
Indiana University Bloomington

Indiana, United States

TOWARDS DATA ANALYTICS-AWARE HIGH PERFORMANCE DATA

ENGINEERING AND BENCHMARKING

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

INTELLIGENT SYSTEMS ENGINEERING

by

Vibhatha Lakmal Abeykoon

2021

To: Martin Swany
Luddy School of Informatics, Computing and Engineering

This dissertation, written by Vibhatha Lakmal Abeykoon, and entitled Towards
Data Analytics-aware High Performance Data Engineering and Benchmarking, hav-
ing been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this dissertation and recommend that it be approved.

Minje Kim

Prateek Sharma

Ariful Azad

Geoffrey Fox, Major Professor

Date of Proposal:

The dissertation proposal of Vibhatha Lakmal Abeykoon is approved.

Martin Swany

Luddy School of Informatics, Computing and Engineering

Dennis Groth

Dean of the University Graduate School

Indiana University Bloomington, 2021

ii

© Copyright 2021 by Vibhatha Lakmal Abeykoon

All rights reserved.

iii

DEDICATION

To my parents, my loving wife and brothers and sisters.

iv

Acknowledgements

I have been privileged to be a part of beautiful people who have helped me through-

out life as a student and a human being. First of all, I would like to pay my

sincere gratitude to my advisor, distinguished professor Geoffrey Fox for guiding me

throughout the journey as a PhD student. Your expertise and guidance have always

been a great strength to improve my research career. In the first three years of my

PhD life, the PhD advisory committee, including professor Judy Qiu and Professor

Minje Kim has been great mentors to improve myself to achieve goals in my PhD

life. I would also like to thank Professor Prateek Sharma and Professor Ariful Azad

for being my mentors to guide me throughout the rest of the journey in PhD. Their

guidance and expertise were always helpful to me.

Digital Science Center staff and the research team members, including Dr Supun

Kamburugamuve, Dr Saliya Ekanayake, Dr Gregor Von Laszewski Dr Jerome Mitchell,

Dr Kannan Govindarajan, Chathura Widanage, Dr Ahmet Uyar, Dr Gurhan Gun-

duz, Dr Bo Peng, Bo Feng and Miao Jiang have been a great company to enjoy

and learn a lot from each other. Also, it’s a privilege to work with my fellow PhD

students, Pulasthi Supun Wickramasinghe and Niranda Perera, on many research

including Twister2 and Cylon research projects. Their suggestions and ideas always

motivated me to improve as a researcher.

I would also like to pay my sincere gratitude to my undergraduate research

mentors. Dr Keerthi Gunawickrama, Dr Rajitha Udawalpola, Dr Pasika Ranaweera,

Dr Sanjeeva Witharana, Dr Sanath Jayawardena, Hiranya Nuwan Kumara, Samitha

Kumara and all the research staff in the Electrical and Information Engineering

Department of the University of Ruhuna, Sri Lanka, have been the first motivation

towards my graduate studies.

v

Also, my school teachers from St. Thomas Boys’ College, Matara, Sri Lanka,

have been an incredible inspiration to improve myself as the student I am to-

day. Special thanks to Chethaka Gamage, Dhanushka Kankanamge, Janitha Sama-

rawickarama, Gihan Lakshitha, Chirantha Kanchana, Najath Akram, Asanka Ranas-

inghe and all my friends for being there for me from childhood up to this date.

My loving father and mother was a part of my whole life to keep me going and

being there for me at all times. Their guidance was always the best thing I had

to improve myself as a better person. And my brother is always like a rock to me

and has always been there for me. And my loving wife, Kalani Ayodha, was always

beside me, every step of the way. She kept me motivated and guided me to improve

myself to become the person I am today.

Thanks to everyone who has helped me to come this far!

vi

ABSTRACT OF THE DISSERTATION PROPOSAL

TOWARDS DATA ANALYTICS-AWARE HIGH PERFORMANCE DATA

ENGINEERING AND BENCHMARKING

by

Vibhatha Lakmal Abeykoon

Indiana University Bloomington, 2021

Indiana, United States

Data analytics has become the centre of novel research and extensively growing in-

dustrial applications. Data analytics contains a wide range of disciplines like statisti-

cal modelling, machine learning, deep learning, etc. In our research, we mainly focus

on the machine learning and deep learning components of the data analytics eco-

system. With the rapid growth of data, such data analytics workloads have focused

more on the high performance computing (HPC) paradigm. In general, in a data

pipeline the data engineering component holds the key to providing preprocessed

data by operating on raw datasets. With the rapid growth of high performance data

analytical systems, data engineering frameworks have also shifted towards high per-

formance. Implementing data analytics-aware HPC data engineering operators is

vital in providing scalable operators for HPC environments.

This thesis focuses on data engineering beneficial for HPC environments. The

critical factor is to provide a compatible software stack utilizing HPC clusters effi-

ciently. Mainly the HPC environments rely on communication via MPI. In addition

to this, designing optimized compute kernels allows for the use of HPC resources

in an effective manner. This thesis considers three main areas: data engineering

operators, interoperability, and usability. Data engineering operators discuss a set

of widely used operators in data engineering. Interoperability focuses on the ability

to be used by existing data analytics and data engineering systems, and usability

vii

details how HPC-aware data engineering operators are made available for efficient

data exploration using the widely used dataframe abstraction.

In data engineering, the most popular data abstraction is the dataframe. This

thesis gives in-depth analysis on a set of data engineering operators implemented

to run on HPC resources, and these operators are exposed to the user in terms of

a state-of-the-art dataframe abstraction which involves less overhead in migrating

an existing data engineering program to the introduced novel dataframe on HPC.

The seamless integration between HPC data engineering operators and dataframe

abstraction in Python is enabled via customized language bindings designed using

Cython. Applying Cython efficiently provides the ability to seamlessly integrate

data structures across programming languages (C++ and Python). Compared to

current sophisticated big data systems, having this mode of operation offers the

ability to execute effectively on HPC environments.

Some widely used data structures in data analytics are Numpy and Tensors.

Seamless integration among data engineering data structures and data analytics

data structures provides efficiency in data exploration research. Such tactics, com-

bined with existing data structures like Pandas dataframe, enable facilitation with

current data engineering programmes. This thesis investigates how the developed

HPC data engineering operators perform compared to existing data engineering op-

erators. This thesis also comprises scaling a scientific data analytics-aware data

engineering workload deployed on PyTorch and Pandas in an HPC cluster using the

introduced novel data engineering dataframe. A set of benchmarks is carried out

to analyse the data engineering workload’s performance on HPC clusters involving

GPUs and CPUs for deep learning, and CPUs for data engineering. Additionally,

these benchmarks are packaged with a framework designed for scientific applications.

viii

TABLE OF CONTENTS

CHAPTER PAGE

1. Motivation . 1
1.1 Research Goals . 4
1.2 Research Contributions . 5

2. Introduction . 6

3. Literature Review . 10

4. Distributed Machine Learning . 18
4.1 Distributed Support Vector Machines for HPC and Big Data Overlap . . 19
4.1.1 Anatomy of the SVM Algorithm . 20
4.1.2 Parallel Gradient Descent SVM . 20
4.1.3 Datasets . 21
4.1.4 BLAS Optimizations . 22
4.1.5 Performance Benchmarks . 23
4.2 Iterative Streaming for Data Analytics 25
4.2.1 Streaming SVM . 27
4.2.2 Streaming KMeans . 29
4.2.3 Model Synchronization . 29
4.2.4 Performance Evaluation . 30

5. High Performance Data Analytics-Aware Data Engineering 38
5.1 Methodology . 40
5.2 System Architecture . 42
5.3 Communication Kernels . 44
5.4 Data Engineering Kernels . 45
5.4.1 Relational Algebra Kernel . 46
5.4.2 Indexing Kernel . 47
5.4.3 Search Kernel . 48
5.4.4 Filtering Kernel . 49
5.4.5 Duplicate Handling Kernel . 50
5.4.6 Null Handling Kernel . 51
5.4.7 Linear Algebra Kernel . 52
5.5 PyCylon . 52
5.5.1 Cython for Python Bindings . 53
5.5.2 Cython API . 56
5.5.3 Python API . 57
5.6 Dataframe API . 57
5.7 Interoperability Among Python Data Structures 58
5.8 In-Memory Conversions . 61

ix

5.9 Data Loaders . 62
5.10 Productivity and Usability . 62

6. Performance and Benchmarks . 67
6.1 Indexing and Searching . 67
6.2 Comparator Operations . 70
6.3 Math Operations . 71
6.4 Null Handling . 71
6.5 Distributed Join Performance . 72
6.6 Distributed Drop Duplicates . 73
6.7 Join with CPU and GPU . 75
6.8 Overhead from Python . 77

7. Integration with Deep Learning Frameworks 79
7.1 PyTorch . 81
7.1.1 Stage 1 . 82
7.1.2 Stage 2 . 83
7.1.3 Stage 3 . 84
7.1.4 Stage 4 . 85
7.2 Horovod with PyTorch . 85
7.2.1 Stage 1 . 86
7.2.2 Stage 2 . 86
7.2.3 Stage 3 . 87
7.2.4 Stage 4 . 87
7.3 Horovod with Tensorflow . 87
7.3.1 Stage 1 . 89
7.3.2 Stage 2 . 89
7.3.3 Stage 3 . 89
7.3.4 Stage 4 . 90

8. Implementing a Scientific Workload . 92
8.1 UNOMT . 92
8.2 Deep Learning Component . 93
8.2.1 Drug Response Regression Network . 94
8.2.2 Cell-Line Category Classifier . 97
8.2.3 Cell-Line Types Classifier . 98
8.2.4 Cell-Line Sites Classifier . 99
8.2.5 Drug Target Family Classifier . 101
8.2.6 Drug QED Regression Network . 101
8.3 Data Engineering Component . 102
8.3.1 Drug Response Data Processing . 104
8.3.2 Cell-line Data Processing . 108
8.3.3 Drug Property Data Processing . 108

x

8.4 Performance Evaluation . 110
8.4.1 Data Engineering Sequential Performance 111
8.4.2 Data Engineering Distributed Performance 113
8.4.3 Data Analytics Distributed Performance 118

9. Conclusion . 121

10. Future Work . 122

11. Research Goals in Action . 124

BIBLIOGRAPHY . 128

xi

LIST OF FIGURES

FIGURE PAGE

1.1 Systems overview for data analytics aware data engineering 4

2.1 Higher Level View of Data Analytics-Aware Data Engineering 9

4.1 SVM Distributed Data Parallel Training with BLAS Optimizations with
MPI . 24

4.2 SVM Distributed Data Parallel Training with BLAS Optimizations with
Big Data HPC Overlap . 24

4.3 Twister2 Iterative Streaming Workflow for an ML Application 26

4.4 Streaming SVM with Linear Kernel-based experiments for tumbling win-
dow is recorded for both HPC and Dataflow programming models.
The time recorded is the streaming training time until expected con-
vergence. 32

4.5 Streaming SVM with Linear Kernel-based experiments for sliding win-
dow is recorded for HPC model and Dataflow programming models.
The time recorded is the streaming training time until expected con-
vergence. The x-axis in the right figure is labeled with the pair of
(window length, sliding length). 33

4.6 Streaming KMeans Results for 1000 cluster-based experiments for tum-
bling window recorded for both HPC and Dataflow programming
models. The time recorded is the streaming training time until ex-
pected convergence. 35

4.7 Streaming KMeans for 1000 cluster-based experiments for sliding win-
dow recorded for both HPC and Dataflow programming models. The
time recorded is the streaming training time until expected conver-
gence. The x-axis in the right figure is labeled with the pair of
(window length, sliding length). 36

5.1 Data analytics-aware data engineering workload 42

5.2 System Architecture . 43

5.3 High-Level API Abstraction . 54

5.4 Cython Interfacing with Computing . 55

5.5 Data Structure Hierarchy . 60

5.6 PyCylon Data Interoperability . 61

5.7 In-memory data conversion . 62

xii

6.1 Indexing Operation Performance . 68

6.2 Search By Value Operation Performance 69

6.3 Indexing and Search By Value Operation Performance 69

6.4 Comparator Operation Performance . 70

6.5 Math Operation Performance . 71

6.6 Null Handling (dropna) Performance . 72

6.7 Distributed Join Performance . 73

6.8 Distributed Join Speed Up . 74

6.9 Distributed Drop Duplicates Performance 74

6.10 Distributed Drop Duplicates Speed Up 75

6.11 Join CPU vs. GPU Performance . 76

6.12 PyCylon Gain vs Modin . 77

6.13 Performance Overhead by Language Bindings 78

7.1 Integrating Data Engineering Workload with Data Analytics Workload . 81

7.2 Stage 1: Initialization for PyTorch With PyCylon 82

7.3 Stage 2: PyCylon Data Engineering Workload 83

7.4 Stage 3: Moving Data from Data Engineering Workload to Data Ana-
lytics Workload . 84

7.5 Stage 4: Distributed Data Analytics Workload 85

7.6 Stage 1: Initialization for Horovod-PyTorch With PyCylon 86

7.7 Stage 4: Distributed Data Analytics Workload 88

7.8 Stage 1: Initialization for PyTorch With PyCylon 89

7.9 Stage 3: Moving Data from Data Engineering Workload to Data Ana-
lytics Workload . 90

7.10 Stage 4: Distributed Data Analytics Workload 91

8.1 Gene Network . 95

8.2 Drug Network . 95

xiii

8.3 Response Block Module . 95

8.4 Response Network . 96

8.5 (a) Cell-Line Category Classifier, (b) Cell-Line Type Classifier, (c) Cell-
Line Site Classifier . 100

8.6 (a) Drug Target Family Classifier, (b) Drug QED Regression Network . 102

8.7 (a) Drug Response Data Processing, (b) Drug Feature Data Processing,
(c) RNA Sequence Data Processing 106

8.8 Drug Response Overall Data Processing 107

8.9 (a) Cell-Metadata Processing, (b) Cell Feature Metadata Overall Pro-
cessing . 109

8.10 Drug Property Data Processing . 109

8.11 (a) Drug QED Feature Data Processing, (b) Drug QED Data Processing 110

8.12 Sequential Data Engineering . 112

8.13 Multi-Core Data Parallel Data Engineering Performance 114

8.14 Multi-Core Data Parallel Data Engineering Speed-up 115

8.15 PyCylon Distributed Data Engineering Time Breakdown 116

8.16 PyCylon Distributed Data Engineering (CPU) Percentile Time Breakdown117

8.17 PyCylon Distributed Data Parallel Data Engineering 118

8.18 Distributed Data Parallel Deep Learning on CPU 119

8.19 Distributed Data Parallel Deep Learning on GPU 120

xiv

CHAPTER 1

MOTIVATION

Modern-day data analytics has become a vital component in logistics, e-commerce,

health, security, transportation and many other scientific explorations. In the early

days, the main emphasis was on developing algorithms to model such problems in

an accurate way. But with the growth of available data, these problems scaled into

a much larger issue, which was not only restricted to modelling, but also process-

ing the data efficiently. This was necessary to model vivid scientific curiosities and

unknowns into a simple understandable expression. Modelling at the time relied on

very accurate statistical models, which were focused on various numerical modelling

methods. But these statistical models evolved into a structured data analytics do-

main called machine learning at the start of the 20th century. Machine learning

became a very powerful tool to solve a wide variety of problems very efficiently.

Since the dawn of the big data age, the data started growing rapidly, and scien-

tists needed tools to process such datasets efficiently. This was the dawn of big

data systems, which began to couple with machine learning workloads. Over time,

the machine learning models evolved into deep learning models, which are highly

sophisticated algorithms based on neural networks.

Many tools were developed to assist with data processing for efficient data ana-

lytics. Data exploration tools like Pandas[M+11] have become a key resource in data

processing for small-scale problems. For distributed data exploration, data engineer-

ing frameworks like [das] were created on top of Pandas. Frameworks like Apache

Spark[ZXW+16], Apache Flink[apaa], Apache Storm [IS15] and Apache Hadoop

[apab] now exist to provide data processing for streaming and batch computations.

Individually these existing tools are built to perform on specific tasks like data explo-

ration or data processing. But the underlying core problem set is much deeper, and

1

it requires more involvement from distributed system researchers to build seamlessly

integrated tools that can be applied in data analytics-aware data engineering.

As data analytics has grown, so too have the problems it faces based primarily

on two factors: increasing data for analytics and model size. In the early days, the

model size could fit into a single machine, so using data parallelism was sufficient.

With the evolving amount and granularity of issues, scalability for data analytics

has become a vital area of research. Frameworks like PyTorch[PGM+19], Tensorflow

[ABC+16] and MxNet [CLL+15] are popular options for data analytics, while oth-

ers like Horovod[SDB18] can be used to perform data analysis at scale with many

frameworks in a unified manner. Integrating these tools with data processing is

essential to build scientific data pipelines.

Figure 1.1 shows the system overview for data analytics-aware data engineering

with the existing tools supporting to do such workloads. The software stack associ-

ated with data analytics-aware data engineering is comprised of two sets of software

focused on two goals. The data analytics software stack contains a set of algorithms

specific for data analysis. In addition, frameworks built for this purpose support

distributed computing in a manner compatible with high performance computing

(HPC). PyTorch is one of the leading bulk synchronous parallel (BSP) deep learn-

ing frameworks supporting distributed data parallel training. Tensorflow and MxNet

also provide interfaces for extending sequential data analytics workloads to run on

multiple machines. To enhance the performance and provide a unified software stack

for distributed deep learning, frameworks like Horovod[SDB18] have been created.

This software stack entirely assumes the provided data are tensors in numeric format

for math-based calculations. In data exploration-based research, the data engineer-

ing component plays a major role in preprocessing the data to provide numerical

features for the data analytics workloads. Currently the existing software stack in-

2

volves a few options to do data engineering sequentially or in parallel. Frameworks

like Pandas provide a definition to represent tabular data and preprocess them with

basic dataframe operations widely used by data engineers. Also, frameworks like

Modin and Dask were created to scale Pandas on a CPU stack. These frameworks

are entirely written in Python and focus on a client-server-based distributed model

to support data engineering, and are not entirely focused on a classic HPC soft-

ware stack to provide efficient kernels for distributed computation. But they are

easy to handle and provide users the ability to scale existing Pandas workloads on

CPUs. Besides CPUs, frameworks like cuDF were created to do data engineering on

GPUs. But cuDF is based on HPC kernels specifically written for GPUs and scale

on top of Dask for distributed computing. cuDF also does not posses a BSP mode

of execution for data engineering and relies on the classic client-server architecture

to scale the dataframe-based workloads. We believe we can design a high perfor-

mance dataframe which suits the BSP execution and seamlessly integrates with deep

learning workloads for distributed computing on HPC hardware. In addition, we

believe that a BSP model is more effective in scaling large workloads across multiple

nodes. Having a BSP model based on HPC software stack also provides the ability

to seamlessly integrate with existing data analytics workloads specifically designed

to run on HPC hardware.

Our research focuses on understanding the importance of high performance data

analytics and analyzes in-depth the integration of high performance data analytics-

aware data engineering operators to enhance data exploration-based data analytics.

We observe that the data analytics, data engineering and HPC paradigms are not

very well integrated to provide better support for data analytics-aware data engi-

neering. In this research, we aim to solve this key problem with a subset of in-depth

analyses on the importance of high performance data analytics, efficient and effec-

3

Figure 1.1: Systems overview for data analytics aware data engineering

tive data engineering, and usability for seamless integration with the existing data

analytics subsystems.

Our research goals are evaluating and solving the following key problems.

1.1 Research Goals

• Importance of high performance computing for distributed machine learning

with big data.

• Importance and necessity of high performance computing for data analytics-

aware data engineering.

• Identifying limitations of existing data engineering frameworks.

• Evaluate the necessity of a distributed memory-oriented dataframe for HPC

on CPUs.

• Evaluate high performance data engineering kernels to improve existing dataframe

operators.

4

• Usability of data engineering tools with high performance computing.

• Seamless integration with existing data analytics and data engineering tools.

• Efficient implementation of end-to-end scientific data engineering and data

analytics workloads.

1.2 Research Contributions

• Evaluating the performance of Support Vector machines with high perfor-

mance computing approach vs. big data approach.

• Introducing a novel distributed memory dataframe for high performance data

engineering.

• Evaluating the limitations in the current data engineering solutions with the

novel distributed dataframe.

