
Survey on Linux Containers and Its Applications

Hyungro Lee
School of Informatics and

Computing
Indiana University
Bloomington, USA

lee212@indiana.edu

Gregor von Laszewski
School of Informatics and

Computing
Indiana University
Bloomington, USA

gvonlasz@indiana.edu

Geoffrey Fox
School of Informatics and

Computing
Indiana University
Bloomington, USA

gcf@indiana.edu

ABSTRACT
Last two and half years, virtualization using containers such
as Docker, LXC has emerged as a new trend for running
applications on the isolated environment. Container-based
virtualization is appealing to developers and service opera-
tors since it provides portable and lightweight runtime en-
vironments for your cloud applications. However, the con-
tainers offer native-like performance and promising features
over the Infrasture-as-a-Service, the container virtualization
is evolving with many issues and missing features. In this
paper, we present a survey of container virtualization and its
tools including differences from hypervisor-based virtualiza-
tion, and the Linux kernel supports. We expect to provide
a guideline and current state of the development from the
containers community and address current challenges from
the research aspects.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Linux Containers, Virtualization

1. INTRODUCTION
1.1 Virtualization
Virtualization is a technology to enable cloud computing
which provides isolated computing resources for high level
applications without dependency of physical hardware. In-
frastructure as a Service (IaaS) offers hardware virtualiza-
tion with additional abstract layer called hypervisor in a vir-
tual machine (VM). Building clusters of virtual servers with
different operating systems is one of the capabilities of uti-
lizing IaaS compute resources. On the other hand, Platform
as a Service (PaaS) offers application centered services to
users who wish to focus on application development rather
than building and configuring servers themselves. Different
abstract layers between IaaS and PaaS offer flexibility to run
user applications with virtualization technology.

Operating System (OS) level virtualization provides a sep-
arated user space above the shared kernel of a hosted oper-
ating system. The isolation guarantees individual resource
limits per each user space so that heavy and noisy neighbors
(processes) do not affect other processes regarding the use
of resources such as CPU, memory, disk I/O, or network on
a same physical hardware. In the Linux kernel, containers
provide isolated virtual environment for each process under
the OS-level virtualization, which is also called container
virtualization or container-based virtualization. The con-
trol groups (cgroups) in the Linux kernel provides a resource
limitation towards a group of processes and multiple work-
loads run with resource partitioning on a same host. The
six namespaces in the Linux kernel provides isloation of pro-
cess trees, (PIDs), network interface controllers, user lists,
filesystems, a hostname and IPC from the global resource in
the same kernel and each process has individual space from
the shared resources. Linux Containers (LXC), Docker lib-
container (previously Google’s lmctfy; Let Me Contain That
For You), and Open Container Project’s (OCP) runc use the
cgroups and namespace as container execution drivers.

1.2 Container Virtualization
Container virtualization is evolving technology and there
are several applications to support large number of contain-
ers for production scale operations. This study focuses on
Linux container virtualization although there are other im-
plementations including FreeBSD Jails, Solaris Containers
(also known as Zones), OpenVZ, and AIX WPARs.

1.3 Kernel Support
The Linux kernel creates a container by isolating user spaces
and managing resources via kernel supports i.e. cgroups and
namespaces which are mostly available in the recent kernel.
The unified control group hierarchy, for instance, is available
in the kernel 3.16 and the Ubuntu 14.04 or higher release
only has the latest kernel which is necessary to avoid any
missing features for container virtualization. For example,
the state of the secure computing is added to the process
status file (/proc/[pid]/status) by the kernel 3.8. The secure
computing facility (seccomp) in the kernel is necessary to
reduce kernel attack surface because the seccomp controls
systems calls with filters. There are list of system calls to be
blocked from containers because they canbe used to obtain
acccess of other containers through a kernel vulnerability.
Linux Containers (LXC) 1.0 requires the kernel 3.12 or above
to enable unprivileged containers and 3.10 Linux kernel is a
minimum requirement for Docker.



1.4 Execution Engines
To run multiple containers on a single kernel, execution en-
gines like Docker work with the Linux kernel features such as
namespaces, cgroups, seccomp, chroot and apparmor. Each
container runs applications in an isolated user space with
own filesystems, process trees, user ids and network inter-
faces but share a same hardware on a single operating sys-
tem. More than a thousand developers contributed Docker,
open source application container engine, last two and half
years, ”to pack, ship and run any application as a lightweight
container” in their own words from the Docker’s github re-
postiory. Docker is an implementation of container virtu-
alzation with the execution drivers such as LXC, libcon-
tainer or runc and application images to build containers.
Execution drivers provide abstraction between the kernel
and containers and container images like Docker Image are
used to contain all required resources to run the applications.
For example, Docker Image is built with a Dockerfile which
is information of applications to run and the image files are
stored in a registry to retrieve and download. Docker Hub is
a public registry to store and share docker images but other
software or services are available to offer a private registry
such as Quay.io or Dogestry. The portable container images
can be launched on any linux hosts with Docker client tools
by pulling images from the registry without dependency is-
sues.

