
Virtualization Basics: Understanding Techniques and
Fundamentals

Hyungro Lee
School of Informatics and Computing, Indiana University

815 E 10th St.
Bloomington, IN 47408

lee212@indiana.edu

ABSTRACT
Virtualization is a fundamental part of cloud computing,
especially in delivering Infrastructure as a Service (IaaS).
Exploring different techniques and architectures of the vir-
tualization helps us understand the basic knowledge of virtu-
alization and the server consolidation in the cloud with x86
architecture. This paper describes virtualization technolo-
gies, architectures and optimizations regarding the sharing
CPU, memory and I/O devices on x86 virtual machine mon-
itor.

Categories and Subject Descriptors
C.0 [General]: Hardware/software interface; C.4 [Performance
of systems]: Performance attributes; D.4.7 [Operating
Systems]: Organization and design

General Terms
Performance, Design

Keywords
Virtualization, Virtual Machine Monitor, x86, Cloud Com-
puting

1. INTRODUCTION
Back in 1974, Popek and Goldberg virtualization require-
ments were introduced in the article ”Formal Requirements
for Virtualizable Third Generation Architectures” [7] and it
still provides guidelines for virtualizing hardware resources
and terms. Virtualization is now the foundation of cloud
computing [1] to provide highly scalable and virtualized re-
sources. Numerous systems and projects in industry, academia
and communities have adopted a virtualization technology
with cloud computing services to reduce under-utilized hard-
ware resources and achieve efficient use of systems. The Fu-
tureGrid project funded a US National Science Foundation
(NSF), a Nebula platform launched by NASA, or Kasumi-
gaseki Cloud supported by Japanese government is a good

example of growing involvement in virtualization technolo-
gies with the cloud. Early technologies and developments
in the virtualization have been accomplished by some com-
panies such as IBM from 1967 and VMware from 1998. In
open source communities, Xen, KVM, Linux-vServer, LXC
and others have supported virtualization in different plat-
forms with different approaches. In this paper, x86 archi-
tecture virtualization will be discussed with these historical
changes.

In cloud computing, Infrastructure-as-a-Service (IaaS) pro-
vides on-demand virtual machine instances with virtualiza-
tion technologies. IaaS has been broadly used to provide re-
quired compute resources in shared resource environments.
Amazon Web Services (AWS), Google Compute Engine, Mi-
crosoft Windows Azure, and HP Cloud offer commercial
cloud services. OpenStack, Eucalyptus, SaltStack, Nimbus,
and many others provide private open source cloud plat-
forms with community support in development. Since the
virtualization is sharing resources, many concerns have been
raised regarding security, isolation and performance com-
pared to native systems.

2. VIRTUALIZATION
Virtualization typically refers to the creation of virtual ma-
chine that can virtualize all of the hardware resources, in-
cluding processors, memory, storage, and network connectiv-
ity [7]. With the virtualization, physical hardware resources
can be shared by one or more virtual machines. According to
the requirements from Popek and Goldberg, there are three
aspects to satisfy the virtualization. First, the virtualization
should provide an equivalent environment to run a program
compared to a native system. If the program shows a differ-
ent behavior under the virtualization, it may not be eligible
as a virtualized environment. The virtualization also needs
to provide a secured control of virtualized resources. Having
a full control of resources is important to protect data and
resources on each virtual environment from any threats or
performance interference in sharing physical resources. Vir-
tualization often expects performance degradation due to
the additional tasks for virtualization, but good performance
should be achieved with a software or hardware support in
handling privileged instructions. With these requirements,
efficient virtualization is guaranteed. In the following sec-
tion, different types of hypervisors are explained with the
implementation level of virtualization. Virtualized resource
is also presented in cpu, memory and I/O transactions.