• Designing and building PyCylon, a high performance Python framework for

data analytics-aware data engineering.

• Integrating with state-of-the-art distributed deep learning frameworks.

• Integration with state-of-the-art distributed training libraries for data analyt-

ics.

• Implementing an end-to-end scientific application for high performance data

analytics on the introduced novel dataframe.

5

CHAPTER 2

INTRODUCTION

Data engineering has become a major component of today’s analytical workloads

in every major business and scientific application. These workloads depend on

structured data with expected data formats and types, which are then ingested by

vivid analytical platforms to provide intelligence and harness important information.

The majority of these applications rely on tabular data, which is later converted into

more complex data structures like graphs depending on application requirements.

In an end-to-end analytical workflow, data engineering becomes the first point of

entry. Later, the processed data are fed to data analytical systems for training and

inference. Since data engineering is a key component, it is important to improve

the existing data engineering stack for higher performance and usability.

In the classic data engineering world, big data computing plays an important

role. Apache Spark[ZXW+16], Apache Flink[apaa], Apache Hadoop[apab], Apache

Beam[Roo20] and Apache Storm[IS15] can be considered major big data systems

designed to preprocess the data for most industrial applications. The main pro-

gramming languages used to build these frameworks are Java, Scala and Python.

They perform very well in cloud environments. These systems tend to be designed

for high throughput and scalability. One drawback is their lack of any ability to

scale well in high performance computing environments, which are mainly built on

top of high performance compute kernels written in C, C++ and Fortran, as well as

communication kernels like MPI[SGO+98], PGAS[ZKD+14] and HPX[KHAL+14].

This is crucial owing to the fact that the majority of data analytics workloads are

running in HPC-driven environments. So there exists a tendency for data engineer-

ing workloads to be compatible with such requirements.

6

In the modern data engineering world, a set of data engineering frameworks have

gained great popularity due to the core programming language used. Pandas[M+11]

can be considered one of the earliest precursors, designed even before some of these

big data systems were created. Pandas provides ideal conditions to do data engi-

neering in an effective manner in Python. But this system is not scalable beyond

a single core. One major reason for Pandas gaining popularity is the usage of

Python in data analytics systems like Scikit-Learn[PVG+11], PyTorch[PGM+19],

Tensorflow[ABC+16] and MxNet[CLL+15]. These systems are focused on machine

learning and deep learning workloads. Since Pandas was developed entirely on

Python, the seamless integration between data engineering and data analytical work-

loads became easy. Pandas also supports Numpy[num] which is a state-of-the-art

numerical data representation format in the scientific computing community. The

tensors in machine learning and deep learning frameworks are created based on

similar compute capabilities like Numpy, and seamlessly integrate with it.

Adopting the Python data engineering best practices, PySpark, PyFlink, Py-

Hadoop, PyStorm and Beam-Python were created to bridge the gap between data

analytical workloads and improve usability. Here the data are moved between the

JVM-based data engineering backend and Python API exposed to the user. When

considering usability and performance, this implementation has numerous bottle-

necks. Data movement causes data serialization and deserialization, and it takes up

a majority of time in large-scale applications. Also, the complex task-based systems

remove the ability to efficiently prototype a problem unless it is done in Pandas.

The Python research community adopted frameworks like Dask[das] and Modin[mod]

to overcome these bottlenecks by introducing scalability on top of Pandas. But the

majority of the compute kernels are written in Python. These frameworks do not

scale well when compared to others like PySpark.

7

Considering the computer architecture, CPUs are still widely used in heavy data

engineering workloads compared to GPUs. One major drawback in GPUs is the

lack of ability to do large-scale in-memory data engineering problems. Frameworks

like cuDF[cud] are promising and developed on high performance compute kernels

which efficiently run compared to existing Pythonic data engineering frameworks.

But the limited memory poses an issue when working with large-scale compute jobs,

which are mainly done in distributed memory.

In addition to data engineering, the programming environment plays a major role

in improving research efficiency. In old-school scientific research, the most important

tool might be a notebook, which contains diagrams, notes and ideas required for

conducting an experiment. The Python community also presents a notebook[Per18]

environment to visualize the intermediate stages of data engineering and data ana-

lytics. These implementations work well with single process computation but do not

provide a better usability for distributed computing. There are existing commercial

products offering support on cloud environments, but there is a lack of usability in

the existing open source frameworks like IPyParallel[VOS18] when dealing with the

data representation in high performance computing environments. Figure 2.1 shows

a higher level view of data analytics-aware data engineering.

We believe that data engineering on CPU stacks can be further enhanced for high

performance by retaining the usability provided by existing Pythonic data engineer-

ing frameworks. In this research, we introduce PyCylon, a dataframe abstraction

written for distributed memory computation in high performance computing envi-

ronments. PyCylon[APW+20] is the Python data engineering framework written on

top of the Cylon[WPA+20, PAW+20] data engineering system we designed. With

this system, our focus is to integrate high performance and high usability in data

engineering.

8

Figure 2.1: Higher Level View of Data Analytics-Aware Data Engineering

9

CHAPTER 3

LITERATURE REVIEW

The first big data systems were a breakthrough in data engineering. Major

contributions came from open source software development, enterprise and aca-

demic research. Apache Spark [ZXW+16], Apache Hadoop [apab], Apache Beam

[Roo20], Apache Flink [apaa] and Apache Storm [IS15] are recognized as examples

of such big data systems capable of data engineering. They support both batch

and stream data computation on the distributed computing paradigm. Apart from

the big data systems, the HPC community from academia created frameworks like

MPI[SGO+98], PGAS[ZKD+14] and HPX[KHAL+14] running in supercomputing

environments. These are specialized models with high performance compute kernels

for math-based and distributed memory computations. HPC systems are mostly

favourable for compute-intensive workloads with basic compute and communication

kernels. The major difference between big data and HPC systems is the way they are

designed and the tasks they are specialized to perform. For a better understanding

of the general big data use case, it is vital to examine the core values of both systems

and design a hybrid system which can do both. Big data systems are easy to use and

offer a variety of compute kernels abstracted by layers of application programming

interfaces (APIs) and allow easy access for users to design systems. On the other

hand, big data systems only provide the major compute kernels and communication

kernels to build such APIs. But HPC systems are much faster in most cases. To

overcome this, Twister2[Fox17, twi17, WKG+19, KWG+18] was created from our

research to support common requirements in both big data and HPC applications.

This system bridged the gap between scientific and industrial research problems

conducted on larger data. Twister2 can run in distributed in-memory, spill to disk,

10

and provides all the state-of-the-art communication and compute kernels written in

dataflow fashion.

Since developing that system, we have been closely analysing its capabilities

and limitations when it comes to computation-intensive applications from modern

data-related instances. Data science wrapped in machine learning and deep learning

are one such example which require a special set of requirements. These analytical

problems consist of two major aspects: an efficient system is required to do the com-

putation, and an effective system is needed to model the problem. The accelerated

data processing inherently becomes an HPC issue, and existing knowledge can be

extended towards designing an efficient system. Considering the effectiveness, pro-

gramming language, data structures, computation model and communication model

can be recognized as the key attributes. Both aspects focus on accurate and efficient

model prototyping to solve data analysis problems. With the increasing complexity

of analytical problems and the nature of data, data scientists and engineers need

efficient and effective systems to make available data analytical model prototypes

for production in various scientific domains.

The aforementioned requirements can be partially seen in three systems in ex-

isting scientific research. Efficiency is provided by HPC systems, effectiveness by

big data systems, and the effect is enhanced with the Python programming layer

added on top of existing big data systems. These three characteristics allow for the

capability to efficiently and effectively prototype a scientific analysis and design the

end system for production. We came upon this simple pattern, which has already

been adopted by major big data systems like Apache Spark with PySpark[DL17] and

Apache Flink with PyFlink[AZR17]. Also, the HPC community extended MPI with

mpi4py[Tes16]. These frameworks became a solution to data engineering problems

to a certain extent.

11

However, we observed a set of major drawbacks in the existing systems. For big

data systems with Python, it is the massive serialization-deserialization cost when

data is moved back and forth from Python to Java. Since core compute kernels in

big data systems are written in Java, even though the user program is written in

Python, the real workload runs in a JVM-based distributed system. So data have

to be continuously serialized and deserialized. In addition, the lazy execution model

in most of these frameworks takes away the capability of writing eager applications,

which are easy to debug and prototype with existing scientific workloads written

on regular compute kernels on eager execution. Furthermore, the learning curve for

maintaining and using such systems is higher compared to modern day Pythonic

data science tools. Pandas[M+11], Modin[mod], cuDF[cud] and Dask[das] can be

denoted as some of the most prominent tools used in data science. In addition,

Cudf is a high performance GPU dataframe which executes sequentially. Similar

to Dask scaling Pandas, CuDf is also using Dask to scale[HSY+20]. In contrast,

the big systems contain a complete eco-system to perform various data engineering

tasks. These frameworks are designed to process larger data sets by partitioning the

data and processing sub tasks by executing them remotely in computing resources.

Among the data engineering frameworks, Dask provides a distributed dataframe for

Pandas by having a global view as a dataframe and having partitions of dataframe

across multiple tasks. Dask distributed execution format is based on a client-server

execution architecture where a scheduler is dealing with the workload and scheduling

tasks by specifying the number of partitions specified by the user. This execution

model is the same model used Apache Spark for distributed computation. Apache

Spark eco-system contains various data abstractions like Spark-RDD, Dataset and

Dataframe. But the usability of Apache Spark is more complex than using Dask to

do data processing in parallel. The limitation of this model is the centralized nature

12

since the scheduler is dealing with scheduling tasks. This execution mode is prone

to performance issues in communication and overheads in scheduling tasks. Besides,

this execution model doesn’t fit well with the BSP execution model in HPC-based

applications. Modin, another framework focusing on accelerated data engineering

for Pandas also provide an easy mode of usage for the user. Underneath it uses

Ray to parallelize the tasks based on a actor-based model. This is another remote-

tasks based model. Eventhough in terms of execution it is a bit different from the

client server model, the actor based execution is also not a natural paralle model to

scale application in HPC resources. Another limitation in these systems is the less

usage of high performance kernels. Pandas itself contains a set of high performance

Cython kernels to improve the performances of joins and other time consuming

operations. But both Dask and Modin doesn’t such kernels to improve the local

operations. For time consuming operations like Joins, duplicate handling and search

operations, having high performance kernels can provide better performance over

Pythonic algorithm implementations in most of the data engineering frameworks

like Dask or Modin. Besides, the Apache Spark has these kernels written in Scala

or Java which could be implemented for better performance using C++. These

Python systems are highly effective in designing, but suffer from performance issues

mainly owing to their having compute kernels written entirely on Python. Also,

these systems do not scale well on distributed computations. But systems like

Numpy[num] written with high performance C++ compute kernels provide better

results over classic Python systems. This reveals a very significant point in designing

better systems.

Although most of the data analytics aware data engineering systems are focusing

on the in-memory distributed computations for data exploration based applications,

the database community used distributed computation for database queries for a

13

very longer time. The difference between the database systems and the data ex-

ploration systems like Pandas, Dask, Modin or PyCylon is that the operators are

not persistent and not fault tolerant. For instance, distributed database systems

like CockroachDB highly fault-tolerant and works well even in worse conditions

[TSM+20]. Dask and Modin has some integration with the disks, but these features

are not widely used for data engineering applications since, most of the workloads

are focusing on the in-memory data exploration approach rather than querying data

by writing SQL queries. What database systems offer and what data exploration

data engineering systems offer are completely different in terms of user experience.

But it is a clear fact that, PyCylon and other systems can use existing algorithms op-

timized by the database commmunity to create efficient implementations for some of

the database operations like select, join, filter, etc. Besides, features like replication,

transcation-based execution are not commonly seen in in-memory exploration tools

like Pandas. These features are important for applications which are motivated

by data persistence and accuracy in atomic level. But for data analytics appli-

cations, what current data engineering offers is adequate and matching with the

requirements. These are also limitations of data engineering systems, but expected

outcome as far as data analytis aware data engineering considered.

When we discuss about systems in terms of just doing data processing, in terms

of a distributed system the main attention is paid to systems like Databrick’s Spark

because of the broad eco-system it supports. Databrick’s Spark version is a com-

mercial version of Apache Spark scaling data processing operations in cloud environ-

ments. The programming model of these applications can be in-memory or utilize

the disk depending on the problem size the limitations in the hardware. The data

analytics aware data engineering frameworks and these big data systems mainly dif-

fer in terms of the commercial usage support, third-party library support for scaling

14

in clouds and data procesing model. Big data systems like Apache Spark focus on

the entire data processing stack starting from stream processing to batch processing

with vivid data structures. Overall, such big data systems provide a solution to a

much larger problem. But as far as data analytics data engineering is considered the

qualities like JVM-oriented design, non-BSP computation model, in-efficient Python

bindings and complex APIs takes away the productivity from the data scientists.

The main objective of systems like Pandas, Modin and Dask is to provide the per-

formance and easy way to write data processing for data analytics applications. So

the main difference is the domains and the set of problems focused by each frame-

work. Apache Spark can solve all these problems, unlike the data analytics specific

data engineering systems, but not very well designed to meet the specific require-

ments like high performance, easy programming model and adaptability with less

system knowledge. Such qualities dilutes down the efficiency and effectiveness of

the systems.

One aspect of the motivation behind an efficient and effective data engineering

system is expanding intensive data analytical workloads. Today’s workloads are

mainly focused on machine learning and deep learning approaches. They are com-

posed of layers and layers of classic data analytical kernels focused on extracting

as much useful information as possible from the raw data processed by data en-

gineering systems. These analytical systems are based on two principles, namely

efficiency and effectiveness. This looks very similar to the modern day motivation

in data engineering systems. In the early days of machine learning, frameworks

like Scikit-learn[PVG+11] and Scikit-Image[VdWSNI+14] were designed entirely us-

ing Python. The effectiveness of these systems was very pleasing to the scientists

for rapid model prototyping. Evolving towards a high performance factor, deep

learning frameworks like PyTorch[PGM+19], Tensorflow[ABC+16], MxNet[CLL+15]

15

and Chainer[TOHC15] made available high performance compute kernels written in

C/C++ and exposed the kernels via efficient Python bindings. A major part of the

computation workload runs on C++, but deep learning system definitions, layer def-

initions, computation models and distributed computation models are all exposed

via Python for effective usage. Similar to big data systems, there are data structures

used in deep learning, and they are limited to a math-based data structure called

tensors. Tensors are the form in which data is injected into these data analytic

systems.

Data analytic systems ingress data from a disk-based or in-memory approach.

In the model prototyping stage, this could be mainly done in-memory rather than

by disk. Since a scientist might be working on evaluating the feature extraction-

based analytical model convergence, it is crucial to keep an efficient data pipeline

when processing large datasets. Even for the disk-based approach, we have to store

them in tensor-compatible data structures rather than other types. Focusing on

data structures, the big data systems are in favour of structured data in tabular

format. In modern data engineering, these are also known as dataframes. Such

dataframes can store heterogeneous data in tabular format. In the last stage of

data engineering, the data in these dataframes would be mostly numerical for the

math-based analysis of data analytical systems. Here the data conversion from

data engineering data structures to data analytical data structures is a key element.

Having an efficient and effective methodology for this conversion must be achieved

when building a seamless integration between data analysis and data engineering

workloads.

Another aspect of data engineering and data analysis is a better medium in

sharing the workloads and allowing complex computation models to be visualized.

Especially in distributed programming models, it is difficult to visualize the in-

16

termediate data structures in distributed memory. A medium which is acceptable

and widely used by scientists must also be on hand to implement such enhance-

ments. Notebooks have been widely used by scientists in the long history of sci-

entific discoveries to take notes and write down experiments and observations in

a presentable manner. Extending from this practice, interactive notebooks like

Jupyter notebooks[KRKP+16, GG16] have been widely used by many scientists.

To provide enhancements for usability like Python, Java, C++, Scala, Ruby and

Julia have been added to such notebooks by scientific research communities. Many

of the industrial research communities have extended this to support various re-

quirements. Netflix has develped an open source version of Scala-driven interac-

tive notebooks called Polynote [LDMG20] to match their industrial needs. Apache

Zeppelin[CLJ+18] is another such open source project to extend the capabilities to-

wards specific goals. For cloud environments and remote compute capability, Google

Colab [Bis19], Databricks notebooks and Microsoft Azure notebooks [Eta19] have

also been created. One main component missing from these tools is to provide dis-

tributed computation support on HPC-driven models. IPyParallel [ipy], a parallel

compute kernel for IPython[PG07], has been produced in response. It supports both

MPI models and task-based models. Dask also provides their notebook [Hay20] ex-

tending from the IPyParallel kernels. Still, the main issue is that these runtimes

are not properly designed to visualize and link with massively parallel computa-

tion models. The existing work can be further improved to provide a better user

experience and high performance computing capability to remotely link to HPC

clusters.

17

CHAPTER 4

DISTRIBUTED MACHINE LEARNING

This chapter gives an overview of integrating HPCs for distributed machine learn-

ing algorithms. Here we will discuss how distributed machine learning algorithms

can be efficiently implemented for better scalability and usability with HPC-based

big data analytics. The objective of this study is to showcase the importance of high

performance computing for data analytics and how this could be very valuable for

much more complex problems. We briefly discuss two machine learning algorithms

implemented in batch and streaming mode execution on an HPC-based implemen-

tation and hybrid big data/HPC implementation. We illustrate how HPC solutions

outperform traditional big data solutions designed for data analytics with big data.

Our findings further reinforce the necessity of optimized data analytics systems for

complex data analytics and the need to move data engineering towards this goal.

Distributed data analytics has been a widely used approach in domain sciences

and industrial applications for the better half of the last century. In the very early

stages of distributed computing, most of these systems were designed for simulating

various domain science models. They ran on hundreds of machines with high perfor-

mance capabilities, eventually leading to HPC. But later on, the trend of analysing

data moved towards big data systems with increasing industrial applications. A set

of big data specialized systems were introduced to meet these specific requirements.

Frameworks like Apache Hadoop, Apache Spark, Apache Flink, Apache Storm and

Apache Heron are the most prominent frameworks that provided the ability to do

computations on batch and streaming data. These systems were specialized to pro-

cess big data sets with high level API abstractions following the dataflow model.

But we observed that the traditional HPC model could be adopted to process big

data more efficiently in both batch and streaming settings. Twister2 was designed to

18

provide an efficient communication layer using Twister2:Net to do distributed com-

puting operations efficiently on HPC hardware. Internally Twister2:Net [KWG+18]

uses MPI point-to-point communication to build a communication abstraction pos-

sessing state-of-the-art collective communication used in HPC. This provides the

ability to incorporate the classic HPC communication model into big data by bridg-

ing the dataflow model with HPC communication. Pursuing this novel approach,

we developed a set of applications and advanced programming models to fit well

with dataflow operators in the existing big data systems. In the following sections,

we discuss the distributed SVM, distributed streaming SVM, distributed streaming

KMeans and benchmarks carried out on the Twister2 system compared to existing

big data systems.

4.1 Distributed Support Vector Machines for HPC and Big

Data Overlap

Support Vector Machines (SVM) are one of the most prominent machine learning

algorithms used for classification prior to the deep learning models which now dom-

inate artificial intelligence applications. With larger datasets, SVM requires more

computing resources to train efficiently. There are multiple implementations which

provide distributed computation for SVM. Among these, Apache Spark and MPI-

based implementations are dominant. Since our focus is to improve the performance

and retain the big data attributes in programming, we applied a distributed version

of SVM on Twister2.

19

4.1.1 Anatomy of the SVM Algorithm

There are a few optimizations algorithms often found in SVM. Sequential minimal

optimization, chunking algorithm and gradient descent (GD) are some of these vari-

ations. Recently, the use of gradient descent has been widely considered with the

growth of deep learning algorithms. We selected a gradient descent-based optimiza-

tion algorithm for the implementation. Algorithm 1 shows the sequential version of

the GD-based SVM.

S = {xi, yi}

where i = [1, 2, 3, ..., n], xi ∈ Rd, yi ∈ [+1,−1] (4.1)

α ∈ (0, 1) (4.2)

g(w; (x, y)) = max(0, 1− y〈w|x〉) (4.3)

J t = min
w∈Rd

1

2
‖w‖2 + C

∑
x,y∈S

g(w; (x, y)) (4.4)

Equations 4.1, 4.2, 4.3 and 4.4 denote the configurations of the sample space, helper

functions for gradient calculation, and the loss function.

