
Design of a Dynamic Provisioning System for a
Federated Cloud and Bare-metal Environment

Gregor von Laszewski*, Hyungro Lee, Javier Diaz, Fugang Wang,
Koji Tanaka, Shubhada Karavinkoppa, Geoffrey C. Fox, Tom Furlani

Indiana University

2719 East 10th Street
Bloomington, IN 47408. U.S.A.

*+ 812 822 1311
* laszewski@gmail.com

ABSTRACT
We present the design of a dynamic provisioning system that is
able to manage the resources of a federated cloud environment
by focusing on their utilization. With our framework, it is not
only possible to allocate resources at a particular time to a
specific Infrastructure as a Service framework, but also to utilize
them as part of a typical HPC environment controlled by batch
queuing systems. Through this interplay between virtualized and
non-virtualized resources, we provide a flexible resource
management framework that can be adapted based on users'
demands. The need for such a framework is motivated by real
user data gathered during our operation of FutureGrid (FG). We
observed that the usage of the different infrastructures vary over
time changing from being over-utilized to underutilize and vice
versa. Therefore, the proposed framework will be beneficial for
users of environments such a FutureGrid where several
infrastructures are supported with limited physical resources.

Categories and Subject Descriptors
D.4.8 [Performance]: Operational Analysis, Monitors,
Measurements D.4.7 [Organization and Design]: Distributed
systems

General Terms
Management, Measurement, Performance, Design, Economics,

Keywords
Cloud Metric, Dynamic Provisioning, RAIN, FutureGrid,
Federated Clouds, Cloud busting, Cloud shifting.

1. INTRODUCTION
Batch, Cloud and Grid computing build the pillars of todays
modern scientific compute environments. Batch computing has
traditionally supported high performance computing centers to
better utilize their compute resources with the goal to satisfy the
many concurrent users with sophisticated batch policies utilizing
a number of well managed compute resources. Grid Computing

and its predecessor metacomputing elevated this goal by not
only introducing the utilization of multiple queues accessible to
the users, but by establishing virtual organizations that share
resources among the organizational users. This includes storage
and compute resources and exposes the functionality that users
need as services. Recently, it has been identified that these
models are too restrictive, as many researchers and groups tend
to develop and deploy their own software stacks on
computational resources to build the specific environment
required for their experiments. Cloud computing provides here a
good solution as it introduces a level of abstraction that lets the
advanced scientific community assemble their own images with
their own software stacks and deploy them on large numbers of
computational resources in clouds. Since a number of
Infrastructure as a Service (IaaS) exist, our experience [1] tells
us the importance of offering a variety of them to satisfy the
various user community demands. In addition, it is important to
support researchers that develop such frameworks further and
may need more access to the compute and storage hardware
resources than is provided by the current IaaS frameworks. For
this reason, it is also important to provide users with the
capabilities of staging their own software stack. Recently a
number of test-beds have been created that allow the
provisioning of software stacks by users. This includes
OpenCirrus [2], EmuLab [3], Grid5000 [4] and FutureGrid [5].
Within FutureGrid we developed a sophisticated set of services
that simplify the instantiation of images that can be deployed on
virtualized and non-virtualized resources.

The work described here significantly enhances the services
developed and described in our publications about FutureGrid
focusing on dynamic provisioning supported by image
management, generation, and deployment [1].

In this paper, we enhance our services in the following aspects

a) Implementation of a uniform cloud metric framework for
Eucalyptus 3 and OpenStack Essex.

b) Design of a flexible framework that allows resource re-
allocation between various IaaS frameworks, as well as
bare metal.

c) Design a meta-scheduler that re-allocates resources based
on metric data gathered from the usage of different
frameworks.

d) Targeted prototype development and deployment for
FutureGrid.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Workshop on Cloud
Services, Federation, and the 8th Open Cirrus Summit, September 21,
2012, San Jose, CA, USA. Copyright 2012 ACM 978-1-4503-1267-
7…$10.00.

