance
graph of a particular loop iteration. In the example of Fig. 5a,
this means that starting from the initial start activity instance
d11 in the first iteration of loop activity instance c1, the partici-
pant instance Participant12 is reached via the message link
instance ml1. Activity instance a2 is the rewinding point of
Participant12. After finishing the traversal of Participant12
and the loop activity instance iteration 1, the loop instance
graph of loop activity instance iteration 2 is traversed. Here,
Participant22 is reached via themessage link instanceml3 and
activity instance a2 can bemarked as rewinding point.

Our approach supports two more cases, both shown in
Fig. 5b. First, we allow users to select an activity instance in
an arbitrary iteration of an loop activity instance. In the
example in Fig. 5b this is the activity instance d21 located in
iteration 2 of loop activity instance c1. Second, both partici-
pant instances possess loops that synchronize with each
other, e.g., participant instance Participant2 also possesses a
loop activity instance (c2). Following the message link
instance ml3 to find the rewinding point in Participant2, the
correct loop iteration of c2 must be entered to mark the
activity instance d22 as a another rewinding point.

In order to automatically determine the rewinding
points, we introduce an algorithm in Section 3.3. The data
structure to store the rewinding points of a choreography
instance is defined in the following way:

Definition 8 (Choreography Rewinding Points, RPRP C).
The data structure Choreography Rewinding Points RPC �
PI � PðAIÞ is a set of pairs fðpi; AI

rpÞ j pi 2 PI;AI
rp ¼

fai1; . . . ; aikg � AIg consisting of a participant instance and a
set of rewinding point activity instances.

The reason that a participant instance can have more than
one rewinding point is the existence of parallel paths in the

process model graph. A participant may receive messages in
parallel that result in independent rewinding points.

3.2.4 Step 4: Distribution of the Rewinding Points

In this step, the automatically determined rewinding points
as well as the optionally selected variable snapshot instance
(of the start participant instance) have to be distributed to the
workflow engines that host the involvedworkflow instances.
It has to be ensured that the rewinding points reach all rele-
vant workflow engines, e.g., by using reliable message-ori-
entedmiddleware [14] and/or transactional concepts [15].

3.2.5 Step 5: Termination of Activities in the

Choreography Wavefront

Manually triggered repetition of logic on an execution path
can lead to race conditions in individual workflows [4] as
well as in choreographies. Race conditions include the exe-
cution of one path in parallel inside one process or choreog-
raphy instance. To deal with this issue the activities of the
choreography wavefront have to be terminated. The choreog-
raphy wavefront contains all currently active instances or
scheduled elements such as activities, control flow connec-
tors, and message links. In Fig. 3, for example, activities g1
and i1 of Participant1 are currently running or are sched-
uled, respectively, and will subsequently trigger the com-
peting execution of activity j1 if not terminated before
starting the repetition from activity instance c1. The termina-
tion is handled locally in each involved workflow instance
after receiving the rewinding points.

3.2.6 Step 6: Rewinding the Choreography Instances

The rewinding resets the choreography iteration body to a
previous state andmoves the choreographywavefront to the
past. This has to be conducted locally by each involvedwork-
flow engine.However, different approaches are used for iter-
ation and re-execution (cf. Fig. 2). For the rewinding of each
individual workflow instance we reuse the concepts of [4].
Thatmeans in the case of iteration that the activities and links
in the iteration body of each participant instance are reset by
the corresponding workflow engine to enable a subsequent
execution. See Fig. 3 for an example that shows the resetting
direction from the rewinding point until reaching the chore-
ographywavefront. Optionally, data snapshots are automat-
ically determined for the rewinding points (cf. Step 2).

We formally define the iterate operation of choreography
logic in the following way:

Definition 9 (Iterate operation, iic). The iterate operation
for choreographies is defined as the function ic : A

I � S �
RPall

C � CI ! CI , where AI is the set of activity instances, S is
the set of variable snapshot instances, RPall

C is the set of all cho-
reography rewinding points (cf. Definition 8), and CI is the set
of choreography instances.

The iterate operation takes as input the start activity instance

aistart 2 AI , the corresponding variable snapshot instance

s 2 S of aistart, the set of determined rewinding points

assigned to their corresponding participant instances

RPC 2 RPall
C , and the affected choreography instance ci 2 CI .

The re-execution operation is an extension of iteration,
where additionally to the resetting of control flow connec-
tors, the iteration body of each participant instance is
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compensated in reverse order (cf. Fig. 3) and a data snap-
shot is automatically determined for the rewinding points
in each involved workflow engine. The semantics of the
input parameters is identical to the iterate operation. Note
that the re-execution operation is only applicable if corre-
sponding compensation services have been implemented
for a particular use case. We also extended the traversal of
the iteration body by the workflow engines for both opera-
tions to also consider multiple rewinding points.

A special case to be considered is the complete rewinding
of a participant instance. This occurs when the model of the
rewinding point activity instance is an instance creating activ-
ity (for example activity instance a2 of Participant2 in Fig. 3).
Instead of keeping the participant instance alive, it should be
terminated since it cannot be guaranteed whether an instance
of that particular participant is needed again during the repe-
tition. The new execution might take a completely different
path. However, simply terminating the participant instance is
not sufficient. In case of re-execution the iteration body still
has to be compensated to undo its effects. In case of iteration,
the iteration body has to be reset and the variable values have
to be stored. If the repeated execution takes the same path, the
variable values have to be loaded for a new participant
instance of the same type.However, if the participant instance
is created on a different workflow engine, the variable values
have to bemigrated.

3.2.7 Step 7: Scheduling of the Rewinding Points

The rewinding points are scheduled in their respective
workflow engines to be executed next. An exception are the
rewinding points that are located in participant instances
that have been terminated after rewinding.

3.2.8 Step 8: Resuming of the Choreography Instance

The last step entails the resuming of the execution of the
choreography instance. To each participant instance, with
the exception of the completely rewound and terminated
ones, a message is sent to resume execution.

The method’s steps can be repeated if a scientist recog-
nizes the need for further repetitions. Here, no new chal-
lenges for the determining of the rewinding points arise.
Furthermore, if one step of the method fails, all steps apart
from the compensation of activities in case of re-execution
can be easily retried by starting the method anew. This is
due to fact that the workflow engines keep their instance
state in stable storage and the calculation of the rewinding
points and resetting already reset activities does not do any
damage. However, retrying the compensation step would
need a idempotent implementation of external services pro-
viding the compensation functionality.

3.3 Determining the Rewinding Points

In the following, we present an algorithm to automatically
determine the rewinding points in a choreography iteration
body, that realizes Step 3 of the proposed method. The main
idea of the algorithm is to traverse the choreography instance
graph beginning from the user-selected start activity instance
in the start participant instance, follow the executed message
link instances and thus identify all choreography participant
instances that are part of the choreography iteration body. In

doing so, the algorithm collects all rewinding points. The
algorithm is divided into four parts and supported by a set of
auxiliary functions, which are defined and explained as they
occur in the algorithm. The rewinding point algorithm real-
izes the function r.

Definition 10 (Function rr). The Determine Rewinding
Points function r is defined as r : CI �AI � PI �RPall

C !
RPall

C , where CI is the set of choreography instances, AI is the
set of activity instances, PI is the set of participant instances,
and RPall

C is the set that contains all RPC sets (cf. Definition 8).

RPC is the data structure that contains the determined
rewinding points for each involved participant instance.
Before the first invocation of r the data structure RPC is
empty: RPC ¼ ;. Algorithm 1 is the starting point for the
automatic determination of the rewinding points. The initial
invocation of the algorithm needs the start participant
instance and the user-selected start activity instance. First, it
is checked if the start activity instance aistart is nested inside
a loop activity instance using the getEnclosingLoop function
(cf. Definition 11 below). If so, the user has selected an activ-
ity instance inside an iteration of a loop activity instance
and the sub-routine � (handleLoopActivity) defined in Defini-
tion 15 and realized by Algorithm 4 is directly invoked. Oth-
erwise, aistart is not nested inside a loop and the function t
(traverseInstanceSubgraph) is invoked to traverse the process
instance graph pg of p

i.

Algorithm 1. determineRewindingPoints, r

1 input: Choreography instance ci, activity instance aistart, par-
ticipant instance pi, set of pairs RPC ¼ ðpi; AI

rpÞ
2 output: RPC

3 begin
4 if RPC ¼ ; then
5 RPC  ðpi; faistartgÞ
6 end
7 Loop Activity Instance

ail  getEnclosingLoopðaistartÞ
8 if ail ¼? then
9 t (ci; pi; pi:pg; a

i
start; RPC)

10 else
11 �(ci; pi; ail ; a

i
start; RPC)

12 end
13 return RPC

14 end

Definition 11 (Function getEnclosingLoop). The getEn-
closingLoop function is defined as getEnclosingLoop :
AI ! AI

L, where A
I is the set of activity instances and AI

L is
the set of loop activity instances.

The getEnclosingLoop function is used to determine if there is
a loop activity instance ail 2 AI

L enclosing a given activity
instance ai 2 AI . It returns ? if ai does not have a parent
loop activity instance, and function t is invoked:

Definition 12 (Function tt). The Traverse Instance Sub-
graph t function is defined as t : CI � PI �GI �AI �
RPall

C ! RPall
C , where CI is the set of choreography instances,

PI is the set of participant instances, GI is the set of instance
subgraphs, AI is the set of activity instances, and RPall

C is the
set that contains all RPC sets (cf. Definition 8).
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The function t is used to traverse an instance (sub-)graph.
It is realized by Algorithm 2, the main idea being the fol-
lowing: beginning from the activity instance aistart, the
instance subgraph gi is traversed in a depth-first manner.
gi can be the complete process instance graph pg or a loop
instance graph of some iteration of a loop activity instance.
For each activity instance ai it is checked if it is a com-
pleted sending activity instance (line 10). If so, the sub-
routine x (handleSendingActivity) as defined in Definition 13
is invoked (line 11). Subsequently, the outgoing control
flow connectors of every completed activity instance are
followed by pushing them on the stack data structure, pro-
vided they have been evaluated to true (lines 12-14). If the
model of ai (modelðaiÞ) is a loop activity, the sub-routine �
(handleLoopActivity, cf. Definition 15 and Algorithm 4) is
invoked instead (lines 15-17).

Algorithm 2. traverseInstanceSubgraph, t

1 input: Choreography instance ci, participant instance pi,
instance subgraph gi, activity instance aistart, set of
pairs RPC ¼ ðpi; AI

rpÞ
2 output: RPC

3 begin
4 Stack S  ;
5 S.push(aistart)
6 while S 6¼ ; do
7 ai  S.pop()
8 if ai is not marked as visited then
9 mark ai as visited
10 if model(ai) is sending activity ^

stateðaiÞ ¼ completed then
11 RPC  x(ci; ai; RPC)
12 foreach li ¼ ðlx; cx; txÞ 2 gi:LE j lx:axs ¼

ai ^ stateðcxÞ ¼ true do
13 S.push(lx:axt )
14 end
15 else if model(ai) is loop activity then
16 RPC  � (ci; pi; ai;?; RPC)
17 end
18 end
19 end
20 return RPC

21 end

Definition 13 (Function xx). The Handle Sending Activity
function x is defined as x : CI �AI �RPall

C ! RPall
C , where

CI is the set of choreography instances, AI is the set of activity
instances, and RPall

C is the set of pairs containing the assign-
ment of participant instances to their rewinding points (RPC,
cf. Definition 8).

Algorithm 3 (handleSendingActivity) realizes the function x.
First, themessage link instancemlitraversed, which is attached to

the sending activity instance ai, is retrieved by evaluating the

following conditions: (i) it has been evaluated to true and (ii)

there is a receiving activity instance air in the completed state,

i.e., a message has been sent and consumed (line 4). We

assume reliable FIFO channels for communication, i.e., all

messages in transit have reached their destination before we

conduct any rewinding. If mlitraversed is not empty, the algo-

rithm follows the message link instance and retrieves the

receiving participant instance (lines 5-6). By exactly identify-

ing the receiving participant instance it is also possible to con-

sider instances which were modeled by a participant set. For

the receiving participant instance it is checked if it has already

been (partly) traversed by the algorithm and a (preliminary)

rewinding point has been found. If this is not the case, the

receiving activity instance air is added as a rewinding point

for the receiving participant pir and r is invoked recursively

using pir as input (lines 7-9). If there exists already a rewinding

point for pir (line 10), it is checked if (i) the old rewinding point

would be a successor of the new one (using the succ function

defined in Definition 14 below) or if (ii) both are in parallel

branches. In case (i) the old rewinding point activity instance

is removed before the new rewinding point is added and in

case (ii) both are kept (lines 11-19). In both cases, r is invoked

recursively afterwards (lines 20-23). The recursion in one par-

ticipant instance stops when all reachable completed activity

instances have beenmarked as visited.

Algorithm 3. handleSendingActivity, x

1 input: Choreography instance ci, activity instance ai, set of
pairs RPC ¼ ðpi; AI

rpÞ
2 output: RPC

3 begin
4 Message Link Instance mlitraversed  ðmlx; cx; txÞ j ðmlx;

cx; txÞ 2MLE ^mlx ¼ ðpis; pir; ais; air; cÞ ^ ai ¼ ais ^ stateðcxÞ ¼
true ^ stateðairÞ ¼ completed

5 ifmlitraversed 6¼? then
6 Participant Instance pir  mlitraversed:p

i
r

7 if @ðpx; Ax
rpÞ 2 RPC j px ¼ pir then

8 RPC  RPC [ ðpir; fairgÞ
9 RPC  r (ci; air; p

i
r; RPC)

10 else if 9ðpx; Ax
rpÞ 2 RPC j px ¼ pir then

11 Boolean recursion false
12 foreach ax 2 Ax

rp do
13 if succðair; axÞ then
14 Ax

rp  Ax
rp n ax ;

15 recursion true ;
16 else if :succðax; airÞ ^ :succðair; axÞ then
17 recursion true ;
18 end
19 end
20 if recursion then
21 Ax

rp  Ax
rp [ air ;

22 RPC  r (ci; air; p
i
r; RPC)

23 end
24 end
25 end
26 return RPC

27 end

Definition 14 (Function succ). The successor function succ
is defined as succ : AI �AI ! B, whereAI is the set of activity
instances and B is the set of boolean values B ¼ ftrue; falseg.

The function determines if the second activity instance is
reachable from the first activity instance, and thus is a suc-
cessor in the process instance graph. When determining the
successor property, the iterations of loop activity instances
must also be considered.
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The handling of loop activity instances and their itera-
tions is introduced using the � function.

Definition 15 (Function ��). The Handle Loop Activity
function � is defined as � : CI � PI �AI

L �AI �RPall
C !

RPall
C , where PI is the set of participant instances, AI

L is the set
of loop activity instances, AI is the set of activity instances,
and RPall

C is the set of pairs containing the assignment of
participant instances to their rewinding points (RPC, cf.
Definition 8).

Definition 16 (Function getLoopIteration). The getLoo-
pIteration function is defined as getLoopIteration : AI ! N,
where AI is the set of activity instances and N is the set of natu-
ral numbers.

This function is used to determine the loop iteration of the
loop activity instance where a particular activity instance
ai 2 AI is located in.

Definition 17 (Function getLoopInstanceGraph). The
getLoopInstanceGraph function is defined as
getLoopInstanceGraph : AI

L �N! GI , where AI
L is the set

of loop activity instances, N is the set of natural numbers, and
GI is the set of instance subgraphs.

This function is used to retrieve the instance subgraph
gi 2 GI corresponding to a particular loop iteration ctr 2 N

of an loop activity instance ail 2 AI
L.

The � function’s realization (as required by Algorithm 1) is
introduced in Algorithm 4. If there exists a start activity
instance aistart 2 ail :A

A [ ail :A
F nested in the loop activity

instance ail , the iteration number itera is retrieved using the
getLoopIteration (cf. Definition 16) function (lines 6-9). Other-
wise, itera has been initialized to 1 and all loop iterations
are traversed. The algorithm iterates while the currently
iteration itercurr is smaller or equal to the overall number of
iterations of ail indicated by the loop counter ail:ctr (line 10).
For each executed iteration, the instance subgraph of the
current loop iteration is retrieved using the getLoopInstance-
Graph (cf. Definition 17) function (line 11). If aistart exists and
it is the first traversal of the loop activity instance (itera ¼
itercurrÞ, the sub-routine t (traverseInstanceGraph) is
directly called. That means, the traversal does not start at
the beginning of the loop instance graph, but rather from
aistart (lines 12-13). Otherwise, the traversal comprises the
complete loop instance graph gi and t is called for each
activity instance ai, which is a start activity, i.e.,
modelðaiÞ 2 A� (cf. Definition 1) (lines 15-17). After the tra-
versal of gi, itercurr is incremented by 1.

4 REALIZATION

In the following, we show how our approach for rewinding
and repeating of choreography logic is realized in our Chor-
System. The service-oriented and message-based ChorSys-
tem enables users to manage the complete life cycle of
choreographies from modeling to execution [17]. The life
cycle starts with choreography modeling, transformation to
and refinement of workflow models. The refined workflow
models are distributed among a set of workflow engines in
an automated manner while a logical representation of the
choreography is created in the so-called ChorSystem

Middleware. When starting a new choreography instance, a
corresponding representation is created and updated by
monitoring execution events. The life cycle management
operations for suspending, resuming, and terminating act
upon this representation. The functionality of the middle-
ware is defined by composing the different components
using message-based Enterprise Integration Patterns [14].
The generic architecture and the control and deployment
aspects of choreography life cycle management have been
initially introduced in [17]. Due to space limitations we will
not discuss the complete system architecture and function-
alities in detail and will restrict ourselves to showing with
the help of Fig. 6 how the rewinding and repetition method
(cf. Fig. 2) is supported by the ChorSystem.

Algorithm 4. handleLoopActivity, �

1 input: Choreography instance ci, participant instance pi,
activity loop instance ail , activity instance aistart, set of
pairs RPC ¼ ðpi; AI

rpÞ
2 output: RPC

3 begin
4 Number itercurr 2 N 1
5 Number itera 2 N 1
6 if aistart 6¼? then
7 itera  getLoopIterationðaistartÞ
8 itercurr  itera
9 end
10 while itercurr � ail :ctr do
11 Instance Subgraph

gi  getLoopInstanceGraphðail ; itercurrÞ
12 if aistart 6¼? ^ itera ¼ itercurr then
13 RPC  tðci; pi; gi; aistart; RPC)
14 else
15 foreach ai 2 gi:AF jmodelðaiÞ 2 A� do
16 RPC  tðci; pi; gi; ai; RPC)
17 end
18 end
19 itercurr  itercurr þ 1
20 end
21 return RPC

22 end

In the ChorDesigner, which acts as integrated modeling
and monitoring environment as well as control panel for
the life cycle management operations, the user gives the
command to suspend a running choreography instance
(Method step 1). The suspend command is processed by the
Instance Manager in the so-called Control Route [17]. To real-
ize the repetitions the Instance Manager carries out the Repe-
tition Route depicted in Fig. 6. The selection of the start
activity instance and the corresponding variable snapshot
(step 2) are conducted together with the ChorDesigner.
This information is sent via messaging to the Instance man-
ager where the repetition functionality is found using the
Content-Based Router pattern. Step 3 of the method is real-
ized by retrieving a choreography instance representation
from the Event Registry using a Custom Message Processor
and subsequently calculating the rewinding point in the
second Custom Message Processor implementing the Algo-
rithm introduced in Section 3.3. In step 4 with the help of
the Recipient List pattern, the affected workflow engines are
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determined by accessing the Management Registry and
translating the repetition message into the workflow
engine specific format and adding the calculated rewind-
ing points. The messages are then fanned out to the work-
flow engines. The reset or compensation of the involved
workflow instances (step 6) and the scheduling of the
rewinding points (step 7) are carried out in the respective
workflow engines as described in Section 3 and in [4].
Resuming execution of the choreography instance is again
triggered by the user in the ChorDesigner.

We have implemented the architecture and our approach
using open source software and standards. We employ
BPEL4Chor [18] as choreography language and BPEL [19]
as executable workflow language. The ChorDesigner and
the ProcessDesigner are based on Eclipse3 technologies,
while for the ESB Apache ServiceMix4 is employed. The
workflow engines are based on an extended Apache ODE,5

and the message routes to coordinate the middleware com-
ponents are realized with Apache Camel.6 The algorithm
for finding the rewinding points is implemented in Java.
The ChorSystem Middleware’s source code is available on
GitHub.7 Detailed information on the ChorSystem and
its architecture can be accessed online on our project
website [20].

5 EVALUATION

In this section, we evaluate the performance of the proposed
algorithm for the rewinding of choreography instances in
terms of execution time. The focus in this article on the algo-
rithmical aspect only is due to space reasons. The interested
reader is referred to the evaluation of our prototypical Chor-
System by means of an case study, which is available
online [20]. All measurements were conducted on an
Ubuntu 14.04 LTS virtual machine equipped with 1 CPU
core (2.29 GHz) and 4 GB RAM and represent the median
values of 5 runs. The evaluation consists of three major
parts.

First, we generated (randomly) 6 choreography models
having 10 participants each. The reason for generating arti-
ficial models is that the execution of our motivating exam-
ple (cf. Fig. 1) yields execution times of the rewinding

algorithm that are too small for meaningful measurements
(in the range of milliseconds). Each model increases line-
arly in size in terms of included activities (from 10K to
35K) and message links between the participants (from
1.5K to 5.25K). Subsequently, we generated for each chore-
ography model 10 iteration bodies with varying wave-
fronts and increasing size of executed activity instances
and traversed message link instances. Fig. 7 summarizes
our findings in terms of execution time for the 6 generated
choreography models. As can be seen from Fig. 7a, the exe-
cution time of the rewinding algorithm is quadratic with
the number of generated activity and message link instan-
ces in the iteration body of each individual model. Like-
wise, the comparison of the execution time between
different models for the same relative size of iteration
body, e.g., 50 percent of included activity and message
link instances, shows a quadratic increase of execution
time (Fig. 7b). The quadratic growth of the execution time
with the number of included activity and message link
instances can be explained by looking at Algorithms 2 (tra-
verseInstanceGraph) and 3 (handleSendingActivities). If
no loops are present, Algorithm 2 traverses each participant
instance graph exactly once (OðnÞ, for all participants),
while the succ function used in Algorithm 3 also traverses
the complete participant instance in the worst case. This
results in Oðn� nÞ for each participant instance in the cho-
reography model, as confirmed by Figs. 7a and 7b.

The second part of the performance evaluation consists
of the random generation of 6 new choreography models
having 500 activities per participant, but increasing linearly
in size in terms of participants (20 to 70) and message links
(1.5K to 5.25K). Again, 10 different iteration bodies were

Fig. 7. Execution time (in seconds) for choreography models with constant
number of participants and varying size of activities andmessage links.

Fig. 6. Repetition route described by the enterprise integration patterns.

3. http://eclipse.org/modeling
4. http://servicemix.apache.org
5. http://www.iaas.uni-stuttgart.de/forschung/projects/ODE-PGF/
6. http://camel.apache.org
7. https://github.com/chorsystem/middleware
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generated for each model using the same approach as
described above. Fig. 8 shows the execution time for the 10
generated iteration bodies of all 6 choreography models. As
before, the observed execution time growth is quadratic
with the model size (Fig. 8a). However, the overall execu-
tion time is much smaller compared to the models with
increasing number of activities per participant. This can be
explained by the fact that the succ function (cf. Definition 14)
has to traverse a much smaller amount of activity instances
per participant, thus, yielding a faster execution time. This
explanation is also supported by the execution times of the
iteration bodies with the same relative size across the 6 gen-
erated models (Fig. 8b), which show a linear increase.

In the third part, in order to evaluate the impact of loops to
our approach, we conducted three different measurements
varying one of three parameters: number of loops per partici-
pant, number of activities per loop (loop size), and number of
iterations per loop. For each of the three measurements, we
generated a model having 10 participants with 2K activities
each and 3K message links between them. Again, for each of
the three measurements, 10 choreography iteration bodies of
increasing sizewere generated. If the generated choreography
wavefront lies inside a loop activity, we always simulate the
worst case scenario where all specified iterations of the corre-
sponding loop activity have been executed. Fig. 9 summarizes
the findings of the conducted measurements. In general, all
measurements confirm the quadratic increase of execution
time. Fig. 9a shows execution timeswhen varying the number
of iterations per loop. This increase between the graphs is
induced by the increasing number of activity instances that
need to be traversed with each additional loop iteration.
Fig. 9b shows that the loop activity itself does not influence
the execution time when only increasing the loop size param-
eter per participant. Fig. 9c shows the measurements when
only increasing the number of loops per participant. Again,
the loop activities itself do not add any significant overhead
to the execution time and its growth is also quadratic. We can
therefore conclude that the presence of loops in the choreogra-
phymodels, while adding to the overall execution time due to
an increased number of activity instances to be traversed,
does not significantly affect the performance of our algorithm.

6 RELATED WORK

There are several areas related to our work, such as ad hoc
repetition in process instances, rollback-recovery and

log-based protocols, and algorithms for consistent global
state and predicate detection in distributed systems. In litera-
ture, the concept of ad hoc repetition in process instances is
well studied. For example, in [21] concepts and algorithms
for pre-modeled or ad hoc backward jumps, which enable
the repeat of logic in process instances enacted by theADEPT
system are presented. The Kepler system supports the con-
cept of smart re-runs [22] enabling scientists to repeat parts
of a scientific workflow with a different set of parameters.
Previously stored provenance information is used to avoid
the repetition of parts of the workflow that do not change the
overall outcome of the scientific experiment. In [23] process
flexibility approaches are studied and classified by type. Our
concept for rewinding and repeating choreography instances
could be classified as Flexibility by Deviation—deviating from
the specified control flow in the model. Similarly, our repeti-
tion is one form of the Support for Instance-Specific Changes as
described in [24] for individual process instances. However,
none of the above mentioned works consider choreography
instances and the implications of messages sent between the
participant instances.

Our approach also bears some resemblance to rollback-
recovery and log-based protocols facilitating distributed state
restoration in message passing systems [25], [26]. These
approaches provide means to reset a system of communicat-
ing processes to a rollback point in the execution of a program
in case of failures. Failuresmay occur in anyparticipating pro-
cess and have an effect on other processes in the systemdue to
passed messages. The proposed protocols then identify roll-
back points either by using log information or by sending
checkpoint information. However, there aremajor differences
between this family of protocols and our approach. First, we
operate one a much higher level with regard to the employed
languages. While the distributed protocols simply assume a
set of communicating low level processes of some program
execution, our approach operates on complex choreography
and workflow instances. They are explicitly described by cor-
responding language constructs. These include the support
for parallel execution inside one participant. Second, the
intent and scopes of the approaches are quite different. The
rollback-recovery protocols are triggered automatically in
case of failures. While our approach can be used to react to
failures, it is rathermeant as ameans of user-driven control of
a choreography instance during execution to flexibly react to
events. Furthermore, we do not only support the restoration
to a previous state using the re-execute operation but rather

Fig. 8. Execution time of choreography models with constant number of activities and varying size of participants and message links.
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also enable the repeated execution of logic with the iterate
operation resembling an enforced loop without it being
explicitly modeled. Apart from the language level the men-
tioned arguments also apply for more recent approaches [27],
[28], [29] for checkpointing and rollback-recovery for compos-
iteweb services/workflows.

With regard to robustness and reliability of workflow
executions, [30] proposes a pattern-based approach for
specifying transactional properties of service compositions.
Furthermore, [31] provides an approach for mining logs of
transactional workflows in order to improve the original
model. While we ensure robustness by allowing the user to
actively influence the execution of a choreography instance
as necessary for explorative modeling and execution in
domains such as eScience, these approaches focus more on
the reliability by design. However, a combination of both
approaches seems promising.

Another class of algorithms possessing similarities to our
approach are algorithms for observing consistent global
states and predicate detection. For example, Chandy and
Lamport [32] introduce an algorithm for determining a
snapshot of global state in a distributed system in order to
detect stable predicates such as termination. However, find-
ing a rewinding point in a choreography instance would
not be possible with this kind of algorithm as it can be seen
as a unstable predicate detection problem. Marzullo and
Neiger [33] present one of the first algorithms using a cen-
tralized monitor to record state changes of all processes in a
distributed system in order to evaluate if certain unstable
predicates hold during execution. This is done by construct-
ing state lattices. The problem of predicate detection in gen-
eral is NP-complete. However, more efficient solutions for
restricted scenarios exist [34]. In our approach, we are also
able to achieve an efficient solution by choosing a graph-
based data structure fitting our purposes.

7 CONCLUSIONS AND FUTURE WORK

In this article, we motivated the need for the capability to
repeat partially or completely the logic in a choreography
instance with a clear focus on the eScience community.
Toward this goal, we presented a formal model describing
choreography models and instances while also considering
loops and multiple instances of a particular participant.
Based on the formal model, we introduced the concept of
repeating logic in choreography instances, which we also
expressed through the steps of a corresponding method.
We distinguish between iteration, which executes logic
again without undoing already completed work, and re-
execution, which aims at the compensation of already com-
pleted work before executing it again. We defined an algo-
rithm that is able to automatically identify the rewinding
points for each involved participant instance. Furthermore,
we presented a system for execution and monitoring of cho-
reography instances that supports the proposed concepts
and method. The rewinding algorithm has been experimen-
tally evaluated in terms of performance and shown to be
acceptable for the purposes of the application domain.

In future, we plan to evaluate our approach and the sup-
porting system in cooperation with other groups of scien-
tists in the context of the SimTech project.8 In addition, we
will work towards enabling transparent data provisioning
among participants in flexible choreographies in a manner
decoupled from the actual choreography conversations.
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Abstract—While it is well understood that the Internet of things (IoT) offers the capability of integrating the physical world and the cyber

world, it also presents many significant challenges with numerous heterogeneous things connected and interacted, such as how to

efficiently annotate things with semantic labels (i.e., things categorization) for searching and recommendation. Traditional ways for

things categorization are not effective due to several characteristics (e.g., thing’s text profiles are usually short and noise, things are

heterogeneous in terms of functionality and attributes) of IoT. In this paper, we develop a novel things categorization technique to

automatically predict semantic labels for a given thing. Our proposed approach formulates things categorization as a multi-label

classification problem and learns a binary support vector machine classifier for each label to support multi-label classification. We

extract two types of features to train classification model: 1) explicit feature from thing’s profiles and spatial-temporal pattern; 2) implicit

feature from thing’s latent relation strength. We utilize a latent variable model to uncover thing’s latent relation strength from their

interaction behaviours. We conduct a comprehensive experimental study based on three real datasets, and the results show fusing

thing’s latent relation strength can significantly boost things categorization.