4.1.2 Parallel Gradient Descent SVM

We used a parallel gradient descent SVM algorithm based on the sequential version.

After the completion of each epoch, a model synchronization is performed by doing

an MPI Allreduce call. Here the model weights across each process are aggregated

20

Algorithm 1 Gradient Descent SVM

1: INPUT : [x, y] ∈ S,w ∈ Rd, t ∈ R+, b ∈ Z+

2: OUTPUT : w ∈ Rd

3: procedure Gradient Descent(S,w, t, b)
4: for i = 0 to n with step size b do
5: if (g(w; (xi, yi)) == 0) then
6: ∇J t = w
7: else
8: ∇J t = w − Cxiyi
9: w = w − α∇J t

return w

and averaged over the number of processes involved. Algorithm 2 is the parallel

algorithm implemented on the sequential algorithm in 1. Here K refers to the

number of processes, Si indicates the ith batch and T is the total number of epochs.

Algorithm 2 Parallel Gradient Descent SVM

1: INPUT : [X, Y] ∈ S,w ∈ Rd, b ∈ Rd

2: OUTPUT : w ∈ Rd

3: procedure Parallel Gradient Descent(S,w, b)
4: Parallel in K Machines [S1, ...Sk] ∈ S
5: for t = 0 to T do
6: procedure Gradient Descent(S,w, t, b)

w = MPI AllReduce(w) / K
return w

4.1.3 Datasets

To determine the performance of the algorithm in terms of data sparsity, we chose

three datasets: number of features, training data size and testing data size. Table

4.1 refers to the composition of the data selected for the performance benchmarks.

21

Table 4.1: Datasets

DataSet Training Data (80%) Testing Data (80%) Sparsity Features
Ijcnn1 39992 9998 40.91 22
Webspam 280000 70000 99.9 254
Epsilon 320000 80000 44.9 2000

4.1.4 BLAS Optimizations

For the distributed SVM implementation, we further looked into improving the

sequential performance. Here we integrated linear algebra optimizations by using

BLAS routines where necessary. In Equation 4.5, the ddot signature refers to a

BLAS operation which performs dot product of two vectors [Donb]. Equations 4.6,

4.7 and 4.8 refer to daxpy BLAS operation which perform constant times a vector

plus a vector [Dona]. Additionally, the incx and incy refer to the storage space

between the elements in the x and y arguments of the daxpy notation where x and

y refer to two vectors of similar length.

g(w; (x, y)) =⇒ max(0, 1− y〈w|x〉) =⇒ max(0, 1− ddot(d, x, incx, w, incy)); (4.5)

〈Xj, yi〉 =⇒ daxpy(d, yi, Xj, incx, xiyi, incy); (4.6)

w = w − αCXiyi =⇒ daxpy(d, αC, xiyi, incx, w, incy) (4.7)

w = w − αw =⇒ daxpy(d, α, w, incx, w, incy); (4.8)

22

4.1.5 Performance Benchmarks

We conducted a set of benchmarks by considering advanced computing engines spe-

cialized for distributed computing. We designed two sets of experiments discussing

the performance of distributed SVM. The first was set up to compare the perfor-

mance of implementations on Java and C++ along with BLAS integration. The

second set compared the performance of big data systems, MPI systems against big

data and MPI hybrid systems, and Twister2. The experiments were performed in 16

nodes of Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz and the maximum number

of processes per node was set to 16.

Figure 4.1 refers to the experiments conducted on the first set of experiments.

Here we evaluated the performance of Java-based and C++ based distributed SVM

with BLAS optimizations. From these tests we gathered that the C++ programming

provides better performance compared to the JVM-based implementation. The main

reason for the performance boost is the optimized memory management done in the

application development compared to autonomous memory management in JVM-

based implementation. In addition, the BLAS operations provide slightly better

performance when implemented in C++ compared to Java.

Figure 4.2 shows the experiments conducted on the second set. These exper-

iments were meant to evaluate the performance of a distributed SVM algorithm

implemented with Apache Spark (as a big data system), MPI (as an HPC system)

and Twister2 (a hybrid big data and HPC system). The objective was to emphasise

the importance of integrating machine learning algorithms with HPC and big data

hybrid systems compared to classic big data systems. These results show that the

performance of Twister2 is very similar compared to the implementation on MPI.

Also, Twister2 outperforms Spark-based implementations at scale.

23

Figure 4.1: SVM Distributed Data Parallel Training with BLAS Optimizations with
MPI

Figure 4.2: SVM Distributed Data Parallel Training with BLAS Optimizations with
Big Data HPC Overlap

24

4.2 Iterative Streaming for Data Analytics

The impact of big data processing is not only limited to batch data, but also stream-

ing data. With the expansion of data growth and various IoT applications, it is

important to evaluate the application of iterative streaming algorithms for data an-

alytics. Iterative computations are widely performed on batch applications for data

analytics. When we consider streaming applications, one way is to just compute

a given data point once, create a state, and use it for the next data point. But

when it comes to accuracy and various computational requirements, sometimes the

streaming data can be converted into mini-batches and computed iteratively. This is

the simple idea behind iterative streaming processing. A stream can be discretized

by partitioning a stream of data into a container called a window. In streaming,

a window contains a specified number of elements that are gathered by means of

a windowing schema. Windowing schemas can be considered in two ways as far as

discretization is considered:

• Tumbling Window (overlapping elements are not included)

• Sliding Window (overlapping elements are included)

In addition to the windowing schema, the window size can be considered either

as a number of elements in the window or time taken to acquire elements in the

window. To provide HPC-aware iterative stream processing, we implemented an

iterative streaming component on top of the core streaming engine of Twister2.

We developed this component specifically to focus on data analytics for iterative

streaming. The implemented iterative streaming component is known as Windowing

API in the Twister2 system. Figure 4.3 shows how an iterative streaming workflow

can be used to train machine learning algorithms online.

25

Figure 4.3: Twister2 Iterative Streaming Workflow for an ML Application

26

Initially the data are loaded from a source, which can be a messaging queue or a

stream of data coming from storage. The source task does the preprocessing required

to formulate the expected features in the machine learning algorithm. This involves

raw data processing to formulate numerical vectors. In the window-compute task,

the training mini-batches are generated based on the windowing configurations, and

iterative computation is done on the formulated mini-batch to create the training

model. Here the windowing configuration includes a set of hyper-parameters. They

are window length, sliding length, window type and number of iterations per the

iterative computation done on a single mini-batch. In the sink task, the computed

training model is evaluated on the testing data.

4.2.1 Streaming SVM

Support Vector Machine is a prominent classification algorithm used in the machine

learning domain. In an online version of this algorithm, we first discretize a stream

of data points into a mini-batch or window and do an iterative computation on each.

Here a variable number of iterations can be used in tuning the application towards

expected accuracy in the training period. The core of the algorithm adopted is

a stochastic gradient descent-based model. For each window, the weight vector is

updated and synchronized to a global value by doing a model aggregation over the

distributed setting. Once a model is globally synchronized over all the processes, it is

then tested for accuracy. This implementation follows the principle of a batch model

developed to evaluate batch size-based performance on SGD-SVM. We adopted the

same approach to calculate the weight vector or gradient in the discretized stream

(windowed elements) and globally synchronized the calculated weight vector once

the computation per window was completed.

27

Equations 4.1, 4.2, 4.3 and 4.4 denote the configurations of the sample space, helper

functions for gradient calculation, and the loss function.

Algorithm 3 Iterative SGD SVM

1: INPUT: [x, y] ∈ S,w ∈ Rd, t ∈ R+

2: OUTPUT: w ∈ Rd

3: procedure ISGDSVM(S,w, t)
4: for i = 0 to n do
5: if (g(w; (xi, yi)) == 0) then
6: ∇J t = w
7: else
8: ∇J t = w − Cxiyi
9: w = w − α∇J t

return w

In Algorithm 3, the stochastic gradient descent-based step to update the weights

is described as pseudocode. This algorithm shows the computation done per data

point.

Algorithm 4 Iterative Streaming SVM

1: INPUT: X∞, Y∞ ∈ S∞, w ∈ Rd, l ∈ R+, s ∈ R+,m < K,m ∈ R+

2: OUTPUT: w ∈ Rd

3: procedure ISSVM(S̄i, w, T, l, s)
4: In Parallel K Machines [S̄1, ..., S̄b] ⊂ S∞
5: procedure Window(S̄m, w, l, s)
6: for t = 0 to T do
7: procedure ISGDSVM(S̄m, w, t)

8: All Reduce(w)
return w

Algorithm 4 shows the complete iterative algorithm with windowing configurations.

The l symbol in the algorithm refers to the window length and the s symbol is the

sliding length. The algorithm encapsulates both tumbling and sliding window-based

computations.

28

4.2.2 Streaming KMeans

KMeans is another popular clustering algorithm in the machine learning domain. We

applied an online version of this algorithm in our research. In the streaming setting,

we use the stream discretization by means of a window operation. In Algorithm 5,

we have utilized a basic version of the online KMeans algorithm. V refers to the

cluster centroids, k to the number of centroids, and n to the number of total data

points observed down the stream. The number of data points observed must be

at least equal to the number of cluster centroids. In this algorithm, a single data

point is observed only once and the closest centroid is located by calculating the

Euclidean distance. We determine the new centroid as shown in the algorithm. But

in the initialization step, the centroids can be either handpicked from the dataset

or randomly selected. Here we choose it as shown in the algorithm. Our objective

is to see how each framework works on global model synchronization when working

with machine learning models.

In implementing this algorithm, we followed the most sophisticated time notion-

based window-less streaming KMeans implemented in Apache Spark. Once the

computation related to a window finishes, a global model synchronization is per-

formed. Unlike in a classification algorithm, there is no cross-validation involved

during the model generation step.

4.2.3 Model Synchronization

In the distributed setting, generating a synchronized model is vital. In implementing

the online versions of the machine learning algorithms, we adopted the strategies

specific for each framework. In Apache Flink, the reduce function is used for syn-

chronizing the models. This is the only possible way to get an approximation to

29

Algorithm 5 Online KMeans

1: INPUT:X = {x1, ..., xm}, xi ∈ Rm

2: V = {v1, ..., vk}vi ∈ Rm, k ≤ n
3: OUTPUT: V
4: procedure Streaming-KMeans(X, V)
5: procedure Window(X̄, V̄)
6: for xj in X̄ do
7: if j ≤ k then
8: vi = xj
9: ki = 1
10: i = i+ 1
11: else
12: vi = argmini||xj − vi||
13: vi = vi +

1

ni + 1
[xj − vi]

14: ni = ni + 1

15: All Reduce(V)
return V

the all-reduce model. Apache Flink does not support an all-reduce-like communica-

tion for synchronizing models globally. In Apache Spark, reduce function and RDD

broadcast are used to synchronize the model. With Apache Storm, all-grouping is

able to generate a synchronized model. Twister2-HPC model uses MPI-AllReduce

collective communication to achieve the same result. Twister2-Dataflow model em-

ploys a variation of all-reduce communication with a tree-like communication model.

The model synchronization is thus carried out in Twister2.

4.2.4 Performance Evaluation

For the experiments, we used a distributed cluster with 8 physical nodes. We sched-

uled 16 tasks per node to run the experiments. Each node consisted of Intel(R)

Xeon(R) Platinum 8160 CPU @ 2.10GHz with 250GB of RAM capacity. For run-

ning an experiment for a finite period, a stream of 49,000 records for training and a

stream of 90,000 records for testing were used. For the experiments, we only had a

30

finite stream to evaluate training accuracy and performance. The implementations

for the performance evaluation were Apache Storm 1.2.8, Apache Flink 1.9.0 and

Twister 0.3.0.

Streaming SVM

For streaming SVM model, we selected a dataset with two classes and 22 elements

per data point. We used an iterative computation on windowed elements for the

experiments. This operation was supported by Apache Flink, Apache Storm and

Twister2. We tried this model using Apache Spark streaming engine. With the

provided APIs and system constraints, we were able to design an approximate model

to that of the aforementioned frameworks. The main constraint was that it only

provided windowing considering the notion of time. This made it hard to do a stress

test on the stream engine because, by the notion of time, the minimum number of

elements that could be set per batch was in millisecond level. Furthermore, it did

not support iterative streaming models. This feature is not directly supported with

DStream in Apache Spark streaming engine. With the approximate model, the

accuracy obtained was comparatively very low concerning the other frameworks. A

workaround is to use structured streaming in Apache Spark. This implementation

works on the SQL engine of Spark and only considers the notion of time. We did not

implement that model in this research as it is a very different case concerning the

other implementations. In the Conclusion section, this will be explained in detail.

Figure 4.4 shows the experiment results for tumbling window. From these, it is

clear that the Twister2 model outperforms both Apache Storm and Apache Flink

implementations. Figure 4.5 is the sliding window-related experiments. Similar to

tumbling windowing, with sliding windows, Twister2 implementations outperform

Apache Flink and Apache Storm. Twister2 possesses a faster stream processing

31

Figure 4.4: Streaming SVM with Linear Kernel-based experiments for tumbling
window is recorded for both HPC and Dataflow programming models. The time
recorded is the streaming training time until expected convergence.

capability through a strong MPI-based backend. This provides a scalable solution for

iterative stream processing on a window. With Apache Flink, the main bottleneck

is the reduce task doing the model synchronization. In Twister2 and Apache Storm,

the all-reduce and all-grouping mechanisms are involved in providing all-to-all model

synchronization capability. But in Apache Flink, this process becomes all-to-one and

makes a bottleneck in processing the data. In this case, both Twister2 and Apache

Storm exceed Apache Flink performance.

From all implementations in Apache Flink, Apache Storm and Twister2, 90.49%

of test accuracy was obtained after a finite length of the stream was processed.

With Apache Spark implementation, we were able to get an average accuracy of

40-50% with the same number of iterations. We do not include the graphs here

because the number of iterations required to get the same accuracy is much higher.

32

Figure 4.5: Streaming SVM with Linear Kernel-based experiments for sliding win-
dow is recorded for HPC model and Dataflow programming models. The time
recorded is the streaming training time until expected convergence. The x-axis in
the right figure is labeled with the pair of (window length, sliding length).

33

The main issue for this is Spark streaming API is not designed with iteration com-

patibility. Also, it does not provide a window function to capture the elements

belonging to a window. This functionality is available in Apache Storm, Apache

Flink and Twister2. Apache Spark only provides basic element-wise operators like

map, flatmap, etc. If this was attempted with a forEachRDD function, the user

would have no capability to synchronize the model as it is a sink function. In ad-

dition, Spark only provides a windowing functionality with the notion of time and

has no support for windowing based on the count of elements.

Streaming KMeans

For the streaming KMeans model, the dataset we used contains 23 elements per

data point. Here a non-iterative computation is done. Apache Flink, Apache Storm

and Twister2 support the windowing functions to implement an algorithm like this.

With Apache Spark streaming, a non-iterative application can be developed, but the

count-based notion is not available in the API. In this research we have only con-

ducted windowed streaming with the notion of the number of elements per window.

In achieving the current goal, we have used the streaming systems which provide

this functionality.

Figure 4.6 illustrates the tumbling window-based experiments carried out on

streaming KMeans model, while Figure 4.7 details the sliding window-based exper-

iments carried out on streaming KMeans model. Similar to the streaming SVM

results, Twister2 models yield better results than both Apache Spark and Apache

Flink. Twister2 model synchronization with an all-reduce mechanism provides faster

execution than that of regular all-to-all communication in Apache Storm. In Apache

Flink, there is no all-to-all communication; the model synchronization happens in an

all-to-one setting. This is the same bottleneck as observed in streaming SVM appli-

34

Figure 4.6: Streaming KMeans Results for 1000 cluster-based experiments for tum-
bling window recorded for both HPC and Dataflow programming models. The time
recorded is the streaming training time until expected convergence.

cation. But Apache Flink outperforms Apache Storm. This model is non-iterative

and the pressure exerted on communication is less. This leads to quite faster data

progress from the windowing task to the reduce task.

Both the algorithms implemented in batch and streaming execution model show

that the HPC-based implementations are much better as far as performance is con-

cerned. Furthermore, these experiments confirm that the classic big data approach

for data analytics is not very suitable for complex data analytics workloads like deep

learning. The more complex the algorithm, the more computational resources re-

quired. With most machine learning applications being converted to deep learning

applications, less and less usage of big data systems for data analytics is beginning

to occur. But it is clear that by simply evolving with HPC-based computation

models, the performance can be improved. The research value of these experiment

35

Figure 4.7: Streaming KMeans for 1000 cluster-based experiments for sliding window
recorded for both HPC and Dataflow programming models. The time recorded is
the streaming training time until expected convergence. The x-axis in the right
figure is labeled with the pair of (window length, sliding length).

36

sets shows us the need to move data analytics stacks on big data for better perfor-

mance with the evolving deep learning systems. In terms of big data systems and

deep learning systems, the mode of execution, ease of programming, and flexibility

are much favored in deep learning systems along with higher performance. Most of

these algorithms for big data systems and big data-HPC systems are written in Java

or Scala. These programming models are not very intuitive and the programming

knowledge required to write such data engineering and data analytical workloads is

far higher when it comes to complex applications. The mode of execution is lazy

and involves complex task graphs and unnecessary additional details in deploying

programs. Even though Python bindings are available, they are not as intuitive as

Pandas. For these reasons, most of the big data systems have become obsolete as far

as data analytics-aware workloads go. More and more researchers have focused on

data engineering frameworks specifically designed for data analytics workloads. This

brings us to the main theme of our research: data analytics-aware high performance

data engineering.

37

CHAPTER 5

HIGH PERFORMANCE DATA ANALYTICS-AWARE DATA

ENGINEERING

Recognizing the importance of data analytics and integrating high performance

computing resources is a must for many scientific problems. From our in-depth re-

search and discussion in Chapter 4, it is evident that data analytics workloads can

be efficiently executed in large scale to train vivid scientific models to a far greater

extant than without. Another important aspect that we chose not to analyze in-

depth is the data engineering operations that are being widely standardized and used

in parallel with evolved data analytics workloads. Even though big data systems

played a major role in data analytics in the better half of the last decade, more sys-

tems took over data analytics by specializing into sub-domains, providing not just

distributed communication, but also application development capability. This is

accomplished by writing much fewer lines of code. In addition, these data analytics

frameworks were built in such a way that data scientists can easily write programs

and analyze the data very efficiently. Frameworks like PyTorch [PGM+19] and Ten-

sorflow [ABC+16] are examples of such dominant frameworks specialized for data

analytics. Also, the user base, scientific applications and research efforts grew ex-

ponentially utilising these data analytics frameworks to implement problems rather

than just traditional big data systems. With the emergence of these frameworks, it

is clear that the best option is to provide improved support for the data engineer-

ing portion of data analytics, and is more important than building data analytics

components with big data systems. Taking all this into consideration, we dive deep

into investigating how we can provide better and faster tools to do data science by

retaining the best practices of data engineering.

38

Even though data science is essential to understanding patterns and behaviors in

data-oriented problems, the key component to make data available for such anala-

ysis is data engineering. With the dawn of data science applications, most of these

workloads moved to Python to make available tools with much easier program-

ming abstractions for improved application development. This is because most data

science platforms are developed in Python programming language to allow data sci-

entists to develop applications efficiently. When it comes to data engineering, there

are Python APIs available on top of the JVM-based big data systems to provide

this usability. But using existing systems is a very time-consuming exercise for

data scientists to preprocess the data. Additionally, these APIs are not seamlessly

integrated to support HPC-oriented data science systems and thus provide better

performance and usability. From our current research efforts and existing literature,

we believe that the data engineering stack can be further reinforced for high per-

formance computing by building a set of high performance data engineering kernels

and making them available via a simple Python interface to fashion data science

applications of a higher caliber.

In the modern data engineering domain, most Python-based data engineer-

ing systems are developed by considering a data abstraction called a dataframe.

Dataframes are simply a tabular data representation for heterogeneous data. The

raw data coming from various data sources contain data with multiple data types

and are mostly in tabular shape. Having a tabular data representation is helpful

to support a wide range of data engineering applications. Pandas[M+11] dataframe

can be considered as a state-of-the-art dataframe representation in Python-oriented

data engineering. Pandas only support data processing in a single process at the

present. There have been many efforts from the Python community to provide dis-

tributed computing for dataframes. This abstraction has been adopted by many

39

distributed data engineering frameworks like Modin[mod] (structured Pandas for

parallel computing), Dask[das] (distributed Pandas), and cuDF[cud] (dataframe for

GPUs). Our data engineering interface mimics a high-end dataframe and extends

towards an HPC-compatible computation to provide both distributed and pleasingly

parallel operators.