2.1 Hypervisor
To understand virtualization, hypervisor should be addressed
first. Hypervisor enables communication between hardware
and a virtual machine so that the virtualization accom-
plishes with this abstraction layer (hypervisor). Hypervisor
is originally called virtual machine monitor (VMM) from
[7]. These two terms (Hypervisor and VMM) are typically
treated as synonyms, but according to the distinction from
Agesen et al [1], a virtual machine monitor (VMM) is a
software that manages CPU, memory, I/O data transfer,
interrupt, and the instruction set on a given virtualized en-
vironment. A hypervisor may refer to an operating system
(OS) with the VMM. There is a slight distinction between
hypervisor and VMM but in this paper, we consider these
terms to have identical meanings to represent a software for
virtual machine. Typically, a hypervisor can be divided into
Type 1 and Type 2 hypervisor based on the different level
of implementation. Type 1 is sitting on hardware and the
communication between hardware and virtual machine is di-
rect. The host operating system is not required in Type 1
hypervisor since it runs directly on a physical machine. Due
to this reason, it is sometimes called a ’bare metal hyper-
visor’. VMware vSphere/ESXi, Microsoft Windows Server
2012 Hyper-V, Citrix XenServer, Red Hat Enterprise Vir-
tualization (RHEV) and open-source Kernel-based Virtual
Machine (KVM) are identified in this category. Type 2 hy-
pervisor is on the operating system to manage virtual ma-
chine easily with the support of hardware configuration from
operating system. The extra layer between hardware and
virtual machine in the type 2 hypervisor causes inefficiency
compared to the type 1 hypervisor. VirtualBox and VMware
Workstation are in this category. The terms of Host or Guest
machine (or domain) are used in the hypervisor to describe
different roles. Host machine (domain) contains a hypervisor
to manage virtual machines, and Guest machine (domain)
means each virtual machine sitting on a hosted machine in
a secure and isolated environment with its own logical do-
main. With these separated roles, the hypervisor is able to
offer resource boundaries to multiple virtual machines on the
same physical machine. In other words, the hypervisor is a
software layer that creates a virtual environment with virtu-
alized CPU, memory and I/O (storage and network) devices
by abstracting away the underlying physical hardware. Vir-
tual machine (VM) typically refers to an encapsulated entity
including the operating system and the applications running
in it as well.

2.2 x86 privilege levels
x86 architecture has certain restrictions related to resource
access such as kernel execution for machine instructions,
memory and I/O functions. x86 operating systems can per-
form these tasks by running in a most privileged level, al-
though user applications do not have access to the level.
These different levels of access to hardware resources pro-
vide certain protection from software failure. These privilege
levels are also called protection rings since it protects access
to hardware resources with four different layers of privileges.
The privilege levels in x86 architecture with two-level modes
i.e. ring 0 and ring 3 can protect memory, I/O ports and
certain machine instructions against accidental damage of
the system by user programs [9]. Ring zero is for kernel
execution and device drivers which is the most privileged
and Ring three is for user mode applications in the least

privileged layer. Any interrupt from ring 0 cannot transfer
control to ring 1, 2 or 3. With these protection rings, mem-
ory access or I/O data transfer is only doable via the kernel
execution. For example, User application can transfer con-
trol to the kernel by making a system call when it opens a
file or allocates memory.

Hypervisor has to manage these privilege levels to offer vir-
tualized resources. Virtualization offers different techniques
for handling the privilege levels, and the resource sharing can
be achieved with a software, a hardware support, or both.
Binary translation, shadow page tables, and I/O emulation
are used as a software-assisted virtualization. Binary trans-
lation runs VMM on ring 0 mode to have the most privileged
level but guest operating system runs on Ring 1 to trap OS
calls in VMM. This was introduced by VMware to offer bet-
ter performance in virtualization. Shadow page tables are
used for mapping guest physical memory to the actual ma-
chine memory. The guest OS is not allowed to access to
the hardware page tables so that the hypervisor keeps the
mappings between the guest memory and the host physical
memory. Using Shadow page tables consumes system mem-
ory but it accelerates the mappings with a one-step lookup
with translation lookaside buffer (TLB) hardware. Emu-
lated device is used to deliver requests from guest OS to a
real hardware across different platforms even if the device
is not supported. Hardware-assisted virtualization uses a
higher privilege level than ring 0 to run VMM at the level,
i.e. ring -1. With hardware-assisted virtualization the x86
operating system has direct access to resources without bi-
nary translation or emulation.

On the x86 architecture, there are several techniques based
on different approaches for handling privilege rings and emu-
lating devices. Full virtualization, paravirtualization, hardware-
assisted virtualization and operating system-level virtualiza-
tion are introduced.