The paper is organized as follows. In Section 2, we introduce the
current state of Cloud Metrics as used in various IaaS
frameworks. We also introduce the efforts that

2. Accounting Systems
Accounting systems have been put into production since the
early days of computing stemming back to the mainframe,
which introduced batch processing, but also virtualization. The
purpose of such an accounting system is manifold, but one of its
main purposes is to define a policy that allows the shared usage
of the resources:

• Enable tracking of resource usage so that an accurate
picture of current and past utilization of the resources can
be determined and become an input to determining a proper
resource policy.

• Enable tracking of jobs and service usage by user and
group as they typically build the common unit of
measurement in addition to the wall clock time as part of a
resource allocation policy.

• Enable a metric for economic charge so that it can be
integrated into resource policies as one input for scheduling
jobs within the system.

• Enable a resource allocation policy so that multiple users
can use the shared resource. The policy allows users to get
typically a quota and establishes a priority order in which
users can utilize the shared resource. Typically a number of
metrics are placed into a model that determines the priority
and order in which users and their jobs utilize the resource.

• Enable the automation of the resource scheduling task to a
systems service instead of being conducted by the
administrator.

One of the essential ingredients for such an accounting system
are the measurements and metrics that are used as input to the
scheduling model and is part of the active computer science
research since 1960 with the advent of the first mainframes.

2.1 High Performance Computing
As High Performance Computing (HPC) systems have always
been shared resources, batch systems usually include an
accounting system. Typically metrics that are part of scheduling
policies include number of jobs run by a user/group at a time,
overall time used by a user/group on the HPC system, wait time
for jobs to get started, size of the jobs, scale of the jobs, and
more. Many batch systems are today available and include
popular choices such as Moab which originated from Maui,
SLURM [6], Univa Grid Engine [7] which originated from
CODINE [8], PBS [9], LSF [9]. Recently many of these vendors
have made access to manipulation of the scheduling policies and
the resource inventory, managed by the schedules, much easier
by adding Graphical user interfaces to them [9-11]. Many of
them have also added services that provide cloud-bursting
capabilities by submitting jobs for example to private or public
clouds such as AWS.

One of the more popular accounting systems with the
community is Gold [?]. Gold introduces an economical charge
model similar to that of a bank. Transactions such as deposits,
charges, transfers, and refunds allow easy integration with
scheduling tools. One of the strength of Gold was its free
availability and the possibility to integrate it with Grid
resources. Unfortunately, the current maintainers of Gold have
decided to discontinue its development and instead provide an
alternative as a paid solution. It has to be seen if the community

will continue picking up Gold or if they switch to the new
system.

One of the most interesting projects that has recently been
initiated is the XDMod project [12] that is funded by NSF XD
and is integrated into the XSEDE project. One of the tasks of
this project includes the development of a sophisticated
framework for analyzing account and usage data within XSEDE.
However, we assume this project will develop an open source
version that can be adapted for other purposes. This component
contains an unprecedented richness of features to view, and
creates reports based on user roles and access rights. It also
allows the export of the data through Web services.

2.2 Grids
Accounting systems in Grids were initially pretty separated and
not meant to be based on a centralized accounting system.
Instead, each member of a virtual organization is pretty separate
and has the right to assign and implement their own allocation
and accounting policies. This can be backed up by the creation
of the earliest virtual organization termed GUSTO [13], but also
in more recent efforts such as the TeraGrid [14, 15], XSEDE
[16]endnote, and the OpenScience Grid [17]. Efforts were put in
place later to establish a common resource usage unit to allow
trading between resources, as for example in TeraGrid and
XSEDE. The earliest metric to establish usage of Grid services
outside of such frameworks in an independent fashion was
initiated by [18] for the usage of GridFTP and later on enhanced
and integrated by the Globus project for other Grid services such
as job utilization. Other systems such as Nimrod [19] provided a
platform to the users in the Grid community that introduced
economical metrics similar to Gold and allowed for the creation
of trading and auction based systems. They have been followed
up by a number of research activities [20] but such systems have
not been part of larger deployments in the US.