We also observe that the existing data engineering workloads on CPUs can be

further enhanced. This is based on the way systems are implemented and integrated

with existing data analytics workloads. Since the theme of our contribution is data

analytics-aware data engineering, we do a dive from top to bottom, starting by

analysing modern-day data analytics workloads and how they can be reinforced by

building a data engineering system to support data analytics.

5.1 Methodology

To support data analytic applications that are rapidly evolving on Deep Learning,

a vital task would be to identify where data engineering is efficiently applied. The

direct relationship between data engineering and data analytics is the data and the

pipeline to move data from the data engineering engine (DE) to the data analytic

engine (DA). For a better data engineering design, it is necessary to understand

the requirements of DA frameworks and backtrack to create efficient solutions, an

approach drawn from existing applications. Also, we expand the requirements for

designing the DE solutions by understanding future demands based on DA applica-

tion evolution.

The computations in DA engines are associated with numerical data structures

like tensors. A seamless connection between DE engine and DA engine can be

enabled by transforming DE data structures into tensors. For this task, efficient

data transformation and loading are vital components. Figure 5.1 outlines the data

40

movement from a data source towards a data analytic workload. DA applications in

the future will be dominated by datasets since multi-modal training and multi-task

training have become the newest data analytic models. To provide an efficient data

pipeline from DE to DA, we must take into account their data loading components.

Data engineering can be viewed under three criteria, namely data extraction,

transformation, and loading. The data extraction phase is related to reading data ef-

ficiently from data sources like distributed file systems, distributed messaging queues

and local file systems. In processing big data sets, efficient data reading and data

movement in distributed computing environments cannot be overstated. Data in

this phase are heterogeneous, where both numerical and non-numerical data are in

a structured or unstructured format. Structured data are with a schema, and this

is the most common data type (CSV or spreadsheets). Unstructured data formats

are mainly involved in domain science research where a format like HDF5 is widely

used. The key challenge is to read data efficiently and load them into an efficient

in-memory format where it can be transformed with ease.

In the scope of this research, the main focus is to accelerate the CPU workloads

on data preprocessing and data movement. Preprocessing can be defined into two

categories. First is the raw data processing to extract features. The second category

is numerical data augmentation done to reshape and transform the data into data

analytic models. Here some of the data transformation kernels are known to run

much faster in GPUs. But the limitation of in-memory computation becomes a bot-

tleneck in pre-processing larger datasets. The main objective of this research is to

provide an efficient and effective data engineering system on CPU-based dataframe

abstractions with seamless integration to Python. On developed systems, high qual-

ity scientific applications and workloads are benchmarked. In the initial phase of the

benchmarks, we micro-benchmark system-level performance compared to the exist-

41

ing systems. For evaluating an end-to-end workload, we benchmark state-of-the-art

scientific workloads written on the proposed system.

Figure 5.1: Data analytics-aware data engineering workload

5.2 System Architecture

Figure 5.2 refers to the high-level architecture of our proposed system. The lower

layer comprises the high performance communication layer written with MPI and

high performance compute kernels written in C++. To facilitate the support for

existing frameworks and to improve usability, a layer of language bindings is im-

plemented to offer access to multiple languages. But the main focus of our effort

is to enrich the Python data engineering stack to seamlessly integrate with data

analytics frameworks, which are often written with a Python user interface. On

top of the language bindings, the usability APIs and sub-algorithms are developed.

DataFrame API is the most important feature, providing high performance data

engineering. The DataFlow API is the gateway towards external systems like ma-

chine learning and deep learning, allowing data movement from a data engineering

workload to a data analytics workload. The highest level of abstraction is focused on

an annotated Python API which allows users to write distributed or sequential code

without consideration for internal details of writing a parallel code. The distributed

computation is abstracted away from the user in terms of writing data engineering

42

kernels. Since the programming model is on the classic bulk-synchronous-parallel

(BSP) model, in some advance applications the user needs to handle parallelism-

aware local computations by dealing with the rank or process ID.

Figure 5.2: System Architecture

These data engineering operators are built in the Cylon framework. Below are

the key contributions from our research therein.

• Designing and implementing high performance data engineering kernels

• Designing and implementing high performance language bindings for Python

• Designing and implementing a dataflow abstraction for data analytics-aware

data engineering

• Designing and implementing a fast and scalable dataframe abstraction on dis-

tributed memory.

43

• Specification for data engineering operators on distributed memory computa-

tion with BSP awareness

• Seamless integration with Python-based data structures for data analytics and

data engineering

• Seamless integration with data analytics frameworks for distributed data par-

allel computations.

5.3 Communication Kernels

Data engineering kernels require the ability to compute in parallel. The communi-

cation layer provides an All-To-All abstraction to move the data around machines

based on the data distribution. All-To-All implementation is written with MPI

point-to-point isend and irecv calls. Compared to data-parallel jobs, which require

mere data parallelism, data engineering workloads are more focused on processing

a data sample with a given attribute in data. Relational algebra operators like join,

union and intersect are operating on a given sub-attribute of the data set. Join

requires a specific column to do the join, and the data type of that column and

the value of the data are needed to perform the required computation to join two

tables. In the distributed setting, when comparing such values, hashing becomes a

very prominent technique, which allows the moving of values with the same hash to a

single machine so as to perform the relational algebra operation locally and provide

the expected result similar to the sequential algorithm. This is the main difference

between a regular data-parallel workload and a data engineering workload.

44

5.4 Data Engineering Kernels

Data engineering kernels are the core compute kernels required to process raw data.

For better performance, most of our compute kernels are written in C++, or we

refer to vectorized C++ and Python implementations to enhance the performance.

These are the main categories of data engineering kernels supported in the system.

Kernel Operation
Relational Algebra Kernel Join, Union, Intersect, Difference and Project kernels
Indexing Kernels Hash, Vector and Range indexing kernels
Search Kernels Hash, Vector and Range indexing-based searching
Filter Kernels Filter values by conditions
Duplicate Handling Kernels Locate duplicate values and filtering
Null Handling Kernels Locate null values and replace or remove
Linear algebra operators Basic math operations

Table 5.1: Core data engineering kernel classification

These data engineering kernels can be divided into three groups based on the

scalability.

• Local Operators

• Pleasingly Parallel Operators

• Distributed Operators (distributed memory operators)

Note that there are no explicit implementations of pleasingly parallel operators;

the local operators can be executed in a pleasingly parallel way depending on the

parallelism. The distributed operators are only designed to run on parallelism > 1

and fall back to local computation when used in a parallelism = 1 setting.

45

Operator Local Data Parallel Pleasingly Parallel
Relational Algebra Yes Yes Yes
Indexing Yes Not Implemented Yes
Search Yes Yes (simple) Yes
Filter Yes Yes (simple) Yes
Duplicate Handling Yes Yes Yes
Null Handling Yes Yes (simple) Yes
Linear Algebra Yes Not Implemented Yes

5.4.1 Relational Algebra Kernel

When considering dataframes, the main data relational algebra kernel used is the

join operation. In the dataframe domain, the join operation requires a set of pa-

rameters from the user: join columns, join type, join prefixes (optional) and join

algorithm (optional). Join prefixes allow for readability when visualizing the join

outputs. Join type falls under these four categories.

• Inner Join: Includes records that have matching values in both tables.

• Left (outer) Join: Includes all records from the left table and just the matching

records from the right table.

• Right (outer) Join: Includes all records from the right table and just the

matching records from the left table.

• Full Outer Join: Includes all records, but combines the left and right records

when there is a match.

Join algorithm is an additional feature supported from our implementation to

enable users the ability to use the most suitable algorithm depending on required

performance and scalability. We support two join algorithms, namely hash join and

sort join. In the sort join, we sort both relations by join column and do a merging

operation by scanning from top to bottom in both relations.

46

In the local hash join, hashing is done on the join column of one relation (prefer-

ably the smallest) by keeping them in a hashmap, scanning through the other rela-

tion join-column, and computing the hash to build the resultant table by comparing

hashes. In a distributed setting, before performing the join, we do hash-based data

shuffling. The hashes for join columns are computed and data is reshuffled in such

a way that hashes with equal values come to a designated process. After this com-

munication process is completed, a local join is computed in each.

5.4.2 Indexing Kernel

Indexing kernels support fast data querying. We have implemented three indexing

types to support vivid use cases. The current implementation only supports single-

column indexing. The supported indexing kernels are:

• Vector Indexing: A column of a table is used as an index and vector search

operations are applied.

• Hash Indexing: A column of a table is used to create a multi-map of key value

and row indices.

• Range Indexing: A virtual column is created with start and end indices.

In the vector indexing implementation, a column is selected and dropped off the

table depending on a user argument. The idea is that this particular column can be a

data column and index, or it can just be a column to search values corresponding to

a particular query criterion. Currently we only support searches based on equality.

In the hash indexing implementation, the selected column is hashed in such a way

that hashes with the same value map a set of rows. Compared to vector indexing

implementation, hash indexing implementation takes more time due to the hash

47

collisions and multi-map population time. Range indexing is basically a virtual

indexing interface to provide compatibility for a non-indexed table. In a non-indexed

table, we create a virtual column with 0 to num rows with int64 data type. But

this virtual column does not exist in actual memory until a user wants to get index

values. It only records the starting index and end index and generates the index as

per the user’s requirements in data visualization.

We have designed a generic indexing interface with endpoints to implement ad-

vanced search operations on retrieving data from a table. The generic indexing

interface includes the following end points to retrieve data. For the distributed

mode, we provide a unique index for each process at the moment the search hap-

pens by considering a local index in each process. For distributed operations, at

present the user is required to re-implement the indices after the distributed com-

putation. When using vector indices, the time taken to generate them is negligible.

We will discuss more on performance in the benchmark Section 6.1.

• Retrieve by range of keys (a start key and an end key)

• Retrieve by a list of keys (single key retrieval implicitly included

5.4.3 Search Kernel

For fast data retrieval, index-based searches provide an edge over a linear search

across all the records. The search kernels are implemented to support a higher level

search capability. When retrieving data, users can provide a start and end index

or a vector of indices and specify which columns need to be included in that query.

The search kernels expose this querying capability. Basically there are six types of

sub-queries involved with indexing-based searches split into two categories:

48

• Search by value range (start value and end value): This retrieves a set of

records beginning from the start value and terminating at the end value. Here

the start and end values must be unique values in the given index.

• Search by a vector of values: A search is done upon each value in the vector

with the index values.

When retrieving the search table, the user can specify a range of columns or

a list as well. These combinations altogether give six types of sub-querying. For

both distributed and sequential context, the same search kernel is used. In the BSP

setting, when a search occurs, each operator will be executing the search operator

for the search parameter given in every process. For this operator, a distributed

search function is not applicable.

5.4.4 Filtering Kernel

Filtering provides the ability to retrieve a table from an existing table by using a

mask. A mask is a set of boolean values. In tabular format this can be a table

with multiple columns or a single column table. There are many ways to generate

this filter table. A boolean-value table can be generated by comparing a table or

subset of table values to given values. Filtering kernel basically provides the ability

to compare the values considering the basic comparator operators allowed by any

programming language. The supported comparator operators are:

• Greater than

• Greater than or equal

• Less than

• Less than or equal

49

• Equal

• Not Equal

In implementing these comparator operators, we have applied two types of im-

plementations to support vector operations. Since we use Arrow-tabular format to

represent the data internally, Arrow compute operations provide the vectorized fil-

ters rather than implementing them from scratch. Also we have included Numpy

kernels internally to support optimized vector operations for comparators. We ex-

posed the choice of selecting compute engine as a parameter when defining the

context of the application runtime. These are discussed in detail in the dataframe

Section 5.6.

In terms of parallelism, the filter function is considered to be a pleasingly parallel

operator. Each process will provide the filtering operator along with the filter value.

The value can be different for each process or it can be the same as far as a BSP

program is concerned.

5.4.5 Duplicate Handling Kernel

Duplicate records can be widely located in a raw dataset. The objective of the

duplicate handling depends on a keep policy, namely retaining the first value found

as a duplicate in records or the last value found. This implementation consists of a

hashset where we iterate through each row and create a hash. When new rows are

inserted into the hashset, a row comparator is used to identify whether the value is

already present or not. This provides the ability to differentiate between a unique

record and a duplicate. In default setting, all the columns are considered when

searching for a duplicate record, but we have also provided the option to include

a subset of columns to determine the uniqueness of a record. In the distributed

50

setting, prior to executing this algorithm, a data shuffling operation is done based

on the selected columns considering the hash value of a row.

5.4.6 Null Handling Kernel

In raw data processing, removing null values and replacing them with meaningful

values is a useful function. Also, depending on data representation, null values can

be represented as a string or a particular phrase. In the data loading stage, we

provide options to denote such references (5.9). Null handling can be categorized

into three main operations:

• Check null values (boolean response)

• Drop null values

• Fill null values

When checking null values, currently we use internal kernels of Apache Arrow.

The same process is followed for filling null values with a user-specified option.

When dropping null values, we chose based on the existence of null values row-wise

and column-wise based on whether there were any null values or all null values. For

column-wise operations, we checked for nulls and did an algebraic sum of boolean

values to determine whether any or all values were null. Any corresponding row

indices were dropped. But in the column scenario, we designed a couple of heuristics.

The reason is that, since we depend on columnar data, we cannot physically do row-

based computations directly. For row-wise null check implementation, a column-wise

null check is performed. The obtained boolean array is then cast to int32 array and

the addition of all columns is taken. Then we observe the following heuristics in

deciding whether any null values are present.

51

• Heuristic 1: If the resultant sum/array contains an element with value equal

to 0, it implies all elements in that row are not None.

• Heuristic 2: If the resultant sum-array contains an element with value equals

to the number of columns, it implies all elements in that row are None.

Selection criterion is determined for how the dropping is done; when ’any’ is

selected, an addition value greater than 0 means that corresponding row will be

dropped. For ’all’ criteria, that value has to be equal to the number of columns.

5.4.7 Linear Algebra Kernel

Linear algebra kernels are another important factor required when numerical com-

putations are involved in numerically typed data. Currently we support basic math

operators like addition, subtraction, multiplication and division on column-based

and table-based (if all columns are numerically typed) examples. To support ef-

ficient vector operations for linear algebra, we have implemented the support by

using Numpy and Arrow compute kernels. Currently we do not support an internal

version of linear algebra kernels, but instead rely on highly optimized kernels written

in Numpy and Arrow. With Arrow we use C++ level compute kernels exposed via

Arrow compute APIs. Matrix-level operations are not yet supported in the current

implementation.

5.5 PyCylon

Language bindings are a very important aspect of our system. Since we focus on

providing the highest usability and seamless integration to the data science ecosys-

tem, the ability to write programs in Python is essential. For this we introduce the

52

framework PyCylon, the Python API for data engineering workloads, as one of the

major contributions from our research.

The majority of our data engineering kernels are written in C++, and kernel level

APIs require efficient language bindings when it comes to linking up with extensively

used languages like Java or Python. The main focus of our research is to make these

tools available in Python. To enable C++ kernels for Python, the most effective

and developer-friendly mode is to have Cython as the interface between C++ and

Python. Cython has been widely used to write efficient Python bindings in scientific

computing libraries like Numpy, SciPy, Pandas and many other research projects.

Figure 5.3 depicts a high level API abstraction in our data engineering frame-

work. The lowermost layers consist of the core kernels for data engineering and

communication. On top of these, we have the C++ Cylon API. This API contains

all the endpoints for writing communication modules, data engineering operators,

data loading operators and other util operators. We combined the C++ Cylon API

with the Cylon Cython API to make an efficient Python interface. This layer is also

seamlessly integrated with PyArrow Cython API and Numpy Cython API. Also,

the current Cython layer can communicate with other libraries, providing Cython

interfaces. Atop the core Cython API, we developed the PyCylon API. This is

purely Python, and calls to the Cython interface when computations must be done

on data engineering operators.

5.5.1 Cython for Python Bindings

Cython is a special language created to design Python programs for high perfor-

mance computing. The advantage of using Cython is that it provides the ability to

closely work with C/C++ data structures using the internal Cython APIs. When

53

Figure 5.3: High-Level API Abstraction

building HPC systems for Python, Cython provides a wide variety of APIs to in-

tegrate C/C++ kernels such that C++ functions can be called from Python very

efficiently.

In terms of data copying across languages, if the data are created on Python data

structures (entirely Python) and if the data are primitive types, they will be copied

when calling functions or creating C++ objects via corresponding Python objects.

But in our design, since we are using Apache Arrow format to load the data, there

is no data copy even when we do computations on data created on PyArrow or

LibArrow using Cylon. This provides an advantage since we do not need to serialize

or deserialize data.

Referring to the function calls made from the Python interface, the actual com-

putation takes place only in C++ based memory allocation formulated when loading

data via Arrow. Here Python actually does not do any memory allocation, but calls

Cython bindings to exercise data engineering operators internally on that desig-

nated memory location (or Arrow Table), and the output is presented to the user.

Here the data copying refers to the pure data loading to the memory for computa-

tions. Figure 5.4 illustrates how a particular Python interface has been integrated

54

via language bindings to the core compute kernels.

Figure 5.4: Cython Interfacing with Computing

Here any compute operator or compute interface that needs to be executed using

C++ core kernels requires the flow shown in Figure 5.4. Such interfaces can be

unwrapped to access the Cython interface object, which is generally a shared pointer

in C++. The Cython interface provides an expected shared pointer reference to

the C++ Cylon interface. Within our C++ Cylon interface lies the C++ Arrow

interfaces (Arrow Table or Arrow array) which will be used in the compute kernel.

55

Once the expected computation is done on the shared pointer, the resultant shared

pointer is again wrapped as a Python object using the wrapping interface. The

unwrap interface is nothing but casts the Python objects into a Cython object and

extracts the underlying shared pointer in C++ implementation. The wrap interface

uses the underlying shared pointer in C++ to create the Cython object and forms

the Python object. Here there is no data copy since we do this by referring to the

shared pointer created when the initial data were formed in memory. Apache Arrow

interfacing provides the ability to even extend this to multiple languages without

doing any serialization or deserialization when moved across vivid language layers.

5.5.2 Cython API

As with the discussion in Section 5.5.1, the objective of this layer is to provide the

efficient execution of C++ kernels and output to Python interface without copying

data by instead using the underlying memory allocated from C++ kernels. For

extended and advanced usage, the Cython API can be used to build third-party

libraries and add-ons. Currently our Cython API includes major functions available

in the C++ kernels. The exposed Cython APIs are as follow:

• Table API : Includes data engineering high level operators

• Context API: Interface to determine distributed runtime information

• Configuration API: Sub-modules related to network information and other

configurations

• I/O API : Input and output modules related to data (read, write, convert)

• Compute API : A high level wrapper for subsets of data engineering kernels

built on top of Apache Arrow Compute API.

56

We have used the Cython API to extend the functionality to a higher level

Python API 5.5.3. Similarly, when building third-party libraries or writing addi-

tional functionalities, kernels from existing libraries can be extended via the Cython

layer.

5.5.3 Python API

Python API is the highest level of API abstraction in the framework. It relies

on the immediate underlying layer, Cython API. The Python API consists of the

wrapped interfaces containing Cython interfaces. This layer is designed to provide

more usability in programming environments and abstract away Cython syntaxes

and utils from the users. Python API mainly contains the DataFrame API 5.6 and

other util APIs supporting data engineering.

5.6 Dataframe API

The highest level of API abstraction in our system is the dataframe. This dataframe

API is designed such that it mimics the functionality of a state-of-the-art Pandas

dataframe representation. The major difference is the functions with distributed

computing interfaces and a few additional interfaces provide endpoints to get in-

formation about the distributed runtime (number of workers, worker ID, etc). The

dataframe API is built on top of the Table API exposed in the Cython API. Table

API contains all the core data engineering operators abstracted to be used as a sim-

ple Python class. But dataframe API abstracts away the distributed compute func-

tion calls and other internal details and provides streamlined function definitions.

The supported dataframe operations are grouped into sequential (also function as

pleasingly parallel operators) and distributed operators as shown in Tables 5.2 and

57

5.3 respectively. Here we mainly support the widely used data engineering opera-

tors. Our intention is to improve and add more operators based on the scientific

applications developed as an outcome of this research.