Index Terms—Things categorization, multi-label classification, interaction behaviours, latent variable model, internet of things

Ç

1 INTRODUCTION

RECENT years have witnessed numerous physical things
(e.g., mobile phones, wallets and key-chains) embed-

ded with sensing, communication and computing capabili-
ties are being inter-connected to form an Internet of things,
which is mainly attributed to the rapid advances in identifi-
cation technologies and micro sensors, such as radio fre-
quency identification (RFID), self-powered sensors, and
nano technology sensors. Physical things embedded with
smart sensors are seamlessly integrated into the information
network, people can query and change their state and asso-
ciated information over the Internet. Interconnection of
physical things providing the ability to share information
across platforms through a unified framework, developing
a common operating picture for enabling innovative appli-
cations, such as supply chain management, smart health-
care and intelligent transportation. Meanwhile, the IoT also
presents a few significant challenges with increasing hetero-
geneous things participate in sensing and communicating,
such as how to efficiently annotate these heterogeneous
things with semantic labels for browsing, searching and rec-
ommendation. Traditional ways (for a review see Section 2)

for things categorization will suffer serious challenges due
to unique characteristics in IoT:

– Text-based categorization methods [33], [36], [37]
cannot achieve satisfactory performance as the text
profiles of things are usually short and noise in IoT.
Additionally, labels are usually expensive and unla-
belled things are abundant in IoT.

– Semantic-based categorization methods [1], [6], [7],
[8], [23] are not effective as they require time-
consuming preparation of prior knowledge, such as
manually defining the descriptions of things and
their corresponding concepts under a uniform for-
mat like Resource Description Framework (RDF).

– Link-based categorization methods [19], [22], [30] are
infeasible in IoT since the connection of things in IoT
are usually implicit, unlike people has observable
links in social network or web-pages are linked by
universal resource locator (URL) in Internet.

Fortunately, the interaction behaviours of things can be
easily recorded and obtained using ubiquitous sensing tech-
nologies, such as RFID and sensor readings. These interac-
tion behaviours, which embeddedwith rich spatial-temporal
information and implicitly imply the regularities of users,
provide us a new approach to uncover the latent connection
of things. Things are discrete without explicit connection in
IoT, but human and things will interact in daily activities,
and these interactions can provide rich information (e.g.,
activity, location and time) for uncovering thing’s implicit
connection. Our proposed approach can derive the latent
relation strength among things from their interaction behav-
iour and further form a relation graph of things, where their
implicit connections can be revealed. This kind of relation
analysis can boostmany valuable services in IoT, such as:
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Things clustering, which aims to cluster heterogeneous
things into different groups according to a predefined prox-
imity measure. The key of things clustering is designing
proximity metric to measure the similarity of things. How-
ever, traditional ways based on text features or thing’s
attributes are not effective as the unique characteristics in
IoT (e.g., the text descriptions of things are usually incom-
pleted, things are heterogeneous in term of different attrib-
utes thus cannot be represented in a uniform space).

The relation analysis of things can enhance the perfor-
mance of things clustering in terms of things tend to interact
with other things with similar characteristics according to
[40]. Therefore, things clustering can be solved by some
graph-based algorithms (e.g., community detection algo-
rithm [38]) based on thing’s relation graph.

Things Categorization, which aims to automatically pre-
dict the labels for a given thing. Millions of things connected
and interacted in the IoT will result in serious challenges for
things management and network scaling, while effectively
things categorization is an essential step to cope with these
challenges. For instance, in education scenario, things cate-
gorization enables learners to get rich data and further
improve their knowledge [7]. As mentioned earlier, text-
based models [33], [37] or link-based models [22], [30] are
not effective for things categorization in the IoT.

Fortunately, things interactions are not completely ran-
dom as human daily activities usually follow a regular pat-
tern [34], such as people usually cook in the kitchen and eat
breakfast at 7:00-9:00 am. Therefore, things relation analysis
based on their interactions can boost things categorization
since different things used by the same person at the same
location or time may be similar (e.g., having the same label).

Context-aware Activity Recognition, which aims to recog-
nize human activities (e.g., eating, cooking and toileting)
from sensor readings. Existing approaches usually use the
sensor values of things as input to train a probabilistic
model to find the most likely sequence of activities (e.g.,
Hidden Markov Model [32] and support vector machine
[25]). However, these methods are inefficient when human
activities are performed in a complex situation (i.e., inter-
leaved or concurrent) [12].

Complex human activities can be defined as a task that
several things interact at specific location at a certain time-
stamp (see in Table 2), and then can be modeled as a
3-dimensional tensor: Activity 2 RThings�Location�Time. After
modeling the sensor readings with 3-dimensional tensor by
deriving thing’s latent relation strength from their interac-
tion behaviours, activity recognition can be solved by finding
amatching scheme tomeasure the similarity of two tensors.

In this paper, we present a novel things categorization
technique for the IoT to automatically predict the labels for a
given thing. We formulate things categorization as a multi-
label classification problem and learn a binary SVM classifier
for each label in the label space to support multi-label classi-
fication. We extract two types of features to train classifica-
tion model: 1) explicit feature from thing’s profiles and
spatial-temporal pattern; 2) implicit feature from similar
things in terms of thing’s latent relation strength. The princi-
ple underlying our approach formodeling thing’s latent rela-
tion strength is the homophily theory in thing’s interaction
[39], [40], which suggests the stronger the relation the higher

likelihood that a certain type of interaction will take place
between a pair of things. In this way, we consider that the
latent relation strength directly impacts the interaction fre-
quency of a pair of things, and further model the latent rela-
tion strength as a hidden cause of their interaction frequency.

The remainder of the paper is organized as follows:
Section 2 surveys related work about things categorization
in IoT. Section 3 describes the proposed approach for
modelling the latent relation strength of things in detail.
Section 4 demonstrates how to utilize the learnt latent rela-
tion strength to boost things categorization. Section 5
reports and discusses the experimental results. Finally, we
present our conclusion and future work in Section 6.

2 RELATED WORK

In this section, we survey related works about things catego-
rization and discuss how these works differ from our study.

Text-Based Categorization. IoT things usually have short
and noisy text descriptions, such as thing’s name, manufac-
turer and instruction manual. Thus text-based methods can
be used to label things, which first extract text-based fea-
tures (e.g., term frequency and information gain) and then
perform categorization with classifiers. To overcome some
limitations of traditional text features, the work [33] pro-
posed a novel feature selection method based on term fre-
quency and T-test for text categorization, and [37] utilized
the compactness of the appearances of the word and the
position of the first appearance of the word to construct
distributional features for text categorization.

Since assigning labels to large samples is costly and time-
consuming, the work [36] proposed a web-assisted text cate-
gorization framework, which first extracted important key-
words from the available labelled documents to form the
queries, then utilized search engines to retrieve relevant
documents for semi-supervised categorization. Unfortu-
nately, this approach is impractical for things categorization
in IoT as there is few information about physical things in
Internet nowadays.

Semantic-Based Categorization. A few studies ([1], [6], [7],
[8], [23]) have been proposed to label things using Semantic
Web technologies. The idea behind semantic-based catego-
rization is that first define a metadata model to describe all
the cyber-physical characteristics (e.g., geophysical, func-
tional and non-functional) of a thing, then use ontology lan-
guage description logic to label physical things in terms of
different dimensions (e.g., spatial, temporal and thematic).

To enrich the description of thing’s characteristics for
educational purpose, the work [7] exploited shared vocabu-
laries for categorization by three steps: 1) defining a data
model for representing Point-of-Interest; 2) mapping the
relational database to the data model; 3) generating RDF
data and enriching with links to related data. The work [8]
proposed an IoT semantic categorization framework, which
representing the model data as linked data and associating
with the existing data on the Web (e.g., Linked Open Data).
The work [6] proposed a hierarchical context model based
on ontology to label things and their contextual relation-
ships. The work [23] further utilized Time-of-Arrival for
thing’s geospatial categorization in IoT. The drawbacks of
semantic-based categorization methods include: 1) The
time-consuming preparation of prior knowledge, such as
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defining the descriptions of things and their corresponding
concepts under a uniform format like RDF; 2) Most of
semantic-based categorization methods are based on
problem-solving principle, which defines the ontology
related to a certain task (e.g., home energy [1] and education
purpose [7]) or activities thus are lack of scalability.

Link-Based Categorization. IoT things are implicitly con-
nected in a network or graph by some attributes (e.g., loca-
tion, owner and manufacturer), thus link-based methods
[19], [22], [30], [31] can leverage these connections to
improve categorization performance. For example, the
work [35] labelled things by modelling things as web tables
with headers and cell values. More exactly, this categoriza-
tion process includes three steps: 1) querying the back-
ground knowledge base sources to generate initial ranked
lists of candidate assignments for schemas, content values
and relations between schemas; 2) using a probabilistic
graphical model to capture the correlation between sche-
mas, content values and schema relations to make class,
entity and relation assignments; 3) producing linked data
triples after the mapping is complete and performing things
categorization using link-based methods [19].

More recently, increasing studies [2], [4], [17] aimed at
giving social-like capabilities to the things in IoT, namely
social internet of things (SIoT) based on the notion of social
relationships among things. In SIoT [2], things are able to
interact with other things in an autonomous way with
respect to the owners, and can easily crawl the IoT made of
billions of things to discover services and information in a
trust-oriented way. For example, SIoT [2] described four
kinds of relationships for things in IoT: co-location relation-
ship, co-work relationship, co-owner and social relationship.
Lilliput [4] further extended the SIoT by integrating things as
well as online social networks, which is an ontology-based
platform by fusing online social networks and things as a
social graph. Socialite [17] utilized semantic model for the
SIoT, which includes device types, capabilities, users, rela-
tionships and rules leveraging such models. Therefore,
many link-based methods [22], [30] can be utilized to label
things by modeling heterogeneous things and their relation-
ships with a graph. Unfortunately, link-based methods are
ineffective for things categorization in IoT due to 1) acquiring
a sufficient number of labelled things to enable accurate
learning for link-based categorization usually are expensive
or impractical; 2) SIoT may ignore some implicit factors that
may influence categorization performance (such as useful-
ness and availability), for instance, Microwave and Toaster
may have different manufacture or owner, but both they are
kitchen appliances and can heat foods.

To our best knowledge, only several studies [39], [40]
focus on boosting things categorization by exploring regu-
larities in the interactions between human and things. These
approaches discovered the latent relation strength of things
by mining three dimensional information of the interaction
behaviours: user, temporarily and spatiality. However, we
find these approaches mentioned above fail to model thing’s
latent relation strength and their interaction behaviours by
analyzing three real datasets, for example, we observe that
the interaction probability of two things and their history
interaction frequency follows a roughly power law dis-
tribution. Additionally, these studies infer thing’s relation

strength without considering their attributes profiles (e.g.,
the manufacturer, type and capability).

Our proposed approach differs from the above-mentioned
works in the following three aspects: 1)we regard things cate-
gorization as a multi-label classification problem and learn a
binary SVM classifier for each label in the label space to per-
form things categorization; 2) we extract two types of features
to train SVM classifier, one is explicit features from thing’s
text profiles and spatial-temporal pattern, another is implicit
features from thing’s latent relation strength; 3) we derive
thing’s latent relation strength by jointly considering thing’s
profile similarities and interaction behaviours with a latent
variable model. Recently, latent variable model has been
widely used in a few studies on text mining. For instance,
latent semantic analysis (LSA) [18] supposed that there is an
underlying semantic structure in text and the relationship
between terms and documents can be derived in this seman-
tic space. Several studies [20], [42] based onLSA are proposed
to deal with short text classification. Probabilistic latent
semantic analysis (pLSA) [14] extended LSA by explicitly
defining latent topic of a document as the latent variable dur-
ing a random process, which is widely used in text summari-
zation [26] and image annotation [43]. Latent Dirichlet
Allocation (LDA) [3] further extended pLSA by adding priors
(Dirichlet Distribution) to the document collection, which
occupies an important position in many fields of text mining
(such as text classification [5] and review-based sentiment
analysis [24]).

3 MODELING THE LATENT RELATION OF THINGS

FROM INTERACTION BEHAVIOUR

In this section, we first present the problem statement of
modeling thing’s latent relation strength from their interac-
tion behaviours. Then detail the proposed approach, a latent
variable model to derive thing’s latent relation strength.

3.1 Problem Statement

For ease of the following presentation, we first define the key
data structures and notations used in the proposed approach.
Table 1 lists the relevant notations used in this paper.

Definition 1 (Thing). A Thing oi in IoT, denote by
< IDi;Ai > , where IDi is the identifier of oi and Ai ¼
fa1i ; . . . ; aji ; . . . ; ajAi j

i g is the attributes set of oi (e.g., type, color
and manufacturer). aji is the value of the jth attribute of oi.

As identified by [13] and [16], things in IoT are sensing
and actuating physical devices that providing the ability to
share information across platforms through a unified frame-
work. Thus things has the following three characteristics: 1)
physical devices. Thing’s attributes are directly related to the
physical characteristics of devices [9]; 2) embedded-in sen-
sors, which are utilized to provide sensing, computing and
communication ability; 3) unique identity. For example, the
associated IP address can be utilized as thing’s identifier.
Things concept can be explained by the following example.

Example 1. Considering a thing o named smart oven1 (as
shown in Fig. 1), which is a physical oven but embedded

1. https://www.wired.com/2016/03/tovalas-smart-oven-wants-
replace-microwave/
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in several sensors (e.g., laser scanner for reading bar codes
on the lids of compatiblemeals, temperature and humidity
sensor for detecting whether the heat and humidity inside
the oven is optimal, and built-in WiFi for downloading
new and newly perfected recipes from the cloud).
For an oven, its physical characteristics consist of
< type : appliance > ; < color : black > ; < manufacturer :

Tovala > ; < function : heatingfood > , thus we can
obtain its attributes set: Ao ¼ fappliance; black; Tovala;
heatingfoodg. According to thing’s definition, we denote
thing o as < 192:168:1:125; Ao > by using IP address as
thing’s identifier.

Definition 2 (Interaction Behaviour). Interaction behaviour
among things happens when people use things in daily activi-
ties (e.g., Preparing breakfast, Dish washing and Brushing
teeth). Let O ¼ fo1; o2; . . . ; oNg; T ¼ fts1; ts2; . . . ; tsQg and
Loc ¼ floc1; . . . ; locFg denote the set of things, timestamps
and locations, respectively. An interaction between oi and oj,
denote by y 2 Y ðijÞ ¼ fyðijÞ1 ; y

ðijÞ
2 ; . . . ; y

ðijÞ
H g ¼ f< oi; oj; ts;

loc > joi; oj 2 O
V
ts 2 T

V
loc 2 Locg, indicates that a user

used oi and oj in location loc at timestamp ts. To extract the
timestamp of thing’s interaction behaviours, we divide a day
into 24 hourly slots. To this end, we generate the total number
of hashed time slots is 24, denote as TS=fts1; ts2; . . . ; ts24g.
For instance, if two things interact at 1:32 pm, 3/15/2016, the
time slot of this interaction is ts14.

In our experiment, we utilize a context-aware experience
sampling tool (CEST) and state-change sensors to collect
thing’s interaction behaviours, i.e., the state-change sensors
recorded data about the movement of things and the partici-
pants used CEST to record information about their activi-
ties. During the study, each participant was given a PDA to
run CEST tool. The participant utilizes the CEST to select
the activity what he/she is doing, and records the start and
end time of this activity. Fig. 2 shows an example of the
type of data that was collected by the state-change sensors
and CEST. As shown in Fig. 2a, the starting and ending
time of things are automatically recording by their
embedded-in state-change sensors. Then, we can obtain the
participated things of an activity by observing the sensor
activations during the activity duration (as shown in
Fig. 2b). As shown in Table 2, we generate the daily activity
(Preparing breakfast) involved five things, and consider

Fig. 1. An illustrative example of thing and its attribute set.

TABLE 1
Notations Used in the Paper

SYMBOL DESCRIPTION

O; T; Loc; U the set of things, timestamps, locations, labels
N;Q; F;H the number of things, timestamps, locations,

interactions
Ai the attribute set of thing oi
aji the value of the jth attribute of oi
Y ðijÞ the interaction set between thing oi and oj
XðijÞ the variables to capture the tendency of interactions
zðijÞ A similarity vector based on thing’s attributes
IðijÞ the latent relation strength between oi and oj
Vi the k-neighbour set of oi in terms of relation strength
w AK-dimensional similarity vector to be estimated
s2 the variance of Gaussian distribution
al;bl; ul the parameters of power law distribution
G ¼ fV;E;Wg thing’s top-k relation graph, V ¼ Vs [ Vr

Vs; Vr the labelled things set and unlabelled things set
M the transition matrix of random walk with restart
FLatent implicit features from thing’s relation graph
FCluster implicit features by clustering thing’s interactions
Ftext text-based features from thing’s text descriptions
FS spatial features from thing’s spatial pattern
FT temporal features from thing’s temporal pattern

Fig. 2. An illustrative example of collecting thing’s interaction behaviours.

TABLE 2
An Example of Things Interaction Behaviour

Daily activity Preparing breakfast,3/5/2016, 08:13:12, 08:24:18

Things Freezer, Microwave, Sink faucet - hot, Plate, Pan
Starting Time 08:15:38, 08:17:21, 08:19:35, 08:22:14, 08:20:25
Ending Time 08:21:24, 08:23:19, 08:20:11, 08:23:38, 08:20:46
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there is an interaction behaviour between each pair of things
during this activity.

Definition 3 (Latent Relation Strength). The latent relation
strength between oi and oj denote by IðijÞ,which is determined
by i) the attribute similarity of oi and oj; and ii) the interaction
behaviours between oi and oj. In other words, for the larger
latent relation strength IðijÞ, two things (oi and oj) are required
to be more similar in term of either attributes or are more likely
to interact with each other.

With the aforementioned definitions, the problem of
modeling thing’s latent relation strength can be formally
stated as follows:

Given a set of things: O ¼ f< ID1; A1 > ; < ID2; A2 > ;
. . . ; < IDN;AN > g; and their history interaction behaviours
Y ¼ fy1; y2; . . . ; yHg, the problem of modeling latent relation
strength aims to discover the implicit connection of things by
exploiting their attributes and observable interaction behaviours.

3.2 Approach

In this section, we first describe the modeling part of the
proposed approach, a latent variable model to infer thing’s
latent relation strength from their interaction behaviours,
and then present its inference process.

3.2.1 Model Description

Previous studies [39], [40] have shown that homophily is
ubiquitous in IoT, which suggests the likelihood that a cer-
tain type of interaction will take place between a pair of
things relate positively to their latent relation strength. In
this way, we model thing’s latent relation strength as the
hidden cause for their interaction behaviours. Such interac-
tions could be, for example, preparing breakfast, eating
lunch and brushing teeth. We further consider thing’s latent
relation strength as a hidden effect of thing’s profile similar-
ities. The profiles similarity are caused by thing’s attributes,
such as the manufacturer, the functionality and the geo-
graphic locations that they belong to, etc.

Formally, let Y ðijÞ ¼ fyðijÞ1 ; y
ðijÞ
2 ; . . . ; y

ðijÞ
H g denote the inter-

action behaviours between oi and oj, I
ðijÞ denote the latent

relation strength between oi and oj. Then, we utilize a graphi-
cal model to represent the influence caused by the profiles
similarity to IðijÞ, aswell as the influence of IðijÞ on interaction
behaviours, as shown in Fig. 3. In this figure, the gray-colored
nodes depict observed variables (i.e., zðijÞ; Y ðijÞ and fxðijÞ

1 ;

x
ðijÞ
2 ; . . . ; x

ðijÞ
H g), which are all visible in the training phase.

The detailed description of variables in this figure is
explained as follows:

� zðijÞ denotes the profiles similarity of oi, oj, which is a
K-dimensional vector calculated based on the attrib-
utes set of oi and oj (i.e., Ai and Aj).

� IðijÞ is the latent relation strength between oi and oj,
which is a hidden factor for thing’s interaction
behaviours and influenced by their profiles
similarity.

� XðijÞ ¼ fxðijÞ
1 ; x

ðijÞ
2 ; . . . ; x

ðijÞ
H g are auxiliary variables

that we introduce to increase the accuracy of the
model. Such variables capture auxiliary causes of the
interactions which are independent of the latent rela-
tion strength. For example, the total number of inter-
actions that a thing participated in represents its
intrinsic tendency to interact, which can moderate
the effect of latent relation strength on interaction
behaviours.

Our model represents the relationships among these var-
iables by modeling the conditional dependencies (as shown
in Fig. 3), so the joint distribution decomposes as follows:

P IðijÞ; Y ðijÞjAi;AjÞ ¼ P ðIðijÞjAi;AjÞ
YH

l¼1

P ðyðijÞl jIðijÞ; xðijÞ
l

 !
:

(1)

Given the attributes of oi and oj, we model the conditional
probabilities P ðIðijÞjAi;AjÞ using the widely-used Gaussian
distribution

P ðIðijÞjAi;AjÞ ¼ ðwTzðijÞ; s2Þ; (2)

where w is a K � dimensional weight vector to be estimated
and s2 is the variance of Gaussian model, zðijÞ is the profiles
similarity based on Ai and Aj.

For modeling the dependency between Y ðijÞ and
IðijÞ; XðijÞ, we analyze the characteristics of thing’s interac-
tion behaviours using three real world datasets: 1) Our data-
set is collected by 13 participants during six months, which
consists of 32,716 interaction records from 196 things ; 2)
MIT S1, S2. The two datasets are published by the AI group
in MIT [28], which consists of 503 interaction records from
146 things in total. More details of these datasets are shown
in Table 3. Fig. 4 shows the likelihood of two things may
interact as a function of their historical interaction fre-
quency. As shown in Fig. 4, we observe there exists a posi-
tive correlation between the likelihood of two things may
interact and their historical interaction frequency, indicating
a clustering phenomenon in thing’s interaction behaviours.
This phenomenon may be intuitively explained by the fol-
lowing tendencies: 1) things with similar attributes (e.g.,
provided similar services and located in the same geo-
graphic location) tend to interact; 2) things with the same
label (e.g., cooking tools and office supplies) tend to interact.
As mentioned earlier, we consider thing’s latent relation
strength is determined by their attribute similarity and

Fig. 3. Graphical model of learning thing’s latent relation strength.

TABLE 3
Detailed Information of the Three Datasets

MIT S1 MIT S2 Dataset 3

# of things 76 70 196
# of daily activities 33 35 93
# of interaction records 295 208 32,716
# of participants 1 1 13
# of collecting period (days) 14 14 180
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interaction behaviours We believe that this clustering phe-
nomenon in thing’s interaction behaviours can be exploited
for uncovering thing’s latent relation strength. Thus, in the
following, we study and model thing’s latent relation
strength and their interaction frequency.

Based on Fig. 4, we intuitively think the distribution fol-
lows a roughly power-law form. Even though the right part
of the figure increases linearly (i.e., increases exponentially in
regular scale) and thus fits power-law distribution very well,
the left part may sometimes deviate irregularly (i.e., the prob-
ability is high at some points). A reasonable explanation is
that the likelihood of two things may interact cannot judge
from few interactions. Generally speaking, the fact that two
things with more historical interactions tend to interact is
confirmed in our data analysis. Moreover, the linear portion
of the plot in Fig. 4 covers the majority (90 percent) of the
interaction behaviours In thisway,wemodel the dependency
between Y ðijÞ and IðijÞ;XðijÞ with a power-law distribution

P ðyðijÞl jIðijÞ; xðijÞ
l Þ ¼ ðalI

ðijÞ þ blx
ðijÞ
l Þul ; (3)

where al;bl and ul are parameters of power law distribution
to be estimated, l ¼ 1; 2; . . . ; H.

We further add L2 regularizes on these hyper parameters
(e.g., al, bl, ul) to avoid over-fitting, which can be regarded
as Gaussian prior

P ðal;blÞ / e�ð�1=2Þða2l þb2
l
Þ; l ¼ 1; . . . ; H

P ðulÞ / e�ð�2=2ÞðulÞ2 ; l ¼ 1; . . . ; H

P ðwÞ / e�ð�3=2ÞðwTwÞ:

(4)

The dataset are represented as a set of thing pairs:
F ¼ O�O, denoted as D ¼ fði1; j1Þ; . . . ; ðiN ; jNÞg. During
training phase, the variables zðijÞ; yðijÞl and x

ðijÞ
l are all visible,

ði; jÞ � F. According to Equation (1), given all the observed
variables, the joint probability is shown as

YH

l¼1

P ðFjw;al;bl; ulÞP ðw;al;bl; ulÞ ¼

Y

ði;jÞ2D
P ðIðijÞjzðijÞ; wÞP ðwÞ

YH

l¼1

P ðDjIðijÞ; xðijÞl ;al;bl; ulÞP ðal;bl; ulÞ

/
Y

ði;jÞ2D
e�ð1=2d2ÞðwT zðijÞ�IðijÞÞ2 Y

H

l¼1

ðalI
ðijÞ þ blx

ðijÞ
l Þul

 !

e�ð�3=2ÞwTw
YH

l¼1

e�ð�2=2ÞðulÞ2e�ð�1=2Þða2l þb2
l
Þ:

(5)

3.2.2 Model Inference

We estimate the unknown model parameters S ¼ fw;al;
bl; ulg by maximizing the likelihood function as shown in
Equation (5). As for the hyper parameters s2; �1; �2; �3, for
simplicity, we take a fixed value (s2 ¼ 0:5, �1 ¼ �2 ¼
�3 ¼ 0:01) in experiment. Applying a logarithmic transfor-
mation to both sides of Equation (5), we obtain the following
expression

L ði; jÞ 2 D;w;al;bl; ulð Þ ¼
X

ði;jÞ2D
� 1

2s2
ðwTzðijÞ � IðijÞÞ2

þ
X

ði;jÞ2D

XH

l¼1

ullogðalI
ðijÞ þ blx

ðijÞ
l Þ � �3

2
ðwTwÞ

�
XH

l¼1

�2

2
u2l �

XH

l¼1

�1

2
ða2

l þ b2
l Þ:

(6)

Note the function L (see in Equation (6)) is concave, then we
optimize the parameters al;bl; ul and variable IðijÞ with a
stochastic gradient descent algorithm. We use Netwton-
Raphson algorithm to update these parameters in each
iteration

IðijÞnew ¼ IðijÞold � @L

@IðijÞ
=

@2L

@ðIðijÞÞ2 (7)

anew
l ¼ aold

l � @L

@al
=

@2L

@ðalÞ2
(8)

bnew
l ¼ bold

l � @L

@bl

=
@2L

@ðblÞ2
(9)

unewl ¼ uoldl � @L

@ul
=

@2L

@ðulÞ2
: (10)

Where the coordinate-wise gradients and the second order
derivatives can be found in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSC.2017.2715159.

As for w, the coordinate-wise gradient is as following:

@L

@w
¼ � 1

s2

X

ði;jÞ2D
zðijÞðwTzðijÞ � IðijÞÞ � �3w: (11)

The root of @L=@w ¼ 0 can be solved by ridge regression [11]

w ¼ ð�3s
2I þ ZTZÞ�1ZTC; (12)

Fig. 4. Fraction of interaction probability as a function of thing’s historical interaction frequency.
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where Z ¼ ½zði1j1Þ; zði2j2Þ; . . . ; zðiN jN Þ�T ; C ¼ ½Iði1j1Þ; Iði2j2Þ; . . . ;
IðiN jN Þ�T , I is the identity matrix.

Algorithm 1 shows the procedure for optimizing these
parameters, we optimize model parameters S ¼ fw;al;
bl; ulg using Newton-Raphson until converged.

Algorithm 1. The Algorithm for Optimizing Parameters

Require: Data samplesD ¼ fði1; j1Þ; . . . ; ðiN ; jNÞg.
Ensure:Model parameters S ¼ fw;al;bl; uljl ¼ 1; 2; . . . ; Hg.
1: while not converged do
2: for each Newton-Raphson step do
3: ���Step1: Estimate latent relation strength���

4: for ði; jÞ 2 D do
5: Update IðijÞ according to Equation (7).
6: end for
7: ���Step2: Estimate parameters al;bl; ul

���

8: for l ¼ 1; 2; . . . ; H do
9: Update al;bl; ul according to Equations (8), (9), (10)
10: end for
11: end for
12: Update w according to Equation (12).
13: endwhile
14: return S ¼ fw;al;bl; uljl ¼ 1; 2; . . . ; Hg.

4 BOOSTING THINGS CATEGORIZATION USING

LATENT RELATION

Modelling thing’s latent relation strength can facilitate a few
valuable services (e.g., things categorization, recommenda-
tion and searching) in IoT. Due to space constraints, we
briefly introduce an important application: things categoriza-
tion,which aims to automatically predict appropriate seman-
tic labels that a given thing. A thing may be associated with
multiple labels in IoT. For example, a microwave associated
with a label cooking may also be tagged with appliance, and a
television may label with entertainment and appliance. There-
fore, things categorization can be formulated as a multi-label
classification problem. In this study, we propose a method
for things categorization by learning a binary SVM classifier
for each label to support multi-label classification. To train
the classification model, we extract two kinds of features for
each thing: 1) implicit features from similar things in terms
of the learnt latent relation strength, which is derived by
building a top-k relation graph where similar things are
linked by virtual edges; 2) explicit features of things, such as
text features (e.g., Term Frequency or Term Frequency
Inverse Document Frequency) and spatial-temporal pattern.

4.1 Implicit Features from the Learnt Latent Relation
Strength

We extract the implicit features among things in order to for-
mulate descriptive features of a given thing from its similar
things. To capture the implicit features from similar things,
we first construct a top-k relation graph of things based on
the learnt relation strength. In thing’s relation graph, things
are linked by their latent relation strength, which is derived
from their interaction behaviours. Then, we perform random
walk with restart (RWR) [10] to derive the relation strength
between each pair of things. The goal of RWR is to predict
the label probability for a given thing by exploring the latent
relation strength with similar things, and using the label
probability as implicit feature for classification.

(1) Construct Top-k Relation Graph of Things (RGT). The
idea of extracting implicit features is to infer descriptive fea-
tures of a given thing from its neighbour and labelled
things, since only few things are labelled in IoT. In this way,
we construct a top-k relation graph of things by connecting
things together.