2.3 Clouds
The de facto standard for clouds has been introduced by
Amazon Web Services [21]. Since the initial offering, additional
IaaS frameworks have become available to enable the creation
of privately managed clouds. As part of these offering, we have
additional components that address accounting and usage
metrics. We find particularly relevant the work conducted by
Amazon [22], Eucalyptus [23], Nimbus [24], OpenStack [25],
and OpenNebula [26]. Other ongoing community activities also
contribute in the accounting and metric area, most notably by
integrating GreenIT [27] [28].

In addition to the build in monitoring and accounting features,
some cloud platforms can be enhanced by existing monitoring
tools that are well known within the HPC community. Such
tools include Nagios [29] and Ganglia [30], which are both open
source.
For IaaS frameworks we make the following observations.
Amazon CloudWatch [22] provides real-time monitoring of
resource utilization such as CPU, disk and network. It also
enables users to collect metrics about AWS resources, as well as
publish custom metrics directly to Amazon CloudWatch.
Amazon CloudWatch functionality is accessible via API,
command-line tools, the AWS SDK, and the AWS Management
Console. It provides a facility to create alarms on any of users
metrics to receive notifications or take other automated actions
when the metric crosses user specified threshold. given
threshold over a number of time periods. It provides statistics
based on metric data. Statistics for a metric can be obtained in

different ways like Statistics Aggregated Across All Instances,
Statistics Aggregated by Auto Scaling Group, Statistics
Aggregated by Image (AMI) ID, and Statistics for a Specific
EC2 Instance.

Users can view graphs and statistics for any of their metrics, and
get a quick overview of their alarms and monitored AWS
resources in one location on the Amazon CloudWatch dashboard.
Amazon CloudWatch integrates with AWS Identity and Access
Management (AWS IAM) to control user access to AWS
account. It makes easier to specify which CloudWatch actions a
user or group in AWS account can perform. Permissions granted
using IAM cover all the cloud resources used with CloudWatch.

Eucalyptus enables since version 3.0, usage reporting as part of
its resource management [31]. However a sophisticated
accounting systems are not yet provided that lets users and
administrators observe details about particular VM insatnces.
Eucalyptus supports monitoring features with popular third party
applications such as Nagios and Ganglia to help measuring VM
instances and storage utilization since version 1.6 [23]. Nagios
typically allows checking the health of cloud clusters and
Ganglia provides resource utilization such as CPU, memory, and
load average. Eucalyptus also provides audit trails for user
requests and resource usage via log messages. The log files can
be parsed and analyzed for generating usage statistics in terms of
the cloud metric and for more information, in the debug mode of
logs, traceable events of VM instances, storages and networks
are recorded for performing proper measurement. However, a
convenient framework that provides such features to the users is
not provided by default. We have developed as part of our effort
described here such a framework that is made available as open
source project [32]. In addition to Eucalyptus we can also depict
usage data from OpenStack, thus our framework targets
federated cloud environments with heterogeneous cloud
infrastructures rather than a single IaaS framework.

Nimbus claims per-client usage tracking and per-user storage
quota in cumulus (the VM image repository manager for
Nimbus) as accounting features. The per-client usage tracking
provides information of requested VM instances and historical
usage data. The per-user storage quota enables restriction of file
system usage. Nimbus also uses Torque resource manager for
gathering accounting logs. For monitoring features, Nimbus
utilizes Nagios and Cloud Aggregator, which is a utility to
receive system resource information.

OpenNebula has a utility named OpenNebula Watch [26] as an
accounting information module. It stores activities of VM
instances and hosts (clusters) to show resource utilization or
charging data based on the aggregated data. OpenNebula Watch
requires database handler like sequel, sqlite3 or MySQL to store
the accounting information. It checks the status of hosts so
physical systems can be monitored, for example, CPU and
memory except network.