3. CPU VIRTUALIZATION
Virtualization in x86 architecture needs to manage virtual
machines (VMs) by the additional layer (hypervisor) be-
tween the vms and physical hardware. Virtual machines
have in-direct access to the cpu, memory, and other hard-
ware resources through the hypervisor so the privileged in-
structions in the guest operating system can be executed
with or without translating and trapping. Full virtualiza-
tion, para-virtualization and hardware-assisted virtualiza-
tion are one of the techniques handling these privileged in-
structions in hypervisor. Some other techniques are also
introduced in this section.

3.1 Full virtualization
Full virtualization provides virtualization without modify-
ing guest operating system. In x86 architecture, dealing
with privileges instructions is a key factor for virtualizing
hardware. VMware offers binary translation of operating
system requests so that virtualizing privileged instructions
can be completed without supports from either hardware or
operating system. There are Microsoft Virtual Server and
VMware ESXi using this technique.

3.2 Para-virtualization



Xen group initially developed paravirt-ops (later called by
paravirtualization) to support high performance and power-
ful resource isolation with slight modifications to the guest
operating system. Xen noticed that full virtualization sup-
ported guest domains without a change in the operating sys-
tem, but there were negative influences on performance due
to the use of shadow page tables. [2] Paravirtualization (PV)
requires the modified OS kernel with system calls to deal
with privileged instructions. Xen registers guest OS page
tables directly with the MMU with a read-only access to
avoid the overhead and complexity regarding the updating
shadow page tables in full virtualization. With the interface
between a virtual machine and a hypervisor, paravirtual-
ization achieves high performance without the assist from
hardware extensions on x86. VMware introduced Virtual
Machine Interface (VMI) which is a communication proto-
col between a hypervisor and a virtual machine. Xen used
separated device drivers and paravirt operations extensions
(PVOPS) in the Linux kernel to avoid emulating system’s
devices such as network cards or disk drives. Paravirtualiza-
tion, in cooperation with Kernel modifications on the guest
OS, provides improved performance for CPU, memory and
I/O virtualization compared to full virtualization, but this
requires special kernel support. Paravirtualization supports
unmodified application binary interface (ABI) so that user
applications do not require any changes. Paravirtualization
is also called operating system assisted virtualization be-
cause of the awareness of a hypervisor on guest OS. Xen,
UML and VMware support paravirtualization.

3.3 Hardware Assisted virtualization
To improve performance of virtualization, Intel and AMD
provides virtualization extensions to x86 processors. In-
tel Virtualization Technology (VT) and AMD Virtualiza-
tion (AMD-v) are accelerations for privileged instructions
including memory management unit (mmu), directed I/O
devices (iommu). With these hardware-assisted virtualiza-
tion technology, modified guest OS is unnecessary to enable
virtualization because VMM manages privilege instruction
at a root mode which is a ring -1 without affecting the guest
OS. Using Second Level Address Translation (SLAT), nested
paging in Intel EPT (Extended Page Table) or AMD RVI
(Rapid Virtualization Indexing), memory management has
been enhanced and the overhead of translating guest phys-
ical addresses to real physical addresses has been reduced.
Early CPUs for x86 do not have virtualization extensions
which are not included in hardware assisted virtualization.

3.4 Operating System-level virtualization
(Shared Kernel Virtualization) Operating system provides
isolated partitions to run virtual machines in the same ker-
nel. With a chroot operation, which is a transition of a root
directory for a certain process with an isolation to outside
directories, OS-level virtualization enables isolation between
multiple virtual machines on a shared OS. Overhead is very
limited in this model due to the benefits of running under
operating systems with a shared kernel. Emulating devices
or communicating with VMM is not necessary. The guest os
and the host os should have the same OS or kernel. Running
Windows on Linux host is incompatible. There are Solaris
Containers, BSD Jails, LXC, Linux vServer, and Docker.

3.5 Guest operating system

The virtualization application also engages in a process known
as binary rewriting which involves scanning the instruction
stream of the executing guest system and replacing any priv-
ileged instructions with safe emulations. There are Virtu-
alBox and VMware Server. Clearly, the multiple layers of
abstraction between the guest operating systems and the
underlying host hardware are not conducive to high levels
of virtual machine performance. This technique does, how-
ever, have the advantage that no changes are necessary to
either host or guest operating systems and no special CPU
hardware virtualization support is required.