Formally, let G ¼< V;E;W > denote the top-k relation
graph among things, where V ¼ Vs [ Vr (Vs is the labelled
vertex set and Vr is the unlabelled vertex set) is the set of
nodes, E is the set of edges in G. For oi; oj 2 Vs, we define
Wij ¼ 1 if oi and oj have the same class label, 0 otherwise. If
at least one of oi; oj is unlabelled,Wij is defined as

Wij ¼ expð�1=hIðijÞÞ; if oj 2 Vi or oi 2 Vj

0; otherwise

(
; (13)

where Vi denotes the k nearest neighbour set of oi in term of
relation strength and Vj is also similar, h is a weight
coefficient.

(2) Perform RWR on RGT. Let Vi ¼ foj1; oj2; . . . ; ojkg be the
set of k nearest neighbours which is connected with oi in
RGT, ti denotes a tag m associated with thing oi (m 2 U). Let
P ðti ¼ mjViÞðm 2 UÞ denote the probability that oi may
associate with label m, we initialize P ðti ¼ mjViÞ ¼ 1=jUj for
unlabelled things, and P ðti ¼ mjViÞ ¼ 1 for labelled things
if thing oi has label m or 0 otherwise. Then, we utilized RWR
to find P ðti ¼ mjViÞðm 2 UÞ for each thing.

Without lost of generality, we assume the randomwalker
starts from an unlabelled things oi on graph G. Then, the
random walker iteratively transmits to other nodes which
have edges with oi, with the probability that is proportional
to the edge weight between them. At each step, oi also has a
restarting probability � to return itself. We can obtain the
steady-state probability of oi by visiting other vertexes until
the RWR process is converged. The RWR process can be for-
mulated as

Ptþ1ðti ¼ mjViÞ ¼ ð1� �ÞMPtðViÞ þ �Ptðti ¼ mjViÞ; (14)

where Ptðti ¼ mjViÞ represents the estimation probability in
step t, PtðViÞ denote the estimation probabilities of all near-
est neighbours of oi at step t, denote by PtðViÞ ¼
½Ptðtj1 ¼ mjVj1Þ; Ptðtj2 ¼ mjVj2Þ; . . . ; Ptðtjk ¼ mjVjkÞ�. M is
the transition matrix, which is obtained based on weight
matrixW by row normalization, as shown in

M ¼ WC�1; (15)

where W ¼ ½wði; j1Þ; wði; j2Þ; . . . ; wði; jkÞ�T , C is the usual
normalizer and defined asC ¼Pjs2Vi

Wði; jsÞ.
The label probability estimation for each label on a thing

oi can be obtained when the RWR process is converged,
which are regarded as implicit features for SVM training
(FLatent). The process on how to extract implicit features can
be explained by the following example.

Example 2. As shown in Fig. 5, suppose we have 5 things
(three labelled things:{A,B,C} and two unlabelled things:
{D,E}) and 4 labels (l1,l2,l3 and l4). After constructing top-2
relation graph of things based on their latent relation
strength, we extract thing’s implicit features by performing
RWR on the relation strength according to Equation (14)
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until converged. Finally, we obtain the label probability
estimation for each possible label on a thing and regard the
label probability estimation as implicit features. For
instance, the implicit features of thing A are a 4-dimen-
sional vector ½0:33; 0:51; 0:3; 0:27�, while the implicit fea-
tures of thingD is: ½0:29; 0:43; 0:36; 0:23�.
Let jU j denotes the number of labels, jV j denotes the total

number of things, and jEj denotes the total number of edges
in the relation graph. It takes OðjU j � jV jÞ time to initialize
the label probabilities for all things. Then at each iteration,
we need to process each edge twice to update the label
probabilities, once for each thing at each end of the edge.
We also need OðjUj � jEjÞ time to learn from the initial label
probabilities, so the time complexity of each iteration is
OðjUj � ðjEj þ jV jÞÞ. Therefore, the total time complexity for
extracting implicit features is Oðt � jU j � ðjEj þ jV jÞÞ, where
t is the maximum number of iteration needed to reach the
steady state. We will experimentally demonstrate that this
algorithm converges in a few iterations. And since the num-
ber of labels jU j is constant, the computational complexity is
generally linear in the number of edges and nodes in the
relation graph.

4.2 Explicit Features from Text and Spatial-
Temporal Pattern

Things usually have some short and noisy text profiles (e.g.,
thing’s color, type and manufacturer), which can be used to
extract text-based features for multi-label classification. On
the other hand, thing’s interactions imply some spatial-
temporal patterns as human daily activities usually follow a
regular temporal pattern [34], for instance, people usually eat
dinner at 5:00-7:00 pm, which means the interacted things
tend to be cooking tools during the time slot. We extract three
explicit features from thing’s text profiles and spatial-tempo-
ral patterns for training classificationmodel.

4.2.1 Text-Based Feature

We utilize the well-known Term Frequency Inverse Docu-
ment Frequency (TF/IDF) to extract keywords from things’
text descriptions [29], and the weight of keywords are
regarded as text-based features (Ftext).

4.2.2 Spatial Feature

To show the spatial pattern of thing’s interaction behaviours
in IoT, we aggregate the number of things associated with
different labels at a specific location using a real-world data-
set that consists of 196 things, more details of this dataset
are shown in Table 3. As shown in Fig. 6a, things with

different labels have very different spatial pattern corre-
sponding to different locations. For instance, things associ-
ated with Cooking and Cabinet & container are mainly located
in Kitchen, while things associated with Office & study are
mainly located in Den. Therefore, we consider the spatial
pattern to be a very useful feature for things categorization.
Formally, we define spatial pattern as a F -dimensional vec-
tor: FSðiÞ ¼ ½SFiðloc1Þ; SF iðloc2Þ; . . . ; SF iðlocF Þ�. Note that,
SFiðlockÞ is computed as

SFiðlockÞ ¼ NiðlockÞPF
j¼1 N

iðlocjÞ
; (16)

where NiðlockÞ is the number of interactions involved thing
oi in location lock,

PF
j¼1 N

iðlocjÞ is the total number of inter-
actions involved thing oi, and F is the number of locations.

4.2.3 Temporal Feature

Fig. 6b reports the hourly distribution of things associated
with different labels at different timestamps using a real-
world dataset collected over half years (see in Table 3). From
this figure, we can observe two very different temporal pat-
terns corresponding to two kinds of labels (i.e., Cooking and
Entertainment). For instance, the interaction of things associ-
atedwith labelCooking have clearly three peak periods, corre-
sponding to breakfast, lunch and dinner time, respectively.
On the contrary, for things associated with label Entertain-
ment, the interaction has one peak period (from 6:00 to 10:00
pm). Therefore, the temporal pattern of thing’s interaction is
discriminative feature for distinguishing different labels,
such as Cooking and Entertainment. Formally, we define tem-
poral pattern as a T -dimensional vector: FT ðiÞ ¼ ½TFiðt1Þ;
TF iðt2Þ; . . . ; TF iðtT Þ�. TFiðtkÞ is computed as

TFiðtkÞ ¼ NiðtkÞPT
j¼1 N

iðtjÞ
; (17)

where NiðtkÞ is the number of interactions involved thing oi
at timestamp tk,

PT
j¼1 N

iðtjÞ is the total number of interac-
tions involved thing oi, and T is the number of timestamps.

4.3 Things Categorization by Fusing Explicit
Features and Implicit Features

In our approach, we first formulate things categorization as
a multi-label classification problem and then decompose
into several distinct single-label binary classification prob-
lems. For instance, as shown in Fig. 7, Microwave labelled
Cooking is positive sample for a classifier for Cooking but
negative sample for a classifier for Storage, while Garbage

Fig. 5. An example of extracting implicit features from top-k relation
graph.

Fig. 6. Spatial-temporal pattern of things associated with different labels.
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bag labelled Storage is positive sample for a classifier for
Storage but negative sample for a classifier for House Appli-
ances. To perform things categorization, our approach out-
puts the aggregation of the labels positively predicted by all
the independent binary classifiers.

After extracting four kinds of features: 1) Implicit fea-
tures (FLatent) from thing’s relation graph; 2) Text-based fea-
tures (Ftext) from thing’s text descriptions; 3) Spatial
features (FS) from thing’s spatial pattern when interacting;
4) Temporal features(FT ) from thing’s temporal pattern
when interacting, we combine the features (FLatent þ Ftextþ
FS þ FT ) together as inputs for training a set of binary SVM
classifier for things categorization.

5 EXPERIMENT EVALUATION

In this section, we first describe the experiment settings
including data sets, baseline methods and evaluation met-
ric. Then, we report and discuss the experimental results.

5.1 Datasets

Three real world datasets about things interaction in IoT:
two public datasets from MIT [28] AI group and one col-
lected dataset (Dataset 3) in our experiment, are used for
experimental evaluation. More details of these datasets are
reported in Table 3.

– MIT Dataset. The first two datasets (MIT S1 and MIT
S2) are published by the AI group in MIT, which col-
lected two subject’s daily activities during two
weeks. The first subject was a 30-year-old woman
who spent free time at home, and the second was an
80-year-old woman who spent most of her time at
home. Both subjects lived alone in one-bedroom
apartments, 77 and 84 sensors are installed in every-
day things (e.g., Microwave, Refrigerators and Stoves)
of the two subject’s apartment, respectively. Each
data collection board was marked on a plan-view of
the environment for collecting data after these sen-
sors were installed, and the location (e.g., Bathroom)
and type (e.g., Toaster) of each thing associated sen-
sor was prior known. For recording the subject’s
activities information, a context-aware experience
sampling tool was used for labelling activities.
Finally, 76 and 70 things that have participated in
interactions are used to conduct experiments.

– Our Dataset. Our experiment environment includes
one workspace (e.g., office, laboratory and meeting
room) and two smart houses (e.g., bedroom, living
room and kitchen). In our experiment, there are 196
things are taggedwith RFID and various sensors (e.g.,
motion, pressure and temperature sensors, as shown

in Fig. 8) for collecting interaction behaviours. For
generating thing’s interaction behaviours, three types
of information need to be recorded: 1) Activity infor-
mation. To obtain the activity information, each par-
ticipant utilized a context-aware experience sampling
tool to mark and record their activities when interact-
ing with things; 2) Temporal information. To map the
interacting time to the corresponding timestamps, we
split one day into 24 timestamps with one hour as an
interval as mentioned earlier; 2) Spatial information.
For static things (e.g., cabinet, toaster and door), the
spatial information is prior known. For mobile things
(e.g., RFID-tagged remote control and coffee cup), we
utilized a fingerprint-based positioning algorithm to
estimate the unknown location [44]. Thirteen partici-
pants participated in the data collection phase during
six months, and more than 32,000 interaction behav-
iours of things are recorded in the experiment.

We manually labelled these things with different seman-
tic labels as the ground-truth data for performance evalua-
tion. Note that some things are labelled with multiple labels
(e.g., Microwave is labelled with both Cooking and House
Appliances, Television is labelled with both Entertainment and
House Appliances), thus a thing may belong to multiple cate-
gories. Finally, we manually labelled these things with 798
different labels, more details information can be found in
Appendix B, available in the online supplemental material,
due to space limitation.

5.2 Baseline Methods

We extract five kinds of feature for a thing to train a set of
binary SVM classifiers (the whole set of features are shown
in Table 4), and aggregate of the labels positively predicted
by all the independent binary classifiers as things categori-
zation result. Among the five features, FCluster has not been
discussed before, which means deriving thing’s implicit fea-
tures by clustering thing’s interactions directly instead of
using the proposed graphical modeling approach. The fea-
ture extraction process of FCluster is similar to FLatent, which
first constructs top-k relation graph of things based on

Fig. 7. An example of formulating things categorization to a multi-label
classification problem. Fig. 8. Part of sensors and devices used in our experiment.

TABLE 4
Features for Things Categorization

Features Description

Ftext The text-based feature using TF/IDF (Section 4.2.1)
FS The spatial pattern of interaction behaviours(Section 4.2.2)
FT The temporal pattern of interaction behaviours(Section

4.2.3)
FCluster The label probabilities for labels by clustering interactions
FLatent The label probabilities for labels on a thing (Section 4.1)
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thing’s interactions and then performs RWR on the relation
graph to extract thing’s implicit features.

Based on these features, we evaluated 8 methods for
things categorization as listed in Table 6. Among the 8 meth-
ods, TE needs to extract TF/IDF features from thing’s text
profiles. Thing’s text profiles have not been discussed
before, we detail it in the following. For MIT datasets, we
utilize the activity description that things participated in as
thing’s text profiles to extract text-based features. For
instance, a Closet participate in three kinds of activities: {Pre-
paring a snack,Doing laundry,Bathing}, then we combine the
descriptions of the three activities (as shown in Table 5) as
its text description, i.e., “Domestic work,Preparing a snack,
Clean house, Personal needs, Personal hygiene”. For things
of our collected dataset, we utilize the text description from
E-commerce company (e.g., ebay2 and Taobao3) as thing’s
text profiles to extract text-based features.

5.3 Evaluation Metrics

We use two widely used metrics (Hamming Loss and
F-measure) for multi-label classification to evaluate the per-
formance, which are defined as:

– Hamming Loss, which is used to evaluate how many
times a thing is misclassified, i.e., a label not associ-
ated with a thing is predicted or a label associated
with the thing is not predicted. Formally, the Ham-
ming Loss is defined as

HammingLoss ¼ 1

jDtej
X

i2Dte

HDðvi; viÞ
jLj ; (18)

where jDtej is the number of test samples, jLj is the
number of labels, vi and vi are the ground truth and
prediction vectors for testing thing oi. HDðvi; viÞ is
the hamming distance between vi and vi.

– F-measure, which is a particular kind of average
between precision and recall that has been widely
used in many prediction problems including binary
classification, multi-label classification and struc-
tured output prediction. Let vi and vi denote the
ground truth and prediction vectors for testing thing
oi, the F-measure is defined as

F �measure ¼ 1

jDtej
X

i2Dte

2� jvi
T
vij

vi þ vi
: (19)

Due to the small size of dataset, we perform five-fold cross-val-

idation and also report the corresponding standard deviation

as error bar for each case. First, each dataset was randomly

split into 5 equal groups (N=5). Second, trains the model on 4
groups of data, and records the error for the excluded data.
This process is repeated 10 times, each time records the perfor-
mance (Hamming Loss and F-measure) for the excluded data
set. Finally, this whole procedure is repeated 10 times with dif-
ferent random splits of the data to produce the final results.
We report the mean of the performance and standard devia-
tion produced with the 50 (5x10) sets of test data as the ulti-
mate experiment results.

5.4 Parameter Setting

For our dataset, we utilize five attributes to capture the pro-
files similarity of each pair of things (oi; oj), which is defined

as: zðijÞ ¼ ½zðijÞ1 ; . . . ; z
ðijÞ
5 �T and the meaning of the five fea-

tures are reported in Table 7. For MIT datasets, we utilize
two attributes to capture the profiles similarity for each pair

of things (oi; oj): zðijÞ ¼ ½zðijÞ2 ; z
ðijÞ
3 �T , since the other three

types of information are not provided.

5.5 Experiment Results

We conduct two groups of experiments and report their
results. The first group is to perform parameter turning for
models (IF and CL) using implicit features. The second
group is to compare the effectiveness and efficiency of mod-
els using explicit features and implicit features for things
categorization, respectively.

5.5.1 Impact of Model Parameters

Tuning algorithm parameters, such as the parameter � of
RWR process and the number of neighbours (k) for con-
structing top-k relation graph, are critical to the perfor-
mance of methods (IF and CL) using implicit feature. We
tune � and k on the three datasets, and plot the Hamming
Loss and F-measure with different values in Fig. 9.

Set the number of neighbours for constructing relation
graph equals to 10, we test the performance of IF by varying
�, and present the results in Figs. 9a and 9b. As mentioned

TABLE 6
Methods for Comparison

Method Description

TE Using Ftext to train SVM classifier
S Using FS to train SVM classifier
T Using FT to train SVM classifier
EF Combination of Ftext, FS and FT to train SVM classifier
CL Using FCluster to train SVM classifier
IF Using FLatent to train SVM classifier
CL+EF Combination of Ftext, FS , FT and FCluster to train SVM

classifier
IF+EF Combination of Ftext, FS , FT andFLatent to train SVM classifier

TABLE 5
An Example of Text Description for MIT Datasets

Activity Description

Preparing a snack Domestic work,Preparing a snack
Doing laundry Domestic work,Clean house
Bathing Personal needs,Personal hygiene

TABLE 7
The Profile Similarity Features of Things

Feature Description

z
ðijÞ
1 1 if oi and oj have the same manufacturer, 0 otherwise
z
ðijÞ
2 1 if oi and oj are owned by the same user, 0 otherwise
z
ðijÞ
3 1 if oi and oj are located in the same place, 0 otherwise
z
ðijÞ
4 1 if oi and oj have the same functionality, 0 otherwise
z
ðijÞ
5 1 if oi and oj have the same color, 0 otherwise2. http://www.ebay.com/

3. http://www.taobao.com/
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earlier, for each dataset, we perform 5-fold cross-validation
and repeat 10 times for each cross-validation, and report the
corresponding standard deviation as error bar for each case.
From the figure, it is observed that best Hamming Loss and F-
measure are reached when � = 0.7. We further observe both
the Hamming Loss and F-measure slightly increase with the
increasing of � from 0.1 to 0.7, and then decrease when � is
greater than 0.7. The reason is that the convergence of RWR is
determined by �, i.e., the greater � results in the faster conver-
gence, and further bring better performance. But a larger �
will cause a high probability to back to the target thing, thus
reducing the number of neighbours with high latent relation
strength and further decreasing the performance. As shown
in Figs. 9e and 9f, similar results are also observed in turning
� for CL (for example, the mean of F-measure and Hamming
Loss achieve the best results (43.74 and 38.16 percent, respec-
tively) when � ¼ 0:7 forMIT S1.).

Set � ¼ 0:7, Figs. 9c 9d report the performance of IF with
different number of neighbours (k), where k is in the range
[5,10,...,40], because there are 342 things in total and a greater
value of k is usually ignored when constructing top-k relation
graph. From the two Figures, we observe the best Hamming
Loss and F-measure are reached when k = 10 and 15 on MIT
datasets and Dataset 3, respectively. The is because that our
dataset has much more things than MIT datasets. However,
the performance decreases with increasing k, since a greater k
will bring in some noisy neighbours thus may decrease the
performance. Similar results are also observed in turning k for
CL, for example, the mean of F-measure and Hamming Loss
achieve the best results (50.88 and 30.52 percent, respectively)
when k ¼ 15 for Dataset 3.

5.5.2 Explicit Features versus Implicit Features

In this part, we compare the effectiveness and efficiency of
models using explicit features and implicit features for

things categorization. We evaluate the categorization effec-
tiveness from two aspects: 1) the performance of explicit
Features (TE, S, T and EF), implicit Features (CL and IF) and
their hybrid (EF+CL and EF+IF) with fixed mark-off rate.
Here the mark-off rate means the ratio of unlabeled things.
In this case, we perform 5-fold cross-validation and repeat
10 times for each cross-validation, and report the mean and
the corresponding standard deviation as error bar; 2) the
performance of five methods (EF, CL, IF, EF+CL and EF+IF)
with different mark-off rate. In this case, we randomly
removed the category labels of a certain percentage (named
testing things with mark-off rate) from each category of the
ground-truth dataset. The methods are used to recover the
category labels for those testing things. For each case, we
report the average performance and corresponding stan-
dard deviation as error bars by repeating the experiments
10 times.

Performance Comparison. We compare the performance of
8 methods (TE, S, T, EF, CL, IF, EF+CL, EF+IF) on the three
datasets, as shown in Table 8.

For methods (TE, S, T and EF) using explicit features, we
can observe from Table 8 that: 1) For methods using explicit
features, EF that combines the spatial, temporal and text
information always outperforms the baseline methods (TE,
S, T), which merely utilizes one type of feature. For instance,
EF outperforms TE by 22.09 and 11.73 percent on MIT S1
and MIT S2 in terms of F-measure, respectively. This result
suggests that, fusing spatial, temporal and text feature is
beneficial for improving the performance of things categori-
zation; 2) For Dataset 3, TE achieves much worse perfor-
mance than S and T in terms of both Hamming Loss and
F-measure. The reason is that Dataset 3 utilizes the descrip-
tion from E-commerce company as thing’s text description
to extract text-based features, which usually are short and
noisy. For example, a text description from E-commerce site

Fig. 9. Impact of parameters (� and k) for IF and CL (mean plus standard error bars).
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for cabinet is “the home cabinet with simplicity of modern
style, two / three door”, then the keywords extracted from
this text are {cabinet, door}. Therefore, the cabinet is likely
to be misclassified as door. The results suggest that text-
based features based on the well-known TF/IDF feature for
things categorization are not effective in IoT, since the text
descriptions of things are usually short and noisy.

For methods using implicit features (CL and IF), we
observe from Table 8 that IF outperforms CL significantly
in terms of both F-measure and Hamming Loss, showing
the advantages of using graphical model to mine thing’s
latent relation strength and derive implicit features. For
instance, the F-measure of IF is about 56.43 percent on MIT
S1, 59.22 percent on MIT S2 and 64.37 percent on Dataset
3, the performance is improved by 12.69 percent (MIT S1),
12.84 percent (MIT S2) and 10.49 percent (Dataset 3) com-
pare with CL respectively. The reasons for better precision
are: 1) CL extracts implicit features from thing’s relation
graph by clustering thing’s interactions directly, which are
powerless to capture information from things without
interactions for deriving categorization features. On the
contrary, our proposed graphical model can be applied in
two ways. First, if both things attributes set and their inter-
action behaviours are known, we can estimate the latent
relation strength based on both things attributes set and
their interaction behaviours. Second, when the interaction
behaviours are unobserved, we can estimate thing’s latent
relation from their attributes similarity. This in fact dem-
onstrates a strength of our proposed graphical model: the
lower part of the model is generative so that the overall
model will not suffer much from missing interaction
behaviours during training. Once the model is learned, for
new data the latent variables can be inferred using only
the upper level of variables in the model; 2) our proposed
graphical model introduces a few auxiliary variables that
capture auxiliary causes of thing’s interactions, which can
moderate the effect of latent relation strength on interac-
tion behaviours thus increase the accuracy of the model.
CF intuitively clusters thing’s interactions for predicting
labels, particularly the betweenness centrality is strongly
biased towards nodes with high degree, or nodes that are
central in large local groups of nodes [15]. Moreover, the
random walk may terminate with a high likelihood when
reaches an unlabeled nodes with numerous interactions
during extracting implicit features [27].

For methods using both explicit features and implicit fea-
tures (EF+CL and EF+IF), we can observe from Table 8: 1)

the methods using hybrid features outperform merely using
explicit feature (EF) or implicit features (CL or IF) signifi-
cantly in terms of both Hamming loss and F-measure. For
example, EF+IF outperforms EF by around 7.97 percent on
MIT S1, 9.14 percent on MIT S2, and around 17.37 percent
on Dataset 3 in terms of F-measure. This result shows the
unified method (EF+IF) is superior to the state-of-art
method in terms of categorization effectiveness, which sug-
gests that the learnt latent relation strength from thing’s
interactions behaviours can significantly boost things cate-
gorization; 2) the performance improvement of our dataset
is much higher than the other two datasets for both EF+CL
and EF+IF. This is because our dataset consists of much
more interaction behaviours than MIT datasets, which can
be utilized to learn thing’s latent relation strength better.

Performance with Different Mark-Off Rates. We investigate
the impact of different mark-off rates to the performance of
EF, CL, IF, EF+CL and EF+IF. As shown in Fig. 10, the per-
formance of all methods with different feature sets degrade
to some extent as the mark-off rate increases. Nevertheless,
EF+CL and EF+IF show better performance consistently
than CL and IF over all mark-off rates as they include both
explicit features and implicit features. For example, the
F-measure of EF+IF on our dataset is 78.44 percent when
the mark-off rate is 40 percent, while 54.02 percent of EF
with the same mark-off rate. This clearly demonstrates the
effectiveness of hybrid features by combining both implicit
feature and explicit feature. We also observe the unified
method (EF+CL and EF+IF) can achieve considerable per-
formance even when the mark-off rates are relatively high,
while explicit features perform poorly with few labeled
things to train model. For example, the F-measure of IF+EF
on MIT S2 drops 5.6 percent when the mark-off rate
increases from 40 to 60 percent, while 18.3 percent of EF
with the same condition. This is because explicit features
require either enough text profiles or obvious spatial-
temporal pattern to extract features for training model,
while hybrid features can utilize implicit feature extracted
from thing’s relation graph to boost things categorization
even with few labeled samples.

Efficiency of Extracting Implicit Features. The time com-
plexity of the proposed things categorization model con-
sists of three parts: 1) the first part is the graphical model
for inferring the model parameters. Since this part can be
done in offline phase, the learned parameter values can be
applied to estimate the latent relation strength for a new
pair of things in constant time; 2) the second part is

TABLE 8
Performance (%) Comparison with Different Baselines (F1=F-measure, HL=Hamming Loss)

Method MIT S1 MIT S2 Dataset 3

F1 (%) HL(%) F1 (%) HL(%) F1 (%) HL(%)

TE 47.31 � 2.84 39.42 � 2.47 59.05 � 2.38 45.71 � 1.94 30.17 � 2.15 43.31 � 2.42
S 35.02 � 2.71 46.31 � 1.87 50.08 � 2.62 40.17 � 2.36 41.59 � 3.12 37.94 � 2.86
T 39.42 � 2.67 40.15 � 2.89 57.16 � 3.12 36.31 � 2.79 50.62 � 3.23 36.83 � 2.89
EF 69.38 � 2.47 26.89 � 2.06 70.78 � 2.95 24.28 � 1.89 66.14 � 1.83 22.11 � 2.37
CL 43.74 � 3.45 38.16 � 2.79 46.38 � 3.77 37.15 � 2.93 53.88 � 3.25 30.52 � 3.76
IF 56.43 � 2.95 31.85 � 1.85 59.22 � 2.46 30.13 � 2.18 64.37 � 2.79 23.93 � 2.12
EF+CL 72.69 � 2.74 24.17 � 2.18 73.17 � 3.35 20.71 � 2.76 73.58 � 2.53 20.19 � 2.49
EF+IF 77.15 � 2.36 20.89 � 2.14 79.92 � 3.27 16.58 � 2.17 83.51 � 2.78 14.13 � 2.86
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extracting implicit features. We have proved in Section 4.1
that the time complexity of this part is generally linear in
the number of edges and nodes in the relation graph. We
will show the feature extraction process will converge fast
in the following experiments; 3) the third part is multi-
label classification by SVM model, which is scalable to big
datasets as suggested by a few studies [21], [41]. Therefore,
the proposed things categorization model is scalable to
large dataset.

We use " ¼ 10�5 as the termination condition of itera-
tions. The iteration numbers when implicit feature extrac-
tion process terminates are plotted in Fig. 11a by varying
the training sample sizes. From this figure, we observe the
iteration numbers when implicit feature extraction process
terminates are less than 400 for the three datasets, which
shows the feature extraction process is scalability to large
dataset. We further report the run time with different
training sample sizes by setting the iteration number as
500 in Fig. 11b. From this figure, we can observe time com-
plexity is generally linear in the ratio of unlabeled nodes
as expected.

6 CONCLUSION

In this paper, we investigate things categorization prob-
lem, which aims to automatically associate things with
semantic tags in IoT. Things categorization is a crucial pre-
requisite for a few valuable services in IoT, such as things
browsing, searching and recommendation. We propose a
novel things categorization algorithm which learns a
binary SVM classifier for each type of label. For training
SVM classifier, we extract two kinds of features: explicit
features and implicit features. More exactly, we extract
three types of explicit features: text feature from thing’s
text profiles, spatial feature from thing’s location distribu-
tion and temporal feature from the hourly distribution of
thing’s interaction. For extracting the implicit feature, we
first construct a relation graph based on the learnt latent
relation strength from thing’s interaction behaviours, then
exploit thing’s relatedness to generate implicit feature.
Finally, we conduct a comprehensive experimental study
based on three real datasets. Experimental results show
that this proposed approach significantly outperforms
state-of-art methods based on explicit features, showing
the superiority of our approach and also supporting the
assumption that the latent relation strength among things
can boost things categorization.

As future work, we plan to facilitate more valuable serv-
ices in IoT based on the learnt latent relation strength of
things from their interaction behaviours, such as, things
searching, clustering and service discovery.
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Abstract—In cloud computing, it is crucial to maintain service continuity, while power outage is one of the most common and serious

threats. To improve the resilience of cloud against power outage, a service provider usually deploys emergency energy supply (e.g.,

UPSs and generators) in a data center. When a power outage at a data center happens, the cloud service provider needs to make the

operation decision on which subset of VMs to keep running and which servers to host such VMs to minimize its loss (or maximize its

profit) using the emergency energy supply while the selected VMs are running in the affected data center until they are finished,

migrated to other data centers, or normal power supply of the affected data center has been restored. No prior research has

theoretically studied such a cloud service continuity problem under power outage. In this paper, we tackle this challenge and

investigate the cloud service continuity problem. Specifically, we consider that a profit is associated with maintaining the continuity of a

service, denoted as service continuity profit. Based on that we first formulate an optimization problem that aims to maximize the total

profit subject to energy constrains. After showing the hardness of the problem, we focus on the design of approximation algorithms for

solving the problem, where we consider two practical cases. In the first one with sufficient number of servers for re-provisioning, we

develop a constant approximation algorithm of which the worst-case performance approaches the optimal solution within a constant

factor (� 4.5-6.4). In the second one, we consider the general case with limited number of servers, and we develop an approximation

algorithm with an approximation ratio of around 5.7-8. By combining these two algorithms together, we can achieve both good worst-

case performance and average performance. Simulation results demonstrate the efficiency in terms of maximizing the service

continuity profit of the proposed algorithms.

Index Terms—Service continuity, power outage, cloud recovery, VM consolidation, energy-efficient scheduling, approximation algorithm,

profit maximization

Ç

1 INTRODUCTION

DESPITE the salient features of cloud computing, cloud
services may be interrupted due to various issues. As

reported in [1], [2], data centers across the world suffer fre-
quently from the outages and costs $600,000 per incident on
average. Among the root causes of those outages, the top
one is power outage [1]. For example, Amazon Web Serv-
ices suffered an approximately 4-hour power outage in its
North Virginia data center from 8:50 p.m. to 1:09 a.m. on
June 14, 2012, causing major disruption to numerous web
companies that rely on Amazon’s cloud service, including
Instagram, Netflix and Pinterest [3]. In 2015, a cloud data
center in Hong Kong that is part of Alibaba Ltd., the biggest
e-commence company of China, also suffered a 14-hour

disruption due to power outage from 9:37 a.m. to 11:39 p.m.
on June 21 [4].