1.5 Execution Drivers with Specification
libcontainer introduced with Docker 0.9 release to provide
built-in execution driver on Docker and become a standard
driver. The development and specification of libcontainer
has been merged to RunC recently to provide a open stan-
dard with App Container (appc). RunC unites efforts from
Docker’s libcontainer and CoreOS’s appc by Open Container
Initiative (previously called the Open Container Project).

1.6 Performance
The studies [3, 4] indicate that linux containers outper-
formed hypervisor-based virtualization in CPU, Memory,
Network, and storage evaluation.

2. CONTAINERS AND ITS APPLICATIONS
The current implementations of containers are addressed in
this section. The core components for containers are de-
scribed and the additional software are introduced in terms
of container clustering in a large scale.

2.1 Container technologies
2.1.1 Docker

According to the recent reports [1, 2], the majority of re-
spondents chosen Docker as their containers management
tools (92% of 285 responses by ClusterHQ and DevOps.com
in May 2015, 70% of 745 responses from StackEngine in
January 2015) . Docker, the set of software creating, ini-
tializing and running containers on Linux-based systems,
gains a lot of popularity due to its portability with the ker-
nel supports and simplicity of running applications with-
out worrying about dependencies. Their in-house execution
driver, libcontainer, is now integrated to the universal spec-
ification, RunC by Open Container Initiative (OCI) to in-
crease the support on various container tools, services, etc.

One of the key components of Docker is the union file sys-
tems (UnionFS) which provides different branches for read-
only and read-write with copy-on-write (CoW) with sev-
eral implementations such as aufs, overlayfs, btrfs, vfs and
DeviceMapper. Other software managed by Docker, Inc
and the community developers ease building, deploying and
managing Docker containers. Docker Swarm provides a con-
tainer mamangenet in a cluster level, Docker Compose (pre-
viously known as Fig by Orchard) connects container images
to run a service by reading their instruction file ”docker-
compose.yml”. More than 140,000 repositories are available
on Docker Hub to share or download Docker container im-
ages. Docker Machine helps you start using Docker on a
desktop or on the cloud. Docker was an internal project in
dotCloud, a PaaS company, and became the most popular
container management tool since its first release in March
2013.

2.1.2 Rocket
CoreOS group launched Rocket (rkt) project, a container-
ization system like Docker but based on App Container
(appc) specification and a different approach on the architec-
ture. Appc is a container specification designed by CoreOS
group for image format, runtime environment and discov-
ery protocol but migrated to the Open Container specifica-
tion to develop and offer a standard container format to-
gether with many other groups in industry. The difference
between Docker and Rocket is the existence of a daemon.
Rocket runs container images directly with init systems and
its commaind line tool, while Docker requires a daemon to
run containers. Docker image can be used in the Rocket
command line tool or the docker2aci converter. Along with
the image format, the Application Container Image (ACI)
defined by appc, the Pod id implemented in Rocket. Pod
is a group of application images for the execution environ-
ment and Google’s Kubernetes has a pod with a same idea.
According to their roadmap, rkt 1.0 will be released in late
2015 with a non-root mode and the support for other linux
distributions such as Fedora, Gentoo, Debian, CentOS, and
OpenSUSE.

2.1.3 LXD
Canonical, the company behind the Ubuntu distribution,
announced LXD, the LXC container management tool and
shipped LXD 0.7 on the latest Ubuntu 15.04. Its client-
server mode allows to create LXC containers remotely via
the OpenStack Nova Compute plugin for LXD, nova-compute-
lxd (nclxd) is a example using the REST API. LXD seems
the first userspace tool that supports live migration ans
snapshot using CRIU, an utility to checkpoint/restore a pro-
cess tree for Linux. Canonical uses ’the container lighervisor’
to describe LXD since their user interface behaves like IaaS
with a hypervisor.

2.2 drivers
Container drivers are important to create and manage con-
tainer virtualization environments by communicating with
the kernel from a userspace. Hypervisor creates a virtual
environment with a new operating system but the container
drivers share the kernel of the host operating system with
multiple containers without starting a new operating sys-
tem. With this different approache between a container and



a hypervisor, we find the pros and cons in running appli-
cations on virtual environments. For example, hypervisor
allows to run Windows, Linux, or other operating systems
in a virtual machine (VM) but overhead is expected due to
the additional layer between hardware and a VM. Contain-
ers provide native-like performance but can not use other
operating systems because containers run under a same ker-
nel on a single operating system.

