
Towards On Demand IT Service Deployment
Jai Dayal2, Casey Rathbone2, Lizhe Wang1, and Gregor von Laszewski1

1Pervasive Technology Institute, Indiana University
2729 E 10th St., Bloomington, IN 47408, U.S.A.

2Service Oriented Cyberinfrastruture Lab, Rochester Institute of Technology
Bldg 74, Lomb Memorial Drive, Rochester, NY 14623-5608

Email corresponding author: laszewski@gmail.com

Abstract—Advanced IT solutions allow users to create, orga-
nize and share user services and computing resources across a
wide range of heterogeneous platforms. This makes managing
(updating and deploying) the IT systems considerably more
complex. Management tasks are so entangled within the existing
components that it requires a IT professional with advanced
training and intimate knowledge of the existing configuration to
complete them.

In this chapter, we will present the deployment solution for a
live complex IT system, the Emergency Services Directory (ESD).
Many different technologies exist that attempt automate the
application deployment process by allowing a user to describe the
dependencies, provide the configuration parameters, and specify
the application’s required technologies, such as the operating
system, database or Web server technology.

ESD’s deployment solution takes advantage of the benefits
provided by virtualization, and virtual appliances in particular.
Each of ESD’s components are wrapped and contained with in a
virtual appliance image. To automatically distribute and deploy
the virtual appliance image on-demand, we utilize the Cyberaide
Creative tool, which is a tool being developed in the on-going
Cyberaide project.

I. INTRODUCTION

Typically, an IT service or application consists of several
components inter-operating to perform a set of functions
or tasks. Service deployment is considered the process of
acquisition and execution of the service, i.e., making the
service ready for use [1]. Deployment typically consists of
the release of the software, the configuration of the software,
and the installation of the software [2].

Depending on the application, the deployment process can
be quite complex requiring a user or developer to have a
detailed understanding of the applications individual compo-
nents. An IDC survey states that out of the $95 billion dollars
spent on application operating costs, 19% can be attributed to
the cost of deployment alone [3].

With today’s advanced IT infrastructures, such as compute
Grids and Clouds, many users, who would benefit from their
usage, avoid these technologies due to their high level of
complexity and steep learning curve. The complexity and
steep learning curve of these systems is largely due to the
vast heterogeneity of the components and lack of more user-
friendly software tools. Applications require specific operating
system drivers and configurations as well as software libraries
and packages for deployment [1]. In heterogeneous environ-
ments, access to resources matching the application’s specific
requirements can not always be guaranteed. Therefore a user

may be required to provide several version of the application
to match the infrastructure’s different resources which could
be too cumbersome a task within a large environment [4].

To help assuage the problems within heterogeneous environ-
ments, users turn to virtual machine (VM) technology. VMs
offer users [5]:

• Customized OS: The user has great flexibility to cus-
tomize the operating system to meet the application’s
run-time requirements. These customizations can include,
but are certainly not limited kernel level customizations
to memory and storage customizations.

• Ease of Management: Virtual Machines can easily be
shutdown or restarted, easing the system reconfiguration
process. Additionally, VMs can easily be migrated to
different physical machines, thus allowing the application
to easily operate during a physical machine’s downtime.

• System Security: VM users can define the operating
system’s privilege with out affecting the privileges of the
underlying operating system. For example, root access is
often required to install operating system modules. Instal-
lation of these modules only effect the VM. Additionally,
if a configuration causes the system to crash, only the VM
is affected, while the underlying machine and operating
system remain operational.

While VMs provide us with a flexible and easy to deploy
platform, VMs alone fall short of automatic and on-demand
service deployment. For example, each time the VM is shut-
down, the service will have to be re-deployed.

Virtual appliances take VMs a step further by containing
both the platform and the service. Launching and executing
virtual appliances, however, still requires the user to un-
derstand many technical details. For example, a user must
understand which basic software packages or components are
needed for the application. The user must also understand the
functional dependencies between these packages. For example
[1] stats that IBM DB2 has approximately 40 configuration pa-
rameters that must be resolved during the deployment process.

Our contribution uses the Cyberaide Creative tool to allow a
user to select the appropriate virtual appliance image, and han-
dles the resource selection, resolves the dependencies between
components and packages, and automates the deployment,
shielding the user from the process. Using ESD as a case
study, we evaluate Cyberaide Creative’s success.