OpenStack is currently under heavy development in regards to
many of its more advanced components. An on-going effort for
developing accounting systems of OpenStack exists which is
named Efficient Metering or ceilometer. It aims to collect all
events from OpenStack components for billing and monitoring
purposes [33]. This service will measure general resource
attributes such as CPU core, memory, disk and network as used
by the nova components. Additional metrics might be added to
provide customization. Efficient Metering is planned to be
released in the next version of Openstack (Folsom) late in 2012.

Besides this effort, other metric projects esist and include
several billing projects such as [34], [35], and [35].

Microsoft Azure The System Center Monitoring Pack for
Windows Azure applications is the most cost effective and
flexible platform for managing traditional data centers, private
and public clouds, and client computers and devices [36]. It is
the only unified management platform where multiple
hypervisors, physical resources, and applications can be
managed in a single offering. From a single console view, the IT
assets like network, storage and compute can be organized into a
hybrid cloud model spanning the private cloud and public cloud
services. By default, the monitoring is not enabled. Therefore,
the discovery must be configured by using the Windows Azure
Application monitoring template for each Windows Azure
Application to be monitored. The performance monitoring can
also be enabled by using some tools like Powershell cmdlets for
Windows Azure [37] and Azure Diagnostics Manager 2 from
Cerebrata [38]. The monitoring data can be visualized using
System Center Operation Manager Console. The monitoring
pack provides functionalities such as discover Windows Azure
applications, providing status for each role instance, collecting
and monitoring performance information, collecting and
monitoring windows events, collecting an d monitoring the
.NET framework trace messages from each role instance,
grooming performance, events and the .NET framework trace
data from Windows Azure storage account and changing the
number of role instances. The monitoring pack provides
Operation Manafer GUI to view all the metrics and graphs.
From Operation Manager, user can create custom dashboard or
publish graphs on SharePoint to people who do not have the
SCOM console.

Google Compute Engine is a IaaS product launched end of June,
2012 apart from Google App Engine which is a Google’s PaaS
cloud platform [39]. Some features are limited due to ongoing
development. Google currently supports several options for
networking and storage while managing virtual machines
through the compute engine. Presently, there is no accounting
APIs for Google Compute Engine, but there a monitoring API
for Google App Engine exists. Google App Engine supports a
usage report for displaying resource utilization of instances in
the administration console [40] and provides a runtime API [41]
to retrieve measured data from the application instances such as
CPU, memory, and status. We expect that similar functionality
will become available for the Google Compute Engine as well.

3. FutureGrid A TestBed suitable for Federated
Cloud Research
FutureGrid [42] provides a set of distributed resources totaling
about 3000 compute cores. Resources include a variety of
different platforms allowing users to access heterogeneous
distributed computing, network, and storage resources. Services
to conduct HPC, Grid, and Cloud projects including various
IaaS and PaaS are offered. This variety of resources and services
allow interesting interoperability and scalability experiments
that foster research in the area of for example federated clouds.
Users can experiment with various IaaS frameworks at the same
time, but also integrate Grid and HPC services that are of
especial interest to the scientific community. One important
feature of the FutureGrid software services is the ability to
dynamically provision resources not only by using virtualization
technologies, but also by dynamically provision on bare-metal
[1]. This feature allows us to rain not only a software stack onto
an OS that is hosted on a resource, but also to replace the entire

OS onto the compute server. Authorized users have access to
this feature that is ideal for performance experiments. Via the
help of Rain we can now shift compute servers into various
clouds determined by user demand.

4. REQUIREMENTS
Within the [1] we presented qualitative and quantitative
evidence that users are experimenting with a variety of IaaS
frameworks. To support this need, we have instantiated multiple
clouds on distributed compute clusters in FG. Furthermore, we
are able to support multiple IaaS frameworks on our resources.
However, the association of compute servers to the various IaaS
frameworks is conducted currently by hand through a best effort
attempt by the system administrators. From our experience cast
from a variety of projects, we have seen some interesting use
patterns. One such use pattern arises from educational classes in
the distributed computing area. In this case we observe that
classes cycle through topics to teach students about HPC, Grid,
and Cloud computing. When teaching cloud computing they
also introduce multiple cloud frameworks. Thus, the demand to
access the resources one after another is a logical consequence
based on the way such classes are taught.