2.2.1 LXC
The linux container (LXC) is to create and run containers
on Linux systems by using the kernel features like chroot,
cgroups, and namespaces. Multiple virtual environments
can be created on a single kernel by LXC but separated
namespaces for process identifiers (PIDs), user identifiers
(UIDs), etc. are guaranteed to enable isolation.

LXC 1.0 is announced in early 2014 with five year long-
term supports. The key feature of LXC 1.0 is unprivileged
containers which runs containers as non-root users on the
host operating system. This prevents taking a root privilege
on the host from any incident because a root user (uid 0)
inside a container actually has no privileges on the host with
uid 100000 or higher, for example.

2.2.2 libcontainer
Docker used to use LXC as its container execution driver be-
fore Docker 0.9. Libcontainer is a built-in execution driver,
written by Go programming language to access kernel fea-
tures for creating containers. libcontainer is migrated to the
container command line tool (runc) under OCI as collabo-
rative effort with others including CoreOS’s AppC.

2.2.3 systemd-nspawn
systemd-nspawn is a command line tool for testing, debug-
ging and building a command or a operating system in a
container like chroot but with an init binary if available.
It may be called ”nspawn containers powered by systemd”.
systemd-nspawn was in between chroot and LXC in terms
of features and supports for containers. systemd-nspawn is
powerful than chroot because its configuration by systemd
but systemd-nspawn is originally developed for testing ex-
perimenting and debugging, which is not meant for a produc-
tion service. For example, networking was only available by
sharing the host networking, otherwise loopback interafece
was only available in a separate network namespace. In the
latest version of systemd-nspawn, many features are added
including network supports. Virtual network interface can
be established working with systemd-netword which is a sys-
tem daemon for network configuration. As systemd-nspawn
matures, production use is considered. Rocket uses systemd-
nspawn as its backend container manager and Docker sup-
ports system-nspawn as one of the execution drivers.

2.3 Service Discovery
ZooKeeper has been a coordination service to manage a
cluster of machines regarding service discovery, recovery,
updates of node information and leader election. In the
container virtualization, similar features but different ap-
proaches have been made with init systems like systemd.
This helps to check the health of containers and state with
the applications running on.

2.3.1 doozerd
Doozerd provides key-value store in memory using paxos al-
gorithm. The format of storing key-value data is like using
a filesystem with a directory tree. For example, database
information can be stored in the following format: /ser-
vices/db/hostname:port/id = ”albert” and
/services/db/hostname:port/pass = ”admin”. Stackato, PaaS
service by HP (previously ActiveState), used doozered in
their system.

2.3.2 Consul
Consul by HashiCorp uses the raft protocol to store key-
value data. Service discovery, configuration, membership
status, leader election and health checking are supported
with UDP for less sensitive data and TCP connections.

2.3.3 etcd
Etcd is another key-value store service developed by CoreOS.
Etcd watcher provides realtime push notification using HTTP
long-polling which is similar to Doozerd Watchers. Raft pro-
tocol is also used in etcd.

2.3.4 zookeeper
ZooKeeper has been adopted in many software packages as
a coordination service. Ubuntu Juju, Katta, Mesos, Neo4j,
Apache Hadoop, Apache Kafka and Apache Solr uses ZooKeeper.
Zab protocol is used which is like paxos.

The other tools that we haven’t addresse are SmartStack,
confd, Noah, Corosync, Jgroups, Accord and OpenReplica.

3. CONTAINERS IN VIRTUAL CLUSTERS
If you need to run container applications for your service
with heavy traffics or large datasets, cluster managment is
necessary to control containers on multiple server groups.
Job management, service discovery, configuration manage-
ment, image management are required along with resource
scheduling. A group of software packages are used to build
Virtual Clusters (VC) using the container virtualization.
Minimal lightweight operating systems are preferred with
the latest kernel supports to utilize process virtualization
which are application containers and Table 1 describes the
list of software packages. The job management including ex-
ecution and scheduling describes managing workload with
priority, availability and dependency. The image manage-
ment describes downloading, powering up, and allocating
images i.e. VM images or container images for applications
in terms of planning, preparing and booting images. The
configuration service describes storing cluster membership,
service discovery, leader election and quorum for high avail-
ability. The language indicates a development programming
language used in the tool and the ’what can be specified with
extent of ontologies’ describes supported applications to use.
The Figure 1 shows container software with categories based
on each role in the container virtualization. The container
runtime environment provides the isolation of a virtual en-
vironment for a running container process by cgroups and
namespaces from the linux kernel without a hypervisor. The
tools in this category are mainly used to start, build and run
container applications. The supports from operating sys-
tems help start a virtual environment quickly with less secu-
rity issues from unnecessary packages but with new features