Clearly, service interruption has significant negative
impacts on both the cloud provider and customers, espe-
cially for the critical services sensitive to interruption. To
improve the resilience of cloud services against power out-
age, there are two main approaches. First, a common prac-
tice in the cloud industry is to install emergency energy
supply, such as UPSs and generators. Second, since a cloud
service provider usually owns distributed data centers, it
can migrate some services to other data centers that are not
affected by power outage, while migration time varies
among different services as it takes time to launch a Virtual
Machine (VM) image, migrate storage and establish net-
work connection. Based on these strategies, to maintain the
continuity of a service, the VM supporting the service needs
to keep operating locally until the minimum time point,
named deadline, among the time points at which the service
is finished, the VM supporting the service is successfully
migrated to the new data center, or the normal power sup-
ply of the affected data center is back, which can be consid-
ered as the continuity requirement.

Although the approaches above are viable, we note that
there is a lack of a theoretical study in the literature that
addresses how to optimally exploit emergency energy and
external data centers during power outage. In this paper,
we tackle this challenging issue and investigate a cloud
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service continuity (CSC) problem under power shortage. Spe-
cifically, we consider that each service has a specific conti-
nuity requirement, and we define a service continuity value/
profit associated with each VM/service if its continuity
requirement is satisfied. Since the amount of emergency
energy supply is limited, the CSC problem is an optimiza-
tion problem whose objective is to maximize the total ser-
vice continuity profit by identifying (VM selection) and re-
provisioning a subset of existing VMs to physical machines
(PMs) in the local data center, subject to the resource
requirements of VMs, the resource capacity of PMs, as well
as the limitation of emergency energy supply.

Now we use an example shown in Fig. 1 to illustrate that
inefficient utilization of emergency energy may result in
high loss of service continuity profit. In this example, when
power outage strikes, there are five VMs requiring their ser-
vice continuity to be satisfied with the support of an amount
U of emergency energy under power outage. Each VM is
represented as a rectangle where the height is its demand of
resource (e.g., CPUs) and the width is the time period of
continuity requirement, during which it needs to keep run-
ning until the service hosted by the VM is finished or trans-
ferred. Suppose simply that there are three PMs in total,
each with an identical capacity of resource. With limited
amount of emergency energy, the first schedule chooses/
attempts to maintain the service continuity of VM1 and VM2

by consolidating them to the first two PMs, each with one
VM consolidated, where eit is the power consumption of
PMi at time t. Suppose that the profit for keeping each VM’s
service continuity is approximately the size of its area.
Then, another schedule that chooses VMs with similar
width (VM3; VM4; VM5) and attempts to fully utilize the
resource/capacity of PMs, say, the second schedule, would
gain more overall profit of service continuity under the
same budget constraint of emergency energy. Compared
with the second schedule, the first one spends too much
power on maintaining the continuity of VM1 and keeping
PM1 active, but fails to efficiently utilize the resource as
well as the power over time. Therefore, there is a need for
designing efficient scheduling strategy to maintain service
continuity with maximum profit under power outage.

In the literature, such a CSC problem has not been investi-
gated before but there are some related studies. One of the
most relevant work is VM consolidation [5], [6], with which
VMs can be re-provisioned and idle PMs can be shut down to
reduce the power consumption. Although VM consolidation

has been studied extensively in the past, most of the studies
focus onminimizing the operational cost of a single data cen-
ter (e.g., [7], [8], [9], [10]) or geo-distributed data centers (e.g.,
[11], [12], [13]). Moreover, all these prior work have assumed
unlimited power supply which can support all VMs indefi-
nitely, thus have no need to study VM selection strategy. This
is different from CSC problem that exploits the limited emer-
gency energy and needs to design both VM selection strategy
and VM consolidation strategy under power shortage so as
to maximize the total service continuity profit. Besides VM
consolidation, there are some other related work concerning
about cloud recovery, but few works have theoretically
addressed the scheduling problem on providing service con-
tinuity during power outage. A full review can be referred to
in Section 2. To summarize, we note that existing studies can-
not be applied to solve our CSC problem which has both dif-
ferent objectives and constraints.

To fully utilize the limited emergency energy, ideally if
there are sufficient number of PMs for re-provisioning, we
shall select and re-provision VMs to servers according to
their service continuity requirements, i.e., time period dur-
ing which they require to keep running in the affected data
center. By doing this, VMs on a server could finish their
services around the same time and then that server can be
shut down. If the number of PMs for re-provisioning is lim-
ited, VMs with various service continuity requirements
may have to be packed together, which will prolong the ser-
vice time of such servers under power shortage. In this
paper, we consider both aforementioned scenarios and
develop algorithms with constant approximation ratios to
maximize the service continuity profit.

The contributions of this paper are summarized as
follows.

� This paper studies the service continuity problem for
cloud data centers under power outage. This is the
first work to theoretically study scheduling algo-
rithms to exploit the emergency energy and maxi-
mize the profit of keeping service continuity in cloud
data centers under power shortage.

� When the number of PMs for re-provisioning is suffi-
ciently large, we propose a constant approximation
algorithm that achieves a profit within around 4.5-
6.4 times of the optimal solution. We first propose a
procedure to get a bundle of VMs with high total
profit, and then apply it iteratively to re-provision
each bundle of VMs to a PM so as to gain high aggre-
gated profit of service continuity.

� When the number of PMs for re-provisioning is lim-
ited, we propose a constant approximation algorithm
(with an approximation ratio � 5.7-8). We introduce
a novel fractional version of the problem with well-
organized optimal structures and transform its opti-
mal solution to be a feasible solution of CSC problem
with small loss of approximation.

� Finally, the two algorithms above are extended and
combined to be a service continuity strategy that can
achieve a good average performance, as well as a
theoretical worst-case bounded performance. Simu-
lation results verify that the average performance of
the proposed strategy is close to the optimal profit
that is achievable for the optimal solution.

Fig. 1. Two exemplary schedules for providing service continuity. Each
rectangle represents a VM with service continuity requirement, of which
the height is its demand of resource and the width is the time period of
continuity requirement required for running VM locally before the service
is finished or transferred. The light-colored ones fail to keep their service
continuity due to the lack of emergency energy.
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The organization of the paper is as follows. Section 2
reviews the related work. Section 3 formulates the problem
and provides the overview of our solutions. Section 4 devel-
ops an approximation algorithm for the situation that the
number of PMs for re-provisioning is sufficiently large.
Section 5 studies the general case with the limitation on
the number of PMs. Numerical results are presented in
Section 6. We conclude the paper in Section 7.

2 RELATED WORK

Much research effort has been devoted in developing
energy-efficient scheduling algorithms in data centers [14].
We just review the ones most related to the problem/tech-
nique considered in this paper.

One of the techniques most related to the one adopted in
this paper is VM consolidation [5], [6], with which VMs can
be re-provisioned and idle PMs can be shut down to the effi-
ciency of energy usage. Although VM consolidation has been
studied extensively in the past, most of the studies focus on
minimizing the operational cost of a single data center (e.g.,
[7], [8], [9], [10]) or geo-distributed data centers (e.g., [11], [12],
[13]). Rich research works focus on optimizing the data center
operation such as energy efficiency and quality of service
(QoS). Meisner et al. [15], Lin et al. [16] reduce the power con-
sumption by reducing the number of idle servers. The works
in [17], [18] leverage energy storage devices to avoid high elec-
tricity usage when the electricity price increases. Xu [19] pro-
poses an idea of using partial execution to reduce the peak
power demand and energy cost of data centers. Lin et al. [7],
Liu et al. [20], Lim et al. [21] consider parameterized optimiza-
tion objectives tominimize the energy cost and response time.
Xu et al. [22] proposes to make temperature-aware workload
management for geo-distributed data centers. Xu and Liang
[23], Qureshi et al. [24] consider geo-graphical electricity price
diversity to reduce the operation cost of data centers. More
relatedworks can be referred to in survey papers [5], [6].

The service continuity problem studied in this paper
needs to exploit the emergency energy and provide service
continuity for a subset of VMs, that is carefully selected, to
maximize the total profit of service continuity with the sup-
port of limited emergency energy.We note that a VM consol-
idation technique can be resorted to enhance the efficiency of
emergency energy usage. However, all existing works in the
literature of VM consolidation introduced above have
assumed unlimited power supply, which can support all
VMs indefinitely, and aim at minimizing the operation cost
with the support of infinite energy supply. They cannot be
applied to our scenario that exploits the limited emergency
energy and needs to design both VM selection strategy and
VM consolidation strategy under power short age, so as to
maximize the total profit of keeping service continuity.

Prior to our work, only a few works have discussed the
problem on cloud recovery or providing service continuity.
Wood et al. [25] discuss about the possibility of providing
the disaster recovery as a service in the cloud. Klems et al.
[26] provides a solution to the recovery of IT services in the
event of a disaster with the help of the cloud. Develder et al.
[27] and Habib et al. [28] exploit the backup scheme to pro-
vide the resilience or protection ability in case of link or
server failure. Few prior works have theoretically addressed
the restoration scheme or the problem on how to schedule

the VMs and provide service continuity with limited emer-
gency energy under power outage.

In summary, we note that existing studies cannot be
applied to solve the service continuity problem under con-
sideration. To the best knowledge of the authors, this paper
is the first work to theoretically study the scheduling prob-
lem on providing service continuity with maximum profit
in cloud data center under power shortage.

3 PROBLEM FORMULATION AND OVERVIEW OF

OUR SOLUTION

In this section, we formulate the cloud service continuity
problem and provide the overview of our solutions.

3.1 System Model

Suppose the power supply outside the cloud data center is
interrupted at time 0 due to a disaster, starting from which
the only available power is the emergency energy (such as
UPSs, power generator) with limited energy, and the out-
side power supply is expected to be restored at time T .

When the outside power supply is cut off, the cloud ser-
vice provider can redirect some services to other data cen-
ters that are not affected by power outage. Since cloud
services are realized by Virtual Machines (VMs), to main-
tain the continuity of a service, the VM supporting the ser-
vice needs to keep operating locally until the time point,
named deadline, at which the service is finished or the VM
supporting the service is successfully launched in the new
data center and ready for redirection. Let J ¼ f1; 2; . . . ; ng
be the set of VMs that is running in the cloud data center
before power outage occurs. To facilitate the scenario and
capture the fundamental challenge in maintaining service
continuity under power shortage, we measure the resource
demand of the VMs by the request of CPUs or vCPUs (vir-
tual CPUs) since the CPU usage usually takes up a signifi-
cant share of the total power needed. Each VM j is assumed
to have a size/demand sj, requesting sj units of CPUs or
vCPUs. When power outage strikes, the VM supporting the
service needs to keep operating locally until the minimum
time point, named deadline, among the time points at which
the service is finished, the VM supporting the service is suc-
cessfully migrated to the new data center not affected by the
power outage or the normal power supply is back. Let dj be
the deadline of VM j, which specifies a period ½0; djÞ of conti-
nuity requirement that is used to keep the VM operating and
maintaining the service continuity. Note that such a conti-
nuity requirement can include both the time required for
running VMs and the time caused by migrating the VMs
(either to another PM or to the remote data center).

Thus, to satisfy its continuity requirement, VM j needs sj
units of resource (resource demand) in time interval ½0; djÞ to
keep operating. Assume that it contributes a value/profit pj
if its service continuity requirement is satisfied. Here, profit
pj will be called service continuity profit of VM j and deadline
dj will be called the length of VM j. We assume naturally that
no new VM demands will be accepted during the period
½0; T � of the power outage, thus all VMs are available at time 0.

Let I ¼ f1; 2; . . . ;mg be the set of physical machines in the
cloud data center. Each PM is assumed to be identical, each
with the same capacity V of resource.
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3.2 Problem Formulation

Due to the lack of emergency energy during power outage,
not all VMs can keep operating until their deadlines of con-
tinuity requirements, thus the service continuity require-
ments of some VMs may be violated. It is necessary to
design both a VM selection strategy and a VM consolidation
strategy so as to efficiently utilize the emergency energy
and maximize the total service continuity profit of the VMs
for the cloud provider.

A re-provision/consolidation strategy would consolidate
the VMs to the PMs and shut down idle machines to effi-
ciently utilize the energy. Define xij as an indicator to indi-
cate if VM j is allocated/re-provisioned to PM i. That is,
xij ¼ 1 if VM j is executed on PM i and xij ¼ 0 otherwise.
Thus, we have

xij ¼ f0; 1g; 81 � i � m; 81 � j � n: (1)

Due to the lack of emergency energy and the constraints
of resource capacities, some VMs have to be interrupted
before their deadlines, thus fail to keep the service continu-
ity. That is, it is possible that

P
1�i�m xij ¼ 0 for some VM j.

In this case we say that they fail to be allocated/consoli-
dated. Thus, before designing a consolidation strategy
under power shortage, it is critical to determine a VM selec-
tion strategy: determine which set of VMs should be chosen
and consolidated (with

P
1�i�m xij ¼ 1).

After determining the VM selection, an efficient consoli-
dation strategy under power shortage is required to consoli-
date the selected VMs by efficiently utilizing the emergency
energy. Here, each VM j is executed/consolidated on at
most one PM X

1�i�m

xij � 1; 81 � j � n: (2)

Eqs. (1) and (2) are called the assignment constraints. The
number of PMs activated for re-provisioning/consolidation
should be at mostm, which is called the PM constraint.

Because of the resource constraints of PMs, the total
demands of VMs consolidated on PM i must not exceed V
in total. That is, X

1�j�n

sjxij � V; 81 � i � m: (3)

This is called the resource capacity constraint. We say that VM
j fits PM i if it can be allocated to PM i without exceeding
the resource capacity.

Before modeling the power constraint, we first introduce
the power consumption model adopted in this paper. Let
uit 2 ½0; 1� be the CPU utilization rate of machine i at time t,

uit ¼
X

j:t2½0;djÞ
sjxij=V; 8t; 8i: (4)

We say PM i is active at time t if uit > 0, thus it uses one
active/power-on PM time unit. As measured in prior works
[15], [16], the power consumption of a PM approximately
follows the function below,

eit ¼
ð1� aÞumit þ a; if uit > 0

0; if uit ¼ 0;

�
(5)

where m � 1 and the peak power with full CPU utilization is
normalized to be 1; the constant a is the idle power, which is
typically ranging in ½0:5; 0:7� (and barely below than 0.5) as
noted in practical measurements [15], [29], [30].

We measure the migration cost as the migration time
used for migrating a VM to a new PM, since this term affects
the energy overhead of migration as well as the migration
latency, as measured in [31]. Note that instead of explicitly
formulating the migration time of a VM, we have incorpo-
rated it into the time period ½0; djÞ of continuity requirement
of each VM, as introduced in the definition of continuity
requirement.

We assume that there are U units of emergency energy
when power outage strikes. Equivalently, it is able to sup-
port a PM with full CPU utilization to execute U time units
after normalization. A schedule should satisfy the power con-
straint that the total power consumed should be at most U ,X

1�i�m;1�t�T

eit � U: (6)

Obviously, PM i must be powered on until all assigned
VMs finish their execution. Let ti be the length/number of
power-on time of PM i, then it should be no less than the
required running time of any VM consolidated on the cur-
rent PM. We thus have

ti � djxij; 81 � j � n; 81 � i � m: (7)

For VM j, if its service continuity requirement is satisfied
(with

P
1�i�m xij ¼ 1), then the cloud service provider gains

a value/profit pj from VM j; otherwise, it gains a profit 0. If a
VM is consolidated in the service continuity schedule, then
we say the schedule executes/starts the VM, interchangeably.

Our objective is to maximize the aggregated profit of
VMs whose service continuity requirement is satisfied, i.e.,

X
1�j�n

pj
X

1�i�m

xij

 !
: (8)

Therefore, the cloud service continuity problem under
consideration is summarized in the following definition
(ILP formulation).

Definition 1 (CSC problem). The Cloud Service Continuity
problem is to determine the allocation fxijji 2 I; j 2 Jg to
maximize the service continuity profit (8) with the satisfaction
of the assignment constraint (1) and (2), the resource capacity
constraint (3), the power constraint (6) and the constraint
(7) and the PM constraint.

We investigate the CSC problem from the approximation
point of view. We say that an algorithm is g-approximation
if it always achieves a profit within 1

g
times that of the opti-

mal solution for any input/instance I. That is,

ALGðIÞ
OPT ðIÞ �

1

g
; 8I: (9)

where ALGðIÞ and OPT ðIÞ are respectively the service con-
tinuity profit achieved by the algorithm and the optimal
solution.
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3.3 Overview of Our Solutions

In CSC problem, we need to select and re-provision/consol-
idate the VMs to exploit the emergency energy and maxi-
mize the service continuity profit of VMs whose continuity
requirements are satisfied using limited emergency energy.

The CSC problem (even consolidating with unlimited
number of PMs) can be easily proved to be NP-hard by
reducing the classical NP-hard knapsack problem to an
instance of it. Therefore, in this paper, we focus on the
design of approximation algorithms.

The high level idea of the design is as follows. We
observe that the idle power a is a large constant compared
with the peak power and a PM using U active PM time units
spends at most U units of peak power (since it is normalized
to be 1). Thus, algorithms that uses at most U active PM time
units guarantee to satisfy the power constraints.

We first consider the situation that the number of PMs
available for re-provisioning is sufficiently large in Section 4.
This allows us to activate a new PM if necessary. We
develop an algorithm Bundle Re-provision (BRP) to maxi-
mize the service continuity profit of the provider. BRP
ensures that each bundle of VMs assigned to one PM is with
high profit per unit of power-on time and is proved to be

2e
ð1�dÞðe�1Þa-approximation compared to the optimal solution.

Next, in Section 5, we consider the general case that the
number of PMs available for re-provisioning has a limit and
develop a final algorithm, called CSC-SCHEDULE, by combin-
ing two efficient algorithms introduced below to achieve a
good average performance as well as a worst-case bounded
performance.

With the restriction on the number of PMs for re-provi-
sion, the PMs should be carefully activated to ensure that
each activated PM gains high total profit by allocating the
VMs. One intuitive idea to deal with the new constraint is to
extend BRP by greedily activating the PMs until all m PMs
are used up. This revised algorithm is called BRP�. In gen-
eral, BRP� has a good average performance. However, this
may cause the problem that the activated PM gains low total
profit when all chosen VMs have short lengths, although the
profit per power-on time unit is high. As a matter of fact, this
maymake theworst-case performance be arbitrarily bad.

Thus, we combine BRP� with another algorithm, called
FRP� (Fractional Re-provision), which will be proved con-
stant approximation in terms of worst-case performance. In
the design of FRP�, we first introduce a fraction version of
CSC problem with nice optimal structures and develop a
novel algorithm to find its optimal solution, and then we
transform this solution back to be a feasible solution of the
original problem with a loss of small approximation ratio.
By returning the better one between BRP� and FRP�, we
have the final schedule CSC-SCHEDULE.

4 ALGORITHM DESIGN WITH SUFFICIENT NUMBER

OF PMS

In this section, we consider CSC problem in clouds under a
natural condition that the number of PMs available for re-
provisioning is sufficiently large. Since a PM using U active
PM time units guarantees to spent at most U peak power,
we introduce a time-constrained CSC problem first where the
original power constraint is replaced by the time-constraint
that the total number of power-on time units is not allowed

to exceed U . We will devise an algorithm for the time-con-
strained CSC problem, which tries to fully utilize the CPU
resource at each unit of power-on time and meanwhile
guarantees to satisfy the power constraints in the original
CSC problem. Then, we will prove that the proposed algo-
rithm is close to the optimal profit in time-constrained CSC
problem, which will be further proved to approach the opti-
mal solution with the original power constraints.

Here, a sufficient number of PMs does not mean that it is
free to activate as many as wanted, due to the lack of emer-
gency power. Thus, the VMs need to be carefully selected
and consolidated to PMs to gain the maximum profit.

One intuitive and promising idea is to design a greedy
algorithm that allocates the VMs in the order of decreasing
profit-per-deadline and adopts first-fit strategy to allocate the
VM to the first active PMand activate one newPM if no active
PMs are available. However, a simple example can be easily
found to show that such a greedy algorithm has unbounded
approximation ratio, since it does not take the resource capac-
ities of PMs and profit diversity of VMs into consideration,
which may lead to the waste of resource of a PM as well as
the waste of power or power-on time in the long run.

Our basic idea for solving the CSC problem is to consider
a key sub-problem to guarantee the efficient usage of each
power-on time unit in activating PMs and then adopt it as a
building block to activate new PMs. The key sub-problem
under consideration is, given a budget of U units of power-
on time, maximizing the profit of VMs chosen to be exe-
cuted in one single PM.

The arrangement of this section is as follows. We first
develop a basic procedure to solve the key sub-problem
above. Then, we propose an algorithm for the CSC problem
by iteratively calling the basic procedure. Finally, we ana-
lyze the the proposed algorithm and prove its constant
approximation.

4.1 A Basic Procedure

In this section, given t power-on time units, we examine the
key sub-problem on how to select VMs from J to run on a
single PM with capacity V during ½0; tÞ, so that the total
profit is maximized. Define J�t 	 J to be the set of VMs
whose deadlines satisfy dj � t. Obviously, only VMs with
deadlines not greater than t can start on such a PM. Thus,
we only need to consider the set J�t.

We use a basic procedure to solve the problem above.
This procedure will find a subset of VMs from a given set Ĵ
such that the total profit is maximized with the constraint
that the total resource demands of the selected VMs is at
most V . Given a set Ĵ of VMs and a capacity V , let proce-
dure PROFITABLEBUNDLE(V; Ĵ) return the desired subset and
profitðV; ĴÞ be the maximum profit.

Note that such a sub-problem can be reduced to be the
transitional knapsack problem, thus it admits a dynamic
programming algorithm. Let pðj; vÞ be the maximum profit
achievable using only the first j VMs in Ĵ with a capacity v.
The profit pðj; vÞ is either achieved by pðj� 1; vÞ when the
jth VM is not selected or by pðj� 1; v� sjÞ þ pj when the
jth VM is selected. Thus, the recursion function is

pðj; vÞ ¼ maxfpðj� 1; vÞ;
pðj� 1; v� sjÞ þ pjg:

(10)
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Based on the recursion function above, we can imple-
ment PROFITABLEBUNDLE(V; Ĵ) by computing pðjĴj; V Þ. The
time complexity is OðnV Þ and pseudo-polynomial due to its
dependency on value V . If needed, we can further remove
the dependency on value V of the time complexity by intro-
ducing a pre-set small error factor d, a value/constant that
can be arbitrarily close to 0, so as to obtain a total profit arbi-
trarily close to pðjĴ j; V Þ within a factor of ð1� dÞ (namely, a
fully polynomial-time approximation scheme, FPTAS),
using Oðn3 1

d
Þ running time given any error bound d. The

detailed implementation is similar to the FPTAS for the
well-known knapsack problem [32], thus is omitted here.

To solve the key sub-problem, we only need to invoke
procedure PROFITABLEBUNDLE(V; J�t), where J�t is the set of
VMs whose deadlines satisfy dj � t.

4.2 Algorithm Design

Based on the solution above, we are now ready to solve the
CSC problem with sufficient number of PMs for re-
provisioning.

The idea of the design is to activate one single PM to run
a bundle of VMs (with the largest possible total profit per
unit of power-on time) first at each iteration. And then, we
iteratively activate a new PM while satisfying the power-on
time-constraints as well as the power constraints. The intui-
tion behind such a general idea is to efficiently utilize the
resource capacity and achieve high profit when consuming
each power-on time unit.

In detail, the first bundle of VMs is computed as follows.
With the help of algorithm PROFITABLEBUNDLE, we compute
the maximum profit profitðV; Ĵ�tÞ given any duration ½0; tÞ.
The first bundle is the set of VMs that achieves themaximum

value profitðV;Ĵ�tÞ
t among all possible integer t 2 ½0;minfT;Ug�.

Then, the algorithm iteratively finds the rest of the bundles.
The detailed design of the algorithm is presented in BRP.

Let Ak be the subset of VMs allocated in iteration k and
Sk ¼ [1�i�kAi. In iteration k, the algorithm calls the proce-

dure PROFITABLEBUNDLE(V; ðJnSk�1Þ�t) to test every time

1 � t � minfT;Ug to find a value t̂ ¼ argmaxt
profitðV;ðJnSk�1Þ�tÞ

t

and setAk to be the VMs that achieve profitðV; ðJnSk�1Þ�t̂Þ. It
activates the kth PM to allocate VMs in Ak and gets profit
profitðV; ðJnSk�1Þ�t̂Þwith the cost of an amount Ek of power
consumption. The algorithm iteratively finds the next set
Skþ1 and terminates either when all VMs are chosen or the
total energy consumption exceeds the capacity U after add-
ing the set Skþ1. Should this case occur, the algorithm returns
the set with higher profit between Sk and �S, where �S is the
maximum profit achievable for one single PMwith the input
of VMs in J andU time units.

In terms of the time complexity, computing Sk would call
the procedure PROFITABLEBUNDLE() at most minfT;Ug

minfm;Ug times, while computing �S would call the proce-
dure PROFITABLEBUNDLE() at most minfT;Ug times, where
typically we have U > T and U > m when power outage
happens. Thus, the running time of BRP is OðmTnV Þ when
setting d ¼ 0.

4.3 Approximation Ratio Analysis

Now we analyze the performance of the Algorithm BRP.
Recall the definition of the time-constrained CSC problem

and denote by OPTc the subset of VMs scheduled by the
optimal solution of the time-constrained CSC problem using
atmostU units of power-on time, and let pðOPTcÞ be the total
profit of those VMs. Denote by pðOPT Þ the optimal profit of
the optimal solution in the original CSC problem. We first
prove that the algorithm achieves within 2e

ð1�dÞðe�1Þ times of

the optimal profit in time-constrained CSC problem where e
is the natural constant and d is the constant error factor intro-
duced to bound the performance on the total profit.

Algorithm 1. BRP(V; J;m)

1: Set A0 ¼ S0 ¼ ?
2: Set k ¼ 1; t̂ ¼ 0
3: while JnSk�1 6¼ ? and U > 0 do
4: Compute t̂ ¼ argmax1�t�minfT;Ug

profitðV;ðJnSk�1Þ�tÞ
t

5: if U � t̂ > 0 then
6: Ak ¼ PROFITABLEBUNDLE(V; ðJnSk�1Þ�t̂)
7: Activate the kth PM to run the VMs in Ak.
8: Sk ¼ Sk�1 [Ak.
9: Compute the amount of power, say Ek, consumed on

on the kth PM.
10: k ¼ kþ 1, U ¼ U � Ek.
11: end if
12: end while
13: Compute �t ¼ argmax1�t�fT;UgprofitðV; J�tÞ
14: Let �S ¼PROFITABLEBUNDLEðV; J��tÞ.
15: if the profit in Sk is larger than that of �S then
16: return the profit in Sk.
17: else
18: return the profit in �S.
19: end if

Suppose that the algorithm finishes in p iterations and
the algorithm returns set Sp at termination. Let Ak be the
VMs returned in the kth iteration, and pðAkÞ be the total
profit of VMs in Ak, where 1 � k � p.

We first prepare a basic property for the greedy rule of
the algorithm. The following lemma states the fact that each
bundle of VMs selected in the iterations is profitable.

Lemma 1. pðSkÞ � pðSk�1Þ � ð1� dÞtk 
 pðOPTcnSk�1Þ
U for all

1 � k � p.

Proof. Let tk be the largest deadline of VMs in Ak. Let
optðt; JÞ be the maximum achievable profit to run the
VMs in J by activating only one PM with t time units.
For the first iteration, assuming t0 is the value that
achieves optðt0; JÞ 1

t0 ¼ maxtoptðt; JÞ 1t, we have pðA1Þ 1
t1
¼

maxtprofitðt; V; JÞ 1t ¼ profitðt0; V; JÞ 1
t0 � ð1� dÞoptðt0; JÞ 1

t0
where the last inequality holds by the fact that PROFITA-

BLEBUNDLE returns a subset with at least a profit

profitðt0; V; JÞ � ð1� dÞoptðt0; JÞ. Moreover, optðt0; JÞ 1
t0 ¼

maxtoptðt; JÞ 1t � pðOPTcÞ 1
U since optðt0; JÞ 1

t0 is the maxi-

mum profit per power-on time that is achievable, and

activating any PM in the optimal solution OPTc of time-

constrained CSC problem achieves at most the profit

optðt0; JÞ 1
t0 per unit time. Therefore, combining these

inequalities, we have pðA1Þ 1
t1
� ð1� dÞoptðt0; JÞ 1

t0 �
ð1� dÞpðOPTcÞ 1

U .
Let t0 be the value that achieves optðt0; JnSk�1Þ 1

t0 ¼
maxtoptðt; JnSk�1Þ 1t . Then, in later iteration k, we have
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ðpðSkÞ � pðSk�1ÞÞ 1
tk
¼ maxtprofitðt; V; JnSk�1Þ 1t ¼ profitðt0;

V; JnSk�1Þ 1
t0 � ð1� dÞoptðt0; JnSk�1Þ 1

t0 where the first
inequality holds because of the greedy rule in the kth itera-
tion applied in the algorithm and the last inequality is cor-
rect because the procedure PROFITABLEBUNDLE returns a
subset with at least a profit profitðt0; V; JnSk�1Þ � ð1�
dÞoptðt0; JnSk�1Þ. Moreover, optðt0; JnSk�1Þ 1

t0 ¼ maxtoptðt;
JnSk�1Þ 1t � pðOPTcnSk�1Þ 1

U , since optðt0; JnSk�1Þ 1
t0 is the

maximum profit per cost that is achievable among the
VMs JnSk�1 and activating any PM in OPTc achieves at
most the profit optðt0; JnSk�1Þ 1

t0 per unit time. Combining
these inequalities, we have ðpðSkÞ � pðSk�1ÞÞ 1

tk
� ð1�

dÞoptðt0; JnSk�1Þ 1
t0 � ð1� dÞpðOPTc; JnSk�1Þ 1

U . This com-
pletes the proof. tu
Based on the relation between pðSkÞ and pðSk�1Þ in every

two adjacent iterations in Lemma 1, we can establish the
relation between pðSkÞ and pðOPTcÞ in the following lemma.

Lemma 2. pðSkÞ � ð1� dÞð1�Pk
i¼1ð1� ti

UÞÞpðOPTcÞ for all
1 � k � p.