The rest of this chapter is organized as follows. Section
II presents some background information and compares our

2

solution to the existing solutions in the field. Section III
discusses and formulates the deployment process. Cyberaide
and Cyberaide Creative are presented in Section IV. Section
V describes the ESD project, our case study, and Section VI
presents our deployment solution. Section VII evaluates our
solution and our conclusions are presented in Section VIII.

II. BACKGROUND AND RELATED WORK

Automatic and on-demand service deployment is not a
new idea there currently exist several tools to facilitate the
deployment process. A common one is the package managers
found in various Linux distributions such as Fedora and
Ubuntu. These tools consist of a base repository containing
a number of packages. These tools are fully capable of
resolving dependencies amongst packages and fully automate
the installation process. However, these tools are platform
dependent and currently are not used in highly heterogeneous
distributed environments.

Dearle [2] discusses the general concept of automatic on-
demand service deployment, and states that the future of
this paradigm will rely heavily on virtualization. Dearle also
examines six current technologies that facilitate the automatic
deployment of services. His discussion, however, does not
present a architecture or framework, but suggests possible
technological solutions.

Kecskemeti et al [4] presents a detailed framework to deploy
a service in a heterogeneous environment, but the work seems
to present the automatic deployment of computing platforms,
such as the operating system and database technology. The
work also does not provide a specific application and an
evaluation to determine the effectiveness of their proposed
framework.

In [1], Sun et al provide a good discussion and formulation
of the deployment process. They also provide two typical
service platforms, such as a LAMP stack on a single node,
which closely relates to the ESD project, and a Web service
architecture in a distributed environment. To facilitate the
deployment process, they use virtual appliances. Their work,
however, only provides the service platforms and does not
discuss the steps needed to migrate a full application or service
to the platform. Also, this work does not propose a design or
framework for a tool to facilitate the deployment of the virtual
appliance, which they appear to do manually.

Our work differs from the above studies by providing a
framework that delivers two parts, the first is the automatic
on-demand deployment of the service platform using virtual
appliances, and the second is the on-demand automatic de-
ployment of the service to the platform. We show how this
can be achieved using Cyberaide Creative to deploy the virtual
appliance, and a set of scripts to migrate the service codes and
data.

III. SERVICE DEPLOYMENT PROCESS

In this section, we formulate the general process of deploy-
ment and present a simple model to formulate and discuss the
complexity of a deployment process.

A. Deployment Process Overview

Deployment takes place at the end of the software life-cycle,
hence it is a post-production activity [2]. There are many de-
ployment guidelines, strategies, and tools, that typically share
the same general deployment process [1]. These guidelines
also tend to vary based on the type of deployed service.
Services needing only a single machine typically have a more
straight forward approach than do distributed services. Based
on [1], [2], [6], we can generalize the deployment process:

• Determine the dependencies that exist in the deployment
process. For example, if a component requires a database,
the database installation and configuration should be
included in the installation.

• Understand the communication and relationships between
the different machines needed for the application.

• Resolve the dependencies at the platform layer, for ex-
ample, the installation of a component might require a
specific compiler.

• Install the application. This requires moving the source
files, binaries, and etc. to the targeted environment. This
step also requires the user to follow the dependencies
required by the service.

• Activate the service and monitor the service’s operation
to identify any malfunctions.

B. Deployment Model and Problem Definition

A deployment process consists of several identifiable el-
ements, a service, a number of operations, and a set of
dependencies which specify the order in which the operations
must occur.

Deployment = {Service, Operations,Dependencies}
(1)

A software service is composed of any number of compo-
nents, where a component is the minimum entity in the service.
Formally, a service service is modeled as:

Service = {componenti | 1 ≤ i ≤ I} (2)

where I is the number of individual components in the service.
The set of operations operations can be formulated as:

Operations = {opj | 1 ≤ j ≤ J} (3)

where J is the total number of operations in the deployment
process.

Typically, an operation opj requires several configuration
parameters parameters:

parameters = {paramk | 0 ≤ k ≤ K} (4)

where K represents the number of configuration parameters
for operation opj .