On the other hand, we observe some projects that utilize the
resources in a federated fashion either while focusing on
federation within the same IaaS framework [43], but more
interestingly also to federate between IaaS frameworks while
focusing on scientific workflows that utilize cycle scavenging
[44] or select frameworks that are most suitable for a particular
set of calculations as part of the workflow [45].

As a consequence of our observations, we derived the following
requirements that will shape the design of the services that
support cloud federation.

• Support for multiple IaaS: This includes OpenStack,
Nimbus, Eucalyptus, and OpenNebula. Furthermore we
like to integrate with AWS and potentially other clouds
hosted outside of FG.

• Support for bare-metal provisioning to the privately
managed resources: This will allow us the to rain custom
designed software stacks on OS we choose onto each of the
servers on demand.

• Support for dynamic adjustment of service assignments:
The services placed on a server are not fixed, but can
change over time via rain.

• Support for educational class patterns: Compute classes
often require a particular set of services that are accessed
by many of its members concurrently leading to spikes in
the demand for one service type.

• Support for advance provisioning: Sometimes users know
in advance when they need a particular service motivating
the need for the instantiation of services in advance. This is
different from advance reservation of a service, as the
service is still shared by the users.

• Support for advance reservation: Some experiments
require the exclusive access to the services.

• Support for automation: Managing such an environment
should be automatized as much as possible.

• Support for inter-cloud federation experiments: Ability to
access multiple IaaS instances at the same time.

• Support for divers user communities: Users,
Administrators, Groups, and services are interested in using
the framework.

We intend to implement this design gradually and verify it on
FG. The resulting software and services will be made available
open source so others can utilize them also.

Due to these requirements we must support three very important
functions of our framework. These functions include:

Cloud busting, which enables the instantiation of new cloud
frameworks within FutureGrid.

Cloud shifting, which enables moving (or re-allocating) compute
resources between the various clouds and HPC.

Resource Provisioning, which is a basic functionality to enable
cloud busting and shifting as it allows the dynamic provisioning
of the OS and software stack on bare-metal.

Together these three functions build an enhancement to our rain
tool that is important for the work described in this paper.

However, we will not address topics such as cloud bursting, that
enables to outsource services in case of over-provisioning, or
inter cloud federation enabling to use the compute or storage
resources across various clouds, and is sometimes referred to as
sky computing.

5. DESIGN
Before we explain our architecture we have to point out some
features of the resource and service fabric building a central
component within our design. We assume that the Resource
Fabric consists of a resource pool that contains a number of
compute services. Such services are provided either as a cluster
or as part of a distributed network of workstations (NOW). The
resources are grouped based on network connectivity proximity.
This will allow the creation of regions within cloud IaaS
environments to perform more efficiently among its servers. We
assume a rich variety of services offered in the Service Fabric.
This includes multiple IaaS, PaaS frameworks, and HPC
environments. Instead of assuming that there can only be one
cloud for a particular IaaS framework, we envision multiple
independent clouds could be managed. This assumption allows
users potentially to host their own privately managed clouds.
Such a model is currently deployed as part of the FutureGrid
Operation allowing users to access a variety of preconfigured
clouds to conduct interoperability experiments among the same
IaaS and also different IaaS frameworks, as well as the inclusion
of dedicated HPC services.

Having access to such a comprehensive environment opens up a
number of interesting design challenges. We observe that our
operational mode is significantly enhanced in contrast to other
academic clouds that typically only install a single IaaS
framework on their resource [46, 47]. Thus such environments
cannot offer by themselves the comprehensive infrastructure
needed to conduct many of the topics that arise in cloud
federation.

One of the question we need to answer is how we can best
utilize such an environment that supports inter-cloud and bare-
metal demands posed by the users as we have practically
observed in FutureGrid and how we can integrate these
requirements into a software architecture.