Proof. Since pðA1Þ
t1

� ð1� dÞðpðOPTcÞ
U Þ, it holds for the base case

k ¼ 1, i.e., pðA1Þ � ð1� dÞ t1U pðOPTcÞ. We prove the lemma
by induction with the induction hypothesis pðSk�1Þ �
ð1� dÞð1�Pk�1

i¼1 ð1� ti
UÞÞpðOPTcÞ. With the hypothesis, we

have

pðSkÞ � pðSk�1Þ þ ð1� dÞtk 
 pðOPTcnSk�1Þ
U

� pðSk�1Þ þ ð1� dÞ 
 tk
U
ðpðOPTcÞ � pðSk�1ÞÞ

� ð1� dÞ 1� tk
U

� �
pðSk�1Þ þ ð1� dÞtk 
 pðOPTcÞ

U

� ð1� dÞ 1� tk
U

� �
1�Pk�1

i¼1 1� ti
U

� �� �
pðOPTcÞ

þ ð1� dÞtk 
 pðOPTcÞ
U

¼ �ð1� dÞPk
i¼1 1� ti

U

� �
pðOPTcÞ

þ ð1� dÞ 1� tk
U

� �
pðOPTcÞ þ ð1� dÞtk 
 pðOPTcÞ

U

¼ �ð1� dÞPk
i¼1 1� ti

U

� �
pðOPTcÞ þ ð1� dÞpðOPTcÞ

¼ ð1� dÞ 1�Pk
i¼1 1� ti

U

� �� �
pðOPTcÞ;

where the first inequality holds by Lemma 1, the second
inequality follows by pðOPTcnSk�1Þ � pðOPTcÞ � pðSk�1Þ,
the fourth inequality holds by the induction hypothesis
and the last three equalities follow bymerging the items. tu
Based on Lemmas 1 and 2, we derive the worst-case per-

formance bound of the algorithm compared with the opti-
mal profit in time-constrained CSC problem.

Lemma 3. Algorithm BRP achieves within 2e
ð1�dÞðe�1Þ times of the

optimal profit in time-constrained CSC problem with at most U

units of power-on time.

Proof. Assume that Apþ1 is the last set which makes tpþ1

exceed the power-on time constraints with
Ppþ1

i¼1 ti � U .
We have

pðSpÞ þ pðApþ1Þ

� ð1� dÞ 1�Ppþ1
i¼1 1� ti

U

� �� �
pðOPTcÞ

� ð1� dÞ 1�Ppþ1
i¼1 1� tiPpþ1

i¼1 ti

 ! !
pðOPTcÞ

� ð1� dÞ 1� 1� 1

pþ 1

� �pþ1
 !

pðOPTcÞ

� ð1� dÞ 1� 1

e

� �
pðOPTcÞ;

where the first inequality follows by Lemma 2, the sec-

ond inequality holds by the fact
Ppþ1

i¼1 ti � U , the last two

inequalities hold by the fact that the minimum value of

Ppþ1
i¼1 ð1� tiPpþ1

i¼1
ti
Þ is achieved with t1 ¼ t2 ¼ 
 
 
 ¼ tpþ1 and

approaches 1
e with large pþ 1. Accordingly, maxfpðSpÞ;

pðApþ1Þg � pðSpÞþpðApþ1Þ
2 � ð1�dÞðe�1Þ

2e pðOPTcÞ. Therefore, the
algorithm returns maxfpðSpÞ; pð �SÞg � maxfpðSpÞ; pðApþ1Þg �
ð1�dÞðe�1Þ

2e pðOPTcÞ, thus is within 2e
ð1�dÞðe�1Þ times of the opti-

mal solution in time-constrained CSC problem with at
most U units of power-on time. tu
Finally, we prove the feasibility and constant approxima-

tion of the proposed algorithm in the original CSC problem,
as concluded in the following theorem.

Theorem 1. Algorithm BRP achieves 2e
ð1�dÞðe�1Þa-approximation

for CSC problem, i.e., approximately within 4:5-6.4 times of the
optimal solution with typical idle power a 2 ½0:5; 0:7�.

Proof. Algorithm BRP schedules the VM execution with at
most U units of power-on time, thus uses at most U units
of (peak) power. Hence, it is feasible for the original CSC
problem. Furthermore, it returns a profit that is at least
ð1�dÞðe�1Þ

2e pðOPTcÞ where pðOPTcÞ is the optimal profit in

time-constrained CSC problem with at most U units of

power-on time. Let pðOPT ĉÞ be the optimal profit of time-

constrained CSC problem with at most U
a
units of power-

on time. Obviously, pðOPTcÞ � apðOPTĉÞ since the num-

ber of power-on time units in pðOPTcÞ is a times that of

pðOPT ĉÞ. Moreover, it is easy to see that any feasible solu-

tion of the original CSC problem can utilize at most U
a
units

of power-on time according to the definition of idle power,

thus is a feasible solution of the time-constrained CSC

problem with U
a
units of power-on time. Thus, we have

pðOPT ĉÞ � pðOPT Þ. Therefore, Algorithm BRP returns a
profit that is at least ð1�dÞðe�1Þa

2e pðOPT Þ and hence is
2e

ð1�dÞðe�1Þa-approximation for the original CSC problem. tu

5 ALGORITHM DESIGN FOR GENERAL CSC
PROBLEM

In this section, we study the general case in which there
exists a limitation on the number of PMs for re-provision-
ing. We try to develop a schedule by combining two algo-
rithms to achieve a good average performance as well as
constant approximation in terms of worst-case performance.

According to the overview of our idea described in
Section 3, we can simply extend BRP to get the algorithm
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BRP� for the general case, by iteratively activating new PMs
until no more PMs are available. In general, this algorithm
may perform well in average case, but a simple instance can
be easily found to show that it has unbounded worst-case
performance. Developing an algorithm with worst-case
bounded performance for the general case is quite difficult.
With the limit on the available PMs, packing VMs with simi-
lar deadlines to a PM, as BRP� does, may just choose VMs
with short VMs and use up the PMs easily while achieving
only a low total profit on each PM.

To address this challenge, we go another way around.
Instead of directly addressing the original problem, we
introduce a novel fractional version of the problem, called
Fractional Time-constrained CSC (FCSC) problem, which
has nice structural properties and can be solved optimally.
Thus, we first develop a non-trivial algorithm to optimally
solve it, and then transform the fractional solution back to
be the (integral) solution of the original problem. Based on
the optimality of the fractional solution returned for FCSC,
we will ensure that the transformed solution would achieve
a total profit close to the fractional solution, thereby achiev-
ing a low loss in approximation ratio.

The arrangement of this section is as follows. We first
introduce the FCSC problem. Next, we develop an optimal
algorithm for the fractional CSC problem. Then, we trans-
form the solution of the fractional CSC problem back to be a
feasible solution of the original problem and prove its con-
stant approximation. Last, we combine the two algorithms
developed to get the final service continuity strategy.

5.1 A Fractional Time-Constrained CSC Problem

In this section, we still define the time-constrained CSC
problem to be the CSC problem with the power constraint
replaced by the time-constraint that the total number of
power-on time units used is at most U , and further intro-
duce a fractional time-constrained CSC problem. We will
prove that the optimal solution of the fractional time-
constrained CSC problem can be computed and trans-
formed to be a feasible solution of the CSC problem later.

Recall that a feasible solution of time-constrained CSC
problem integrally selects the VMs and re-provisions/
consolidates them to the PMs with the satisfaction of
resource capacity constraints and power-on time con-
straints. We can treat each VM as two dimensional rectan-
gle, with one dimension to be the size/height and the other
dimension to be the length/width. Re-provisioning the
selected VMs to a PM with capacity V is equivalent to plac-
ing the rectangles into a large rectangle with height V .

We first define the virtual PMs before introducing the
fractional CSC problem. Take each PM as a virtual PM such
that a VM can request just a part (but not all) of its demand
from a virtual PM. Further consider that all m virtual PMs
form a large virtual PM with capacity mV . With such an
assumption, the assignment constraint is relaxed and a VM
is allowed to be allocated to two virtual PMs. For example,
when VM j is allocated to two virtual PMs 1 and 2 respec-
tively with demand s1j and s2j , then virtual PMs 1 and 2
respectively need to provide s1j and s2j units of resource
(and thus keep operating) during the period ½0; djÞ. Thus,
we assume that, when hosting the VMs, the virtual PM
needs to keep operating until the largest deadline of the

VMs allocated even if it just serves partial resource demand
of the VM. The total execution time of the virtual PMs still
should not violate the power-on time constraints.

With the assumptions of virtual PMs above, the fractional
time-constrained CSC problem (FCSC problem) is defined as
follows. It integrally selects a set of VMs and allocates them
to the virtual PMs under both the resource capacity con-
straint on virtual PMs and the time-constraint that the total
number of power-on time units used is at most U . The objec-
tive is to maximize the profit of VMs selected and allocated.
Note that for FCSC problem, any set of VMs with total size
not exceeding mV can be placed into the virtual PMs, with-
out violating the resource capacity constraints since the
VMs are allowed to be allocated to two virtual PMs. How-
ever, the power-on time-constraints on the virtual PMs may
be violated.

An important property for the FCSC problem introduced
above is that its optimal solution is at least that of the time-
constrained CSC problem, thus can provide an upper
bound for the original CSC problem. Its proof also indicates
the existence of a novel algorithm for computing the opti-
mal solution of the FCSC problem.

To prove that the optimal profit of FCSC problem is at
least that of the time-constrainedCSC problem, it is sufficient
to transform the optimal solution of the time-constrained
CSC problem to be a feasible solution of the FCSC problem.
That is, we show that all the VMs selected in the optimal
solution of time-constrained CSC problem can be allocated
to virtual PMs and get a feasible solution for FCSC problem.
Assume that Jopt is the set of VMs selected in the optimal
solution of time-constrained CSC problem. We allocate the
VMs in Jopt to the virtual PMs in the order of non-increasing
length as follows. We allocate the first VM with the largest
length to the first virtual PM, and then greedily allocate the
next VM and activate a new virtual PM only when the
resources on the current virtual PM are uses up. Fig. 2 dem-
onstrates an example showing the transformation.

The resulting allocation can be proved to be a feasible
solution for FCSC problem with the assumption that a VM
is allowed to be allocated to two virtual PMs, which is con-
cluded in the following lemma.

Lemma 4. The optimal profit for FCSC problem is at least that of
the time-constrained CSC problem.

Proof. Let Jopt be the optimal solution of CSC problem.
Note that the transformation takes Jopt as a input. The
VMs in Jopt are sorted in the order of non-increasing
length and allocated one by one to the virtual PMs. The
proof is simply based on the observation that such an

Fig. 2. An example showing how to transform the optimal solution of
time-constrained CSC problem to be a feasible solution of FCSC prob-
lem without using more resources or power-on time.
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allocation always activates a new virtual PM when the
resources on activated ones are fully occupied and the
new virtual PM is activated using the minimum length of
power-on time. Such a transformed allocation is obvi-
ously a feasible solution for FCSC problem and does not
utilize more resources or power-on time than Jopt of CSC
problem. This completes the proof. tu
Consider the large virtual PM with mV units of resource

that is formed by all virtual PMs to serve the VMs. Take as if
each unit of the resource is taken from a spacewith addresses
in ½1;mV �. If the unit of resource in address c 2 ½1;mV � is allo-
cated to VM j, we say VM j occupies address c.

The transformation rule defined for proving Lemma 4
implies the following critical property of the optimal solu-
tion for FCSC problem, which will help us to design its opti-
mal algorithm. That is, it makes the activated virtual PMs,
except the last one, use up their resource. Thus, equiva-
lently, we can say that VMs in Jopt occupy all the addresses
in ½1; sopt� or addresses in ½1; sopt� are fully occupied by VMs in
Jopt. In general, there is an immediate lemma for the optimal
solution of FCSC problem following by Lemma 4.

Lemma 5. Assuming that Jfopt is the set of VMs chosen by the
optimal solution of FCSC problem, then there exists an optimal
allocation for FCSC problem where VMs in Jfopt occupy all the
addresses in ½1; sfopt� with sfopt ¼

P
j2Jfopt sj, and moreover, a

VM with larger length occupies the lower address.

5.2 Optimal Algorithm for FCSC Problem

Based on the definition of FCSC problem and its properties
introduced above, we develop a novel algorithm to opti-
mally solve the FCSC problem. To find the optimal solution
for FCSC problem, we still have to deal with the power-on
time-constraints and PM constraint when VMs are allocated
to virtual PMs.

The key idea is to develop a dynamic programming algo-
rithm by seeking a recursion function (or recursive sub-prob-
lem) for FCSC problem. One possible idea, which is intuitive
but may fail, is that we can try to find the maximum achiev-
able profit using the addresses in ½1; c� and find the largest
one among all possible c with 1 � c � minfmV; ssumg to find
the optimal profit. With such an intuition, the method to
compute the optimal profit for allocating n VMs is to find the
larger value between the profit found in two recursive sub-
problems, the maximum profit for allocating the first n� 1
VMs in addresses ½1; c�when the nth VM is not allocated and
the maximum profit for allocating the first n� 1 VMs in
addresses ½1; c� sn�when the nth VM is allocated. However,
such an intuition fails in dealingwith the power-on time con-
straints when designing the recursion function. This is
because, if VM j is allocated to a virtual PM that is not acti-
vated before allocation, then it needs dj more power-on time;
if VM j is allocated to a virtual PM that is already activated,
then itmay need nomore power-on time. The problem above
lies in the following fact: a recursion function for dynamic
programming function needs to compute the function in a
bottom-up manner; but when comparing these two sub-
problems, we have no information onwhether the PM before
allocation is activated or not.

We note that the above intuition fails because when we
consider the allocation for the current VM, we are lacking of

the structure information for the recursive sub-problem
before allocating the current VM.

Thus, we try to make more structural information for the
problem. Note that there are multiple optimal allocations
for FCSC problem that can achieve the same optimal profit.
Recall that Lemma 5 implies that there exists an optimal
solution for FCSC problem where the selected VMs fully
occupy the addresses starting from address 1 and ending at
address sfopt, and furthermore, a VM with larger length is
allocated first to lower address.

We utilize such a key property to design the recursion
function. With such a property, we just try to find the opti-
mal allocation which fully occupies the addresses in ½1; sfopt�
but ignore all other optimal allocations, and further resort
the VMs so that s1 � s2 � 
 
 
 � sn. Such an idea restricts our
search space, but allows us to assume that the virtual PM,
whose resources are partially used but not used up before
allocating the current VM, is already activated.

Thus, given an address space ½1; c�, our objective is
reduced to computing the maximum profit by selecting a
subset Jc of VMs in the first k VMs so that the total sizeP

j2Jc;j�k sj ¼ c (which implies that all the VMs in Jc fully
occupy the addresses in ½1; c� and meanwhile the last
selected VM is ending at address c), and meanwhile, the vir-
tual PMs for allocating such VMs use at most t units of
power-on time. Let function pðk; c; tÞ return such a maxi-
mum profit.

The definition above helps make the recursive sub-
problem well-structured, which is able to lead to a novel
recursive function below to compute pðk; c; tÞ. A tricky part
of the proof for deriving this recursion function is how to
identify the case that the addresses in ½1; c� are not possible to
be fully occupied by integrally selecting from the first kVMs.

Lemma 6. The recursion function to compute pðk; c; tÞ is as
follows,

pðk; c; tÞ ¼

max

pðk� 1; c; tÞ
pðk� 1; c� sk; tÞ;

if c� sk > V 
 ðd cV e � 1Þ
pðk� 1; c� sk; t� dkÞ;

if 0 � c� sk � V 
 ðd cV e � 1Þ

8>>>>>><>>>>>>:
0; if c ¼ 0 and t � 0

�1; if j ¼ 0 and c > 0

�1; if c� sk < 0

�1; if t < dk

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
(11)

Proof. Recall the definition of pðk; c; tÞ. If pðk; c; tÞ is the opti-
mal profit of FCSC problem, then this implies that
c ¼ sjopt and the chosen VMs fully occupy the addresses

in ½1; c� and the lower address is occupied by the VM with

larger length.
According to the definition of the recursion function,

if pðk; c; tÞ is the optimal solution, then this implies that
c ¼ sopt and all addresses in ½1; c� sk� are occupied before
allocating VM k. Thus, we can simply assume that all
addresses in ½1; c� sk� are already occupied and the first
dc�sk

V e virtual PMs that contribute at least one resource in
addresses ½1; c� sk� is already activated.
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With such a structural information, we know VM k
should occupy addresses in ½c� sk þ 1; c� that is belong-
ing to the d cV e-th virtual PM. If d cV e � dc�sk

V e ¼ 0 or equiva-
lently c� sk > V 
 ðd cV e � 1Þ, then the d cV e-th virtual PM
already hosts at least one VM among the first k� 1 VMs.
This implies that it is already activated for execution
with larger than dk time units before allocating VM k.
Thus, no more power-on time need to be used to activate
the d cV e-th virtual PM when allocating VM k. If
d cV e � dc�sk

V e ¼ 1, then the d cV e-th virtual PM does not host
any VM before allocating VM k and dk more units of
power-on time should be used to activate it. Conse-
quently, when VM k is selected, we can set pðk; c; tÞ ¼
pðk� 1; c� sk; tÞ þ pk if c� sk > V 
 ðd cV e � 1Þ and
pðk; c; tÞ ¼ pðk� 1; c� sk; t� dkÞ þ pk if 0 � c� sk � V 

ðd cV e � 1Þ. If VM k is not selected, then we have
pðk; c; tÞ ¼ pðk� 1; c; tÞ. Obviously, we need to set
pð
; 0; tÞ ¼ 0 if c ¼ 0 and t � 0 for the initialization. The
analysis above has specified the main idea of the recur-
sion function, which relies on the assumption that the
address in ½1; c� are fully occupied.

However, one more critical issue has not been
addressed, which is also a tricky part in the design. Since
the dynamic programming algorithm needs to compute
a general pðk; c; tÞ in a bottom-up manner, we need to
tackle the case that the addresses ½1; c� are not possible to
be fully occupied by selecting from the first k VMs.

To identify this situation, we set pðk; c; tÞ ¼ �1 when
using the first k VMs is impossible to fully utilize the
resources in ½1; c�. Thus, we need to identify the condition
with which pðk; c; tÞ is set to be �1. In general, the last
selected VM will occupied the address c according to the
definition of pðk; c; tÞ. We discuss all possible cases of the
recursion function. If t < dk, then this implies any VM
among the first k VMs has a length larger than t, thus it is
impossible to fully utilize the addresses in ½1; c� when
c 6¼ 0 and hence pðk; c; tÞ ¼ �1. If c� sk < 0 then k
should not be allocated and pðk; c; tÞ ¼ pðk� 1; c; tÞ. If
j ¼ 0 and c > 0, then obviously pðk; c; tÞ ¼ �1. This
completes the proof in deriving the recursive function. tu
Recall that we want to find the optimal allocation that the

selected VMs fully occupy the addresses in ½1; c�. Accord-
ingly, the defined function pðk; c; tÞ returns a positive value
only when the addresses in ½1; c� are fully occupied by the
selected VMs.

Finally, to find the optimal profit for FCSC problem,
denoted by OPT ðFCSCÞ, we need to enumerate c 2 ½1;
minfmV; ssumg� to find exactly the value c ¼ sfopt. Thus, the
optimal profit for FCSC problem can be computed by,

OPT ðFCSCÞ ¼ max
1�c�minfmV;ssumg

pðn; c; UÞ: (12)

More details can be found in Algorithm FRACTIONALCSC
which implements the dynamic programming method
stated above. The following theorem concludes the optimal-
ity of FRACTIONALCSC.

Theorem 2. Algorithm FRACTIONALCSC optimally solves FCSC
problem in Oðm2nUV 2Þ steps.

Proof. The optimality of FRACTIONALCSC follows directly
from the recursion function we derived.

To calculate the recursion function pðk; c; tÞ, we need
to enumerate n possible values of the first parameter, at
most mV values of the second parameter and U possible
values of the last one. In the final step, to find the value
maxfpðn; c; UÞg, another mV possible values should
be enumerated. Therefore, the time complexity is
Oðm2nUV 2Þ. tu

Algorithm 2. FRACTIONALCSC(J; U;m)

1: for c ¼ 1 tominfmV; ssumg do
2: Set pð0; 
; 
Þ ¼ �1.
3: Set pð
; 0; tÞ ¼ 0 for all t � 0.
4: for k ¼ 1 to n do
5: for cc0 ¼ 1 to c do
6: for t ¼ 1 to U do
7: if t < dk or cc

0 < 0 then
8: pðk; cc0; tÞ ¼ �1
9: else
10: temp1 ¼ pðk� 1; cc0; tÞ
11: if cc0 � sk > V 
 ðdcc0V e � 1Þ then
12: temp2 ¼ pðk� 1; cc0 � sk; tÞ þ pk
13: else if 0 � cc0 � sk � V 
 ðdcc0V e � 1Þ then
14: temp2 ¼ pðk� 1; cc0 � sk; t� dkÞ þ pk
15: else
16: pðk; cc0; tÞ ¼ �1
17: end if
18: pðk; cc0; tÞ ¼ maxftemp1; temp2; temp3g
19: end if
20: end for
21: end for
22: end for
23: retP ¼ maxfpðn; c; UÞg
24: Find the set of selected VMs S in the recursion function

with a backward search.
25: end for
26: return (retP; S)

5.3 Transforming from Fractional Solution to
Integral Solution

Now we transform the optimal solution of FCSC problem to
be a feasible solution of the CSC problem without losing
much performance. Recall that in FCSC problem, it allows
the VMs to be divisible when they are assigned to PMs.
Therefore, we need to transform the fractional solution to be
the (integral) solution of CSC problem.

The main difficulty lies in the fact that the transformation
may result in the utilization of more than m PMs and more
than U units of power-on time. The transformation idea is
based on the fact that the optimal allocation for FCSC prob-
lem fully occupies the addresses in ½1; sfopt�, as stated in
Lemma 4, which can be used to control the usage in the
number of PMs that is needed for transformation.

Thus, we use m PMs and U units of power-on time to
recover the fraction solutions that uses bm2c PMs and bU2c
power-on time. For the ease of discussion, we only discuss
the case that U

2 ;
m
2 are integers since the flooring operation

does not affect the constant approximation of the algorithm.
Let OPT ðFCSC; J; U2 ; m2 Þ be the optimal solution of FCSC

problem with the input of U
2 power-on time and m

2 PMs.
According to Lemma 5, all VMs fractionally assigned to
PMs in OPT ðFCSC; J; U2 ; m2 Þ are allocated to at most two
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PMs. Thus, we can assign the PMs in OPT ðFCSC; J; U2 ; m2 Þ
one by one in the order of non-increasing length and acti-
vate at most twice of the PMs to integrally assign all these
VMs. More details can be found in Algorithm FRP�.

In terms of the time complexity of Algorithm FRP�, com-
puting the optimal solution OPT ðFCSC; J; U2 ; m2 Þ would cost
Oðm2nUV 2Þ time when calling Algorithm FRACTIONALCSC,
while allocating the VMs chosen by FRACTIONALCSC would
cost at most OðnmÞ time. Thus, the running time of Algo-
rithm FRP� is Oðm2nUV 2Þ. Fig. 3 demonstrates an exem-
plary solution returned by Algorithm FRP�.

According to Lemma 4, the algorithm for FCSC problem
finds the optimal allocation that fully occupies addresses in
½1; sfopt� and a VM with larger length occupies lower
address. Thus, activating twice the number of PMs and
power-on time used in FRACTIONALCSC(J; U2 ;

m
2 ) is enough to

get an integral solution, which satisfies the PM constraints
and power-on time constraints in the time-constrained CSC
problem. Hence, it further satisfies the power constraint of
the original CSC problem since using U units of power-on
time implies that the total power used is at most U units of
(peak) power. Therefore, the algorithm outputs a feasible
solution for CSC problem.

Algorithm 3. FRP�(V; J;m)

1: (p; S) ¼ FRACTIONALCSC(J; U2 ;
m
2 )

2: sort VMs in S by their length in a non-decreasing order
3: for all ĵ in S do
4: if VM ĵ is fractionally selected then
5: let VM j be theVMwith full demand corresponding to ĵ.
6: else
7: j ¼ ĵ
8: end if
9: if VM j can be put into the current PM then
10: put VM j into the current PM
11: else
12: activate a new PM and put VM j into the new PM
13: end if
14: profit ¼ profitþ pj
15: end for
16: return profit

Based on the the discussion above, we further prove the
constant approximation of Algorithm FRP� by applying the
upper bound established in Lemma 4.

Theorem 3. Algorithm FRP� is 4
a
-approximation for CSC prob-

lem, i.e., approximately within 5.7-8 times of the optimal solu-
tion with typical idle power a 2 ½0:5; 0:7�.

Proof. The profit achieved in Algorithm FRP� is no less than
that of OPT ðFCSC; J; U2 ; m2 Þ since all VMs selected in
OPT ðFCSC; J; U2 ; m2 Þ are executed. That is, FRP�ðJ; U;mÞ �
OPT ðFCSC; J; U2 ; m2 Þ. Obviously, we have OPT ðFCSC; J;
U
2 ;

m
2 Þ � 1

4OPT ðFCSC; J; U;mÞ because the input VMs are
the same and the input parameters are scaled by a factor of
2.Moreover, assuming thatOPT ðCSCc; J; U;mÞ is the opti-
mal solution of the time-constrained CSC problem, then
OPT ðFCSC; J; U;mÞ � OPT ðCSCc; J; U;mÞ according to
Lemma 4. Therefore, it is true that FRP�ðJ; U;mÞ � OPT
ðFCSC; J; U2 ; m2 Þ � 1

4OPT ðFCSC; J; U;mÞ � 1
4OPT ðCSCc; J;

U; mÞ. Let OPT ðCSCÞ be the optimal profit of CSC prob-
lem. Applying similar proof in Theorem 1, we can further
derive that OPT ðCSCc; J; U;mÞ � aOPT ðCSCÞ. Thus,
FRP�ðJ; U;mÞ � a

4OPT ðCSCÞ and FRP� is 4
a
-approxima-

tion. tu

5.4 Combining the Results

As what is shown above, Algorithm FRP� has a constant
bound in terms of worst-case performance. In order to fur-
ther enhance its practical significance, we combine it with
BRP� that has a good average performance in general, so as
to achieve both good average performance and theoretically
worst-case bounded performance. The method is to simply
run these two algorithms once and return the one that
achieves higher profit. Algorithm CSC-SCHEDULE presents
the final algorithm.

Algorithm 4. CSC-SCHEDULE(V; J;m)

1: profit1 = BRP�(V; J;m)
2: profit2 = FRP�(V; J;m)
3: returnmaxfprofit1; profit2g

Obviously, CSC-SCHEDULE has the same constant approxi-
mation ratio as FRP�, thus its worst-case performance is
well-bounded.

6 SIMULATION RESULTS

The theoretical analysis has verified the worst-case perfor-
mance bounds of the algorithmproposed in this paper. In this

Fig. 3. An example showing the results returned by Algorithm FRP� where U is set with U ¼ 2ðd3 þ d6Þ and the profit of each VM/rectangle is equal to
the size of its area. (a) All VMs sorted by length, as the input of the dynamical programming algorithm FRACTIONALCSC. (b) A solution returned by
Algorithm FRACTIONALCSC(J; U2 ;

m
2 ) using

U
2 units of power-on time and m

2 PMs, which is the optimal solution of the fractional time-constrained CSC

problem, OPT ðFCSC; J; U2 ; m2 Þ. (c) Solution returned by FRP�(V; J;mÞ, which is a feasible solution of CSC problem transformed from

OPT ðFCSC; J; U2 ; m2 Þ using at most U units of power-on time andm PMs.
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section, we perform simulations for the algorithm to further
validate its average performances over the achievable profit.

No prior works have addressed the service continuity
problem studied in this paper, thus we compare our algo-
rithm with the natural greedy schedule mentioned in
Section 4. Furthermore, we compare the performance of our
algorithm with the optimal solution. Since computing the
optimal solution for the CSC problem is NP-hard, we com-
pare the performance of CSC-SCHEDULE with the upper
bound of the optimal solution, denoted as OPT_UB, which
is obtained by relaxing the ILP formulation to be LP formu-
lation with xij 2 ½0; 1�. Since no real-trace has provided a
dataset similar to that of the continuity maintenance prob-
lem with VM requirements considered in this paper, we
consider random input of VMs in our simulations.

In the simulation, we set the power-restored time
T ¼ 100(min). We assume that there are m ¼ 100 homoge-
neous PMs, each with 32 CPU cores. Each PM with full utili-
zation would consume one (normalized) unit of energy per
minute. We set the power budget to be U ¼ 5;000. The dead-
line of each VM is assumed to be a random number in ½1; T �.
The demand of each VM (number of CPU cores requested) is
assumed to be an integer randomly ranging in ½1; 32�. The
profit of the VMs is uniformly generated from ½1; 100�. The
parameters of the power consumption function are set with
a ¼ 0:5;m ¼ 1. a) Impact of the Number of VMs. Fig. 4a
shows the change in the profit achieved by different sched-
ules when the number of VMs increases in the range of
½50; 500� with a step of 20. The curves are generated by
increasing the number of VMs, where each point on the
curves of the results is generated in a single run. Generally,
the profit of the algorithms increases with the number of
VMs. The profit achieved by our algorithm CSC-SCHEDULE is
much higher (up to 25 percent) than the greedy schedule.
Moreover, we can see from the figure that the profit achieved
approaches that ofOPT_UB (within 80 percent), thus is even
closer to the optimal solution.

Fig. 4b illustrates the amount of power used by different
scheduleswhen the number of VMs varies. At the beginning,
the power used by CSC-SCHEDULE (and Greedy) increases
with the rise of the number of VMs and then reaches the limit

U ¼ 5;000 with n � 150, where U becomes the bottleneck,
whileOPT_UB almost always uses up the energy since it can
produce fractional (but maybe infeasible) solutions. We can
see from Figs. 4a and 4b that the profit achieved by the three
schedules are nearly the same before the available power
becomes the bottleneck, and after that, the profit achieved
differs much for the three schedules. 2) Impact of the Num-
ber of PMs. Fig. 5a shows the profit achieved by the three
schedules when the number of PMs varies. In this scenario,
the number of PMs m 2 ½10; 200�, the number of VMs
n ¼ 500, and the amount of power-on time U ¼ 5;000. The
profit obtained by CSC-SCHEDULE is about 20-40 percent
higher than that of the greedy schedule. Moreover, it
achieves a profit close to (within 75 percent) that ofOPT_UB,
thus even approaches that of the optimal solution. The profit
of the algorithms increases with the number of PMs and
becomes stable whenm � 110.

Fig. 5b shows the amount of power consumed by differ-
ent schedules when the number of PMs varies. The trends
of lines in this figure are similar. The amount of power
used increases when m � 100 and becomes stable after that
because all schedules almost use up the energy. We can
see from Figs. 5a and 5b that the profit achieved by CSC-
SCHEDULE and Greedy becomes stable when the available
power is used up.