In the dataframe representation, most of the operators are pleasingly parallel

because the nature of the computation mimics a sequential computation that can

be executed across all processes. The distributed operators that can be supported for

dataframes are dataframe initialization, joins, groupby, join and duplicate handling

operators. In our research we mainly focus on initializations, joins and duplicate

handling.

5.7 Interoperability Among Python Data Structures

When it comes to application development, one of the most important features is

the ability to seamlessly integrate with other existing data structures which are

widely used in interdisciplinary domains. The data structures mainly represent the

data in a useful abstraction with vivid compute functions helpful in manipulating

data. As far as data engineering is concerned, the most widely used data formats

are CSV, Parquet, HDFS and other binary formats like HDF5. When it comes to

tabular data representation, the most prevalent data formats are CSV or Parquet.

Parquet is an efficient columnar representation for data storage on disk. In data

loading (discussed in Section 5.9), we provide support to load data into a PyCylon

dataframe. To understand how we achieve data interoperability, it is necessary to

showcase how we have interfaced the tabular data representation.

From Figure 5.5, the underlying data structures in the PyCylon framework can

be seen. Here the dataframe is the aforementioned higher level API for data engi-

neering operations. Table refers to the C++/Cython table abstraction integrated

58

Pandas Operator Description
index Indexing for faster search
columns List Columns
shape Show dataframe shape
empty Create an empty dataframe
isin Check whether a value/s exists in the dataframe
where Check the index of a value/s located in the dataframe
add Addition of a scalar to a dataframe object (numerical)
sub Subtraction of a scalar from a dataframe object (numerical)
mul Multiplication of a scalar to a dataframe object (numerical)
div Division of a scalar to a dataframe object (numerical)
lt Comparator for less than
gt Comparator for greater than
le Comparator for less than or equal
ge Comparator for greater than or equal
ne Comparator for not equal
eq Comparator for equal
add prefix Add a prefix for dataframe columns
add suffix Add a suffix for dataframe columns
drop Drop a column from a dataframe
rename Rename a dataframe
take Obtain a sub-sample of a dataframe by indices
dropna Drop not applicable values
fillna Fill not applicable values with a user-given value
isna Check for not applicable values
isnull Check for null values
notna Inverse check for not applicable values
notnull Inverse check for not null values
set index Index a table by a given column
reset index Reset index of a table
loc Locate sub-sample of dataframe by value
iloc Locate sub-sample of dataframe by position

Table 5.2: Dataframe Pleasingly Parallel Operators

Operator Description
Dataframe Create a dataframe in distributed memory
join Join two dataframes by a column or index
merge Join two dataframes by the index column
drop duplicate Drop duplicate values by config

Table 5.3: Dataframe Distributed Operators

59

Figure 5.5: Data Structure Hierarchy

with data engineering kernels. Internally we represent the data using Arrow ta-

bles. Arrow format with the columnar representation provides a naturally efficient

mechanism to read the data from the disk by considering the memory layout.

For data engineering operators, we access the underlying Arrow array data struc-

tures and pass them to compute functions. One important feature with Arrow is

that the Arrow table is immutable, so when we do a particular data engineering op-

eration, we have to create a new table with updated data even though it is viewed

as an in-place operation in the higher level. Here we replace the underlying shared

pointer of the table from the original table with that created from the computation

results.

60

Since our dataframe is internally integrated with Apache Arrow Table data struc-

ture, our Dataframe possesses the ability to seamlessly integrate with other data

engineering data structures like Pandas dataframe, Numpy arrays and PyArrow Ta-

bles. Figure 5.6 shows the data interoperability across data engineering operators.

Figure 5.6: PyCylon Data Interoperability

5.8 In-Memory Conversions

Facilitating high performance data movement and zero-copy among systems is a

key component of a data analytics-aware data engineering workload. Figure 5.7

details the memory copy overheads and the ability to move data back and forth in

vivid data structures used in data engineering and data analytics. Since PyCylon

dataframe internally uses Arrow data structure, it facilitates the seamless integration

to Pandas and Numpy. Here the Arrow Table cannot be directly converted to a

multi-dimensional Numpy array. But iterating through each column, such an array

can be created. Arrow internally supports zero-copy when data representation is

numeric, with no null values and chunk-array (a list of arrays is represented as a

chunk-array in Arrow format) with chunk size = 1.

61

Figure 5.7: In-memory data conversion

5.9 Data Loaders

Data loading is the entry point for any data engineering application. In our data

engineering framework, we currently support loading CSV and Parquet-formatted

files via Arrow readers, Pandas readers and in-memory data structures like Pandas,

Numpy and PyArrow. Data loading is not only important for data engineering, but

also for data analytics workloads. Since our dataframe abstraction has a seamless

integration to Numpy arrays, providing input to deep learning frameworks is possible

with the support of efficient data conversion from Numpy array to Tensor in PyTorch

and Tensorflow. This allows users to rely on existing data loaders from widely used

deep learning frameworks.

5.10 Productivity and Usability

Productivity and usability play major roles in prototyping applications and design-

ing efficient production frameworks. In recent years, Python has allowed us to

62

achieve such objectives. Specifically for data engineering workloads, Pandas oper-

ator specification has become the preferred operator specification. In our research

contribution, our objective is to minimize the programming overheads by providing

a similar API to Pandas. This allows users to migrate existing data engineering so-

lutions to PyCylon with minimum code changes. When migrating an existing work-

load, users will only be modifying an import statement and adding a distributed

context to enable efficient data engineering.

The usage of data engineering operators with the sequential relational algebra

operators can be seen in Algorithm 6.

Algorithm 6 Using Sequential Relational Algebra Operators

1: from pycylon import DataFrame
2: import random
3: df1 = DataFrame([random.sample(range(10, 100), 50),
4: random.sample(range(10, 100), 50)])
5: df2 = DataFrame([random.sample(range(10, 100), 50),
6: random.sample(range(10, 100), 50)])
7: df2.set index([0], inplace=True)
8: df3 = df1.join(other=df2, on=[0])
9: print(df3)

The difference between sequential and distributed operation is the function call

and the way the context is initialized. This is clearly seen in Algorithm 7. Here

we provide a similar API to Pandas and optimize the API to allow for minimum

code change and thus perform code migrations efficiently. The availability of local

and distributed operators allows a user to develop an application with dynamic

capabilities and solve complex data engineering problems more easily. Another

advantage is that it allows the user to use pleasingly parallel or local operators

along with distributed operators with minimum code changes.

Algorithm 8 shows how data filtering operators are designed in PyCylon DataFrame

API similar to Pandas. In addition to the use of context, the rest of the data engi-

63

Algorithm 7 Using Distributed Relational Algebra Operators

1: from pycylon import DataFrame, CylonEnv
2: from pycylon.net import MPIConfig
3: import random
4: env = CylonEnv(config=MPIConfig())
5: df1 = DataFrame([random.sample(range(10*env.rank, 15*(env.rank+1)), 5),
6: random.sample(range(10*env.rank, 15*(env.rank+1)), 5)])
7: df2 = DataFrame([random.sample(range(10*env.rank, 15*(env.rank+1)), 5),
8: random.sample(range(10*env.rank, 15*(env.rank+1)), 5)])
9: df2.set index([0], inplace=True)
10: print(”Distributed Join”)
11: df3 = df1.join(other=df2, on=[0], env=env)
12: print(df3)
13: env.finalize()

neering code is configured to match with existing Pandas definitions for data filter-

ing. Similar to a regular Pandas program, our APIs provide the ability to retrieve

a subset of data by including a slice of row indices like 1 : 3, giving a column name

and retrieving those values, filtering out a subset of data by using a comparator

operation, and filtering a dataframe using another dataframe with boolean values

on the entire table.

Algorithm 8 Using Data Filtering Operators

1: from pycylon import DataFrame
2: data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
3: df = DataFrame(data)
4: df1 = df[1:3]
5: df2 = df[’col-1’]
6: df3 = df[[’col-1’, ’col-2’]]
7: df4 = df > 3
8: df5 = df[df4]
9: df8 = df[’col-1’] > 2

Algorithm 9 demonstrates how data location operators are used with indexing.

This also has a similar syntax compared to Pandas dataframes. Here the user can

either set an index manually by providing index values or use an existing column to

64

set the index. Then loc operation can be executed by providing a slice of start and

end indices with expected columns.

Algorithm 9 Indexing Operator

1: from pycylon import DataFrame
2: data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
3: df: DataFrame = DataFrame(data)
4: df.set index([’a’, ’b’, ’c’, ’d’])
5: df1 = df.loc[2:3, ’col-2’]
6: df2 = df.loc[2:3, ’col-3’:’col-4’]

Algorithm 10 details math operations used on the dataframe with scalar values

and dataframes with similar shapes. Currently PyCylon supports operations on a

sequential mode and embarrassingly parallel mode. We have not yet implemented

distributed operations for adding a table from one process to a table in another

process.

Algorithm 10 Math Operators

1: from pycylon import DataFrame
2: data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
3: df: DataFrame = DataFrame(data)
4: df1 = df + 1
5: df2 = df1 * 10
6: print(df2)
7: df3 = df1 + df2
8: print(df3)

Algorithm 11 shows duplicate handling done using the dataframe. This semantic

is similar to a Pandas routine.

Algorithm 12 illustrates duplicate handling done using the dataframe as a dis-

tributed operation. This semantic is similar to Pandas except for the designation of

the PyCylon context to identify it as a distributed operation.

65

Algorithm 11 Drop Duplicates Operators

1: from pycylon import DataFrame
2: import random
3: df1 = DataFrame([random.sample(range(10, 100), 50),
4: random.sample(range(10, 100), 50)])
5: df3 = df1.drop duplicates()
6: print(”Local Unique”)
7: print(df3)

Algorithm 12 Distributed Drop Duplicates Operators

1: from pycylon import DataFrame, CylonEnv
2: from pycylon.net import MPIConfig
3: import random
4: env = CylonEnv(config=MPIConfig())
5: df1 = DataFrame([random.sample(range(10*env.rank, 15*(env.rank+1)), 5),
6: random.sample(range(10*env.rank, 15*(env.rank+1)), 5)])
7: print(”Distributed Unique”, env.rank)
8: df3 = df1.drop duplicates(env=env)
9: print(df3)
10: env.finalize()

66

CHAPTER 6

PERFORMANCE AND BENCHMARKS

To evaluate our system under stress tests, we did a few benchmarks by grouping

our compute operations in parallel and sequential execution modes. For sequential

operations, we benchmarked our system with Pandas since it is considered a su-

perb dataframe implementation on CPUs. For distributed operations, we compared

the performance with Dask distributed dataframe, which is an implementation to

scale Pandas on CPUs. We also conducted another set of benchmarks on NVIDIA

GPU devices with Rapids cuDF. Apart from this, we tested the performance of our

language bindings against the C++ core to identify the overhead from each binding.

6.1 Indexing and Searching

When indexing experiments, we conducted three sets to showcase the indexing per-

formance, search performance and overall performance for a search followed by in-

dexing. Generally an indexing operation is done only once or just a few times, but

search operations dominate if there are more queries associated with a problem.

Here we conducted the indexing experiment by using a dataset ranging from 100

million records to 1 billion records. These records were generated such that 10%

of the keys were unique in the indexing column. The data distribution provides us

with the ability to query large numbers of data pointing to the same key. In the

search operation, we searched for all unique keys in the data distribution. Figure

6.1 illustrates the performance results gathered from this experiment. From it we

can see that PyCylon vector indexing mode outperforms Pandas, while PyCylon

hash indexing mode is much slower compared to Pandas. The main reason for this

is that internally, when we build the hash index, we populate a multimap (a C++

67

standard multimap), which takes more time to build when a large number of hash

collisions are present.

Figure 6.1: Indexing Operation Performance

Considering the search experiments, we used the aforementioned data distribu-

tion with the same index. Figure 6.2 has the results obtained for loc operation or

search operation. It shows that both PyCylon search implementations perform the

search much faster than Pandas.

Since we observed that the indexing performance for hash-based indexing is much

slower in PyCylon compared to default indexing mode in Pandas, we conducted

another experiment by taking the indexing factor into consideration and calculating

the total time taken to do a search followed by an indexing operation. In a real world

scenario, the number of searches per indexing operation is a factor greater than or

equal to 1. Figure 6.3 details the experiments conducted under these conditions.

Even though the hash indexing performance is slow in PyCylon, it is clear that a

search operation followed by indexing is still faster compared to the time taken by

Pandas to do the same operation.

68

Figure 6.2: Search By Value Operation Performance

Figure 6.3: Indexing and Search By Value Operation Performance

69

6.2 Comparator Operations

In comparator operations, we refer to the operators which determine whether a

particular value is greater, less, greater than or equal, less than or equal, not equal,

and equal operators. With respect to a dataframe, these operators mean the same

idea. Figure 6.4 has the results from the conducted experiments. We observe that

the PyCylon comparator operator is slower in performance compared to that of

Pandas and Modin. We did a micro-benchmark and observed that the internal

performance for computation of the filter is as fast as Pandas or Modin. But the

boolean value output created for each column must be transformed to a PyCylon

table. In Arrow, the overhead observed in creating a boolean type table is much

higher than creating a table with numerical values. We believe that this will be

enhanced in a future Arrow release. In addition to this, we also recommend these

computations be done using either Arrow or Numpy compute kernels.

Figure 6.4: Comparator Operation Performance

70

6.3 Math Operations

The math operations we benchmarked are basic operations like scalar addition,

subtraction, multiplication and division. In this case the benchmark refers to a

scalar addition to the dataframe created with the variable number of records. Our

findings are that the performance of Pandas and PyCylon is very close, but it is

slightly slower compared to Modin. We internally use Numpy and Arrow interface as

the compute engines during these linear algebra operations. Both compute engines

performs similarly. In the benchmark, the compute engine can be specified by

passing a configuration parameter to the context.

Figure 6.5: Math Operation Performance

6.4 Null Handling

Null handling operator benchmark is designed with 90% of null values in the records,

and dropna operator is executed to drop null values on the dataframe for all columns.

The performance benchmark is shown in Figure 6.6. The results show that our null

71

handling implementation executes faster than the Pandas and Modin operator. This

operation is executed column-wise.

Figure 6.6: Null Handling (dropna) Performance

6.5 Distributed Join Performance

In this experiment, we used 200M records per relation (for both left and right

tables in a join) and scaled up to 128 processes. Random data were generated by

considering the uniqueness of data to be 10% such that the join performs under

higher stress considering hash functions and hash-based shuffles. In the parallel

experiments, each process will be loading an equal amount of data such that the

total amount is limited to 200M records. The results from Figure 6.7 show that our

distributed join implementation is faster than Dask and Modin implementations.

Also, the scalability in Dask and Modin is not very strong compared to scaling

provided by PyCylon. Also, the Modin couldn’t be scaled beyond single machine

and failed in the execution. Figure 6.8 shows the speed up for the corresponding

72

experiments. Here we can see that the PyCylon speed up is significant compare to

both Modin and Dask performance.

Figure 6.7: Distributed Join Performance

6.6 Distributed Drop Duplicates

Distributed drop duplication operation is a widely used operator to organize data

such that overall data in a distributed computation must be unique. This is an

essential operator when distributed deep learning is done in data parallel manner.

For this experiment, we used 500M records of data generated with 10% uniqueness

where 90% of the data must be cleaned up for duplicate handling. Here the perfor-

mance comparison compared to Dask and Modin distributed shows that PyCylon

scales better than Dask and Modin. We also observe that the Dask workload does

not scale after Parallelism 32. Also, the Modin couldn’t be scaled beyond single

machine and failed in the execution. Also figure 6.10 shows that the PyCylon has a

significant speed up compared to both Modin and Dask.

73

Figure 6.8: Distributed Join Speed Up

Figure 6.9: Distributed Drop Duplicates Performance

74

Figure 6.10: Distributed Drop Duplicates Speed Up

6.7 Join with CPU and GPU

Since PyCylon only supports CPU-based computations, we conducted an experi-

ment to compare the join performance with cuDF on GPUs. Also, we used the

Modin with sequential and multi-core experiments and Pandas with sequential ex-

ecution. For this we selected an experiment criteria where the full resources of a

CPU node were compared to the full resources of a single GPU device. For this

comparison we selected Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz as our

CPU and NVIDIA TESLA T4 for GPU. The CPU base experiments were executed

on 48 cores, while GPU-based experiments consumed all CUDA cores (this depends

on cuDF internal operations) of the GPU device. We selected the sort algorithm of

PyCylon for the join benchmark. Figure 6.11 shows that the performance of a sin-

gle GPU device vs. the selected multi-core CPU had similar performance. Alhough

the CPU with a single core performs slower compared to a fully Cuda core-utilized

GPU, the multi-core response provides the same result. This shows that CPUs can

still be used to get decent performance compared to a GPU. An important point

75

to take away is that the time taken for join operation is much higher compared

to other data engineering operators. For instance, the math operators in GPU are

much faster than that of CPUs. Still, in a data engineering query, if a single join

query is present, the time taken for that query is much higher compared to other

vector operations. This also shows how resources can be utilized in an optimum

manner. Another relevant detail is the memory limitation. The memory limit in

the CPU node we used was 250 GB, while the limit of the GPU device was 16 GB.

In that particular CPU, we could execute a much larger data engineering workload

compared to the single GPU device for the same performance.

Figure 6.11: Join CPU vs. GPU Performance

Besides individual operator performance we also evaluated the gain obtained by

each operator compared to Modin since Modin usage is similar to what PyCylon

is offering for parallel application implementations. Figure 6.12 shows the average

performance gain over each operator. Here we can see that most of our operations

have significant performance gain compared to Modin. Here we calculated the gain

by comparing the best result for each operator for sequential execution. PyCylon

76

gain for comparator and math operator is quite low. But, if we consider the execution

time of a join or distributed drop duplicate function compared to a math operator or

a join, a join roughly takes 100s of seconds for millions of records computation but

the math or comparator operators take 2-3 seconds even for billion records. If we

consider the execution time of an end-to-end application, always the computationally

intensive operators consumes the majority of the time. In terms of overall execution,

PyCylon can be still faster for a general application. But we are actively working

on improving the gain for math and comparator operators.

Figure 6.12: PyCylon Gain vs Modin

6.8 Overhead from Python

One of the most important attributes for creating high performance data engineer-

ing libraries is understanding the overheads caused by language bindings. Especially

in the case of Python, there are some overheads when systems are designed inef-

ficiently. As such, we conducted a set of tests to evaluate the performance of the

language bindings by considering a set of operators. Figure 6.13 shows that the

overhead caused by language bindings is very small compared to the core C++

API. Essentially the overhead from the Python layer is negligible when compared

77

to Java. These results were obtained by experimenting with multiple processes for

an inner-join with 200M records per relation.

Figure 6.13: Performance Overhead by Language Bindings

78

CHAPTER 7

INTEGRATION WITH DEEP LEARNING FRAMEWORKS

Since the objective of our research is to make available an HPC-based data

engineering framework for data analytics-aware computations, we also designed our

system such that we can effortlessly integrate with existing distributed data analytics

frameworks by using the core of PyCylon. In a data analytics-aware data engineering

workload, there are three main factors that govern the usability and performance.

• Single source, including data engineering and data analytics

• Simple execution mode for sequential and distributed computing

• Support for CPUs and GPUs for distributed execution

Single source is a very powerful concept when it comes to data exploration with

data analytics. For such workloads, feature engineering and data engineering com-

ponents are extensively modified to see how the data analytics workload performs

for different settings. In such cases the data scientist must have room to write the

usual Python script and run the data analytics workload efficiently, not only in sin-

gle node, but across multiple nodes. Simple execution mode refers to running the

workload with a simple mode to spawn the processes to run in parallel.

In regards to vivid frameworks, various ways to execute the framework on mul-

tiple nodes are provided. For instance, frameworks like Dask require we start the

workers and schedulers on each node and provide host information for distributed

communication. On top of that, MPI allows for a single execution command mpirun

to spawn all the processes. Such factors are important in providing a unified inter-

face to do deep learning easily. Also, the execution mode on various accelerators for

deep learning is a very important component. The majority of the frameworks sup-

79

port both CPU and GPU execution, so it is vital to provide the means to seamlessly

integrate with these execution models to support data analytics workloads.