The dependencies of a deployment process represent the
order in which the operations must be performed. We model
the dependencies as a directed graph, Dependencies:

Dependencies = {Operations,D} (5)

where Operations is the set of vertices and D is a set of

3

edges, or dependencies, between operations:

D ⊆ Operation X Operation (6)

For example, a dependency (op1,op2) means that op1 depends
on op2, i.e., op2 must happen before op1. [7], [8] further
discuss the modeling of software systems and dependencies.
Figure 1 depicts a simple dependency graph. Deployment
technologies such as RedHat’s RPM use dependency graphs to
determine and resolve dependencies between software pack-
ages.

As we can see, as the number of components and opera-
tions grow, the more labor intensive the deployment process
becomes for the user, especially in regards to the dependencies
between operations. Our goal is not to reduce the number of
dependencies or operations in a deployment process, but rather
to hide the deployment complexity from the user.

!"#$

!"%$

!"&$!"'$

Fig. 1. Simple Dependency Graph

IV. THE CYBERAIDE PROJECT AND CYBERAIDE CREATIVE

This section provides an overview the Cyberaide project
and Cyberaide Creative, a tool within the Cyberaide project.
Cyberaide Creative is the tool we use to automatically and
on-demand deploy our ESD service.

A. The Cyberaide Project

As mentioned in the introduction, users can benefit from
complex IT infrastructures in a number of ways, but users
often have a hesitant attitude towards using these technologies
due to the amount of technical knowledge required. Cyberaide
provides a possible solution to this problem. Several tools
have been integrated into the Cyberaide project, such as the
Cyberaide Toolkit and the Cyberaide Shell [9].

Cyberaide enjoys the following essential features [9]:
• Ease of use: make the JavaScript based API and interfaces

useful for Grid and Web developers.
• Low installation footprint: support fast downloads as well

as an easy maintenance through a small manageable code
base.

• Security: gain access to Grid resources in order to avoid
compromising the system. This is especially important
due to known limitations of JavaScript.

• Basic Grid functionality: is provided for developers to
create Grid-based client applications.

• Advanced functionality: is offered as many developers do
not want to replicate functionality provided by other Grid
middleware and upperware.

The framework is designed in layers and comprised of
different components. (see also Fig. 2). A web client that
provides access to Grid functionality and components that can
be deployed in a web server are provided. A service called
“mediator service” mediates tasks to the Grid and basically
is a secure server that provides most of the functionalities in
regard to the Grid.

Fig. 2. System Architecture

• Web client: provides elementary functionality to access
the Grid through a portal user interface.

• Server: contains two logical parts:

– Agent service: is the intermediate service between
Web client and mediator service; works as proxy for
users to interact with the mediator service.

– Mediator Service: is the bridge between the Grid
and the client library. The mediator service offers
different functionalities and contains the application
logic.

Because of the separation between the service and the client
the development of Cyberaide shell was possible. this is a sys-
tem shell that facilitates the use of cyberinfrastructures. It con-
tains four high level design components: object management,
cyberinfrastructure backends, command line interpreters, and
services (see Fig. 3) [9].

Fig. 3. High level design of Cyberaide Shell

4

Fig. 4. Cyberaide Creative Paradigm [10]

B. Cyberaide Creative Paradigm

The paradigm presented using Cyberaide Creative is an on-
demand resource allocation system. This creates an environ-
ment where resources can be optimally utilized as demands
request them. The Cyberaide Creative system is used as a tool
for acquisition of the production grid running either Condor
or Globus ToolKit and Cyberaide Gridshell is the operating
interface to the grid. The benefits of this paradigm are the
ability to outsource resources for less cost than to maintain a
complete internal system for peak resource consumption.

Figure 4 shows the computing paradigm of Cyberaide
Creative:

1) Users send requirement to Cyberaide creative to demand
cyberinfrastructures from Clouds, for example, a condor
cluster, or a computational Grid with Globus Toolkit as
a middleware.

2) Cyberaide creative then construct a cyberinfrastructure
for users, which is pre-installed some Grid middleware,
like condor, Globus and Cyberaide shell.

3) Users then on demand access the cyberinfrastructure
with aides of cyberaide shell.

[10] presents Cyberaide Creative’s use cases. For our
deployment, we are using the scenario where a user requests
a single VM workstation. This work extends this scenario by
deploying a fully configured and ready to use virtual appliance.
Cyberaide Creative uses VM Ware ESXi technology to create
and store the virtual appliance images. For a more in depth
discussion on Cyberaide and Cyberaide Creative, see [9], [10].