The simulations above have demonstrated the good aver-
age performance on maximizing the profit of our proposed
algorithm. In Table 1, we further compare the time complex-
ity of the algorithms. Although the greedy algorithm runs
fastest (with Oðn 
maxflogn;mgÞ time) due to its greedy
nature, it achieves 25 percent less profit in providing service
continuity than CSC-SCHEDULE does, as demonstrated in the
simulation results above. The running time of CSC-SCHEDULE

depends on the maximum one between BRP� and FRP�.

Fig. 4. (a) Profit achieved when the number of VMs varies. (b) Amount of
energy consumed when the number of VMs varies.

Fig. 5. (a) Profit achieved when the number of PMs varies. (b) Amount of
energy consumed when the number of PMs varies.

TABLE 1
Time Complexities of the Algorithms

BRP� FRP� CSC-SCHEDULE Greedy

OðmnVT Þ Oðm2nV 2UÞ OðmnV 
maxfT;mVUgÞ Oðn 
maxflogn;mgÞ
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Algorithm BRP� runs in OðmnVT Þ time, while Algorithm
FRP� runs in Oðm2nV 2UÞ time. In our simulation, we found
that around 98 percent of the solutions returned by Algo-
rithm BRP� have higher profit that of FRP�. Thus, in prac-
tice, we can just return the solution of BRP� as the final
solution of CSC-SCHEDULE to significantly reduce its running
time to be OðmnVT Þwithout losing much profit.

Combining with the theoretical bound derived for the
worst-case performance, these together verify the efficiency
of our proposed algorithm.

7 FUTURE WORKS AND CONCLUDING REMARKS

In this paper, we introduce and theoretically study the
scheduling problem to maintain cloud service continuity
with maximum profit under power shortage. We develop
efficient scheduling algorithms with theoretical guarantees/
small approximation ratios to maximize the profit of VMs of
which the service continuity requirements are satisfied.

This work has conducted a theoretical study on how to
provide service continuity under power outage. Our theo-
retical study can shed some light on the service continuity
strategy design under power shortage. In our preliminary
study, we focus on the resource of CPUs and vCPUs consid-
ering that the CPU usage takes up significant share of power
needed. In future works, it is worth extending the study to
the case with multiple types of resources. Although the
basic algorithmic idea introduced in this paper can be
extended to be adaptive to the multi-resource scenario,
however, it is quite challenging to develop algorithms with
theoretical performance guarantee since there exist multiple
capacity constraints with respect to the multiple types of
resources. Thus, we would like to leave it as an open prob-
lem and study it in future work.
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Research on the Architecture and its
Implementation for Instrumentation

and Measurement Cloud
Hengjing He , Wei Zhao , Songling Huang , Geoffrey C. Fox, and Qing Wang , Senior Member, IEEE

Abstract—Cloud computing has brought a new method of resource utilization and management. Nowadays some researchers are

working on cloud-based instrumentation and measurement systems designated as Instrumentation and Measurement Clouds (IMCs).

However, until now, no standard definition or detailed architecture with an implemented system for IMC has been presented. This paper

adopts the philosophy of cloud computing and brings forward a relatively standard definition and a novel architecture for IMC. The

architecture inherits many key features of cloud computing, such as service provision on demand, scalability and so on, for remote

Instrumentation andMeasurement (IM) resource utilization andmanagement. In the architecture, instruments and sensors are

virtualized into abstracted resources, and commonly used IM functions are wrapped into services. Users can use these resources and

services on demand remotely. Platforms implemented under such architecture can reduce the investment for building IM systems

greatly, enable remote sharing of IM resources, increase utilization efficiency of various resources, and facilitate processing and

analyzing of Big Data from instruments and sensors. Practical systems with a typical application are implemented upon the architecture.

Results demonstrate that the novel IMC architecture can provide a new effective and efficient framework for establishing IM systems.

Index Terms—Architecture, cloud computing, distributed computing, instrumentation and measurement cloud, parallel processing,

power system state estimation, cloud service

Ç

1 INTRODUCTION

SINCE instrumentation and measurement (IM) technology
is closely combined with information technology, devel-

opment in information technology (IT) can lead to the
advance of IM technology. In the early stages, computers
were used to control instruments and sensors for local data
acquisition and analysis. Later on, virtual instrumentation
technology was developed and many of the functions that
were implemented by hardware in instruments can now be
achieved by computer software. With the development of
networks and the internet, remote instrumentation and
measurement (RIM) emerged as a new technology in IM
field [1]. Such RIM technology has brought many benefits to
related areas, especially to those areas that involve large dis-
tributed systems [2]. It can greatly facilitate instrument con-
trol and data acquisition and processing. Additionally, new
computing paradigms, such as grid computing, can be inte-
grated into IM technology to further improve the ability for

data processing, and resource sharing and management of
distributed IM systems [3]. Grid-enabled instrumentation
and measurement system (GEIS) is a typical type of those
systems. GEIS brings many advantages to data intensive IM
applications and heterogeneous IM resource management.
However, due to some limitations of grid computing, IM
systems that integrate a grid are eventually not widely
adopted in practical use.

Currently, most IM systems are built upon local architec-
ture or traditional client/server (C/S) architecture as
explained in [4]. In a local IM architecture, such as the main
architecture of the NI LabVIEW platform, instruments and
sensors are connected directly to the computer and it is dif-
ficult to build large IM systems. As for C/S architecture,
instruments and sensors simply provide remote access
interfaces through gateway servers to clients. However,
both architectures require the user to build the entire IT sys-
tem and to maintain all resources. Thus, there has to be a
great investment in building the whole IM system and,
besides, system stability, scalability and fault tolerance can
be serious problems for both architectures. Moreover, to sat-
isfy resource requirement for peak and valley load, the IM
system should be built according to the peak load at the
very beginning and, even if the load drops, the system can-
not scale down accordingly. Therefore, the utilization rate
of resource in the IM system can be quite low, especially for
those systems with great load dynamics. In addition to the
problems mentioned above, large amounts of data collected
from various devices need much more powerful computing
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resources for processing and analyzing, and traditional
computing paradigms may be incapable of dealing with
such scenarios.

In recent years, the emergence of cloud computing has
brought many new approaches for resource utilization and
management [5]. Cloud manages all resources as a resource
pool and provides those resources as online services to end
users according to their demand. Such modes can greatly
increase the utilization efficiency of resources and, at the
same time, save the investment of users on both hardware
and software resources [6]. Moreover, big data processing
and analysis technologies developed along with cloud com-
puting make data analysis much easier and faster in the IM
field [7]. Motivated by these benefits, many researchers are
exploring novel cloud based IM technologies to solve the
problems above [8]. Until now, most of the work carried out
in the interdisciplinary area of IM and cloud computing
mainly focuses on the application of cloud computing in IM
systems, which can only deal with a few aspects of related
problems. Little research has been carried out to build novel
IM modes and architectures that can inherit the essence of
cloud computing for IM systems.

This paper introduces a novel IMC architecture with
detailed system implementations. The architecture abstracts
instruments and sensors into resources, and encapsulates
frequently used modules and functions into services. Serv-
ices are deployed in the cloud and users can consume these
services on demand. IM applications are also deployed and
run in the IMC platform. All IT resources are allocated and
managed by the IAAS (Infrastructure as A Service) cloud
platform, which will reduce investments for users and also
increase resource utilization efficiency. By integrating cloud
computing and big data processing technologies, IMC can
benefit a lot from advantages such as system scalability,
fault tolerance, distributed and parallel computing, and so
on. An actual system based on this architecture is imple-
mented using various cloud computing and big data proc-
essing frameworks. Applications and experiments are
designed to test the system. Results show that the IMC
architecture designed in this paper can properly integrate
cloud computing with IM technologies and greatly facilitate
building, managing and using IM systems.

The remainder of this paper is organized as follows:
Section 2 presents related work; Section 3 introduces key
concepts of IMC; Section 4 describes the detailed IMC archi-
tecture designed by this paper; Section 5 illustrates the
implementation of the architecture; Section 6 provides some
applications and tests over the IMC system; Section 7
discusses challenges and limitations of IMC; and finally,
Section 8 concludes the whole paper.

2 RELATED WORK

Most of the work related to IMC mainly focuses on the fol-
lowing areas: Grid-enabled instrumentation systems (GEIS)
[9], sensor clouds [10] and instrumentation clouds [11].

GEIS mainly focuses on converting instruments into grid
services [12], so that heterogeneous instrumentation resour-
ces can be accessed and managed through a grid, which
can facilitate data intensive applications to use various
grid resources and provide distributed instrumentation and

experiment collaborations over the grid [13]. In GEIS, instru-
ments are abstracted into unified services through middle-
ware technologies and standard models. Typical GEISs
include Instrument Element [14] architecture from the
GridCC project, common instrument middleware architec-
ture [15], e-infrastructure for remote instrumentation from
the DORII project [3] and virtual laboratory architecture [16].

Although GEIS provides a good way for distributed
instrumentation and collaborative experiments over the
grid, limitations of grid computing, such as complexity, con-
strained accessibility and so on, prevented it from prevailing
among scientific and industrial areas. However, some of the
research work in GEIS, regarding common aspects, can
guide the study of IMC. Data retrieval and transmission
approach in distributed IM systems is an important one of
those aspects. Through comprehensive research, [12] and
[17] demonstrated that publish/subscribe mechanisms are
more efficient for real-time data collecting and transmitting
in a distributed IM environment. Thus, in the work of this
paper, a message-based publish/subscribe mechanism is
adopted as the information and data disseminationmethod.

Just like IMC, sensor cloud is also a very new concept. In
[18] a sensor cloud infrastructure is developed and physical
sensors are abstracted into virtual sensor objects. Such vir-
tual sensor objects combined with related sensor definition
templates can provide measurement services to end users.
Besides, service and accounting models are designed, which
makes the sensor cloud infrastructure conform to the phi-
losophy of cloud computing. Another project working on
cloud-based sensing systems is S4T (Stack4Things) [19].
This project is the base for the #SmartME [20] project, which
mainly focuses on morphing a city into a smart city. The
S4T project is trying to build up a cloud platform for manag-
ing a large number of sensors and actuators deployed in a
distributed environment. One of the main ideas of the S4T
project is virtualizing sensors and actuators into abstract
resources similar to those resources in cloud computing and
providing sensing and actuating services through the S4T
platform. Thus, the S4T platform is also viable for building
a sensor cloud but it is more focused on building a cloud on
the edge of a sensor network. Some other researchers also
use the terminology ‘sensor cloud’, but most of them only
concentrate on the application of cloud computing technol-
ogy in sensor control and management [21], [22], [23], [24].
Sensors are much simpler than instruments, however they
can also be treated as instruments, only with less functions.

Current studies of instrumentation clouds only bring for-
ward conceptual models and architectures with few details
or implementations provided [11], [25], [26]. Some other
research work is mainly about applications of cloud com-
puting in massive data storage and processing [27], [28],
[29], which, as explained before, only provide solutions for
a few of the problems faced by current IM systems.

Compared with the above research, the work of this
paper has the following advantages: (1) the IMC platform
developed in this paper is more open and easier to access
than GEIS; (2) the IMC platform can manage both sensors
and instruments, and provide commonly used IM functions
as on-demand, scalable services to end users; (3) the IMC
system implemented according to the IMC architecture in
this paper is a real cloud platform for the IM field, rather
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than just an application of cloud computing technologies in
the IM field. All these advantages are achieved by adopting
a cloud-based resource management and usage mode, and
using state-of-the-art technologies from cloud computing
and big data fields. Details will be presented in the follow-
ing sections.

3 INSTRUMENTATION AND MEASUREMENT CLOUD

Currently, no standard definition for IMC is presented. This
section brings up a relatively standard definition for IMC
and related elements by adopting key ideas of cloud com-
puting in the IM field.

3.1 Definition of IMC

The key ideas of cloud computing are: resource abstraction
and virtualization, services delivered on demand, and scal-
ability [30]. Owing to these ideas, cloud computing can pro-
vide scalable, on-demand hardware and software resources
remotely. As introduced in Section 1, traditional IM systems
and modes do not own such advantages. To inherit these
merits, it is necessary to integrate cloud computing and
related big data technologies into IM field, and establish a
novel Instrumentation and Measurement Cloud (IMC).
Based on our previous work [31], a definition for IMC is
brought forward below:

Definition 1. Instrumentation and Measurement Cloud(IMC)
is a model, based upon cloud computing and big data frame-
works, for enabling on-demand, convenient, ubiquitous net-
work access to a shared pool of Instrumentation and
Measurement(IM) resources(e.g., instruments, sensors, actua-
tors) and services that can be rapidly provided and released
with minimal interaction with resource provider and end user.

From Definition 1, it can be seen that IMC contains two
direct entities, resource and service, and a third hidden
entity which is the IM application designed by users. To dis-
tinguish these entities from similar concepts in the tradi-
tional IM field, IMC resource, IMC service and IMC
application are used to feature these three entities of IMC.
In this paper, IMC resource, IMC service and IMC applica-
tion are also called IMC elements in general.

3.2 Definition of IMC Resource

Definition 2. Instrumentation and Measurement Cloud
resource stands for virtualized instrument, sensor or actuator
resources that are connected to IMC through the network for
online sharing and management.

As can be seen from the above definition, computing resour-
ces are not included in IMC resources. The reason why we
define IMC resource this way is that computing resources,
such as the CPU, storage and the network, are managed
and provided by cloud computing frameworks of IMC,
and, to IMC, they play the role of service.

Unlike computing, storage and networking resources,
instruments and sensors have heterogeneous software and
hardware architectures, which means it is very difficult to
virtualize them into a unified resource pool and at the same
time keep their full features. However, thanks to virtual
instrumentation (VI) technology and standard sensor mod-
els, many of the modern instruments and sensors can

provide unified access interfaces. However, such interfaces
are designed just for local drivers. To virtualize those IM
devices into IMC resources, interface remapping through
the network is required. Generally, there are two ways to
remap the interfaces, as shown in Fig. 1.

Fig. 1a shows a software interface remapping scheme
using the remote procedure call (RPC) approach. Such a
scheme is more data-oriented, since it mainly focuses on
manipulating data exchanged between physical devices
and up-level applications. This method is easier but less
flexible. For different VI frameworks or sensor models, cor-
responding RPC modules should be developed.

The second method, illustrated in Fig. 1b, remotely maps
physical interfaces, such as USB [32], RS-232, GPIB and many
others, to the cloud side, thus IM device connections to those
interfaces will be forwarded to the cloud. Physical interface
remapping is a device-oriented design which is more con-
cerned about the device itself rather than the data generated
from the device and it supports full features of the device.
However, implementation of this method is much more diffi-
cult, especially for high-speed interfaces such as PCIE, than
that of the software interface remapping approach. Further-
more, in this method, each IMC resource should be attached
to a VM in the cloud. An IM system based on physical inter-
face remapping is more like a traditional IM system. Unless
there are special requirements, it is better to use software
interface remapping for IMdevice virtualization.

3.3 Definition of IMC Service

Definition 3. Instrumentation and Measurement Cloud service
stands for online, scalable, shared IM functions, cloud comput-
ing resource services and big data processing services that can
be consumed through IMC by IMC applications on demand.

The definition of IMC service is close to the concept of SAAS
(Software as a Service) in cloud computing [33]. In IMC,
commonly used IM functions are encapsulated into online
services. Users can consume those services on demand and
all those services are running in IMC. When consuming
IMC services, users just need to send data to input interfaces
of IMC services and retrieve results from output interfaces.

3.4 Definition of IMC Application

Definition 4. Instrumentation and Measurement Cloud applica-
tion is the application program that consumes IMC resources
and IMC services, and carries out custom logics to fulfill user
defined IM tasks.

Fig. 1. Remote instrument or sensor interface remapping.

946 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2020



Although the IMC platform can provide remote access to
IMC services and IMC resources, it still requires the user
to organize those services and manipulate related resources
to carry out specific IM tasks. Since most of the computa-
tion-intensive data processing procedures can be imple-
mented into IMC services deployed in IMC platforms, IMC
applications are normally light-weighted. By developing
web-based online IDE (Integrated Development Environ-
ment), IMC can provide PAAS (Platform as a Service) serv-
ices to users, so that end users can develop, deploy and run
IMC applications online through a web browser. In this
case, building a distributed IM system will be much easier,
since all IM resources and commonly used IM functions can
be obtained online through IMC.

3.5 Instrumentation and Measurement Mode
in the IMC

The instrumentation and measurement mode in the IMC
can be depicted as in Fig. 2.

In Fig. 2, there is an IMC user, an IMC administrator and
an IMC resource owner. The IMC user normally consumes
IMC resources and IMC services, and develops IMC appli-
cations to carry out IM tasks. The IMC administrator is
responsible for building and maintaining the IMC platform.
All IMC resources are provided and maintained by IMC
resource owners. While IMC services can be developed by
any of them, it is the IMC administrator’s responsibility to
check the quality of services and decide whether to deploy
and publish them or not. As shown in Fig. 2, with a web-
based user interface and access control, IMC users can
request IMC resources and IMC services, and develop IMC
applications online. By deploying IMC applications in the
IMC platform, IMC users no longer need to invest in, estab-
lish and maintain the whole ICT (Information and Commu-
nication Technology) system for their IM tasks. Instead,
they can use resources and services provided by the IMC
platform according to their need.

The above definitions have clarified the basic function
requirements and characteristics of IMC. In the following
section, a novel IMC architecture, which owns the above
important characteristics, will be presented.

4 NOVEL ARCHITECTURE FOR INSTRUMENTATION

AND MEASUREMENT CLOUD

The overall IMC architecture designed in this paper is
shown in Fig. 3. This architecture mainly consists of six
parts, which are coordination system, message broker, IMC
resource agent, IMC service pool, IMC application executor
and IMC manager. Details of each part will be presented
in the following sections.

4.1 Coordination System and Message Broker

The Coordination system records all configuration data and
management data of living IMC services, IMC resources
and IMC applications. As the IMC architecture in Fig. 3 is
distributed, the coordination system should have a distrib-
uted synchronization mechanism for data manipulation.
The coordination system should also support event notifica-
tion, so that events from the three IMC elements can be dis-
covered across the architecture and corresponding actions
can be taken.

The message broker is the core component for data trans-
mission. Data exchanges between IMC applications, IMC
services and IMC resources are mainly achieved by the mes-
sage broker. As illustrated in Section 2, the effective and effi-
cient way to transmit data in a distributed environment is
via a publish/subscribe based messaging mechanism, thus
a publish/subscribe based message broker is a good choice
for data transmission in IMC. To transmit data over the
message broker, a related client of the message broker
should be integrated into IMC elements.

4.2 IMC Resource Agent

The IMC resource agent is responsible for instrument and
sensor virtualization and IMC resource registration.

As illustrated in Section 3.2, instruments and sensors can
be virtualized through VI frameworks and standard sensor
models. By virtualization, instruments and sensors are
encapsulated into IMC resources with standard access inter-
faces. Assisted by RPC frameworks, these interfaces can be
called remotely from IMC applications in the cloud, which
will bring much convenience for building distributed IM
systems.

Once virtualized, these IM resources can be registered
into IMC by the IMC resource agent, so that users can use
them over networks. To use IMC resources, users should
first make a reservation for each resource through the IMC
manager. After reservation, an access id with start and end
time stamps will be allocated to IMC applications and the
IMC resource agent, and also, the entry of the resource,
such as the URL of the IMC resource agent, will be sent to
IMC applications. When IMC applications want to access
the reserved resources, first, they will have to send the

Fig. 2. Instrumentation and measurement mode in the IMC.

Fig. 3. Novel architecture for IMC.
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access id to the IMC resource agent through that entry, and
the IMC resource agent will then check if it also has the
same access id and whether the current time is between
the reserved time span. If all requirements are satisfied, the
IMC resource agent will allocate a resource handler for
the IMC application and allow the IMC application to use
the IMC resource through RPC interfaces for instrumenta-
tion and measurement tasks.

The complete procedure for registering and using IMC
resources in the IMC is depicted through the UML activity
diagram shown in Fig. 4.

4.3 IMC Service Pool

In IMC, services represent modularized function blocks
implemented in big data analyzing and cloud computing
frameworks. Such IMC services include stream data proc-
essing modules, batch processing modules and other
function modules. IMC services are normally developed
and deployed in parallel with distributed big data proc-
essing platforms. Each type of service can serve multiple
IM applications and the platform or framework running
these services will provide scaling, parallel processing
and fault tolerance abilities. Services and applications in
IMC are connected by a publish/subscribe based message
broker.

The message broker is used to transmit data between
IMC services, IMC resources and IMC applications. Cur-
rently, many message brokers support clustering, which
means brokers can support fault tolerance. However, over-
heads from message headings and message routing can
degrade data transmission performance. To deal with this
problem, some message brokers support light message
headings and a simple message routing scheme. This can
increase message processing and transmission speed, but at
the same time reduce flexibility and functionality of the bro-
ker. Other brokers can provide more flexible control over
message transmission and fault tolerance by adding extra
information to messages, but this will bring more over-
heads. IMC service providers should choose the broker
according to their needs.

All services in IMC should register themselves through
the IMC manager. When registering, the IMC manager will
create data entries for each IMC service in the coordination
system and write management data of services into those
entries. Normally, each IMC service has several input and
output interfaces. For input interfaces of a service, the IMC
manager will write message broker topics to which they are
listening to their data entries and, if IMC applications are to
consume this service, they can get those topics through the
IMC manager and then publish messages to those topics. To
get processed data from the IMC service, IMC applications
need to write topics to which their sink modules are listen-
ing to data entries of the service’s output interfaces.

As for stream data processing services, each of them has
several input and output interfaces. Input interfaces will lis-
ten to dedicated message topics and, as for output interfa-
ces, they will watch on a cache that stores destination
message topics for outputting data.

For batch processing services, file systems and databases
constitute the data sources. In most cases, batch processing
is an off-line post-processing approach, but IM systems
normally deal with real-time stream data; thus, batch-proc-
essing services will not be studied in this paper. However,
batch-processing services are still indispensable to the
whole IMC architecture.

To enable the parallel and distributed computing para-
digm and enhance the ability of fault tolerance for IMC
services, three key roles should be followed when develop-
ing IMC services:

1. Reduce coupling and dependency between data.
Only in this way can the service be implemented in a
parallel computing paradigm.

2. Make data self-descriptive. This is very important for
multiple IMC applications to share the same service
instance.

3. Try to avoid state caching for IMCapplications in serv-
ices and use dedicated memory cache systems. Most
distributed and parallel cloud computing frameworks
support fault tolerance. It means that when some proc-
essing nodes go down, the system can still run in a nor-
mal state by shifting tasks to other nodes. However, if
those nodes cached states of IMC applications that
they serve, all these states will be lost and restoring the
service process can be difficult, especially for stream-
ing processing applications. Moreover, avoiding state
caching in service instances can facilitate online load
transfer, which is vital to load balancing.

4.4 IMC Application Executor

The IMC application executor is responsible for running
IMC applications that are deployed in the IMC. It often con-
sists of a script interpreter or runtime engine. By deploying
IMC applications into IMC, users can save the trouble of
maintaining the client side. With proper user interfaces,
users can access their IMC applications even through
mobile terminals.

4.5 IMC Manager

The kernel of the whole architecture is the IMC manager.
The IMC manager contains four main components: the

Fig. 4. Steps required for registering and consuming IMC resources
in the IMC.
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resource manager, the service manager, the application
manager and the scheduler. All IMC resources, IMC serv-
ices and IMC applications are registered and managed by
the corresponding component of the IMC manager. Fig. 5
shows how the IMC manager works.

As shown in Fig. 5, when registering IMC resources, the
resource manager will create a data entry for each IMC
resource and store their management data. Under a RPC
framework, management data often contains the URL of the
resource side RPC server. Another data entry that caches all
reservation information of the IMC resource is also created
upon registration. Such reservation information will also be
sent to the IMC resource agent for authorization purposes.
A similar process happens when the service manager is reg-
istering services. However, the service manager mainly
maintains management data about interfaces of each ser-
vice. Service and resource requests from IMC applications
are processed by the application manager. When IMC appli-
cations request services or resources, the application man-
ager will query the coordination system, get all related
management data and send these data back to applications.
At the same time, some of the message broker’s context of
sink modules in IMC applications will be written into data
entries to which output interfaces of services are listening.

The tasks of the scheduler are IMC resource and service
scheduling, load balancing and scaling of IMC services.
When an IMC application requests IMC resources, the sched-
uler will call related algorithms to calculate a valid time span
for each IMC resource and make reservations. Load balanc-
ing and service scaling is done by online load transfer and
scaling the cluster that runs the service. However, online
load transfer needs the support from both the framework
that runs the IMC service and the IMC service itself.

Whenever an IMC application is registered in the IMC,
the IMC application manager will record all consumed serv-
ices and resources. If the state of services or resources
changes, an event will be sent to the application manager to
trigger the state transition process of the IMC application.
In addition, a change of the IMC application state can trig-
ger state transition of related IMC resources. State transition
models for IMC service, IMC resource and IMC application
in IMC are shown in Fig. 6.

Fig. 6 shows only very basic state transition models for
the IMC architecture; however, implementation of the IMC
architecture will need detailed models to handle situations
that are more complicated.

To demonstrate the feasibility and advantages of the IMC
architecture brought forward by this paper, a practical sys-
tem implemented upon this architecture is presented.

5 IMPLEMENTATION OF THE IMC ARCHITECTURE

5.1 Coordination System and Message Broker

The coordination system is used to record important config-
uration data and management data about IMC resources,
IMC services and IMC applications in the IMC. Here, Zoo-
keeper, which is a distributed coordination system with
fault tolerance ability, is utilized to store various data. Zoo-
keeper uses a data structure called Zookeeper path that is
similar to the directory of a file system and where each
node of a path can store data.

Various message brokers can be used in the IMC and, in
this paper, Rabbitmq is adopted just for demonstration.

5.2 VISA Based IMC Resource Agent

First, to verify that the architecture is viable for instrument
and sensor virtualization, a Virtual Instrument Software
Architecture (VISA) based IMC resource agent is imple-
mented. The agent uses Apache Thrift RPC framework and
all VISA driver interfaces are remotely mapped. Since Thrift
supports cross language service development, it is also
used as the service framework between all servers and cli-
ents in the IMC. Fig. 7 shows the details of the implemented
IMC resource agent.

As shown in Fig. 7, instrument resources are registered
through IMC resource management RPC services, which
are implemented in the Thrift framework. To access the
instrument, each IMC resource agent needs to run a VISA
RPC server and it wraps all VISA driver interfaces. How-
ever, those interfaces are extended to include a third param-
eter, which is the access ID. Such access ID contains both
the name of the IMC resource and the reserved time span.
The IMC resource agent will also store a set of <access ID,
VISA instrument resource> maps and these maps are built

Fig. 5. Details of IMC manager.

Fig. 6. State transition models of IMC service, IMC resource and IMC
application in IMC. In the figure events are: e0-add element, e1-register,
e2-unregister, e3-reserve, e4-cancel reservation, e5-resource invalid,
e6-resrouce available, e7-resource expired, e8-application invalid, e9-
application start, e10-service invalid, e11-application terminated, e12-
destroy element.

Fig. 7. Implementation of the IMC resource agent.
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up when IMC applications request IMC resources managed
by this IMC resource agent.

Once the IMC application in the IMC needs to control an
IMC resource, it will make a remote call with the access ID.
On the IMC resource agent side, the agent will get the corre-
sponding VISA instrument resource through this ID and
call a local VISA instrument driver to control the instrument
and then return the result to the IMC application. To make
the agent as independent with OS platforms as possible,
pyvisa, which is a python implemented frontend of VISA
driver, is used as the VISA resource manager. Although
instruments and sensors are diverse in their hardware archi-
tectures and software interfaces, the similar implementation
method can be applied to virtualize them into an IMC
resource as long as their interfaces are available.

As for IMC resources, the Zookeeper data paths used to
record their information are shown in Fig. 8. The /instcloud/
resources path is the root path for IMC resource manage-
ment. When registering an IMC resource, the resource man-
ager of the IMC manager will create a data path according
to the domain, site and the resource name. Here domain
and site are used to constitute a two-level naming conven-
tion so that resource management can be more convenient
and flexible. Whenever a reservation is made for an IMC
resource, a duration node with a start and an end timestamp
will be added as a child to the resource node as long as the
reservation is valid. The IMC resource manager will listen
to such child-adding event and call the PRC client to acti-
vate the IMC resource.

5.3 Storm Based IMC Service for Stream Data
Processing

The next stage is to implement IM services. As explained
before, IM tasks normally need to process real-time stream
data, thus a stream data processing engine is required and
related IM function modules need to be developed. In the
work of this paper, Apache Storm [34] is used as the real-
time stream data processing engine. Storm is a distribute
parallel stream data processing engine, whose maximum
processing speed can reach around 1 million messages per
second, with fault tolerance ability. Storm contains two
types of components, which are Spout and Bolt. Spout is the
data source and it can be connected to a message broker to
subscribe message topics. Bolt is the process component.
Spouts and Bolts compose a Topology, which carries out the
stream data processing logic. Each Spout or Bolt can run
multiple instances so that they can process data in parallel.
In the IMC, topologies are wrapped into IMC services, with
certain Spouts functioning as input interfaces and some
Bolts as output interfaces. Fig. 9 presents a simple example
for computing electrical power to show how services in the

IMC interact with IMC applications and the IMC manager
in the cloud.

In Fig. 9, input interfaces of an IMC service are imple-
mented by instances of IMCSpout class, which is an
extended Spout class with a service management RPC cli-
ent. When an IMC service is submitted, each IMCSpout
instance will register the context of the message topic that
this IMCSpout is listening to through the RPC client. Since
Rabbitmq is used as the message broker, the detailed con-
text of a message topic is wrapped into the RMQContext
class. To consume an IMC service, an IMC application just
needs to get the RMQContext instance of each input inter-
face, create a Rabbitmq client corresponding to that context,
and send data to the IMC service input interface through
that Rabbitmq client.

Output interfaces are instances of an extended Bolt class
named IMCBolt class with a service management client,
and they will also create management data entries in Zoo-
keeper and listen to those data paths. However, it is the
IMC application manager that is responsible for writing
message topic contexts to those paths. Whenever data on
those paths are updated, output interfaces of an IMC service
will update destination contexts. Each destination context in
an output interface is combined with a session ID and a
module ID, which will be introduced in the following part,
and each message passed to an output interface will also
contain these IDs. With these IDs, output interfaces will
know which message topic the data should be sent to. Data
paths for IMC services are shown in Fig. 10.