Figure 7.1 highlights the high level component overlay of a data analytics-aware

data engineering workload. We have partitioned the workflow into 4 stages.

• Stage 1: In the first stage, depending on the parallelism, the processes must

be spawned. A unified process spawning mechanism which identifies worker

information such as host ip addresses for each machine or network information

are identified at this stage.

• Stage 2: Worker information is extracted and data engineering operators will

run in distributed mode on top of the data engineering platform, which de-

pends on the worker initialization component. Here the operations can be

distributed or pleasingly parallel.

• Stage 3: For data analytics workloads, the worker information, network infor-

mation, chosen accelerator and data must be provided from the corresponding

data engineering process. This mapping is 1:1 for data engineering worker to

data analytics worker. But this can also be a many-to-many relationship.

• Stage 4: The worker information, network information and data will be used

to execute the data analytics workload in distributed or pleasingly parallel

mode.

Considering this generic overview on deploying deep learning workloads with

data engineering workloads, we have integrated PyCylon with distributed data-

parallel models for PyTorch, Horovod-PyTorch and Horovod-Tensorflow. Horovod

has become an advanced distributed deep learning framework which supports a

unified API for handling distributed deep learning on multiple frameworks. PyTorch,

Tensorflow and MXNet are supported by Horovod. In our research, we paid close

80

Figure 7.1: Integrating Data Engineering Workload with Data Analytics Workload

attention to PyTorch and Tensorflow. Horovod internally uses mpirun to spawn the

processes, and this model fit very well with PyCylon internals as we relied on mpirun

to spawn the processes. This makes PyCylon uniquely qualified as a supportive data

engineering framework for Horovod.

7.1 PyTorch

PyTorch offers a distributed data parallel (DDP) module from the distributed run-

time, which allows the user to initialize an existing model using DDP to make dis-

tributed computing easily available. But the key factor is choosing the distributed

runtime, whether it be MPI, NCCL or GLOO.

81

7.1.1 Stage 1

The first step is to initialize the runtime. Here either PyTorch distributed initializa-

tion or PyCylon distributed initialization can be called. But especially on CPUs, the

PyTorch initialization must be called since PyTorch internally does not handle the

MPI initialization check. But if we use NCCL as the back-end, this constraint does

not exist. This is one of the bugs we discovered from our previous research. For the

PyTorch DDP, the master address and port must be provided because the NCCL

back-end needs to identify which worker is going to be designated as the master

worker to coordinate the communication. In addition, the initialization method has

to be set. After the distributed initialization in PyTorch, PyCylon context must

be initialized to set to distributed mode. After this stage, we complete the require-

ments for Stage 1 and partial requirements for Stage 3 (network information is also

passed along with data in Stage 3, which is initialized in this step). Figure 7.2 is a

sample code snippet related to the initialization step.

Figure 7.2: Stage 1: Initialization for PyTorch With PyCylon

82

7.1.2 Stage 2

The data engineering workload is done in PyCylon, assuming the distributed mode

initialization. We first join two tables and use the join response for a deep learning

workload. The distributed join is called by providing the initialized context informa-

tion to the join function. At the end of this stage, we create the resultant dataframe,

and later on in Stage 3 this dataframe can be used to generate the Numpy array

required for deep learning. This stage is common for any framework, including Py-

Torch, Tensorflow, etc. Figure 7.3 details a sample data engineering workload for a

data analytics problem.

Figure 7.3: Stage 2: PyCylon Data Engineering Workload

83

7.1.3 Stage 3

In Stage 3, the data from Stage 2 is used to create tensors required for the deep

learning stage. We also perform the data partitioning for training and testing. This

stage is different than framework to framework since the tensor creation and data

partitioning steps can have various internal utils. We do not use data loaders or

data samplers, but note that these tools can be used to generate both. Figure 7.4 is

a sample code snippet for data movement from data engineering workload to data

analytics workload.

Figure 7.4: Stage 3: Moving Data from Data Engineering Workload to Data Ana-
lytics Workload

84

7.1.4 Stage 4

In Stage 4 we initialize the deep learning model, as well as the DDP model using the

sequential model. We pass along device information such that tensors and models

are copied to the corresponding devices (if accelerators are involved) for training

and testing. This initialization part varies from framework to framework depending

on the requirements and APIs. Figure 7.10 highlights the initialization of a DDP

model with PyTorch.

Figure 7.5: Stage 4: Distributed Data Analytics Workload

7.2 Horovod with PyTorch

Horovod PyTorch provides the ability to scale on both GPUs and CPUs with a

unified API. This is signigicant because PyTorch does not need to be compiled from

the source to get MPI capability, as Horovod has already offloaded the distributed

trainer, optimizer and allreduce communication packages so that the internal DDP

mechanism in PyTorch is offloaded.

85

7.2.1 Stage 1

In Stage 1, the Horovod init method must be called to initialize the environment.

After that the Cylon context can be initialized with distributed runtime true. If

GPUs are used, the correct device must be set to PyTorch CUDA configs. To

obtain the device IDs, we can either use the rank from Horovod initialization or

PyCylon initialization, but at the moment Horovod supports local rank as well, and

it is more suitable in terms of effortlessly integrating with the distributed runtime

for Horovod-PyTorch. Figure 7.6 shows a sample code snippet demonstrating how

this is accomplished.

Figure 7.6: Stage 1: Initialization for Horovod-PyTorch With PyCylon

7.2.2 Stage 2

Similar to Section 7.1.2, the data engineering workload remains irrespective of the

deep learning runtime.

86

7.2.3 Stage 3

Again, as with Section 7.1.3, the data engineering output can be converted to a

Numpy array using the endpoints from PyCylon dataframe. Also the tensors can be

created by providing the device IDs obtained from the Horovod runtime and data

can be prepared for a deep learning workload.

7.2.4 Stage 4

In Stage 4, following the tensor creation step the Horovod-related initialization must

be done to prepare the optimizers, network and other utils for distributed training.

For PyTorch-Horovod integration, PyTorch’s default neural network model, loss

function, and optimizer can be used as input to the distributed computation-enabled

Horovod components. First the model parameters and optimizer must be broadcast

using the Horovod broadcast method from 0th rank. There are two method calls

designated for initial network values and optimizer values. Also, Horovod provides

a compression algorithm to select whether compression is required for distributed

communication. After these steps, the distributed optimizer must be set by passing

the initialized values. Figure 7.7 includes a sample code snippet to initialize the

Horovod components for distributed data parallel deep learning with PyTorch.

7.3 Horovod with Tensorflow

Similar to PyTorch integration, Horovod also supports Tensorflow. Tensorflow has

its own distributed training platform. It contains distributed mirrored strategy as

the equivalent routine for distributed data parallel training.

87

Figure 7.7: Stage 4: Distributed Data Analytics Workload

88

7.3.1 Stage 1

To start this run, we initialize Horovod and PyCylon. As with PyTorch, we also

need to decide how the device is selected depending on the accelerator. The Ten-

sorflow config API provides a listing of GPUs, and this information is added to the

Tensorflow configurations to make all the GPU devices available. Figure 7.8 is a

code snippet for the aforementioned initialization.

Figure 7.8: Stage 1: Initialization for PyTorch With PyCylon

7.3.2 Stage 2

As in Section 7.1.2, the data engineering workload remains irrespective of the deep

learning runtime.

7.3.3 Stage 3

The data analytics data structure creation is different from framework to framework.

Tensorflow has its own set of APIs to make these steps simpler and more structured.

The Tensorflow dataset API can be used to create tensors from Numpy arrays, and

89

this API can be used to shuffle and create mini-batches, as expected by the deep

learning workload. Figure 7.9 contains a code snippet detailing this step.

Figure 7.9: Stage 3: Moving Data from Data Engineering Workload to Data Ana-
lytics Workload

7.3.4 Stage 4

Horovod-Tensorflow also requires a set of initialization steps to train a Tensorflow

deep learning model. Just like with PyTorch, the Tensorflow loss function, optimiza-

tion function and neural network model are compatible with Tensorflow-Horovod

internals. The gradient tape from Tensorflow autograd can be used, and for this

Horovod provides a DistributedGradientTape operator which takes the gradient tape

instance as a parameter. In addition, prior to training, this DistributedGradient-

90

Tape must be initialized with the model parameters and loss function, and the

optimizer values must be set to initial values. Again, the model parameters and

optimizer values must be broadcast using designated Horovod broadcast functions.

Figure 7.10 illustrates this.

Figure 7.10: Stage 4: Distributed Data Analytics Workload

91

CHAPTER 8

IMPLEMENTING A SCIENTIFIC WORKLOAD

A scientific application is implemented with the designed framework with an

end-to-end workload containing data engineering and data science. Our objective

is to showcase how a sequential workload can be designed in a distributed manner

using PyCylon and run a deep learning workload seamlessly on only a single script

with a unified runtime. For this, we selected an application from academic science

which involves Pandas dataframe for data engineering and PyTorch for data analyt-

ics. The original application is sequentially executed, and we have implemented a

distributed version of this application with PyCylon and Distributed PyTorch with

unified execution.

8.1 UNOMT

UNOMT application is part of CANDLE[WYMY+, XAB+21] research conducted

by Argonne National Laboratory, focusing on automated detection of tumor cells

using a deep learning approach. With the dawn of deep learning, domain science

problems have gained a lot of attention in converting classical data analytical models

to deep learning. The uniqueness of this approach is the composition of a heavy data

engineering workload followed by a data analytical workload written in PyTorch.

This provides us with an ideal scientific experiment to showcase the performance

of an enhanced data engineering system to facilitate an efficient data pipeline for a

high-end scientific problem.

The data engineering workload of the UNOMT application contains a set of steps

to load the raw data and create the processed dataset by using a sub-set of metadata

associated with the application. We partition the main dataset of 2.5 million records

in a data parallel manner and use the metadata to preprocess the main dataset.

92

The goal of the UNOMT application is to provide a cross-comparison of cancer

studies and integrate it into a unified drug response model. In high-level intuition is

to train a deep neural network on tumor dose responses. Cell RNA sequences, drug

descriptors and drug fingerprints are used as such responses to train the model.

UNOMT application consists of two main components. The first is a data engi-

neering workload which cleans the raw data to formulate the trainable parameters.

The second component is the deep learning modelling with the preprocessed data

taken from the data engineering workload. There are multiple networks involved

working on small and large datasets in the training process. In our research we

focus our attention on the distributed network, which is designed to calculate the

drug response based on the cell-line information. This network is a regression net-

work supported by two others which provide gene configuration-based and drug

feature-based networks.

8.2 Deep Learning Component

UNOMT refers to a unified deep learning model with multi-tasks to predict drug

response as a function of tumor and drug features for personalized cancer treatment.

Precision oncology focuses on providing treatments for specific characteristics of a

patient’s tumor. The drug sensitivity is quantified by drug dose response values

which measure the ratio of treated to untreated cells after exposure to a treatment

with a specific drug concentration. In this application, a set of drug data obtained

from NCI60 human tumor cell line database is used to predict the drug response

by considering gene expression, protein and microRNA abundance. As per the

considered scope, the UNOMT application we focus on in the study is conducted on

93

single-drug response prediction done using NCI60 and gCSI datasets. We used 1006

drugs from NCI60 database for this evaluation and gCSI for the cross-validation.

To evaluate the drug response predictions (regression model), the metrics selected

are R2 (explained variance) and mean absolute error (MAE). The input features used

to evaluate drug response are the cell-line gene expression profiles, drug chemical

descriptors and molecular fingerprints. Here the drug response is modelled as a

function of cell-line features and drug properties. The input features are engineered

such that RNAseq expression profiles, drug descriptions, drug fingerprints and drug

concentration are used as input parameters for the deep learning model.

8.2.1 Drug Response Regression Network

Drug response regression network is an ensemble model which uses two other net-

works to support the classification. This network features RNA-sequence data,

drug feature data and drug concentration feature sets as input features. The RNA-

sequence data becomes an input to a pre-trained model called a gene network, and

the drug feature data are used to train a network called a drug network. Concate-

nating the trained response over the data, a unified model is taught to calculate the

drug response. Figure 8.1 refers to the gene network which is being trained prior

to becoming an input to the main drug response model. The gene network only

contains three dense layers, each followed by a ReLU. Figure 8.2 refers to the drug

network, which also has 3 dense layers. This network is pre-trained prior to being

used in the drug response regression network.

The drug and gene networks provide a set of concatenated parameters with

another feature called concentration by formulating a 1537 (512 + 1024 + 1) input

size layer for the unified drug response model. Within the drug response regressor,

94

Figure 8.1: Gene Network Figure 8.2: Drug Network

there is another residual block being used repeatedly. This layer is called the drug

response block module, which contains 2 dense layers followed by a dropout layer

and a ReLU activation layer. Figure 8.3 depicts the response block module.

Figure 8.3: Response Block Module

The ensemble model contains a dense input layer of shape 1537 to get the con-

catenated results of the gene network and the drug network response along with the

concentration value. Followed by the input layer, the residual blocks are stacked and

a set of dense layers are as well. Finally, the regression layer contains a single output

dense layer. The number of response blocks can be customized dynamically, as well

95

as the number of dense layers that follow it. All these parameters can be provided as

a hyper-parameter in the application configuration file. Figure 8.4 shows the drug

response regressor network.

Figure 8.4: Response Network

Note that this network is trained in a distributed data parallel model since

it contains a very large dataset and a complex network compared to the other

96

examples trained simultaneously. The corresponding data engineering component

is also distributed data parallel, which is discussed in detail in Section 8.3.1.

UNOMT deep learning component consists of five other auxiliary networks trained

on smaller datasets to predict a few features. These networks are trained to achieve

a broader view about the data related to drugs and cell information. In our research

we paid more attention to the network with larger data to be trained efficiently. The

other networks are as follows:

• Cell-line category classifier: Tissue category (normal vs. tumor) classification

• Cell-line types classifier: Tissue-type classification (melanoma, gynecological,

germ cell)

• Cell-line sites classifier: Tissue site classification (lung, skin, eye, etc.)

• Drug target family classifier: Predict drug target family

• Drug QED weight classifier: Drug likeness score

The cell-line-related classifiers use a common network configuration defined as

ClfNet. But for each classifier, the number of hidden units, activations and output

parameters vary.

8.2.2 Cell-Line Category Classifier

The cell-line category classifier relies on ClfNet to predict whether the cell category

is a tumor, fibroblast or normal. Figure 8.5a shows the network architecture design

for this network. The data used in this network are RNA sequence data and cell

metadata. The cell-line category classifier is a customized output of a generic model

designed for cell-based data analytics. In this classifier, the last layer contains an

output size of 3 to determine the 3 classes identified for this classifier. Note that this

97

network is trained sequentially and the corresponding data engineering component

is also a sequential as described in Section 8.3.2.

8.2.3 Cell-Line Types Classifier

The cell line types classifier also uses ClfNet to predict the cell-line types. This

is a network customized by using the generic network created for cell-line-based

analytics. Figure 8.5b refers to the cell-line types classifier. The difference from the

generic network is the output size of the last layer, which corresponds to the number

of classes (18) predicted by this network. The cell-line types that are classified in

this network are:

• gynecologic

• prostate

• lung

• kidney

• bladder/urothelial

• germ cell

• squamous

• melanoma

• sarcoma/mesothelioma

• head and neck

• endocrine and neuroendocrine

• digestive/gastrointestinal

• unknown

98

• breast

• hematologic/blood

• skin other

• neurologic

• liver/bile duct

Note that this network is trained sequentially and the corresponding data engi-

neering component is also a sequential as discussed in Section 8.3.2.

8.2.4 Cell-Line Sites Classifier

The cell-line sites classifier is used to predict cancer sites. For this classification, the

same generalized network is used but the number of classes is 17. Figure 8.5c lists

the network configuration used for this classifier. The cancer sites identified by this

network are as follows:

• musculoskeletal

• gynecologic

• testes

• prostate

• lung

• skin

• kidney

• bladder/urothelial

• head and neck

99

(a) (b) (c)

Figure 8.5: (a) Cell-Line Category Classifier, (b) Cell-Line Type Classifier, (c) Cell-
Line Site Classifier

• endocrine and neuroendocrine

• digestive/gastrointestinal

• breast

• hematologic/blood

• eye

• liver/bile duct

• neurologic

• unknown

Note that this network is trained sequentially and the corresponding data engi-

neering component is also a sequential 8.3.2.

100

8.2.5 Drug Target Family Classifier

The drug target family classifier network is designed to identify the drug family.

This network also uses the generic cell-line classifier network to model the required

classifier. The drug families classified by this network are as follows:

• chaperone

• transferase

• enzyme modulator

• hydrolase

• receptor

• nucleic acid binding

• transporter

• signaling molecule

• transcription factor

• oxidoreductase

The data processing relevant for this network is discussed in Section 8.3.3. The

network is trained sequentially as is the corresponding data engineering workload.

8.2.6 Drug QED Regression Network

The drug QED network refers to the calculation of quantitative estimation of drug

likeliness. This is a very important study for selecting compounds in the early

stages of drug discovery. This regression network is designed to obtain the likeliness

score for the drugs used in the analysis. Figure 8.6b depicts the network designed to

calculate drug likeliness. This network is trained sequentially as per this application,

and the corresponding data engineering workload is discussed in Section 8.3.3.

101

(a) (b)

Figure 8.6: (a) Drug Target Family Classifier, (b) Drug QED Regression Network

8.3 Data Engineering Component

UNOMT application uses 2.5 million samples of cancer data across six research

centres. This model analyses the study bias across these samples to design a uni-

fied drug response model. Before building this model, the application computes a

heavy data engineering workload written in Pandas. The data engineering compo-

nent is over 3000 lines of code in Pandas. This application uses the following data

engineering operators:

• concat (inner-join)

• to csv

• rename

• read csv

102

• astype

• set index

• map

• isnull

• drop

• filter

• add prefix

• reset index

• drop duplicates

• drop duplicates (unique)

• not null

• isin

• dropna

The existing data engineering workload is written in Pandas and does not scale.

We reengineered this application to a scalable data engineering workload and de-

signed a seamless integration between data analysis and data engineering workload

consuming state-of-the-art high performance computing resources. We also inte-

grated a Modin-based implementation to showcase the performance comparison with

our implementation. The data engineering workload is executed in CPU-based dis-

tributed memory and the data analytical workload can be either executed in CPU

or GPU. We use Pytorch for data analytics workload and extend it to PyTorch

distributed data-parallel training. Our objective is to integrate an HPC-based full

stack of data analytics-aware data engineering for scalability. This feature is only

103

supported by PyCylon at the moment. Also, we stress the importance of designing

a BSP-based model for deep learning workloads associated with data engineering

components for better performance and scalability in HPC hardware.

8.3.1 Drug Response Data Processing

The data analytics component requires a set of features to be engineered from the

raw data. Here there are three main datasets required to create the complete dataset

used to create the drug response model. Figure 8.7a refers to the main dataset, which

contains the drug response. The raw dataset possesses additional features, so in the

initial stage the data is loaded and the expected features are extracted by a column

filtering operation, select. Then a map operation is performed to preprocess a drug

ID column to remove symbols from the columns and create a consistent drug ID.

Once the data are cleaned, they are scaled with the Scikit-learn preprocessing library

for scaling numerical values. After this the data are fully converted into a numeric

type to provide numeric tensors at the end for the deep learning workload. In the

parallel mode, we partition this dataset with the set parallelism, upon which it is

passed to the corresponding operators.

To formulate the global dataset, we require two other datasets which act as

metadata to filter and process the the main drug response dataset. The first is the

drug feature raw dataset, which contains drug features required to be located in the

drug response data. There are also two sub-datasets that contribute to formulate

the drug feature dataset. We merge them by performing an inner join on the dataset

based on the index formed on the drug IDs. After that, we cast the data into numeric

types and output them as a numeric array which is later converted to a numeric

tensor for deep learning. This data processing workflow is shown in Figure 8.7b.

104

The other dataset required is the RNA sequence dataset containing information

about RNA sequences. Here the dataset is first processed to remove specific symbols

by a map operation, and then duplicate records are dropped by way of a drop

duplicate operator. Then an index is set for this dataset, and later on scaling is

done on the numeric data using the Scikit-Learn preprocessing library. Finally, the

data is cast to a numeric type and preprocessed RNA-sequence data are formulated

as a Numpy array, which is later converted into a numeric tensor for the deep

learning workload. This data processing pipeline can be found in Figure 8.7c.