4. MEMORY VIRTUALIZATION
x86 CPUs include a Translation Lookaside Buffer (TLB) and
Memory Management Unit (MMU) to deal with translation
of virtual memory addresses to physical memory addresses
with page tables. TLB is a cache of recently used mappings
from the page tables, and MMU is a hardware unit that con-
tains page table entries (PTEs) to map virtual address to
physical address. In virtualized environments, guest OSs do
not have access to the native direct access to physical ma-
chine memory, and the hypervisor offers another mapping
between physical location of machine memory and physi-
cal location of guest memory. This shadow page tables in
the hypervisor create overhead in memory virtualization be-
cause the shadow page tables need to be synchronized with
the guest page tables when the guest OS updates. This
overhead of two level memory mapping can be reduced with
the hardware assist, for example Intel’s Extended Page Ta-
bles (EPT), or AMD’s RVI (Rapid Virtualization Indexing).
EPT or RVI provides nested page tables which contain map-
ping between virtual memory of guest OS and physical mem-
ory of machine in the TLB with a special tag for VM.

5. NETWORK VIRTUALIZATION
Network virtualization provides logical devices in software
on top of a physical network. The virtual devices support
I/O sharing across multiple VMs with its serialized access
path. As a part of I/O virtualization, networking in virtu-
alized systems requires isolation between virtual machines
and physical machines. Unlike a virtualizing storage device
which is block based, a virtualizing network is packet based
which expects intermixed packet streams. Virtual Machine
Monitor (VMM) offers Network Interface Card (NIC) with a
emulation or a para-virtualization to deliver logical network
devices. This additional step compared to a native single
o/s over a single physical machine generates performance
degradation and increases network access latency.

In virtualization technologies such as Xen and VMware, I/O
instructions are virtualized and managed by VMM. Software-
based techniques like para-virtualized NIC (address transla-
tion) or emulated disk (instruction translation) enable data
protection integrity to the VMS sharing I/O devices but per-
formance degradation and bandwidth loss are expected. [8]
Massimo Cafaro performed the experiment of the effect of
the device virtualization architecture with httperf and net-
perf. 70% of drop on the throughput is identified in para-
virtualized systems, and 50% of available bandwidth loss is
identified in the consolidated VMs. [3]

5.1 Network Virtualization in Xen



In Xen implementation, Driver Domain handles I/O data
transfer between a virtual machine (VM) and a physical de-
vice. It requires multiplexing and demultiplexing packets
between multiple VMs and multiple physical devices. Due
to this additional layer, there is a significant overhead on
network communication in the network virtualization archi-
tecture. Menon et al [6] identifies the performance degrada-
tion, and it shows about 65% of receive overhead in Xen VM
(guest domain) and 81% of transmit overhead compared to
the native devices.

5.2 Xen Architecture for Networking
Figure 1 describes the paravirtualized network interfaces in
Xen. Each virtual machine has a virtual interface provided
by Xen drivers instead of having a physical network interface
in a native operating system. With the virtual communica-
tion channel between the frontend device and the backend
device, the traffic from guest domain to physical network
interfaces occurs through bridging, routing or Network Ad-
dress Translation (NAT). The unprivileged driver domain
has security and reliability advantages due to its separation.

Virtual Machine 2 
(e.g. domU)

Driver Domain (e.g. dom0)

backend 
driver

Bridge 
(multiplexing/ 
demultiplexing 
packets)

Native 
Driver 
(NIC)

Virtual Machine 1 
(e.g. domU)

frontend 
driver

frontend 
driver

In Paravirtualization

Data transfer
(i/O channel)

backend 
driver

Figure 1: Xen Networking with Paravirtualized Net-
work Devices

5.3 Performance Overhead in Xen
Menon et al [5] provides performance benchmark by measur-
ing the transmit (outbound) bandwidth and the receive (in-
bound) bandwidth. Table 1 indicates a significant overhead
for processing packets in Xen’s virtualized network inter-
faces. To transfer packets from the physical interface to the
virtual interfaces in a guest domain, 70% of the execution
time is required in the driver domain and the Xen hypervi-
sor. For the outbound packets, 60% of the network process-
ing time is wasted. These additional time are mainly caused
by multiplexing/demultiplexing overheads and bridging net-
work packets in the driver domain. High memory miss rates
are also reported such as TLB miss or L2 cache misses.