In Fig. 10, /instcloud/services is the root data path for IMC
service management. Under the root path are service name
and instance name data path. Children under /in node
are input interfaces of the IMC service and, similarly, chil-
dren under /out node are output interfaces. Each child node
under /in node will store a Transport Context which records
the context of the message topic that the interface is
listening to. Each child node under /out will store a Trans-
port URL that tells the output interface which message bro-
ker is used for data transmission. Under each node of
output interface, there are child nodes representing IMC

Fig. 8. Management data for the IMC resource.

Fig. 9. An IMC service implemented through Storm to compute electrical
power
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application sessions that consume output data from the out-
put interface and each of the child nodes will store a Desti-
nation Object that records contexts of message topics for
output data transmission.

The /session node and its children under each topology or
service instance node are used for IMC service state man-
agement. For example, when an IMC application session
releases a service, the corresponding session ID and module
ID will be deleted and such deleting events will be listened
to by the IMC service manager and related IMC service
instances. Once such event happens, both the IMC service
manager and related IMC service instances will clear cached
data for that session.

The /capacity node stores load capacity of this service and
the IMC manager will use this data for load balance and
scaling.

5.4 IMC Application Developing Mode

IMC applications are implemented through text program-
ing language and currently only Java APIs (Application
Programming Interfaces) have been developed. Four classes
are defined according to entities in the IMC, which are
ICResource, ICService, StreamProducer and StreamCon-
sumer. ICResource and ICService are wrappers of the IMC
resource and the IMC service respectively.

When creating an ICResource object, the domain, site,
resource name and time span should be specified, but for
the ICService object, only service name is required. The
ICResource class is normally wrapped with a RPC client
that is used to control IMC resources.

StreamProducer is used to publish data to the input interfa-
ces of an IMC service, while StreamConsumer is responsible
for receiving data from an IMC service. However, all related
message broker contexts are automatically set when submit-
ting the IMC application. A complete IM process is wrapped
into a session task and all related IMC resources, IMC services
and other modules are managed through a Session object. All
the four types of components in an IMC application session
have their module IDs and each session has a universally
unique ID. However, each module ID is only unique to a ses-
sion. Fig. 11 shows a diagram of a simple IMC application,
which is also referred to in Fig. 9, just for illustration.

In Fig. 11, there is a consumeService method that is used
to decide which module and interface the data of the cur-
rent module should be sent to. For the StreamProducer
object, the name of the next module and the interface should
also be provided, while for the consumeService method of
the ICService object, the name of the service output interface
and the next module and its input interface, if any, should
be defined.

5.5 Implementation of the IMC Manager

Implementation of the IMC manager is shown in Fig. 12. In
Fig. 12, the IMC manager needs to interact with Zookeeper,
IMC resource agents, IMC applications and IMC services.
In the implementation of this paper, Curator Framework is
used to interact with Zookeeper. Most of the other remote
management operations are carried out through the Apache
Thrift RPC framework.

To obtain load capacities of Storm-based IMC services
and schedule IT resources for those IMC services, the IMC
scheduler will call the Storm REST (Representational State
Transfer) API. Each module of the IMC manager in Fig. 12
can run a thread pool for its RPC server, so that it can serve
multiple RPC clients.

Currently, the IMC manager is implemented in a central-
ized way just to verify the feasibility and functionality of the
IMC architecture in this paper. As shown in Fig. 12, the IMC
resource manager, the IMC service manager, the IMC appli-
cation manager and the IMC scheduler are loosely coupled
through an event bus. In this way, the IMC manager can
manage the state of each IMC element according to Fig. 6.

However, each module of the IMC manager is relatively
independent, thus it will be very easy to implement the
IMC manager in a distributed way, e.g., substitute event
bus with message broker.

6 APPLICATION AND EXPERIMENT

To test the designed IMC architecture, an application for
power system state estimation (SE) [35] is developed based
on the implemented system.

6.1 Distributed Parallel Power System State
Estimation

In a power system, not all states of the system are monitored
and some measured states may not be correct. However, all
real states of a power system should always obey the law of
electric circuits. Thus, using these electric circuit laws and

Fig. 10. Management data for IMC services..

Fig. 11. An IMC application example.

Fig. 12. Implementation of the IMC manager.
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measured data, a group of measurement equations can be
built up. With these equations, a mathematic model can be
developed to estimate the true states of the whole power
system. The most fundamental state estimation method is
the WLS (Weighted least square) method [36], also referred
to as the NE (Normal equation) method. The mathematical
model for the WLS method can be formulated through
Eqs. (1) - (4) below:

z ¼ h xð Þ þ v (1)

where z is the m-dimensional measurement vector, x is
the 2n� 2 dimensional state variable vector, v is the
m-dimensional measurement error vector and hðxÞ is the
relation function of measurements and the state variable x.

J xð Þ ¼ z� h xð Þ½ �T W z� h xð Þ½ �
W ¼ diag 1

s2
1

; . . . ; 1
s2
i

; . . . ; 1
s2m

� �
;

8<: (2)

where JðxÞ is the objective function, W is the m�m diago-
nal weight matrix, and s2

i is the covariance of the ith mea-
surement error,

Dz xð Þ ¼ z� h xð Þ (3)

where DzðxÞ is the measurement residual vector,

HT xkkð ÞWH xkkð ÞD xkkþ1 ¼ HT xkkð ÞWDz xkkð Þ
H xkkð Þ ¼ @hðxkkÞ

@x ;

�
(4)

where HðxkkÞ is the value of the Jacobian matrix of hðxÞ in
which x ¼ xkk , Dxkkþ1 is the correction vector for the esti-
mated state xkk and kk is the iteration index.

The WLS state estimation method is carried out by iterat-
ing (4).

As there are bad data among measurements, a bad data
recognition process is required to find and eliminate bad
measurements. A commonly used method is the normalized
residual recognition method [37]. This method uses Eqs. (5)
and (6) below to detect and identify badmeasurement data,

rN ¼ W�H xð Þ HT xð ÞW�1H xð Þ� ��1
HT xð Þ

� ��1
2
DzðxÞ (5)

where rN is the normalized residual vector for measurement
vector z,

g ¼
Xm

i¼1
s2
i

� �1
2
; (6)

where g is the threshold for bad data recognition.
If the ith element rNi of rN is greater than g, then the cor-

responding measurement zi is taken as the bad data suspect.
The measurement, which has the largest normalized resid-
ual larger than g, is taken as the prime bad data suspect.
Once bad measurement data are detected, they should be
discarded and the state estimation process should restart.

Normally, bad measurement data will not be discarded at
one time, instead, only the bad data that has the prime sus-
pect is discarded. The procedure of state estimation with
bad data recognition for power systems is shown in Fig. 13.

In Fig. 13, the state estimation step is actually carrying
out the iteration process formulated in (4), while the bad
data recognition step is calculating rN and comparing its ele-
ments to g.

Nevertheless, the estimation process is quite computa-
tion-intensive and consumes lots of memory, especially
when the system is large. Still, the state estimation process
is required to be as fast as possible. To achieve this goal, the
parallel state estimation method [38] is introduced.

The parallel state estimation method is based on system
partitioning. To implement a parallel state estimation algo-
rithm, a large system should, first, be partitioned into several
subsystemswhere all subsystems can estimate their own state
in parallel. Each subsystem can use the aforementioned WLS
method to estimate state except that the iteration process is
different. In a parallel state estimation algorithm, after each
iteration, all subsystems should share the states of boundary
buses before the next iteration. The basic procedure of parallel
state estimation algorithm is depicted in Fig. 14.

In Fig. 14, Step 2 carries out the iteration process formu-
lated in (4) while Step 6 calculates rN and compares its ele-
ments to g. Iteration and bad data recognition tasks from
multiple subsystems can be distributed in a cluster to accel-
erate the overall estimation speed.

6.2 IMC-Based Power System State Estimation

Since the IMC platform can greatly facilitate building dis-
tributed IM systems and provide efficient big data process-
ing frameworks, this section tries to establish an IMC-based
power system state estimation system. Such a system will

Fig. 13. Power system state estimation procedure.

Fig. 14. Parallel state estimation for a large power system.
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not only make state estimation easier and more efficient, but
can also test the functionalities of the IMC architecture
brought up in this paper.

According to the IMC architecture elaborated on before,
three aspects should be considered when developing an
IMC-based state estimation system: (1) Virtualizing the
measurement system into an IMC resource; (2) Implement-
ing the parallel state estimation algorithm into an IMC ser-
vice; (3) Developing the state estimation IMC application.

(1) Virtualizing the Measurement System Into an IMC
Resource. There are eight types of electric variables that need
to be measured for state estimation. Since the test cannot be
carried out in a real power system for safety reasons, all
measurements are simulated by adding Gaussian noise to
system power flow data.

As the implemented IMC resource agent is based on
VISA, here, a meter that conforms to VISA standard is
implemented for each power system through pyvisa-sim,
which is an instrument simulation software for pyvisa, and
custom defined instrument commands, such as ?MEA, are
used to retrieve measurement data from the simulated
meter. In this way, the measurement system of each power
system can be virtualized into an IMC resource. However,
in practical applications, a corresponding IMC resource
agent should be developed according to the physical mea-
surement system.

Once the measurement system of a power grid is
virtualized into an IMC resource, a state estimation IMC
application can retrieve all measured data by sending
instrumentation commands through the RPC framework.

(2) Implementing the Parallel State Estimation Algorithm Into
an IMC Service. The parallel state estimation algorithm is
implemented into an IMC service, which can be consumed
by different state estimation IMC applications to estimate
states of multiple power systems simultaneously. Accord-
ing to Fig. 14, a Storm-based state estimation IMC service
can be developed as shown in Fig. 15.

The IMC service mainly contains three subsystems.
The first one is the system partitioning subsystem. This
subsystem receives the configuration data of a power sys-
tem from the SE IMC application through the System
Configuring Spout. It is responsible for partitioning a
large power system into small subsystems and initializing
various parameters for SE. In this test, KaHIP [39], which
is an effective and fast graph partitioning tool, is used to
partition the power system. Also the topology is imple-
mented through JAVA; however, JAVA is not quite suit-
able for matrix computation, thus all matrix-related
computations are carried out by Matlab. Partitioned data
and initialized parameters are all stored in Redis [40],

which is an in-memory database, so that computation
processes can be separated from data, which is one of the
rules for developing an IMC service. Redis uses the key-
value data structure, and it is fast and very suitable for
big data processing. As an IMC service is shared by mul-
tiple IMC applications, when caching data, a key should
be attached to each data to identify its origin and that is
why Redis is chosen as the caching database. Here, most
of the intermediate data are cached in Redis.

The second subsystem is the measurement subsystem. It
converts raw measurement data into formatted data, so that
they can be used for state estimation. Raw measurement
data are acquired from the IMC resource corresponding to
the virtualized measurement system of a power system by
the SE IMC application, and then sent to the Measurement
Data Spout through the message broker. The Measurement
Data Converting Bolt will convert the data and then send
the converted data to the Measurement Data Caching Bolt
to store the data into Redis.

The third subsystem is the SE subsystem. This subsystem
implements the parallel SE algorithm as shown in Fig. 14.
Whenever a power system needs to estimate state, it can
just send a trigger command with the ID of the power sys-
tem to the SE subsystem through the Triggering Spout.
After receiving the trigger command, the Trigger Command
Handling Bolt of the SE subsystem will check if the power
system that requested SE is currently being estimated. If so,
the Trigger Command Handling Bolt will cache the com-
mand for the latter SE triggering, otherwise it forwards the
command to the First SE Bolt. The Cached Command Trig-
gering Spout will check all cached commands similar to the
Command Handling Bolt periodically and send a valid
command to the First SE Bolt. The First SE Bolt will then
compute JðxÞ and compare it to the corresponding thresh-
old to see if the initial state is the estimated state. If JðxÞ is
below the threshold, the initial state is the estimated state
and it will be forwarded to the Output Data Converting Bolt
to convert the data for output, otherwise the SE trigger com-
mand will be sent to the Bad Data Discarding Bolt to start a
new state estimation process.

The Single Iterating Bolt, the Convergence Checking Bolt,
the Bad Data Recognition Bolt, the Estimated State Checking
Bolt and the Bad Data Discarding Bolt implement step 2,
steps 3-5, step 6, step 7 and step 8 in Fig. 14, respectively.
However, there are three main differences.

First, the Bad Data Discarding Bolt has two inputs, which
are from the First SE Bolt and the Estimated State Checking
Bolt. If the input is from the First SE Bolt, the Bad Data Dis-
carding Bolt will do nothing but send the input command
to the Single Iterating Bolt, otherwise it will discard bad
measurement data and send a command to the Single Iterat-
ing Bolt for new SE.

Second, as estimated states from each iteration are
cached in Redis, all states will be updated immediately,
which means states of boundary buses are shared in time by
the Single Iterating Bolt and that is why no Bolt for step 4 in
Fig. 14 is implemented.

Third, each of the Bolts in the SE subsystem can serve
different power systems and do not bind to one specific
power system. Such a loosely coupled processing character-
istic is achieved by caching data in Redis and retrieving

Fig. 15. Storm-based IMC service for power system state estimation.
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corresponding data of each power system through keys
such as the ID of a power system.

Parallel iteration and bad data estimation are imple-
mented by running multiple instances of corresponding
Bolts. Once the state of a power system is estimated, it will
be sent back to the corresponding SE IMC application
through the Output Bolt.

Once the topology of the SE IMC service is developed, it
can be deployed onto the IMC platform, and the SE IMC
service can be started.

(3) Developing the State Estimation IMC Application. With
the measurement system being virtualized and the SE IMC
service running, to carry out state estimation, end users just
need to develop a very simple SE IMC application to
acquire measurement data of a power system from the cor-
responding IMC resource and send those data to the SE
IMC service for SE online. Detailed activities of the SE IMC
application are shown in Fig. 16.

In Fig. 16, IMC resources and IMC services are defined
through instances of ICResource class and ICService class
respectively. Data are sent by instances of StreamProducer
class and are received by instances of StreamConsumer class.

6.3 System Deployment and Test Scenarios

The whole system runs on an Openstack IaaS cloud plat-
form. Each VM that runs a supervisor node of Storm is con-
figured with E3-12XX/2.3 GHz CPU and 8 GB RAM.

VMs for other nodes in the IMC platform are configured
with the same type of CPU as Storm supervisor node but
with only 4GB RAM. Detailed physical and logical configu-
rations of the system are shown in Fig. 17.

In this test, case data from Matpower [41] are used and
two test scenarios are set. In the first test scenario, state esti-
mation for case3120sp is tested and the SE IMC service is
exclusive to case3120sp. The number in the case name rep-
resents the number of buses in the system. This scenario is
used to test the functionality of the implemented IMC plat-
form to test the IMC architecture brought up in this
paper. In the second test scenario, state estimations for

case2869pegase, case3012wp and case3120sp are tested
simultaneously and the SE IMC service is shared by multi-
ple cases. This scenario is used to test the service sharing
ability of the IMC architecture. Systems of these cases are
very large in the electrical engineering field and, when run-
ning the parallel SE algorithm, each system is split into sev-
eral subsystems. The number of buses in each subsystem is
limited to 300 when splitting the system.

The most computation intensive Bolts are the Single Iter-
ating Bolt and the Bad Data Recognition Bolt, and, while
these two Bolts are under full load, all load capacities of
other Bolts in Fig. 15 are less than 5 percent. Thus, multiple
workers are set for the instances of these two Bolts. To find
out which Bolt plays a more important role in determining
the total estimation time Tse, different numbers of workers
are set for each of the Bolts.

6.4 Test Results

The result for the first test scenario is shown in Fig. 18.
In Fig. 18, PB is the number of workers for the Bad Data

Recognition Bolt and PE is the number of workers for the
Single Iterating Bolt. Fig. 18 shows that, when increasing
PB, estimation time will reduce dramatically. Fig. 18 also
shows that, when PB is fixed, changing PE does not effec-
tively influence the estimation time.

However, when PB increases to 12 or larger, the estima-
tion time does not decrease any more. This phenomenon is
caused by the overheads from distributed computing, such
as data transmission delay between computing nodes.

Fig. 18 demonstrates that the bad measurement data rec-
ognition process is much more time-consuming than the
estimation process. Fig. 18 also shows that sometimes
increasing PB or PE may cause performance degradation
and that is because instances of Bolt may distribute across
different computing nodes. When more directly connected
Bolt instances are running on the same node, communica-
tion delay can be reduced. However, if more directly con-
nected Bolt instances distribute across different nodes,
overheads from communication will degrade overall

Fig. 16. Activity diagram of the SE IMC application.

Fig. 17. Detailed configurations of the IMC system.

Fig. 18. State estimation time for case3120sp using the IMC platform.
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performance. Currently, the distribution of Bolt instances is
carried out automatically by Storm and that is the reason
for performance fluctuation in Fig. 18. A similar phenome-
non will also happen in the second test scenario.

The result of the first test shows that the IMC architecture
brought up in this paper is feasible and satisfies the basic
functional requirements defined in Section 3.

In the second test scenario, the results for each case alone
are similar to Fig. 18; thus, those results are not presented.
However, comparing the estimation time of case3120sp in
the two different test scenarios is important, since it can
reveal some characteristics of shared IMC services. Fig. 19
shows Tse of case3120sp in exclusive service mode and in
shared service mode.

In Fig. 19, PEM designates the number of workers for the
Single Iterating Bolt in the shared service mode. Fig. 19 shows
that when PB is small, which means computing resource for
the SE IMC service is inadequate, Tse is much higher in shared
servicemode than in exclusive service mode. However, when
PB increases, Tse in shared service mode is only 10-20 percent
higher than in exclusive service mode. This demonstrates
that, when computing resource is not strained, performance
of the SE IMC service in shared service mode is very close to
that in exclusive service mode, which means resource utiliza-
tion efficiency can be greatly increased through service
sharing in the IMCplatform.

Such a resource utilization efficiency improvement is
normally attributed to the overheads from synchronization
of the parallel algorithm. For example, in the parallel SE algo-
rithm shown in Fig. 14, step 2 or step 6 has to wait until all
subsystems are processed to continue, and during this
period, some of the computing resourcewill be idle if the ser-
vice implemented upon this parallel algorithm is exclusive.
However, if the service is implemented in shared mode, the
idle resource can be used for SE of other power systems, thus
resource utilization efficiency can be improved.

Comparing the results from the above two test scenarios
demonstrates that the IMC architecture in this paper is via-
ble for service sharing that can improve resource utilization
efficiency.

7 DISCUSSION

Although the IMC brought up in this paper can greatly
facilitate utilization and management of IM resources, limi-
tations and challenges still exist.

First, the IMC is not suitable for those application scenar-
ios that are highly time-critical and require extremely high
reliability. Such limitation is caused by the latency and fluc-
tuation of networks, and overheads from message brokers,
RPCs and distributed parallel computing frameworks.

Second, high-speed and high-precision IM devices normally
produce large amounts of data in a very short time, and
directly transferring those large amounts of raw data in real
time from IM devices to the IMC may be impossible due to
the bandwidth limitation of the network. Third, frequent
remote procedure calls can bring a lot of overheads, espe-
cially for remote IM device control with short intervals.

Currently, a promising solution for the first and second
challenges above is adopting fog computing [42] paradigms
as a complementary framework between the IMC layer and
the physical IM device layer. Fog computing is more
focused on proximity to client objectives and end users,
which leads to less latency and higher reliability. By pre-
processing data locally or through fog computing, the
amount of data that need to be transferred over the network
can be greatly reduced, which will lower the requirement
for the bandwidth of the network. Also, time-critical tasks
can be carried out in a fog computing framework and other
computation intensive tasks can be shifted to the IMC. In
this way, the overall performance and QoS (Quality of Ser-
vice) can be greatly improved.

To solve the third problem, frequent remote procedure
calls can be substituted by direct interaction between local
devices and the IMC services. RPCs can just be used to
manipulate the interaction process rather than relay data
between IM devices and the IMC.

8 CONCLUSION AND FUTURE WORK

The instrumentation and measurement cloud can greatly
facilitate management of instruments and sensors and, at
the same time, allows users to utilize those resources and
related IM services on demand remotely.

The IMC architecture brought forward in this paper pro-
vides efficient guidance for developing a practical IMC plat-
form. With IM device virtualization and service wrapping,
building a remote IM system just requires only very simple
coding work. Most of the investment in IT facilities and sys-
tem development work can be saved. Furthermore, with the
ability to scale and to dynamically transfer load, the IMC
can increase the utilization efficiency of various resources to
a much higher level. Distributed parallel computing para-
digms of the IMC will accelerate the processing speed,
which brings lots of benefits for large-scale remote IM sys-
tems and, also, for analysis of big data coming from huge
numbers of instruments and sensors. The application devel-
oped upon the implemented system has demonstrated the
advantages of the work in this paper.

However, more research work is still required to deal
with some challenges. Such challenges include latency and
stability of networks, geographic characteristics of the phys-
ical object that is being measured, and so on. These chal-
lenges are not proprietary to the IMC but common in the
remote instrumentation and measurement field. But with
more effort, problems caused by these challenges can even-
tually be solved.
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SSL: A Surrogate-Based Method for Large-Scale
Statistical LatencyMeasurement

Xu Zhang , Hao Yin, Dapeng Oliver Wu , Fellow, IEEE, Haojun Huang , Geyong Min , and Ying Zhang

Abstract—Understanding the statistical latency between two groups of hosts in a period of time is of great significance to a wide variety

of Internet applications and services, such as Service-Level Agreement (SLA) compliance monitoring and Virtual Network Function

(VNF) placement. However, direct latency measurement methods are not always applicable to large-scale situations while the existing

indirect methods often incur extra deployment costs or security problems. To address this challenge, we design an indirect method

based on widely-distributed clients called SSL (Surrogate-based method for large-scale Statistical Latency measurement). SSL

estimates the latency between two arbitrary hosts using the measured latencies from several selected clients near one end host, which

are called the host’s surrogates, to the other end host. To overcome the limited capacity of the volatile clients with unstable CPU,

memory, and bandwidth resources, we propose an innovative two-step measurement task assignment mechanism for SSL that can

achieve high accuracy measurement results while satisfying the resource constraints simultaneously. Moreover, SSL adopts a

sampling technique to reduce the overhead in large-scale measurements, and a resampling technique to determine the confidence

interval. Simulation experiments show that SSL can achieve more than 90 percent accuracy in most situations with 10 percent client

density and 15 percent sampling rate.

Index Terms—Statistical latency, latency measurement, resampling, task assignment, surrogate

Ç

1 INTRODUCTION

THE ability to estimate the real-time round-trip latency
between any pair of hosts on the Internet is important

for a variety of applications and services, such as candidate
service selection in service compositions [1], server assign-
ment in content delivery [2], and path construction in overlay
routing [3]. It is worth noting that for some applications it is
not a must to compute the precise latency between any pair
of hosts on the Internet [4], [5]. Instead, accurately estimated
latency statistics of a set of paths can benefit many applica-
tions, such as SLA compliance monitoring [6], Content
Delivery Network (CDN) site provisioning [7], service rec-
ommendation for web services [8], and VNF placement [9].
For example, for replica placement applications, it does not
require a precise value of the latency between a particular
pair of hosts (e.g., Alice in New York and Bob in San Fran-
cisco), but rather, the average latencies or 95-percentile laten-
cies between hosts in these two cities.

In this paper, we propose a new type of Internet scale
latency measurement called statistical latency measurement,
which aims at accurately performing the statistical estimate
capturing the statistical value of the latencies between two
groups of hosts in a given period of time. Note that this
new measurement method is not a replacement to the
real-time exact measurement, but a complementary
method for certain applications. In order to conduct the
statistical latency measurement, many factors should be
taken into consideration, for example, the measurement
overhead, measurement accuracy, investment budgets,
and the influence to the Internet, especially in large-scale
scenarios.

The existing latency measurement methods can be classi-
fied into two categories: direct methods and indirect meth-
ods. Direct methods, which send measurement packages,
e.g., Internet Control Message Protocol (ICMP) ping pack-
ages directly from target hosts, are not feasible as they need
control on the target hosts. Apart from the direct measure-
ment methods, there has been a rich literature on indirect
measurement for the end-to-end real-time latency on the
Internet [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20]. However, none of them satisfies the requirements of
statistical latency measurement due to the inaccuracy of
predictions [11], the high extra costs [10] incurred by
deploying numerous servers, the high measurement over-
head [21], or even unfriendliness to the Internet [12] by
bringing about security issues [22], [23].

This paper introduces a lightweight, scalable and accu-
rate method for statistical latency measurement on the Inter-
net. For many network entities such as Google, Microsoft
and BitTorrent, they always have hundreds of thousands of
users widely-distributed over the Internet, with devices
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installed with their specially-developed software1 or plug-
ins.2 These devices are also called clients, which may
include desktop, tablet, notebook computer and even smart
phones.3 For example, a notebook computer installed with
BitTorrent software can measure the Internet in the back-
ground. If these entities themselves want to provide deci-
sion support for their services or even to a third-party
company, they can take advantage of the clients to measure
the Internet. Our key idea is to take advantage of these cli-
ents to measure the Internet, instead of deploying numerous
extra controllable nodes in the network. However, there
exist many challenges in the exploitation of these clients
because they are always instable and have limited resour-
ces, such as bandwidths, CPU, and memory.

In order to measure the statistical latency in large-scale
networks, this paper makes the following contributions.

1) We propose a surrogate-based method called SSL
(Surrogate-based method for large-scale Statistical
Latency measurement) that takes advantage of the
free but volatile clients to conduct large-scale statisti-
cal latency measurement. Since it does not deploy
extra servers in the network, SSL does not incur
extra deployment cost but can achieve high measure-
ment accuracy.

2) We introduce space diversity into SSL to improve
the measurement accuracy. When measuring the
latency between two hosts, SSL selects the q closest
active clients to one of the two hosts, which are
called the host’s surrogates, measures the distance
from the surrogates to the other host, and then pre-
dicts the latency between the two hosts. Moreover,
this method can overcome the problem of asymmet-
ric routing [16] in the Internet.

3) We adopt sampling and resampling techniques to
reduce the measurement overhead and to obtain sta-
tistical estimates. SSL samples the end-host pairs
needed to be measured, measures them using the
aforementioned latency prediction methods, and
resamples the samples to determine the confidence
interval and other statistical parameters.

4) We take advantage of a two-stage mechanism to
assign measurement tasks to the clients, aiming at
obtaining the measurement results as accurate as
possible without affecting users’ Quality of Experi-
ence (QoE). Different from deployed servers, clients
are always volatile and limited with various resour-
ces, such as network bandwidths, CPU, and mem-
ory. Furthermore, different clients always have
different resource capacities available. With the mea-
surement task assignment mechanism, SSL can
achieve high accuracy measurement results while
satisfying the resource constraints simultaneously.

5) Last but not least, we evaluate SSL in a router-level
network topology, and the results reveal the promis-
ing performance of SSL. SSL can achieve less than
10 percent error in most situations with 10 percent
client density and 15 percent sampling rate. We also

explore the design choices of SSL, including the
optimal number of the surrogates and the way to use
the latencies measured by them.

The rest of this paper is organized as follows. Section 2
makes clear the potential and challenges when taking
advantage of clients to measure the Internet. Section 3 for-
mulates the statistical measurement problem from spatial
dimension and temporal dimension. Section 4 presents the
key components of SSL, including the method to predict
the latency between two arbitrary hosts, the way to reduce
the measurement overhead at scale and the measurement
task assignment mechanism to satisfy the limited source
constraints. The proposed method is evaluated in Section 5,
and the related work is reviewed in Section 6. Finally,
Section 7 summarizes the paper.

2 POTENTIAL AND CHALLENGES

Predicting the latency between two arbitrary hosts at scale
should take various factors into consideration, such as the
prediction accuracy, investment budgets, measurement
overheads, scalability, and effects on the Internet. In this
section, we highlight the potential and challenges when
using the widely-distributed clients to measure the Internet.

Apart from the deployed servers, another important
component of the Internet is the widely-distributed end-
hosts. If we can take advantage of the end-hosts to mea-
sure the Internet, a more accurate prediction can be
expected. Fortunately, end-hosts are likely to participate
in the measurement if they install specially-developed
software, such as Bittorrent plug-ins4 or specific agent.5

We call these end-hosts installed with specific software as
clients. Another advantage is that these clients can be
used free of charge, avoiding extra deployment cost.
However, there exist many challenges to use the widely-
distributed clients. These challenges are:

1) The volatility of the clients: the clients come and go
from time to time, thus not available all the time.
Only when users’ devices are online, these clients
can be used for measurement. However, the clients
are users’ personal computers or even mobile devi-
ces in many cases and users would switch the clients’
network status according to their behavior habit. For
example, a user would turn off the device after work
or move the device from one place to another place.
The instability of clients would bring great chal-
lenges if they are adopted to measure the Internet.

2) The limited resource of the clients: as the clients are
installed on users’ devices, the usage of the clients
should not consume too much resource to degrade
users’ experience. For example, the measurement
program running in the background should not con-
sume too much CPU, memory, bandwidth. In the
mobile case, energy saving should also be taken into
consideration [24].

3) The diversity of the clients: users’ devices and their net-
work condition may differ from each other greatly.

1. http://www.bittorrent.com/
2. https://www.httpwatch.com/
3. http://www.measurementlab.net/tools/mobiperf

4. http://www.aqualab.cs.northwestern.edu/projects/115-dasu-isp-
characterization-from-the-network-edge

5. http://www.netdimes.org/new/?q=node/54
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Different devices have different limited resource. For
example, mobile clients with wireless access to the
Internet have much rigorous limitation on the avail-
able bandwidth and energy saving.

3 PROBLEM FORMULATION

In this section, we formulate the problem of statistical latency
measurement and describe its general steps.

The statistical latency measurement is the statistical esti-
mate of the latencies between two groups of end hosts in a
given period. It provides information to infer the connectiv-
ity status between different network entities. The connectiv-
ity status can be used to improve the performance of various
applications, such as site provisioning for CDNs, and CDN
selection. In what follows, we will define this problem for-
mally from both temporal and spatial dimensions.

Spatial Dimension. Given two host setsX : ½x1; . . . ; xn� and
Y : ½y1; . . . ; ym�, the latency matrix between X and Y at time
point t is

Dt

X; Y
��! ¼

dt
x1; y1
��! . . . dt

x1; ym
��!

..

. . .
. ..

.

dt
xn; y1
��! . . . dt

xn; ym
���!