Once the drug response initial dataset, drug feature data and RNA-sequence

data are preprocessed, the final dataset for drug response model is engineered as

shown in Figure 8.8. The processed drug response data are further feature-selected

and a unique operation is applied. Then the RNA sequence data is filtered by

checking whether specific drug-related RNA sequences are present. The same is done

for the drug feature dataset. These two operations are done by the isin operator.

Afterwards the common drug set is selected by performing an and operation, and

later these common drug-related drug response data filters are used to get the final

drug response data.

Among the operators applied, since we partitioned the data, each data engineer-

ing operator can work independently in a pleasingly parallel manner. But we can

rely on the distributed unique operator to make sure no duplicate records are used

for deep learning across all processes. Note that the data engineering component of

this application is basically feature engineering metadata, and we use them to filter

a very large dataset which is converted to formulate the expected input for the drug

response model.

105

(a) (a)

(b) (b)

(c) (c)

Figure 8.7: (a) Drug Response Data Processing, (b) Drug Feature Data Processing,
(c) RNA Sequence Data Processing

106

Figure 8.8: Drug Response Overall Data Processing

107

8.3.2 Cell-line Data Processing

The cell-line data processing component produces the numerical data required for

data analytics in the neural networks discussed in Sections 8.2.2, 8.2.3, 8.2.4 and

8.2.5. Here the first step is to load the cell-line information by preprocessing the raw

data for cell-line information. Figure 8.9a contains the initial steps to preprocess

the cell-line metadata to extract the cell-metadata. The operations are executed in

a sequential fashion followed by a set of filtering operations. An encoding operation

is deployed to convert the string naming conventions to a numeric category for

classification. In the final step, the data are converted to a Numpy array and then

into a tensor for the deep learning workload.

Using the preprocessed cell-line metadata, the overall feature set required for

the deep learning component is engineered as shown in Figure 8.9b. Here we use

the preprocessed RNA-sequence data along with the cell-line metadata to formulate

the final feature vector by performing a join operation on the drug sample column

information in RNA-dataset.

8.3.3 Drug Property Data Processing

The drug property data engineering component produces the data required to train

drug target family classifier 8.2.5 and drug QED regression network 8.2.6. Ini-

tially the drug property data is preprocessed by loading the raw data CSV, filtering

columns and setting up an index followed by a numeric cast option. This is a very

straightforward sequential data processing component. Thus the drug property data

are preprocessed as seen in Figure 8.10.

The preprocessed drug property dataset can obtain the dataset required for the

drug QED regression network. Figure 8.11a illustrates the corresponding work-

108

(a)

(b)

Figure 8.9: (a) Cell-Metadata Processing, (b) Cell Feature Metadata Overall Pro-
cessing

Figure 8.10: Drug Property Data Processing

109

(a)

(b)

Figure 8.11: (a) Drug QED Feature Data Processing, (b) Drug QED Data Process-
ing

flow. Here the drug property data is used to drop all the null values, scaled using

Scikit-learn preprocessing library, then finally cast to numeric types and used in the

deep learning network to form tensors. With the preprocessed drug feature data (a

sub-input to the drug response network) and drug QED feature data, the dataset

required for drug QED regression network is formulated as can be seen in Figure

8.11b.

8.4 Performance Evaluation

The original application was a single threaded application implemented on Pandas

for data engineering and PyTorch for deep learning. Our main goal was to implement

the sequential version of the application and improve the sequential performance.

After the first stage, we conducted distributed experiments to see how we could scale

our workload on CPUs for data engineering. We also extended the deep learning

110

component of this application by integrating with PyTorch distributed execution

framework on both CPUs and GPUs using MPI and NCCL respectively. In this

benchmark, our goal was to seamlessly integrate a deep learning-aware data engi-

neering workload using a single Python data engineering and deep learning script

with a single runtime. Also note that we used the drug response network-related

larger data distribution for the application benchmark, while the smaller networks

require a much smaller execution time compared to this larger model.

For the experiments, we had two sets of clusters for CPUs and GPUs. For CPUs,

there was the future systems Victor cluster with 6 nodes and 16 processes per each

on the maximum parallelism. This cluster contains Intel(R) Xeon(R) Platinum 8160

CPU @ 2.10GHz machine per node. GPU experiments had Tesla K80s with 8 GPU

devices on Google Cloud Platform. For single-node single-process executions, we

used the same Victor nodes. For the sequential performance comparisons, Pan-

das, PyCylon (single core) and Modin (single core) were deployed. Finally, for the

distributed performance comparisons, we used PyCylon and Modin on single node

multi-core scaling. We selected Modin instead of Dask because it is closer to the

data engineering stack proposed by PyCylon as a result of eager execution and the

ability to convert an existing Pandas data engineering workload in a straightforward

manner.

8.4.1 Data Engineering Sequential Performance

We first conducted a set of experiments to evaluate the single process execution

of the proposed systems PyCylon, Modin and Pandas. Modin provides the ability

to convert a Pandas data engineering workload by means of a single line of code,

whereas PyCylon offers a dynamic API allowing the user to decide the nature of

111

sequential and parallel operators in a dynamic manner. Here we evaluated the

data engineering performance for the drug response data preprocessing workload

used for the drug response regression network. Figure 8.12 has the single core

performance for the aforementioned data engineering workload. We observe that

the performance of PyCylon and Pandas are very similar, while Modin is much

slower. This performance improvement includes data loading efficiency plus overall

operator performance improvements. But in a general way, Pandas and PyCylon

have almost similar performance in most operators except for data loading, duplicate

handling, null handling and search operations involved in this application. Note that

both PyCylon and Modin are evolving data engineering frameworks to support data

engineering on a tabular data.

Figure 8.12: Sequential Data Engineering

We investigated the underlying sub-components to learn why the sequential per-

formance in PyCylon was better compared to Pandas. Table ?? lists the time taken

for significant sub-components. The time breakdown shows that a set of components

112

took much longer for the sequential execution. The drug response data loading, tim-

ing data, drug analysis and data split lasted a very long time. We observed that

Modin is slower in loading data compared to PyCylon and much slower in casting

data, which is a part of the drug response data loading component. The drug analy-

sis component contains an iteration through all the data in the dataframe to create

a subset of data by doing a statistics calculation using Scikit-learn preprocessing

library. Looping through the dataframe is quite slow in Modin compared to both

Pandas and PyCylon. The split operation uses the Scikit-learn preprocessing library

to easily partition a dataframe, as expected by passing through hyper-parameters.

Here PyCylon can do zero-copy and convert into a Pandas dataframe to do so ef-

ficiently, while Modin cannot be converted to a Pandas dataframe. Irrespective of

the third party library performance with Modin, we observe that the core operators

in dataframe are very slow in Pandas when it comes to the UNOMT application.

Data Engineering Component PyCylon Modin
Drug response load 34.06 254.95

Drug feature extraction 1.42 0.44
RNA sequence load 2.47 3.33

Trim data 14.18 64.38
Drug analysis computation 386.25 744.38

Cell metadata load 0.044 0.33
RNA feature extraction 0.76 23.24

Data split 0.34 2515.05

Table 8.1: PyCylon vs. Modin Sequential Time Breakdown for Data Engineering

8.4.2 Data Engineering Distributed Performance

First we conducted a single node performance evaluation metric based on various

data engineering components in the application. We compared the multi-core per-

formance of Modin to PyCylon. We encountered an issue in scaling the Modin

113

dataframe across nodes (Modin mentions advanced applications with distributed

cluster is experimental. It involves spinning up a ray cluster and this component

was not functional as per our experience with Modin for this application). The

current Modin documentation also mentions that the distributed component is ex-

perimental. In addition, we found most of the Modin benchmarks in the published

research are done on multi-core by comparing with Pandas. Figure 8.13 show-

cases the multi-core data parallel data engineering time breakdown for PyCylon vs.

Modin. It is apparent that the PyCylon scales relatively well compared to Modin.

Figure 8.13: Multi-Core Data Parallel Data Engineering Performance

Considering the speed-up gain compared to the base implementation of each

framework, we plotted the speed-up graphs as depicted in Figure 8.14. The speed-up

from Modin is relatively low compared to PyCylon. The Modin dataframe internally

uses Ray to scale up the dataframe. This is the default execution engine for Modin.

By design, Modin does not have its own distributed execution engine, but relies on

Ray to do the distributed computation. In PyCylon, we have multiple modes of

114

executing the application, such as distributed data parallel, pleasingly parallel and

sequential. Given the nature of this application, we decided on a pleasingly parallel

approach. We also investigated whether Modin can provide dynamic parallelism as

required by the application, only to find Modin does not have this capability. In

the case of Modin, the output is shown as a sequential view or one dataframe, and

operators executed in a distributed manner. But in PyCylon’s case, the dataframe

is in the distributed memory. Each process contains its own dataset corresponding

to the dataframe. We evaluated and verified the accuracy of the data engineering

component by calculating the number of data points produced by the sequential

version compared to the output from the distributed versions. In addition, we also

performed micro-level validations for data engineering steps to verify that we were

using the correct number of drugs and cell-line information at intermediate stages

of the distributed computation.

Figure 8.14: Multi-Core Data Parallel Data Engineering Speed-up

115

In order to understand how the parallelism works for the data engineering work-

load, we did a micro-benchmark for the multi-core experiments by partitioning the

data engineering components into a main component which produces sub-datasets.

Figure 8.15 compares the time breakdown for these data engineering components.

The results were taken by running the application in distributed mode on 32 CPU

cores on a single machine. Here we can see that the majority of the time is taken for

drug analysis computation. This workload is a numerical calculation done on a drug

analysis data. In this computation, the majority of the time is due to an iterative

computation happening on Python with a Scikit-Learn data processing library. We

also observed that much time is spent on iterating the loop in Python. Here 2.5M

samples were iterated to do the calculation. We did not improve this performance

by doing further forking processes since it hindered distribution execution of threads

along with an MPI processes. This execution can be improved by offloading it to

a C++ kernel, although in general data engineering practices, we cannot introduce

generic kernels to do such operations, which are application-dependent.

Figure 8.15: PyCylon Distributed Data Engineering Time Breakdown

116

Figure 8.16 plots the time breakdown for the same experiment based on total

time as a percentage. It is clear that distributed components reduce as parallelism

increases and non-parallel components related to metadata preprocessing are a con-

stant component of the overall workload. The results demonstrate that the majority

of the time is spent on drug analysis computation.

Figure 8.16: PyCylon Distributed Data Engineering (CPU) Percentile Time Break-
down

Figure 8.17 contains the data engineering time for distributed experiments across

multiple nodes. We employed 6 physical nodes of the Victor cluster, and each node

used 16 processes for the computation. Note that even though the workload was

scaling, the scale-up factor was not that significant. The major reason for this is

the dominant drug analysis computation in the data engineering component. Even

though the data was partitioned, more time was spent on this component than any

other. We encountered problems in scaling Modin dataframe across multiple nodes.

Also note that Modin framework is an evolving framework similar to PyCylon in

the parallel dataframe domain.

117

Figure 8.17: PyCylon Distributed Data Parallel Data Engineering

8.4.3 Data Analytics Distributed Performance

For the data analytics scaling experiments, we selected PyTorch distributed commu-

nication framework with MPI for CPUs, and NCCL for GPUs. The single process

experiment results are the same for both PyCylon and Pandas, and both have the

same PyTorch code base. Furthermore, all the data were in-memory prior to deep

learning workload, so there was no overhead in loading data to create minibatches.

The experiments conducted on CPUs scaled well across multi-nodes, but we ob-

served a slight memory overhead causing the application to scale below the ideal

point. We conducted more experiments to evaluate if there was an overhead from

the data engineering framework, but we observed no significant overheads causing

less scaling on CPUs. Figure 8.18 highlights the single process and distributed ex-

periments carried out on CPUs. We used PyTorch built from source to enable MPI

execution, as it is a requirement forced by the framework. One significant factor is

that PyTorch becomes an ideal distributed computation deep learning framework for

118

PyCylon, since PyCylon also supports an MPI backend for distributed computation.

Figure 8.18: Distributed Data Parallel Deep Learning on CPU

The GPU-based experiments were handled with a single-node multi-GPU ex-

periment setting to see how the data analytics workload could be scaled on NCCL

execution framework with PyTorch. Figure 8.19 displays the results for single GPU

and multi-GPU experiments. We observed that the execution time was dominated

by the communication time. With the increase of parallelism, the number of com-

munications across devices increases, but the number of batches that has to be sent

across devices lowers. This gives an advantage in scaling. When we consider the

computation time, we saw that scaling happens closer to the ideal point of scaling

in all parallel settings. In addition, the computation is much faster in Parallelism

2 compared to Parallelism 1 where the memory overhead is 50% less compared to

the sequential execution. When considering CPU vs. GPU performance for the

deep learning workload, the speed-up from GPUs is 2x compared to CPUs in this

network.

119

Figure 8.19: Distributed Data Parallel Deep Learning on GPU

120

CHAPTER 9

CONCLUSION

PyCylon currently contains over 40 dataframe operators with the capability of

scaling up to multiple machines or run sequentially. Our research effort shows

promise even in single process execution from our current micro-benchmarks on

each data engineering operator compared to the currently predominant dataframe

Pandas. Not only that, PyCylon scales well compared to Dask and Modin un-

der computationally intensive workloads. In terms of usability and adaptability, we

have also designed a very familiar API compared to Pandas and provided distributed

computing capability on dataframes by simply changing a few lines of code. Our

dataframe is specially designed for HPC workloads and works well on HPC hard-

ware, unlike the existing options. In terms of an external viewer, PyCylon is a

dataframe for MPI, which was a missing component until now. Besides evaluating

the framework just on operators, we also engineered it to fashion a real-world sci-

entific workload. We designed an end-to-end data analytics-aware data engineering

workload using PyCylon and obtained better results than the original implementa-

tion. Since the original was just sequential, we were also able to provide scalability

for the application. Besides, we implemented the data engineering workload of this

application using Modin, and the performance comparison shows that PyCylon is

scaling much better than Modin. The significance of PyCylon is that it is not a

framework to accelerate Pandas dataframe similar to Modin or Dask but to create

an accelerated dataframe optimized for high-performance computing along with the

usability of Pandas. These facts depict that our data engineering framework can

be a promising tool for scaling data engineering workloads specifically on HPC and

seamlessly integrate with machine learning and deep learning workloads for large

scale applications.

121

CHAPTER 10

FUTURE WORK

Currently PyCylon supports about 40 data engineering operations and we are

working on adding more operations to the dataframe API while improving the per-

formance of existing operators. Besides, there are a few operators which are quite

slower compared to existing data engineering frameworks and we are working on

impoving those operators. The current version of the dataframe API doesn’t have

specific abstraction to represent columnar data. We are working on representing

columnar data as a Series similar to Pandas. Additionally, the scientific work load

we implemented can be benchmarked as an end-to-end application using a cus-

tom API written by using MPI operators. But we are planning on expanding this

benchmark to be done using Sciml-bench[stf] and package this for easier usage using

MLCube[MLC]. For advance application development we are working on exposing

communication layer operators like Allreduce, Allgather, Broadcast, etc similar to

what Pytorch is offering for tensors. Our objective is to be an advanced framework

for data engineering and be compatible with frameworks like PyTorch in the highest

level. At the moment we only focused on the CPU stack for distributed-memory par-

allel computation, but we are working on expanding our scope to GPUs by utilizing

a BSP mode of execution and using Cudf to do local operations.

Considering a complete system, the next challenges we face are scaling better

with dynamic computation requirements. Specifically, in using HPC resources in a

cloud setting (auto-scaling), our main challenge is how to auto-scale with an MPI-

backend. Because, MPI implementations are not designed for fault-tolerance. This

must be externally provided or rely on implementations for this. From the MPI

community there are some initiations for fault tolernace for MPI-workloads. This

one prospect to deal with the problem. For scaling, we need to make sure the system

122

can pick-up where it left-off. This is an active research even for HPC-based deep

learning at scale. Frameworks like PyTorch elastic and Horovod elastic are focusing

on these problems. We belive that seamlessly integration to deep learning auto-scale

would be beneficial and provide a good foundation to design a scalable system.

PyCylon is at the moment only support in-memory computation using a distributed-

memory parallel approach. But when the data doesn’t fit the memory, spilling to

the disk becomes an inevitable outcome, in order to support applications with such

requirements. The current execution model of PyCylon only relies on representing

the data in-memory and if the frameworks needed to be extended to this scope, the

Parquet (in-memory columnar representation for disk) support be provided for op-

erations that need to be spilled to the disk. This requires, repogramming a generic

layer to support all operators to run with disk an depending on the file-system con-

figurations like shared-file system or not, we need to design operators to abstract

away these details. But a known fact is spilling to disk, the operations become

significantly slow because the main memory access time is quite low compared to

that of disk access. To mitigate this issue, efficient disk data representation formats

can be used. Specifically, NVMe (non-volatile memory express) are designed to

access non-volatile memory rather efficiently using PCI-express interface connected

directly to the CPU. This is relatively a new protocol to access non-volatile mem-

ory. Integrating such hardware optimizations to access disk faster can provide better

performance when we need to spill operations to disk.

123

CHAPTER 11

RESEARCH GOALS IN ACTION

The focused research problems and research goals have been transformed to

practical research outcomes as follows.

1. Evaluating the limitations of existing big data frameworks for distributed data

analytics: Regarding Java-based data engineering and data analytics, the

research work we conducted over the past two years mainly focused on JVM-

based high performance data engineering and analytics[AFK19, AFK+]. We

studied implementing machine learning algorithms in distributed memory us-

ing high performance Java and C++. One major discovery was that even

though JVM-based systems can be further enhanced for high performance us-

ing high performance kernel interfaces, an equivalent C++ implementation

outperformed JVM-based implementations for large-scale data analytics with

higher dimensionality. In the related research, we used BLAS and MPI li-

braries for high performance computation and communication. This moti-

vated us to investigate more closely into C++ based high performance kernel

development for data engineering. The literature review conducted on the

existing Python-based data engineering and some of our preliminary research

shows that these systems can be further enhanced [APW+20]. Besides our

deeper study on the internal workings of a system, major data analytic tools

like PyTorch[PGM+19] and Tensorflow[ABC+16] showcase the necessity of

standalone data analytics tools specialized for specific tasks. This is a scope

beyond just big data computing. In addition, it illustrates the importance of

seamless integration with the existing software stack for data analytics and

making compatible data engineering systems run at scale.

124

2. Importance and necessity of high performance computing for data analytics-

aware data engineering: With a deep analysis on the existing technology,

based on the rapid growth of data analytics, classic data analytics platforms

on low performance Python stack slowly when converted to frameworks like

PyTorch, Tensorflow and Chainer with the usage of C++ kernels in the core of

computation and communication. Our initial literature reviews and existing

research revealed that high performance computing with a low level system

design could be the key towards improving existing systems. Our own research

related to high performance data engineering [WPA+20, PAW+20, APW+20]

showed how existing data engineering frameworks in both Java and Python

are not scaling well in high performance computing environments. Further-

more, our preliminary findings on this also revealed that a high performance

Python approach with C++ shows better scaling than existing state-of-the-

art systems. This indicates our approach is promising for data analytics-aware

data engineering.

3. Necessity of a distributed memory-oriented dataframe for HPC (MPI) on CPUs

for data engineering: We have implemented an early version of a distributed

dataframe abstraction for distributed memory on CPUs. Initial benchmarks

and API definitions show that our proposed method is one of the most promi-

nent distributed memory dataframes in existence at the moment. The existing

parallel dataframes on CPUs are entirely written on Python, which inherently

imposes limitations in scaling. Our preliminary research and benchmarks pro-

vide evidence[APW+20]. By designing a high performance distributed memory

dataframe, we can offer better scalability and match up with high performance

data analytics workloads.

4. Evaluate the necessity of high performance data engineering kernels to im-

125

prove existing dataframe operators: We have implemented a set of widely

used dataframe operators such as indexing, locate by value, unique finding,

duplicate dropping and filtering. These operators are currently performing

faster compared to the existing dataframe solutions. We mainly focused our

attention on Pandas, since it is the most advanced dataframe abstraction on

CPUs. Our current implementations have shown that sequential performance

of our kernels are promising and can be further enhanced for better perfor-

mance.