V. EMERGENCY SERVICES DIRECTORY

In this section, we will describe the ESD service and we will
formulate the operations and parameters required to deploy
this service.

A. Overview

The Emergency Services Directory (ESD) is a nation wide
directory containing information about emergency service
resources, such as fire departments, ambulances, and law
enforcement agencies. The directory aims to meet the needs
of several different classes of users from the general public,
to state and national level government officials. Each different
class of user requires different levels of access to the data,

and also needs to perform role specific tasks. For example, a
regional fire 5 chief may need to send an alert all near by fire
stations, while ambulance providers may need to know what
capabilities neighboring ambulance providers offer.

The directory also has an on-demand printing service that al-
lows designated users to export information from the database
into a customize format, such as a directory, booklet or
pamphlet. The Society for Total Emergency Programs (STEP)
council currently distributes a printed version of the directory
to 911 dispatchers, ambulances, and other emergency service
providers in Rochester, NY area. Additionally, the printing
service must be scalable so multiple users can print on-demand
customized documents simultaneously. The printing service
consists of a set of Perl and shell scripts and can be operated
independently from the Web site.

This real-life health-care application is categorized as a
complex IT system as it relies on harmonious operation
between independent technologies. Build on top of a LAMP
(Linux, Apache, MySQL, and PHP), the on-line directory
uses the Drupal content management system [6] to handle
user requests, and to render the sites web pages. For added
functionality, a developer can create custom PHP modules with
in Drupal, or the developer can download and install pre-made
modules supported by Drupal. ESD uses both methods.

Fine grained access to the site, and the underlying MySQL
database, is controlled via role-based access control (RBAC).
Drupal provides role-based access control out of the box, but
this access control is limited only to content contained with
in the Drupal system, such as the various Web pages and
modules. Figure 5 shows ESD’s design.

!"#$%&

'()*+,& -.-& /012!&

34$()5&

-4"#6#7&

1,48"*,&

9:#;,#;&

<
=,
4&

Fig. 5. ESD Design

ESD was chosen as a case study for this project because it
is a real live example of a complex IT system, and has very
detailed and well defined technical requirements. The deploy
as a service paradigm must be able to accurately deploy a
project with such detailed specifications.

B. Deployment Strategy Overview

The first step in the deployment process is to determine
the dependencies between the components and operations in
the deployment process. First, we have our base operating
system, which is Linux. For our distribution, we use Canon-
ical’s Ubuntu operating system. Next, the Drupal content
management system requires a MySQL database, an Apache
Web server with PHP capabilities. It does not matter which
order we install MySQL and Apache, but PHP’s installation

5

and configuration strongly depends on Apache. The printing
service requires two tools, Perl and Latex. There are no
dependencies between these tools, but naturally, they must be
completed after the OS configuration. After we understand
the dependencies, we can begin resolving the dependencies
by performing the operations in order.

After the LAMP stack is in place, we can install and
configure Drupal. Unfortunately, there are several steps in
Drupal’s configuration process that can not be automated, so
the user will have to be present during the deployment to select
some simple configuration options. Since Drupal is modular,
however, it is possible to migrate any custom modules, codes,
or themes by placing them in the appropriate location in
Drupal’s directory structure. Since the directory structure is
well defined, the migration of the modules is included in our
deployment scripts.

After the MySQL database has been installed, we can
begin to load the database with the appropriate information. It
may seem there are no dependencies between populating the
MySQL database and installing Drupal, but Drupal maintains
it’s user and site information in the database. The data con-
taining information about ESD’s emergency services is also
stored in the MySQL database. While the ESD content is not
related to Drupal, the process is simplified by having only
one database migration step. If the ESD information and the
Drupal information were stored in separate databases, then two
steps may be required.

In summary, we can define the steps required for the ESD
deployment process as follows:

1) Select the appropriate operating system or VM image
2) Install and configure Apache Server
3) Install and configure PHP support for Apache Server
4) Install and configure MySQL
5) Install Perl (usually not needed)
6) Install Latex for printing service
7) Install Printing Service source files
8) Install Drupal CMS
9) Configure Drupal CMS during installation

10) Migrate database contents for Drupal and ESD

Figure 6 displays the dependency chart for ESD’s deployment
process.

!"