2664
3775; (1)

where dt
xi; yj
��! represents the latency from host xi in X to host

yj in Y at time point t.Dt

X; Y
��! reflects the status of the connec-

tivity fromhost setsX to Y at time point t. Then the statistical
latency fromX to Y at time point t can be defined as follows:

dt
X; Y
��! ¼ 1

mn

X
x2X;y2Y

dt
x; y�!: (2)

Temporal Dimension. Now,we extend the statistical latency
in temporal dimensions. Given two host sets X and Y , the
statistical latency fromX to Y over the time period T is

dT
X; Y
��! ¼ 1

T

Z T

0

dt
X; Y
��!dt: (3)

However, we cannot measure every host pair continu-
ously over the time period T in the large-scale Internet. Usu-
ally we collect multiple latencies at ½t1; . . . ; tr� over time T
and construct the latency matrix, that is, DT

X; Y
��!, just like a

series of snapshots to the Internet

DT

X; Y
��! ¼ D

t1

X;Y
��!; . . . ; Dtr

X; Y
��!� �

; (4)

where T is discrete, that is, T ¼ ½t1; . . . ; tr�. Then dT
X; Y
��! can be

rewrited as follows:

dT
X; Y
��! ¼ 1

mnr

X
t2T

X
x2X;y2Y

dt
x; y�!: (5)

Supposed that the Internet status stays relatively station-
ary within a short period, which is the assumption for all the
existing measurement works. Latencies are treated to be
measured at the same time point if they are measuredwithin
the period. To this end, we use the discrete time model
because we cannot measure every host pair continuously
over the time period T in the large-scale Internet. Of course,

the discrete time model would reduce the measurement
accuracy. However, with the development of the Internet
infrastructure, including the rapid increase of computing
capacity, the memory capacity and the bandwidth capacity,
the accuracy would be improved in the future.

For site provisioning, operators can use SSL to evaluate
the performance of a given edge server across a time period
T . Under this circumstance, setX would be the given server
x, set Y be the users who request services from x, the statis-
tical latency dT

X; Y
��! represents the overall latency perfor-

mance when x acts as a server and provides service to hosts
in set Y across time period T .

For CDN selection, SSL can be used to infer the connec-
tivity status between the edge servers of a CDN and its
users over a time period, that is, a CDN’s overall latency in
distributing contents. In this case, we can measure the statis-
tical latency between each edge server and its allocated
users, and compute the overall average latency when users
fetch content from the CDN.

Specially, if setX and Y both consist of only one host and
the time period T contains only a time point t, DT

X; Y
��! would

be the real-time latency between the two hosts at time point
t in the Internet.

In general, the first step to complete a statistical latency
measurement is to measure the latency between any given
two hosts, that is, filling in the latency matrix DT

X; Y
��! or

Dt

X; Y
��!. After that, the next step is to infer the overall connec-

tivity status between host set X and set Y . However, how to
measure the latency at scale with adequate accuracy is a big
challenge.

4 METHODOLOGY

In this section, we highlight three key techniques of SSL.
Table 1 lists the main terminologies used in the description.

4.1 End-to-End Latency Prediction

In order to infer the statistical latency between two host sets,
SSL should have the ability to measure the end-to-end
latency between two hosts, which can also be used for real-
time applications, such as peer selection in P2P systems,
server selection in online game and candidate service selec-
tion in service compositions.

SSL takes advantage of the clients in the Internet,
which are always users’ devices and widely distributed.
As illustrated in Fig. 1, an intuitive solution is to select
the closest client to one host (host x), and use the latency
from the client to the other host (host y) to estimate the
latency from host x to host y. In an extreme situation
where host x is a client itself, the estimated latency is
exactly the measured latency. Furthermore, this solution
can also overcome the challenges of asymmetric paths in
the Internet [16].

Based on the above solution, SSL introduces space diver-
sity to reduce occasional errors. As shown in Fig. 2, to esti-
mate the latency (dt

x; y�!) from host x to host y at time point t,

SSL selects the q closest clients to host x, for example,
fz1; . . . ; zqg. Then it estimates dt

x; y�! according to the latency
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dt
zk; y
�! from the client zk to y, where 1 � k � q. The selected

clients are called x’s surrogates.

If a client z is selected as a surrogate of host x, z should
have the following properties to guarantee the representa-
tiveness to x:

� Near Neighbor: z should be within dmax to x in a dis-
tance metric space, which can be computed based on
the longest matching prefix, the hop number, the
geographic distance6 between their IPs, or even the
combination of the factors. Moreover, the class of
the client z’s IP and the class of host x’s IP should
also be the same.

� Same Autonomous System (AS): z should be within the
same AS7 with x, sharing the common routing policy
to the Internet.

We determine whether z can be selected as a surrogate of
host x based on the above criterion due to two reasons: (1)
the above criterion is lightweight, especially compared with
the measurement overhead, that is, SSD conducts at most q
measurements for each measurement task. It’s critical in

large-scale network. (2) SSD’s accuracy is enough based on
the above criterion. First, the density of clients is expected
to be much higher than the density of open recursive DNS
in the Internet. Second, the criterion to select clients is much
more tight than King’s criterion of selecting the open recur-
sive DNS. Last but not least, SSD introduces space diversity
to reduce occasional errors. From this perspective, SSL has
much higher prediction accuracy than King, whose accu-
racy has been verified in many situations [25]. However,
King is not suitable to the statistical latency measurement
any longer due to the security issues.

Of course, there may exist many other factors or other
ways that could further improve z’s representativeness to x,
such as methods based on x and z’s network latencies to sev-
eral landmarks in the Internet.SSL is flexible to plugin them.

Based on the latencies dt
zk; y
�! from the surrogates zk 2

fz1; . . . ; zqg to y, SSL can choose several optional ways

to estimate dt
x; y�!. The first one is to estimate dt

x; y�! using the

average of dt
zk; y
�!, where 1 � k � q

dt
x; y�! ¼ 1

q

Xq
k¼1

dt
zk; y
�!: (6)

Second, SSL can also adopt the weighted average to con-
sider that different surrogates have different distances to
host x. In this situation, the closer a surrogate zk to host x,
the higher weight its latency dt

zk; y
�! to y has

dt
x; y�! ¼Xq

k¼1
akd

t

zk; y
�!; (7)

where ak is inversely proportional to dt
zk; x
�! and

P
k ak ¼ 1.

Moreover, SSL can also introduce trimmed average into
latency prediction. In detail, SSL can first sort fdt

z1; y
�!;

. . . ; dt
zk; y
�!; . . . ; dt

zq; y
�!g (1 � k � q) into fdt

z1; y
�!; . . . ; dt

zk; y
�!; . . . ;

TABLE 1
The Main Terminologies Used in the Description

of SSL’s Methodology

Notation Semantics

X fx1; . . . ; xng, n is the number of hosts inX, and i
is the index.

Y fy1; . . . ; ymg,m is the number of hosts in Y , and j
is the index.

T ft1; . . . ; trg, r is the number of time points in T ,
and v is the index.

Z fz1; . . . ; zlg, l is the number of clients in Z, and k is
the index.

P Measured tasks in order to infer the statistical
latency fromX to Y across the time period T , and
P ¼ fdtv

xi; yj
��!g, where xi 2 X, yj 2 Y , tv 2 T , and

jP j � mnr
dP Mean of the latencies in P
d� Resampling mean of dP
seðdÞ Standard errors of dP
CI ½d�L; d�R�, the ð1� bÞ confidence interval of dP .
q Maximum number of surrogates to conduct a

task.
dt

a; b
�! Latency from entity a to entity b at time t.

ctik Capacity of the client zk reserved to xi at time
point t, 1 � k � l.

gti Number of tasks which are originated from xi

among the measurement tasks Pt.
vt
ik vt

ik ¼ 1 if zk is selected to be a surrogate of xi,
vt
ik ¼ 0 otherwise.

dik Distance between xi and zk when selecting the
surrogate for a host.

dmax Maximum distance between a host and its
surrogate in a distance metric space when
selecting the surrogates.

rti Number of tasks conducted by the surrogates of
xi at time point t

Fig. 1. One intuitive solution: Predicting the latency from end-host x to
end host y using the latency from the closest client of x to y.

Fig. 2. Predicting the latency between two end-hosts by introducing
space diversity to reduce occasional errors.

6. The geographic distance between two IPs can be computed based
on their longitude and latitude, for example, https://www.db-ip.com/
db/.

7. The AS number of an IP can be looked up via online API, for
example, https://www.ultratools.com/tools/asnInfo.
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dt
zq; y
�!g (1 � k � q) according to the ascending order, where

dt

zk; y
�! is the kth smallest value in fdt

z1; y
�!; . . . ; dt

zk; y
�!; . . . ; dt

zq; y
�!g

(1 � k � q). Then the first p-quantile values and the last

p-quantile values in fdt
z1; y
�!; . . . ; dt

zk; y
�!; . . . ; dt

zq; y
�!g (1 � k � q)

are removed from the sequence, and the mean of the
remaining elements in the sequence is used to estimate dt

x; y�!
dt
x; y�! ¼ 1

qp

Xq
k¼1

dt

zk; y
�!Ifq � p% � k � q � ð1� p%Þg; (8)

where Ifxg is the indicative function, which equals 1 if x is
true, otherwise equals 0; and qp is the number of elements in
the trimmed sequence,

qp ¼
Xq
k¼1

Ifq � p% � j � q � ð1� p%Þg: (9)

Similarly, SSL can introduce different weights into
a-trimmed average easily. Moreover, if there exist other
ways to estimate dt

x; y�! based on dt
zk; y
�! (1 � k � q), SSL is

flexible to plugin it.

4.2 Overhead Reduction at Scale

When inferring the statistical latency from host set X ¼
fx1; . . . ; xng to host set Y ¼ fy1; . . . ; ymg over time T ¼
ft1; . . . ; trg, the overall measurement overhead is oðmnrÞ if
measuring all the host pairs between X and Y . If the host
number in each host set is small and conducting the latency
predictionmeasurements for oðmnrÞ times in T is acceptable,
measuring the universal set (all the elements inDT

X; Y
��!) can be

adopted. However, for the large scale case, the brute force
method is too expensive to be feasible.

To overcome the challenge, SSL randomly samples the
universal set and takes the samples to inferDT

X;Y
��!’s statistical

information. These sampled elements which should be mea-
sured are denoted as P ¼ fdtv

xi; yj
��!g, where xi 2 X, yj 2 Y ,

tv 2 T , and jP j < mnr. We call P as SSL’s measurement
tasks for the statistical latency fromX to Y over time period T .

Without loss of generality, we denote the sampled ele-
ments with fdt1

x1; y1
��!; . . . ; dt

b

xb; yb
��!; . . . ; dt

s

xs; ys
��!g, where xb 2 X,

yb 2 Y , tb 2 T , and 1 � b � s < mnr. As the Internet status
stays relatively stationary within a short period, we can use
the average of P to represent dT

X; Y
��! if s is large enough

dP ¼ 1

s

Xs
b¼1

dt
b

xb; yb
��! � dT

X; Y
��!: (10)

In order to assess the accuracy of the sampling method,
SSL introduces a kind of resampling technique, that is,
Bootstrap [26], [27] into its design. The basic idea is that the
observed sample P contains valuable information about the
variability about the population of the latencies from X to Y
in absence of any other information. The procedures to
obtain the resampling mean d� , the standard error seðdP Þ,
the ð1� bÞ confidence interval CI ¼ ½dL; dR� are described
by Algorithm 1. Note that the expectation of the resampling
average d� is equal to dP .

Algorithm 1. Resampling(P , B, b)

1: [Input] P : the sampled elements fdt1
x1; y1
��!; . . . ; dt

s

xs; ys
��!g.

2: [Input] B: the time to resample P .
3: [Input] b: the parameter for ð1� bÞ confidence interval.
4: [Output] d�: the resampling average.
5: [Output] seðdP Þ: the standard error.
6: [Output] CI: the ð1� bÞ confidence interval ½dL; dR�.
7: for b ¼ 0; b < B; b++ do
8: P �ðbÞ  fdt�1

x�1; y�1
���!; . . . ; dt

�c

x�c; y�c
���!; . . . ; dt

�s

x�s; y�s
���!g, where

dt
�c

x�c; y�c
���! is sampled with replacement from P ;

9: // Compute the average of P �ðbÞ.
10: d�ðbÞ  1

s

Ps
c¼1 d

t�c

x�c; y�c
���!;

11: d�  1
B

PB
b¼1 d�ðbÞ;

12: seðdP Þ  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B�1
PB

b¼1ðd�ðbÞ � d�Þ
q

;
13: //Compute the lower bound of dP ’s
ð1� bÞconfidence interval

14: dL  d�L, where d�L satisfies that

PðdP � d�LÞ ¼ 1
B

PB
b¼1 Ifd�ðbÞ � d�Lg � 1

2b;

15: //Compute the upper bound of dP ’s ð1� bÞconfidence
interval

16: dR  d�R, where d�R satisfies that

PðdP � d�RÞ ¼ 1
B

PB
b¼1 Ifd�ðbÞ � d�Rg � 1

2b;

17: return d�; seðdP Þ; CI ¼ ½dL; dR�;

Lemma 4.1. The expectation of the resampling average d� is
equal to dP .

Proof. As Algorithm 1 shows, for each sampled sequence in
P �ðbÞ, its average is computed as follows,

d�ðbÞ ¼ 1

s

Xs
c¼1

dt
�c

x�c; y�c
���! ¼ 1

s

Xs
c¼1

Ncd
tc

xc; yc
��!;

where Nc is the observed frequency of dt
c

xc; yc
��! in the

sequence and c 2 ½1; s�. As dt
c

xc; yc
��! is resampled with proba-

bility 1
s from P and SSL has resampled P with replace-

ment for s times, we have

EðNcÞ ¼ s � 1
s
¼ 1:

It follows that

Eðd�ðbÞÞ ¼ E
1

s

Xs
c¼1

Ncd
tc

xc; yc
��!

 !

¼ 1

s

Xs
c¼1

dt
c

xc; yc
��!

¼ dP :

In addition, the resampling average is given by

d� ¼ 1

B

XB
b¼1

d�ðbÞ;

thus Eðd�Þ ¼ dP . tu
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4.3 Measurement Task Assignment Mechanism

After determining the measurement tasks, SSL should
appoint usable clients to conduct them. On one hand, the cli-
ents are usually users’ devices and to be on and off from time
to time. On the other hand, resources on these clients are
always limited, such as bandwidths, CPU, memory etc., lead-
ing to a limited capacity available. Considering this, not every
task can be conducted by the most appropriate clients. To
address this problem, SSL designs a specific task assignment
mechanism to achieve a better inferring accuracy. The overall
process of themechanism can be divided into two steps.

First step: maximize the number of tasks, each of which
can be completed by at least one surrogate. The problem is
abbreviated as (MTN).

The measurement tasks P ¼ fdtv
xi; yj
��!g, where xi 2 X,

yj 2 Y , tv 2 T , and jP j < mnr. In order to complete the
tasks, SSL divides the measurement tasks according to
the time point, gets the tasks for each time point Pt ¼
fdtv

xi; yj
��!jdtvxi; yj��! 2 P&tv ¼ tg, and takes advantage of the client

set Z ¼ fz1; . . . ; zk; . . . ; zlg to conduct the tasks.

Let gti be the number of tasks which are originated from xi

among themeasurement tasks Pt. And for the client zk, it can
conduct ctk measurements simultaneously at time point t.

SSL assigns the measurement tasks dynamically for each
time point t according to the measurement task Pt and the
clients’ capacities fctkj1 � k � lg. If a client zk is offline at the
time point t, the number of measurements it can conduct at
the time point t is 0, that is, ctk ¼ 0; if zk is online, it should
report its status with heartbeat messages, thus the number
of measurements ctk it can conduct at the time point t can be
obtained, that is, we have different value of ctk at different
time points.

Suppose vt
ik is a binary indicator, and vt

ik ¼ 1 if zk is
selected to be a surrogate of xi at time point t, and vt

ik ¼ 0
otherwise

vt
ik 2 f0; 1g: (11)

If vt
ik ¼ 1, ctik denote the capacity reserved to xi from zk at

time point t.
Due to the capacity limitation for a given client, SSL

should not appoint it more than ctk tasksX
i

vt
ikc

t
ik � ctk: (12)

Let dik denote the distance between the host xi and the
client zk in the distance metric space when selecting a surro-
gate. The surrogate of a host should be within dmax to it.
Then we have

vt
ikdik � dmax: (13)

If dik > dmax, v
t
ik should be equal to 0, that is, zk could not

be appointed to be a surrogate of xi; otherwise, vt
ik can be

equal to 1 or 0, that is, SSL is free to assign zk to be a surro-
gate of xi or not.

Let rti be the number of tasks which are conducted by the
surrogates of xi at time point t. As the maximum number of
tasks originated from xi that can be conducted is gti, the rela-
tionship between rti and vt

ik can be expressed by

rti ¼
P

k v
t
ikc

t
ik if

P
k v

t
ikc

t
k < gti

gti if
P

k v
t
ikc

t
k � gti;

(
(14)

where
P

k v
t
ik is the number of surrogates of host xi at time

point t, while
P

k v
t
ikc

t
k is the maximum capacity of xi’s

surrogates.
In this step, we aim at maximizing the number of tasks,

each of which is assigned to at least one surrogate. There-
fore, the objective function is

max.
X
i

rti: (15)

So MTN problem can be formulated into the following opti-
mization problem:

max.
X
i

rti

vt
ik 2 f0; 1g

P
i v

t
ikc

t
ik � ctk

vt
ikdik � dmax

rti ¼
P

k v
t
ikc

t
ik if

P
k v

t
ikc

t
ik < gti

gti if
P

k v
t
ikc

t
ik � gti:

(

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(16)

Lemma 4.2. The MTN problem can be solved in polynomial
time.

Proof. We can transform the MTN problem into a maxi-
mum flow problem. As shown in Fig. 3, the capacity of
the edge from the src node to the node xi has the capac-
ity of gti, which corresponds to the number of the tasks
related to host xi in Pt. To make clear each individual
task, gti nodes are connected to the node xi, with the
edge capacity equal to 1. If a client zk is within dmax of a
host xi, an edge is originated from each task node of the
node xi to the node zk. For each node zk, it connects with
the dst node with capacity of ctk, which is the maximum
number of tasks the client zk can conduct at time point t.
As xi has appeared for gti times, the node xi has g

t
i child

nodes. And for a client zk, it can conduct ctk measure-
ments simultaneously.

Fig. 3. Transform the MTN problem into a maximum flow problem.
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To achieve the objective of maximizing the number of
tasks, each of which is assigned to at least one surrogate,
we just need to maximize the flow from the src node to
the dst node. So the MTN problem can be solved in O
(ðjXj þ jPtj þ jZjÞ2) [28]. tu
In the first step, SSLmaximizes the number of completed

tasks and a task is regarded to be completed when it is con-
ducted at least by one surrogate. However, if q surrogates
conduct a task at the same time, the prediction accuracy
would be improved. Considering this, SSL tries to maxi-
mize the number of surrogates in the second step under the
condition that the number of conducted tasks is the largest.
The problem is abbreviated as (MPN).

Suppose vt
ik
0
and ctik

0
are the output values of vt

ik and ctik
in the first step, respectively. In order to guarantee the num-
ber of conducted tasks, SSL retains the surrogate assign-
ment for each task in the first step and tries to assign more
surrogates to it

vt
ik � vt

ik
0

(17)

ctik � ctik
0
: (18)

Moreover, suppose that q different surrogates are enough
for a task, and more surrogates would not improve the pre-
diction accuracy, that is, SSL tries to assign up to q surro-
gates to each task. So we haveX

k

vt
ikc

t
ik � gtiq; (19)

where
P

k v
t
ikc

t
k is the total capacity of xi’s surrogates while

gtiq is themaximumcapacity needed for the tasks related to xi.
For each task, a surrogate can conduct it for at most once.

So the capacity ctik assigned to xi by zk should not exceed
the number of tasks related to xi

ctik � gti: (20)

In this step, we aim at maximizing the number of surro-
gates assigned to each task. Therefore, the objective function is

max.
X
i

X
k

vt
ikc

t
ik: (21)

So MPN problem can be formulated into the following opti-
mization problem:

max.
X
i

X
k

vt
ikc

t
ik

vt
ik 2 f0; 1gP
i v

t
ikc

t
ik � ctk

vt
ik � vt

ik
0

ctik � ctik
0

ctik � gtiP
k v

t
ikc

t
ik � gtiq

vt
ikdik � dmax:

8>>>>>>>>>>><>>>>>>>>>>>:

(22)

Lemma 4.3. The MPN problem can be solved in polynomial
time.

Proof. We can also transform the MPN problem into a max-
imum flow problem. Similarly, we can first construct a
graph similar to Fig. 3, as shown in Fig. 4a. As SSL tries
to assign up to q different surrogates to each task, we
revise the capacity of the edge that connects node xi with
its task nodes from 1 to q, and revise the capacity of the
edge connected the src node with node xi from gti to gtiq.
The dotted red line in Fig. 4a indicates that a client has
been assigned to a task in the first step.

In order to guarantee the number of conducted tasks,
we first remove the dotted red lines in Fig. 4a, as we
would keep the assignment in solving the MPN problem.
Next, the related edges should adjust their capacities
accordingly, and we get the graph in Fig. 4b.

To achieve the objective of maximizing the number of
surrogates assigned to each task, we just need tomaximize
the flow from the src node to the dst node in the graph and
get the incremental assignment of the clients. So the overall
MPNproblem can be solved inO(ðjXj þ jPtj þ jZjÞ2). tu

5 EVALUATION

In this section, we evaluate SSL and explore SSL’s design
choices.

Experimental Setup. Compared with King, SSL has many
advantages which can result to a much more accurate pre-
diction. Unfortunately, we neither have enough clients dis-
tributed in the real-world Internet nor found existing data

Fig. 4. Transform the MPN problem into a maximum flow problem.
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sets to compare SSD with King. To evaluate SSL in absence
of enough clients distributed in the real-world Internet, we
generated various network topologies with different topol-
ogy models and different network sizes using BRITE8 and
simulated SSL based on the generated topologies. For each
network topology, we randomly chose nodes to act as the
clients with given capacities, leaving others to act as the
ordinary hosts in the Internet. The edge length between two
nodes represents the latency between them. The latency
between two arbitrary nodes is denoted by the length of the
shortest path between them. To simulate the dynamic of the
Internet, we make the length of each edge to vary within
	10% randomly of the value Brite generates.

Due to the space limit, we only shows the representative
results on a router-level topology which contains up to
5,000 nodes. We have also found that the similar results
were achieved for different topologies. In order to explore
the impact of the density of clients on the prediction accu-
racy, we randomly chose 25-500 nodes to act as the clients.
The capacity of each client has a positive correlation with
link bandwidth connected to it.

Performance Metric. To weight how well SSL can predict
the end-to-end latency, we use a metric called relative error,
which is defined by the predicted latency between two hosts
and the actual latency between them

jpredicted latency� actual latencyj
actual latency

: (23)

Thus the closer to zero the value of the relative error is, the
more accurate the methodology can predict the end-to-end
latency.

Impact of Surrogate Number on Prediction Accuracy. To
measure the latency between two arbitrary hosts, SSL can
select q surrogates and estimate the latency between the two
hosts based on the latencies measured from the surrogates.
In order to investigate the effects of the surrogate number q
on SSL’s prediction accuracy, we changed the value of q
from 1 to 7, and computed the relative errors for 10,000 ran-
domly-sampled host pairs. The CDF for the relative errors
when there exist 500 clients are depicted in Fig. 5.

In Fig. 5a, the curve with blue circle markers, the curve
with green square makers, the curve with red triangle_up
makers, and the curve with cyan diamond markers are the
CDF curves for the relative errors when q is equal to 1, 3, 5,
7, respectively. As Fig. 5a illustrates, the prediction accuracy
of SSL improves when the surrogate number q increases
from 1 to 7. However, when q increases and exceeds 5, the
margin of the improved prediction accuracy becomes much
smaller, so that the CDF curves for the cases when q equals
to 5 and 7 are nearly overlapping. The results are similar
when the weighted mean and trimmed mean are adopted
to estimate the latency, as shown in Figs. 5b and 5c. Consid-
ering this, we choose the maximum number of different sur-
rogates for a task to be 5 in this case.

Design Choice on Latency Prediction Based on q Surrogates.
After measuring the latency from q surrogates, SSL can
have different choices to estimate the latency between the
two related hosts, that is, the mean, the weighted mean, or
the trimmed mean, as mentioned in Section 4.

Fig. 6 compares the prediction accuracy under the three
different methods when the surrogate number q is equal
to 5. In the figure, the curve with blue circle markers, the
curve with green square makers, and the curve with red
triangle_up makers are the CDF curves for relative errors

Fig. 5. The effect of the surrogate number for each task on SSL’s prediction accuracy.

Fig. 6. Comparison between different prediction methods with the surro-
gate number q equal to 5.

8. Boston University Representative Internet Topology Generator,
http://www.cs.bu.edu/brite/index.html
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when using the average, the weighted average, and the
trimmed average, respectively. As shown in Fig. 6, the
weighted average achieves the highest accuracy among the
three methods, followed by the average and the trimmed
average worst. In the following experiments, we only con-
duct the prediction based on the weighted average method.

Effects of the Clients’ Density on Prediction Accuracy. Intui-
tively, the more the clients, the higher SSL’s prediction
accuracy. To explore the effects of the clients’ density on the
prediction accuracy, we changed the number of the clients
and computed the average relative error accordingly.

Fig. 7 shows the observed data and fitting curve for the
average relative errors under different client densities. In the
figure, the red dots are the observed average relative errors
under specific client densities, and the green solid curve is
the fitting curve based on them. The results clearly demon-
strate that the average relative error reduces as the density of
the clients increases, following the negative exponential dis-
tribution and the convergence point can achieve when the
client density is about 2 percent. When 2 percent of the hosts
have installed specific softwares and act as the clients, the
average relative error can be 9 percent. For large companies,
e.g., Google, it is possible for them to embed plugins in web
browsers etc. and getmuch higher client density.

Inferring the Statistical Information between Two Host Sets.
To evaluate SSL’s performance in inferring the statistical

information between two host sets, we randomly sample
the nodes in the topology and obtain two host sets. Each set
contains 100 hosts, that is, the universal set include 10,000
edges to be measured. The actual statistical latency between
the two sets is about 91 ms.

In the simulation, we set the client density to 10 percent,
that is, there exist 500 clients among the overall nodes. For
the clients, their capacity is positively correlated to the over-
all bandwidth of their links. To reduce the measurement
overhead, SSL first samples the 10,000 edges, assigns the
sampled tasks to the clients, and uses the weighted mean of
the sampled edges to represent the mean of the universal
set. During the resampling process, we repeat the resam-
pling process for B ¼ 400 times.

Fig. 8 shows the resampling means and its 95 percent
confidence intervals with the sampled ratio, that is, jP j=mn.
From Fig. 8, we can conclude that the more edges SSL
measures, the narrower the range of 95 percent confidence
intervals, and the higher accuracy of the inferred statistical
information. Moreover, the results of different measure-
ments are within 2.7 percent with each other, that is, SSL is
precise.

Without loss of generality, we extract the case when the
sample ratio is equal to 0.15. For the means of the 400 resam-
pling sequences, their distribution is shown in Fig. 9 where
the histogram is the distribution of observed means and the
green dash curve is the fitting curve for the histogram, which
satisfies a normal distribution with the mean value as 91 ms
and the standard deviation as 0:8 ms. The mean value is
exactly the statistical latency between the two sets. Based on
Fig. 9, we can draw the conclusion that the statistical latency
between the two sets is 91 mswith the 95 percent confidence
interval as ½89:4; 92:6� ms, which is shown in Fig. 8.

6 RELATED WORK

There has been considerable amount of work on network
distance estimation [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [29]. However, none of them satisfies the
requirements of statistical latency measurement. We sum-
marize these methods into three categories: coordinate-
based methods, infrastructure-based methods, and path-
fitting methods.

Fig. 7. The observed data and the fitting curve for the average relative
errors under different client densities.

Fig. 8. Comparison of the resampling means and 95 percent confidence
intervals under different sampling ratios.

Fig. 9. The distribution of the observed means for the 400 resampling
sequences and the fitting distribution when the sample ratio is equal to
0.15.
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Ng et al. [11] modeled the Internet as a geometric space
and predict the latency using the distance in coordinate
space. Dabek et al. [13] proposed a distributed network
coordinate system. However, these coordinate-based meth-
ods are not always accurate due to the existence of asym-
metric routing and Triangle Inequality Violation (TIV) in
the Internet. Apart from these coordinate-based methods,
Francis et al. [10] deployed Tracers across the Internet and
estimated the distance between any two hosts using the
sum of the distance from each host to its nearest Tracer, and
the distance between the two Tracers. Madhyastha
et al. [21] predicted end-to-end path performance by com-
posing the performance of measured segments of the Inter-
net paths. However, these path-fitting methods always rely
on numerous deployed servers in the Internet, incurring
high extra costs. Furthermore, it needs massive amount of
active probing and thus it is not light-weight. On the other
hand, infrastructure-based methods always require the sup-
port of infrastructure in the Internet [12], [18]. Gummadi
et al. [12] estimated the latency between two end hosts by
measuring the latency between their authoritative name
servers. However, it requires DNS in the Internet to be open
and recursive, which brings about security issues [22], [23].

There are other related works about measuring the Inter-
net from the edge. Sanchez et al. [30] designed the Dasu
platform, and now the platform is mainly used to measure
user behavior. Shavitt et al. [31] proposed DIMES to mea-
sure the Internet topology. Different from these works, our
paper focuses on end-to-end latency measurement.

7 CONCLUSION

The existing methods for latency estimation mainly focus on
the realtime value. However, the statistical latency measure-
ment, which is defined as the average latency between two
groups of hosts across a time period, is also of great signifi-
cance to many applications, such as service recommenda-
tion, site provisioning and SLA compliance monitoring.
This paper presents a novel statistical latency measurement
method called SSL for large scale networks. SSL mainly
takes advantage of widely distributed but volatile clients to
measure the Internet, including the method to predict the
latency between two arbitrary hosts, the way to reduce the
measurement overhead at scale and the mechanism to sat-
isfy the limited source constraints. SSL neither incurs extra
deployment cost nor brings out security problems. More-
over, we have also explored SSL’s choice design and found
that when measuring the latency between two hosts, the
prediction accuracy is much higher when adopting the
weighted mean of the latencies from the closest 5 clients of
one host to the other host.

Future works include developing software plugins to
support SSL, and extending SSL to measure other network
characteristics, such as the packet loss and the bandwidth.
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