Table 1: Network performance under Xen (Menon
et al [5])

Configuration Inbound∗ Outbound∗

Native Linux 2508 3760
Driver Domain 1738 (30%) 3760 (0%)
Guest Domain(VM) 820 (67%) 750 (80%)

∗ Overheads shown in parentheses

5.4 Improvements

Menon et al [5] suggests three optimizations towards the
Xen network virtualization architecture based on the prob-
lems identified earlier. The optimizations achieved 300%
of improvements on the transmit throughput and 35% of
improvements on the receive throughput. The techniques
used in the optimizations include TCP Segmentation Offload
(TSO) and data copy (packet transfer) instead of the address
remap operation per packet and a new memory allocator in
a guest domain, which tries to group together all memory
pages into contiguous memory so that superpages can be en-
abled. Concurrent direct network access (CDNA) proposed
direct connection between a guest domain and its own net-
work interface by CDNA NIC. With the multiplexing net-
work traffic on the NIC, the software multiplexing overheads
in the driver domain disappears. [10] Efficient and scalable
paravirtual I/O system (ELVIS) identifies two issues. First,
context switch costs are high between the hypervisor and the
guest for exits and entries in interrupt handling. The lack
of scalability in the multi-core systems is the other issue.
Exit-Less Interrupts (ELI) technique is introduced [4].

6. CONCLUSIONS
Over the past few decades, virtualization on x86 architec-
ture has been grown with software and hardware support to
ensure server consolidation, resource management and pro-
visioning over the multiple operating systems. CPU man-
ufacturers introduced hardware virtualization support such
as Intel Virtualization Technology (VT-x) and AMD Vir-
tualization (AMD-v) with new instruction sets so that the
virtual machine execution has been improved with software
support. In addition, many optimizations and techniques
such as Binary Translation, Segmentation, and Shadow Page
Tables have been added to enhance the performance of the
virtualization. We expect this paper to provide some lessons
to understand historical changes and recent challenges of the
virtualization.

7. REFERENCES
[1] O. Agesen, A. Garthwaite, J. Sheldon, and

P. Subrahmanyam. The evolution of an x86 virtual
machine monitor. ACM SIGOPS Operating Systems
Review, 44(4):3–18, 2010.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review, 37(5):164–177,
2003.

[3] M. Cafaro and G. Aloisio. Grids, Clouds, and
Virtualization. Springer, 2011.

[4] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda,
A. Landau, A. Schuster, and D. Tsafrir. Eli:
bare-metal performance for i/o virtualization. ACM
SIGARCH Computer Architecture News,
40(1):411–422, 2012.

[5] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing
network virtualization in xen. In USENIX Annual
Technical Conference, number
LABOS-CONF-2006-003, 2006.

[6] A. Menon, J. R. Santos, Y. Turner, G. J.
Janakiraman, and W. Zwaenepoel. Diagnosing
performance overheads in the xen virtual machine
environment. In Proceedings of the 1st ACM/USENIX



international conference on Virtual execution
environments, pages 13–23. ACM, 2005.

[7] G. J. Popek and R. P. Goldberg. Formal requirements
for virtualizable third generation architectures.
Commun. ACM, 17(7):412–421, July 1974.

[8] S. Rixner. Network virtualization: Breaking the
performance barrier. Queue, 6(1):37, 2008.

[9] M. D. Schroeder and J. H. Saltzer. A hardware
architecture for implementing protection rings.
Commun. ACM, 15(3):157–170, Mar. 1972.

[10] P. Willmann, J. Shafer, D. Carr, S. Rixner, A. L. Cox,
and W. Zwaenepoel. Concurrent direct network access
for virtual machine monitors. In High Performance
Computer Architecture, 2007. HPCA 2007. IEEE 13th
International Symposium on, pages 306–317. IEEE,
2007.


	Introduction
	Virtualization
	Hypervisor
	x86 privilege levels

	CPU Virtualization
	Full virtualization
	Para-virtualization
	Hardware Assisted virtualization
	Operating System-level virtualization
	Guest operating system

	Memory Virtualization
	Network Virtualization
	Network Virtualization in Xen
	Xen Architecture for Networking
	Performance Overhead in Xen
	Improvements

	Conclusions
	References