5. Usability of data engineering tools with high performance computing: High

performance Python has been adapted to many scientific problems to improve

the performance of existing data analytics and data processing. However we

observed that data engineering as a research problem has not been well stud-

ied or researched with a functional data engineering system. Our research

specifically focused on the deep level of avoiding memory copying between

programming kernels and user-space. Also, we have emphasized retaining

performance and providing usability at the same time. We implemented a

Cython-based middle layer of high performance Python API, which allows

us to avoid regular issues found in JVM-based data engineering systems and

Python-based data engineering systems. Furthermore, our Cython implemen-

tations have been extended to use PyArrow and Numpy in C level via Cython

bindings. This allows us to get better performance compared to existing data

engineering frameworks and provides the ability to seamlessly integrate with

existing data analytics systems like Pytorch and Tensorflow.

6. Research on the seamless integration of end-to-end scientific data engineering

and data analytics workloads on high performance Python stack: A high per-

formance distributed dataframe API and a seamless integration to numerical

126

data structures like Numpy and tensors allows us to seamlessly integrate with

existing data analytics workloads. This provides us the capability to create an

entire data pipeline in Python while retaining high performance on the CPU

stack and transfer data seamlessly to the GPU stack for high performance

data analytics.

127

BIBLIOGRAPHY

[ABC+16] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In 12th {USENIX} symposium on operating sys-
tems design and implementation ({OSDI} 16), pages 265–283, 2016.

[AFK+] Vibhatha Abeykoon, Geoffrey Fox, Minje Kim, Saliya Ekanayake,
Supun Kamburugamuve, Kannan Govindarajan, Pulasthi Wick-
ramasinghe, Niranda Perera, Chathura Widanage, Ahmet Uyar,
Gurhan Gunduz, and Selahattin Akkas. Stochastic gradient descent
based support vector machines training optimization on big data and
hpc frameworks [accepted]. Concurrency and Computation: Practice
and Experience.

[AFK19] Vibhatha Abeykoon, Geoffrey Fox, and Minje Kim. Performance
optimization on model synchronization in parallel stochastic gradi-
ent descent based svm. In Proceedings of the HPML Workshop in
International Symposium in Cluster, Cloud, and Grid Computing,
Larnaca, Cyprus, pages 1–10, 2019.

[apaa] Apache flink - stateful computations over data streams.

[apab] Apache hadoop project.

[APW+20] Vibhatha Abeykoon, Niranda Perera, Chathura Widanage, Supun
Kamburugamuve, Thejaka Amila Kanewala, Hasara Maithree, Pu-
lasthi Wickramasinghe, Ahmet Uyar, and Geoffrey Fox. Data engi-
neering for hpc with python. In 2020 IEEE/ACM 9th Workshop on
Python for High-Performance and Scientific Computing (PyHPC),
pages 13–21. IEEE, 2020.

[AZR17] Bilal Akil, Ying Zhou, and Uwe Röhm. On the usability of hadoop
mapreduce, apache spark & apache flink for data science. In 2017
IEEE International Conference on Big Data (Big Data), pages 303–
310. IEEE, 2017.

[Bis19] Ekaba Bisong. Google colaboratory. In Building Machine Learning
and Deep Learning Models on Google Cloud Platform, pages 59–64.
Springer, 2019.

128

[CLJ+18] Yanzhe Cheng, Fang Cherry Liu, Shan Jing, Weijia Xu, and
Duen Horng Chau. Building big data processing and visualization
pipeline through apache zeppelin. In Proceedings of the Practice and
Experience on Advanced Research Computing, pages 1–7. 2018.

[CLL+15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie
Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang.
Mxnet: A flexible and efficient machine learning library for heteroge-
neous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[cud] Cudf gpu dataframes.

[das] Dask framework.

[DL17] Tomasz Drabas and Denny Lee. Learning PySpark. Packt Publishing
Ltd, 2017.

[Dona] Jack Dongara. Lapack: daxpy. http://www.netlib.org/. (Accessed
on 06/07/2020).

[Donb] Jack Dongara. Lapack: ddot. http://www.netlib.org. (Accessed on
06/07/2020).

[Eta19] Leila Etaati. Azure databricks. In Machine Learning with Microsoft
Technologies, pages 159–171. Springer, 2019.

[Fox17] Geoffrey Fox. Components and rationale of a big data toolkit span-
ning hpc, grid, edge and cloud computing. In Proceedings of the10th
International Conference on Utility and Cloud Computing, UCC ’17,
pages 1–1, New York, NY, USA, 2017. ACM.

[GG16] B Granger and J Grout. Jupyterlab: Building blocks for interactive
computing. Slides of presentation made at SciPy, 2016.

[Hay20] Wolfgang Hayek. Parallel computing with dask. 2020.

[HSY+20] Benjamı́n Hernández, Suhas Somnath, Junqi Yin, Hao Lu, Joe
Eaton, Peter Entschev, John Kirkham, and Zahra Ronaghi. Per-
formance evaluation of python based data analytics frameworks in
summit: Early experiences. In Smoky Mountains Computational Sci-
ences and Engineering Conference, pages 366–380. Springer, 2020.

129

[ipy] ipython/ipyparallel: Interactive parallel computing in python.
https://github.com/ipython/ipyparallel. (Accessed on 09/10/2020).

[IS15] Muhammad Hussain Iqbal and Tariq Rahim Soomro. Big data anal-
ysis: Apache storm perspective. International journal of computer
trends and technology, 19(1):9–14, 2015.

[KHAL+14] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian
Serio, and Dietmar Fey. Hpx: A task based programming model in
a global address space. In Proceedings of the 8th International Con-
ference on Partitioned Global Address Space Programming Models,
pages 1–11, 2014.

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jes-
sica B Hamrick, Jason Grout, Sylvain Corlay, et al. Jupyter
notebooks-a publishing format for reproducible computational work-
flows. In ELPUB, pages 87–90, 2016.

[KWG+18] S. Kamburugamuve, P. Wickramasinghe, K. Govindarajan, A. Uyar,
G. Gunduz, V. Abeykoon, and G. Fox. Twister:net - communica-
tion library for big data processing in hpc and cloud environments.
In 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), volume 00, pages 383–391, Jul 2018.

[LDMG20] Sam Lau, Ian Drosos, Julia M Markel, and Philip J Guo. The
design space of computational notebooks: An analysis of 60 sys-
tems in academia and industry. In 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 1–11.
IEEE, 2020.

[M+11] Wes McKinney et al. pandas: a foundational python library for data
analysis and statistics. Python for High Performance and Scientific
Computing, 14(9), 2011.

[MLC] Mlcube — mlcommons. https://mlcommons.org/en/mlcube/. (Ac-
cessed on 02/08/2021).

[mod] Modin dataframes.

[num] Numpy - the fundamental package for scientific computing with
python.

130

[PAW+20] Niranda Perera, Vibhatha Abeykoon, Chathura Widanage, Supun
Kamburugamuve, Thejaka Amila Kanewala, Pulasthi Wickramas-
inghe, Ahmet Uyar, Hasara Maithree, Damitha Lenadora, and Ge-
offrey Fox. A fast, scalable, universal approach for distributed data
reductions. arXiv preprint arXiv:2010.14596, 2020.

[Per18] Jeffrey M Perkel. Why jupyter is data scientists’ computational note-
book of choice. Nature, 563(7732):145–147, 2018.

[PG07] Fernando Pérez and Brian E Granger. Ipython: a system for in-
teractive scientific computing. Computing in science & engineering,
9(3):21–29, 2007.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information
processing systems, pages 8026–8037, 2019.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Ma-
chine learning in python. the Journal of machine Learning research,
12:2825–2830, 2011.

[Roo20] Chat Room. Apache beam. system, 11(17):24, 2020.

[SDB18] Alexander Sergeev and Mike Del Balso. ”horovod: fast and
easy distributed deep learning in tensorflow”. arXiv preprint
arXiv:1802.05799, 2018.

[SGO+98] Marc Snir, William Gropp, Steve Otto, Steven Huss-Lederman, Jack
Dongarra, and David Walker. MPI–the Complete Reference: the MPI
core, volume 1. MIT press, 1998.

[stf] stfc-sciml/sciml-benchmarks-prerelease: A suite of machine learning
benchmarks for ai for science. https://github.com/stfc-sciml/

sciml-benchmarks-prerelease. (Accessed on 06/03/2021).

[Tes16] Federico Tesser. Distributed message passing with mpi4py. In Eu-
roscipy 2016, 2016.

131

https://github.com/stfc-sciml/sciml-benchmarks-prerelease
https://github.com/stfc-sciml/sciml-benchmarks-prerelease

[TOHC15] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer:
a next-generation open source framework for deep learning. In Pro-
ceedings of workshop on machine learning systems (LearningSys) in
the twenty-ninth annual conference on neural information processing
systems (NIPS), volume 5, pages 1–6, 2015.

[TSM+20] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten,
Jordan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin,
Raphael Poss, et al. Cockroachdb: The resilient geo-distributed sql
database. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 1493–1509, 2020.

[twi17] Twister2: Design of a big data toolkit, 2017. Technical Report.

[VdWSNI+14] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias,
François Boulogne, Joshua D Warner, Neil Yager, Emmanuelle
Gouillart, and Tony Yu. scikit-image: image processing in python.
PeerJ, 2:e453, 2014.

[VOS18] AARON VOSE. Interactive distributed deep learning with jupyter
notebooks. 2018.

[WKG+19] Pulasthi Wickramasinghe, Supun Kamburugamuve, Kannan Govin-
darajan, Vibhatha Abeykoon, Chathura Widanage, Niranda Perera,
Ahmet Uyar, Gurhan Gunduz, Selahattin Akkas, and Geoffrey Fox.
Twister2: Tset high-performance iterative dataflow. In 2019 Inter-
national Conference on High Performance Big Data and Intelligent
Systems (HPBD&IS), pages 55–60. IEEE, 2019.

[WPA+20] Chathura Widanage, Niranda Perera, Vibhatha Abeykoon, Supun
Kamburugamuve, Thejaka Amila Kanewala, Hasara Maithree, Pu-
lasthi Wickramasinghe, Ahmet Uyar, Gurhan Gunduz, and Geoffrey
Fox. High performance data engineering everywhere. arXiv preprint
arXiv:2007.09589, 2020.

[WYMY+] Justin M Wozniak, Hyunseung Yoo, Jamaludin Mohd-Yusof, Bogdan
Nicolae, Nicholson Collier, Jonathan Ozik, Thomas Brettin, and Rick
Stevens. High-bypass learning: Automated detection of tumor cells
that significantly impact drug response.

[XAB+21] Fangfang Xia, Jonathan Allen, Prasanna Balaprakash, Thomas Bret-
tin, Cristina Garcia-Cardona, Austin Clyde, Judith Cohn, James

132

Doroshow, Xiaotian Duan, Veronika Dubinkina, et al. A cross-
study analysis of drug response prediction in cancer cell lines. arXiv
preprint arXiv:2104.08961, 2021.

[ZKD+14] Yili Zheng, Amir Kamil, Michael B Driscoll, Hongzhang Shan, and
Katherine Yelick. Upc++: a pgas extension for c++. In 2014 IEEE
28th International Parallel and Distributed Processing Symposium,
pages 1105–1114. IEEE, 2014.

[ZXW+16] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J Franklin, et al. ”apache spark: a uni-
fied engine for big data processing”. Communications of the ACM,
59(11):56–65, 2016.

133

Vibhatha Lakmal Abeykoon

EDUCATION

2021 M.Sc., Luddy School of Informatics, Computing

and Engineering

Indiana University Bloomington

United States

2016 B.Sc., Electrical and Information Engineering

Faculty of Engineering, University of Ruhuna

Galle, Sri Lanka

INTERNSHIPS

2019 Research Intern

Argonne National Laboratory

Lemont, Illinois, United States

2020 Research Intern

Microsoft

Redmond, Washington, United States

PUBLICATIONS

1. Abeykoon, Vibhatha and Fox, Geoffrey and Kim, Minje and Ekanayake,

Saliya and Kamburugamuve, Supun and Govindarajan, Kannan and Wickra-

134

masinghe, Pulasthi and Perera, Niranda and Widanage, Chathura and Uyar,

Ahmet and Gunduz, Gurhan and Akkas, Selahattin, Stochastic Gradient De-

scent Based Support Vector Machines Training Optimization on Big Data and

HPC Frameworks, Concurrency and Computation: Practice and Experience

[ACCEPTED], 2021.

2. Abeykoon, Vibhatha and Perera, Niranda and Widanage, Chathura and

Kamburugamuve, Supun and Kanewala, Thejaka Amila and Maithree, Hasara

and Wickramasinghe, Pulasthi and Uyar, Ahmet and Fox, Geoffrey, Workshop

on Python for High-Performance and Scientific Computing, Supercomputing,

2020.

3. Widanage, Chathura and Perera, Niranda and Abeykoon, Vibhatha and

Kamburugamuve, Supun and Kanewala, Thejaka Amila and Maithree, Hasara

and Wickramasinghe, Pulasthi and Uyar, Ahmet and Gunduz, Gurhan and

Fox, Geoffrey, High Performance Data Engineering Everywhere, 2020 IEEE

International Conference on Smart Data Services (SMDS).

4. Perera, Niranda and Abeykoon, Vibhatha and Widanage, Chathura and

Kamburugamuve, Supun and Kanewala, Thejaka Amila and Wickramasinghe,

Pulasthi and Uyar, Ahmet and Maithree, Hasara and Lenadora, Damitha

and Fox, Geoffrey, A Fast, Scalable, Universal Approach For Distributed Data

Reductions, International Workshop on Big Data Reduction, IEEE Big Data

2020.

5. Wickramasinghe, Pulasthi and Perera, Niranda and Kamburugamuve, Supun

and Govindarajan, Kannan and Abeykoon, Vibhatha and Widanage, Chathura

and Uyar, Ahmet and Gunduz, Gurhan and Akkas, Selahattin and Fox, Ge-

135

offrey, High-Performance Iterative Dataflow Abstractions in Twister2: TSet,

Concurrency and Computation: Practice and Experience, 2020.

6. Abeykoon, Vibhatha and Fox, Geoffrey and Kim, Minje, Performance Op-

timization on Model Synchronization in Parallel Stochastic Gradient Descent

Based SVM, Proceedings of the HPML Workshop in International Symposium

in Cluster, Cloud, and Grid Computing, Larnaca, Cyprus, 2019.

7. Abeykoon, Vibhatha and Liu, Zhengchun and Kettimuthu, Rajkumar and

Fox, Geoffrey and Foster, Ian, Scientific Image Restoration Anywhere, Pro-

ceedings of Technical Consortium On High Performance Computing, Xloop,

Supercomputing 2019.

8. Abeykoon, Vibhatha and Kamburugamuve, Supun and Govindrarajan,

Kannan and Wickramasinghe, Pulasthi and Widanage, Chathura and Per-

era, Niranda and Uyar, Ahmet and Gunduz, Gurhan and Akkas, Selahattin

and Von Laszewski, Gregor, Proceedings of IEEE Big Data 2019, Streaming

ML Workshop, 2019.

9. Wickramasinghe, Pulasthi and Kamburugamuve, Supun and Govindarajan,

Kannan and Abeykoon, Vibhatha and Widanage, Chathura and Perara, Ni-

randa and Uyar, Ahmet and Gunduz, Gurhan and Akkas, Selahattin and Fox,

Geoffrey, Twister2:TSet High-Performance Iterative Dataflow, Proceedings of

the International Conference on High Performance Big Data and Intelligent

Systems, Shenzhen, China, 2019.

10. Kamburugamuve, Supun and Wickramasinghe, Pulasthi and Govindarajan,

Kannan and Uyar, Ahmet and Gunduz, Gurhan and Abeykoon, Vibhatha

and Fox, Geoffrey, Twister: Net-communication library for big data processing

in HPC and cloud environments, Proceedings of Cloud 2018 Conference, 2018.

136

11. Kamburugamuve, Supun and Govindarajan, Kannan and Wickramasinghe,

Pulasthi and Abeykoon, Vibhatha and Fox, Geoffrey, Twister2: Design of

a big data toolkit, Concurrency and Computation: Practice and Experience,

e5189, 2017.

12. Govindarajan, Kannan and Kamburugamuve, Supun and Wickramasinghe,

Pulasthi and Abeykoon, Vibhatha and Fox, Geoffrey, Task Scheduling in

Big Data-Review, Research Challenges, and Prospects, 2017 Ninth Interna-

tional Conference on Advanced Computing (ICoAC), 2017.

13. Abeykoon, Vibhatha and Kankanamdurage, Nishadi and Senevirathna,

Anuruddha and Ranaweera, Pasika and Udawalpola, Rajitha, Electrical De-

vices Identification through Power Consumption using Machine Learning Tech-

niques, International Journal of Simulation: Systems, Science and Technology,

2017.

14. Abeykoon, Vibhatha and Kankanamdurage, Nishadi and Senevirathna,

Anuruddha and Ranaweera, Pasika and Udawalpola, Rajitha, Real Time Iden-

tification of Electrical Devices through Power Consumption Pattern Detection,

Proceedings of the International Conference on Micro and Nano Technologies,

Modelling and Simulation, Kuala Lumpur, Malaysia, 2016.

CONFERENCE TALKS

2020/11 Presented the paper on Data Engineering for HPC with Python (Nov 11-13,

2020) PyHPC, Super Computing 20 [Virtual]

137

2019/12 Attended the conference and presented the paper, Streaming machine learning

algorithms with big data systems (Dec 9-13, 2019) Stream-ML, IEEE Big

Data 2019 [Los Angeles, California, United States]

2019/11/18 Attended the conference and presented the paper, Scientific Image Restoration

Xloop, Super Computing 2019 [Denver, Colorado, United States]

2019/05/14 Attended the conference and presented the paper, Performance optimization

on model synchronization in parallel stochastic gradient descent based SVM,

HPML, CCGRID 2019 [Larnaca, Cyprus]

2016/06/14 Attended the conference and presented the paper, Real-Time Electrical Device

Identification with Machine Learning Techniques, IET Present Around the

Globe, Sri Lankan Chapter [Galle, Sri Lanka]

OPEN SOURCE SOFTWARE DEVELOPMENT

1. Cylon: A Lead developer and researcher. [https://cylondata.org/]

2. Twister2: A Lead developer and researcher. [https://twister2.org/]

3. MLCube Applications: Contributor. [https://mlcommons.org/en/mlcube/]

138

	Motivation
	Research Goals
	Research Contributions

	Introduction
	Literature Review
	Distributed Machine Learning
	Distributed Support Vector Machines for HPC and Big Data Overlap
	Anatomy of the SVM Algorithm
	Parallel Gradient Descent SVM
	Datasets
	BLAS Optimizations
	Performance Benchmarks

	Iterative Streaming for Data Analytics
	Streaming SVM
	Streaming KMeans
	Model Synchronization
	Performance Evaluation

	High Performance Data Analytics-Aware Data Engineering
	Methodology
	System Architecture
	Communication Kernels
	Data Engineering Kernels
	Relational Algebra Kernel
	Indexing Kernel
	Search Kernel
	Filtering Kernel
	Duplicate Handling Kernel
	Null Handling Kernel
	Linear Algebra Kernel

	PyCylon
	Cython for Python Bindings
	Cython API
	Python API

	Dataframe API
	Interoperability Among Python Data Structures
	In-Memory Conversions
	Data Loaders
	Productivity and Usability

	Performance and Benchmarks
	Indexing and Searching
	Comparator Operations
	Math Operations
	Null Handling
	Distributed Join Performance
	Distributed Drop Duplicates
	Join with CPU and GPU
	Overhead from Python

	Integration with Deep Learning Frameworks
	PyTorch
	Stage 1
	Stage 2
	Stage 3
	Stage 4

	Horovod with PyTorch
	Stage 1
	Stage 2
	Stage 3
	Stage 4

	Horovod with Tensorflow
	Stage 1
	Stage 2
	Stage 3
	Stage 4

	Implementing a Scientific Workload
	UNOMT
	Deep Learning Component
	Drug Response Regression Network
	Cell-Line Category Classifier
	Cell-Line Types Classifier
	Cell-Line Sites Classifier
	Drug Target Family Classifier
	Drug QED Regression Network

	Data Engineering Component
	Drug Response Data Processing
	Cell-line Data Processing
	Drug Property Data Processing

	Performance Evaluation
	Data Engineering Sequential Performance
	Data Engineering Distributed Performance
	Data Analytics Distributed Performance

	Conclusion
	Future Work
	Research Goals in Action
	BIBLIOGRAPHY