#"

$"

%"

&"'" ("

)"

*"

!+"

Fig. 6. ESD Dependency Graph

In the next section, we show how we can contain steps 1 -
6 with in the virtual appliance. By adding a few installation
scripts to the virtual appliance image, we can finish steps 7 -
9 automatically.

VI. DEPLOYMENT SOLUTION

In this section, we describe how we create the virtual
appliance on demand, and how we then deploy the application
automatically. Both steps are implemented using the Cyberaide
Creative tool.

According to VMWare, the creation of a virtual appliance
can be generalized into three steps [11]: 1) Install the guest
operating system; 2) Install the specific software, such as
Apache and MySQL, needed by the service; 3) Provide an
interface so the user can oversee and participate in the virtual
appliance creation process.

As [11] points out, it is important that the user participates
in the appliance creation process as there are several configu-
ration parameters that require a user’s input, for example the
network configuration. Cyberaide Creative provides us with
such an interface via a Web service.

Using Cyberaide Creative [10], here are the steps needed to
deploy the virtual appliance and to move the service contents
to the platform:

1) The user logs into the Cyberaide Creative Web service
and selects the type of VM image required.

2) The Web service sends these parameters to the ESXi
Server, which then provides the required VM image.

3) The user then specifies the packages needed and the
dependencies between these packages. VMWare requires
that the user specifies the dependencies.

4) The user provides the Web service with any custom
installation or data migration scripts.

5) The Web service then forwards these requirements and
scripts to the ESXi Server, which then installs the
required packages.

6) The ESXi Server then launches the appliance to a host
machine, runs the scripts and returns the address and
login information to the Web service.

7) The Web service forwards the address and login infor-
mation to the user. The user can now directly login to
the instantiated appliance.

In our implementation, scripts were written to handle the
download and installation of the Drupal CMS, the creation of
the database tables needed for the ESD and Drupal applica-
tions, and then for the migration of the database contents.

It should be noted that the installation of Drupal is not
completed until the user logs in to the virtual appliance and
agrees to certain licenses and specifies certain parameters.
It should also be noted, that the VMware hypervisor only
installs the appliance (OS and basic packages). The rest of the
installation is done on the appliance via the provided scripts.

VII. SOLUTION EVALUATION

Our goal is not reduce dependencies or operations in a
deployment process, but it is to simply shield the user from
the details of the deployment process. Furthermore, if the

6

deployment process is not automated, the user will have to
repeat the deployment steps each time the service needs to be
re-deployed. Using Cyberaide Creative, we can create a virtual
appliance image, and store and retrieve the image as needed.

In the previous section, we discussed the operations required
to configure and create the appliance on top of the VM image.
This process only has to be performed once, as the fully
configured and created image is then stored by VMWare ESXi.
From this point on, the user only has to re-launch the appliance
image, while all configurations, packages, and dependencies
are retained.

An important metric is how long the on-demand automated
deployment process takes. This metric is highly variable as it
depends on the network connection, the virtual appliance size,
and the amount of data to be transferred during the migration
process. In our scenario, the basic virtual image and packages
is around 600MB. The amount of data in the database was
less than 20MB. Additionally, the appliance images and ESD
data were stored at a local repository.

Another important metric deals with the overhead caused
by using a virtual machine. In some cases, added overhead
may not be acceptable. Many studies [5] have been conducted
to evaluate overhead caused by virtual machines. Figure 7
displays the performance of virtual machines using Linpack
to measure performance.

!"

!#$"

%"

%#$"

&"

&#$"

%"'()*"

+),-./("

%"0.'12)*"

+),-./("

&"0.'12)*"

+),-./(3"

4"0.'12)*"

+),-./(3"

5"0.'12)*"

+),-./(3"

!
"
#$
%
#&

'
(
)"
*+
,
-
.%
/
01
*

23(/')4*/"#$%#&'()"**

Fig. 7. VM Overhead [10]

VIII. FUTURE WORK AND CONCLUSION

From the above discussion, we can see that there are still
several steps in the deployment process that are not yet
automated, such as the configuration of Drupal. Such scenarios
are a result of the application itself, and possible cannot be
handled by middleware.

There are several other steps that can be dealt with, such as
the configuration of the virtual appliance to operate with the
host machine’s network. In the future, deployment projects
should be extended to include a more general deployment
description language. Several studies have investigated this
process [12], [13]. These tools languages are typically XML
based, but this is not required. [1] discusses a deployment
description language, but only in the context of their frame-
work. In the future, Cyberaide Creative plans to make use of
a deployment description language.