such as checkpoint/restart or unprivileged containers. The
operating systems for the containers intend to provide the
latest kernel with minimal package extensions. The cluster
management has a crucial role in controlling large number of
containers for diverse application. Service discovery, job exe-
cution, resource allocation and key-value store for configura-
tion data should be addressed to ensure scalability and high
availability. VM-focused experiences from IaaS continue on
the containers. Running containers on current IaaS plat-
forms provides practices of running applications without de-
pendencies during the transition between the containers and
hypervisor-based virtualization. The coordination service is
required that each container application communicates with
others to exchange data, configuration information, host in-
formation, and ip addresses via network. In a cluster en-
vironment, access information and membership information
need to be gathered and managed in a quorum. Zookeeper,
etcd, consul, and doozer fall into this category. DevOps
tools with their configuration scripts e.g. Chef Cookbooks
or Ansible playbooks are useful to maintain and construct
clusters with necessary software packages on target cluster
nodes, for example, installing and configuring Mesos with
container runtime environments.

Containers

IaaS
Joyent Triton

AWS ECS

PaaS

Elstic Beanstalk

AWS OpsWorks

Jelastic

Dokku

Heroku

Engine Yard

Stackato

Flynn

CM

Salt

Puppet

Chef

Ansible

Coordination Service

Doozer

Consul

etcd

ZooKeeper

OS Support

boot2docker

RancherOS

CoreOS

Cluster Management

OpenStack Magnum

Joyent sdf-docker

Smartstack

Shipyard

OpenShift Origin

Centurion

Marathon

Docker Swarm

Kubernetes

Mesos

Runtime Environment

Jetpack

Kurma

LXD

Rocket

Docker

Figure 1: Mind Map of Containers

4. PAAS
One of the goals in Platform-as-a-Service (PaaS) was to ease
deploying and managing a set of applications as a single
platform since an application runs with other applications
to deal with dependencies. With the recent improvement
of the container virtualization, the benefits of microservices
architecture such as increasing utilization and simplifying
deployment can be enabled in PaaS compared to running on

IaaS or bare-metal. There are many examples in this effort,
for example, OpenShift Origin (also known as OpenShift 3)
provides application development and deployment with the
combination of Docker containers and Google’s Kubernetes.
HP’s Stackato (previously acquired by ActiveState) aims
to provide PaaS with Cloud Foundry and Docker. Cloud
Foundry Diego is a PaaS service to ”combine a scheduler,
runner and health manager” withDocker. NewRelic Centu-
rion, Deis, Flynn, and Dokku are other efforts in PaaS with
containers.

5. REFERENCES
[1] The current state of container usage.

[2] State of container survey 2015 - docker adoption survey.

[3] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An
updated performance comparison of virtual machines
and linux containers. technology, 28:32, 2014.

[4] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto,
T. Lange, and C. A. De Rose. Performance evaluation
of container-based virtualization for high performance
computing environments. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromicro
International Conference on, pages 233–240. IEEE,
2013.



Table 1: Cluster Capabilities for Containers

Name
Job

Management
Image

Management
Configuration
Service

Languague
What can be specified
(extent of ontologies)

Apache Mesos
Chronos, two-level

scheduling
SchedulerDriver with

ContainerInfo
ZooKeeper C++

Hadoop, Spark,
Kafka, Elastic Search

Google Kubernetes
kube-scheduler:

Scheduling units (pods)
with location affinity

Image Policy with Docker SkyDNS Go Web applications

Docker Swarm
Swarm Filters
and Strategies

Node agent
Etcd, Consul
ZooKeeper

Go
Dokku, Docker,

Compose, Krane,
Jenkins

Apache YARN Resource Manager
Docker Container

Executor

YARN Service
Registry,

ZooKeeper
Java

Hadoop, MapReduce2
Tez, Impala

Apache Myriad
Marathon, Chronos,

Myriad Executor

SchedulerDriver
with ContainerInfo,

dcos
ZooKeeper Java

Spark, Cassandra,
Storm, Hive, Pig,

Impala, Drill

Engine Yard Deis CoreOS Fleet Docker etcd Python, Go

Application from
Heroku Buildpacks,
Dockerfiles, Docker

Images


	Introduction
	Virtualization
	Container Virtualization
	Kernel Support
	Execution Engines
	Execution Drivers with Specification
	Performance

	Containers and Its Applications
	Container technologies
	Docker
	Rocket
	LXD

	drivers
	LXC
	libcontainer
	systemd-nspawn

	Service Discovery
	doozerd
	Consul
	etcd
	zookeeper


	Containers in Virtual Clusters
	PaaS
	References