In summary, we have shown that using the Cyberaide
Creative tool, we can simplify a service’s deployment process,

from the user’s perspective. The user’s service or application
and a virtual machine image are combined into a virtual appli-
ance. The virtual appliance is then deployed using Cyberaide
Creative. Cyberaide Creative works to shield the user from the
details of both the virtual appliance creation and deployment.

REFERENCES

[1] C. Sun, L. He, Q. Wang, and R. Willenborg, “Simplifying service de-
ployment with virtual appliances,” in SCC ’08: Proceedings of the 2008
IEEE International Conference on Services Computing. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 265–272.

[2] A. Dearle, “Software deployment, past, present and future,” in FOSE
’07: 2007 Future of Software Engineering. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 269–284.

[3] J. S. David, D. Schuff, and R. St. Louis, “Managing your total it cost
of ownership,” Commun. ACM, vol. 45, no. 1, pp. 101–106, 2002.

[4] G. Kecskemeti, P. Kacsuk, G. Terstyanszky, T. Kiss, and T. De-
laitre, “Automatic service deployment using virtualisation,” Parallel,
Distributed, and Network-Based Processing, Euromicro Conference on,
vol. 0, pp. 628–635, 2008.

[5] W. Huang, J. Liu, B. Abali, and D. K. Panda, “A case for high
performance computing with virtual machines,” in ICS ’06: Proceedings
of the 20th annual international conference on Supercomputing. New
York, NY, USA: ACM, 2006, pp. 125–134.

[6] A. Aboulnaga, K. Salem, A. A. Soror, U. F. Minhas, P. Kokosielis, and
S. Kamath, “Deploying database appliances in the cloud.” IEEE Data
Eng. Bull., vol. 32, no. 1, pp. 13–20, 2009. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/debu/debu32.html#AboulnagaSSMKK09

[7] C. Pich, L. Nachmanson, and G. G. Robertson, “Visual analysis of
importance and grouping in software dependency graphs,” in SoftVis
’08: Proceedings of the 4th ACM symposium on Software visualization.
New York, NY, USA: ACM, 2008, pp. 29–32.

[8] P. Abate, J. Boender, R. Di Cosmo, and S. Zacchiroli, “Strong
dependencies between software components,” 2009. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:0905.4226

[9] G. von Laszewski, F. Wang, A. Younge, X. He, Z. Guo, and
M. Pierce, “Cyberaide JavaScript: A JavaScript Commodity Grid
Kit,” in GCE08 at SC’08. Austin, TX: IEEE, Nov. 16 2008.
[Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/
08-javascript/vonLaszewski-08-javascript.pdf

[10] C. Rathbone, L. Wang, and G. von Laszewski, “Cyberaide creative:
Provision grid infrastructures in clouds.”

[11] VMWare, “Best practices for building virtual appliances,” Tech. Rep.
[Online]. Available: http://www.vmware.com/resources/techresources/
1011

[12] S. Lacour, C. Perez, and T. Priol, “Generic application description
model: Toward automatic deployment of applications on computational
grids,” in GRID ’05: Proceedings of the 6th IEEE/ACM International
Workshop on Grid Computing. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 284–287.

[13] W. Goscinski and D. Abramson, “Distributed ant: A system to support
application deployment in the grid,” in GRID ’04: Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 436–443.

http://dblp.uni-trier.de/db/journals/debu/debu32.html#AboulnagaSSMKK09
http://dblp.uni-trier.de/db/journals/debu/debu32.html#AboulnagaSSMKK09
http://www.citebase.org/abstract?id=oai:arXiv.org:0905.4226
http://cyberaide.googlecode.com/svn/trunk/papers/08-javascript/vonLaszewski-08-javascript.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/08-javascript/vonLaszewski-08-javascript.pdf
http://www.vmware.com/resources/techresources/1011
http://www.vmware.com/resources/techresources/1011

	Introduction
	Background and Related Work
	Service Deployment Process
	Deployment Process Overview
	Deployment Model and Problem Definition

	The Cyberaide Project and Cyberaide Creative
	The Cyberaide Project
	Cyberaide Creative Paradigm

	Emergency Services Directory
	Overview
	Deployment Strategy Overview

	Deployment Solution
	Solution Evaluation
	Future Work and Conclusion
	References