We designed a software architecture to address the requirements
presented earlier. In Error! Reference source not found. we
present a layered view of this architecture. We distinguish the
user layer allowing administrators, but also users (and groups of
users) to interact with the framework. In addition we point out
that Web services can interact with it to develop 3rd party

automated tools and services leveraging the capabilities. Access
to the various functions is provided in secure fashion. Due to the
diverse user communities wishing to use the environment, our
design supports a variety of access interfaces including
command line, dashboard, web services, as well as libraries and
APIs.

An important feature is to be able to integrate existing and future
information services to provide the data to guide dynamic and
automatic resource provisioning, cloud busting, and cloud
shifting. Due to this reason we allow in our design the
integration of events posted by services such as Inca, Ganglia,
and Nagios. Moreover, we obtain information from the running
clouds and, when the provided information is not sufficiently,
we will be able to ingest our own information by analyzing log
files or other information obtained when running a cloud. For
clouds we also host an instance archive that allows us to capture
traces of data that can be associated with a particular virtual
machine instance. A metric archive allows the registration of a
self-contained service that analyses the data gathered while
providing a data series according to the metric specified. Metrics
can be combined and can result in new data series.

At the center of this design is a comprehensive RAIN service
Layer. Rain is an acronym for Runtime Adaptable INsertion
service signifying services that on the one hand adapt to runtime
conditions and on the other allow to be inserting or dynamically
provision software environments and stacks. We use the terms
rain and raining to refer to the process of instantiate services on
the resource and service fabrics. In this analogy we can rain
onto a cluster services that correspond to an IaaS, a PaaS, or a
HPC batch system. Rain can be applied to virtualized and non-

virtualized machine images and software stacks. This is refereed
to as Cloud busting.

In addition Rain can also be used to move resources between
already instantiated environments, hence supporting cloud-
shifting. The most elementary operation to enable cloud busting
and cloud shifting is to provision the software and services onto
the resources. We have devised this elementary operation and
introduced in [48]. In our past effort we focused on the problem
of image management, while in this work we extend this work to
focus on cloud shifting.

Image Management. Rain allows us to dynamically provision
images on IaaS and HPC resources. As users need quite a bit of
sophistication to enable a cross platform independent image
management, we have developed some tools that significantly
simplify this problem. This is achieved by creating template
images that are stored in a common image repository and
adapted according to the environment or IaaS framework in
which the image is to be deployed. Hence users have the ability
to setup experiment environments that provide similar
functionality in different IaaS such as OpenStack, Eucalyptus,
Nimbus1, and HPC. Our image management services support the
entire lifecycle including image generation, image storage,
image reuse, and image deployment. Furthermore, we started to
provide extensions for image usage monitoring and quota
management.

Cloud Shifting. To enable cloud shifting we have introduced a
number of low-level tools and services that allow the de-
registration of resources form an IaaS or HPC service and move
it over to another. This is done obviously the following steps:

1. Identify which resources should be moved as part of the
shift.

2. Deregister the resources from the service they are currently
registered with and move them into our available resource
pool.

3. Pick resources from the available resource pool and rain the
needed OS and other services onto that resource (if not
already available)

4. Register the resource with the appropriate service and
advertise its availability

5. Use as appropriate within the new framework.

Cloud Busting. Cloud busting enhances the previous process by
two additional steps.

0.1. Decide which IaaS or HPC services to instantiate
0.2. Set up the new cloud or HPC environment

This is not a simple process, but requires a great deal of
planning and knowledge about the available infrastructure.
Currently we execute this step by hand but intend to further
automatize it as much as possible. However, more details about
Cloud busting will be discussed in another upcoming paper that
is not yet available.

Queue Service. As we anticipate that users may have demands
that can not immediately be fulfilled to conduct cloud shifting or

1 Nimbus is only partially supported based on predefined

images, as it does at this time not allow adaptation of kernel
and other features that are exposed by other IaaS frameworks.

Figure 1: Design of the rain-based federated cloud
management services.

cloud busting, our design includes the introduction of a queuing
service that can coordinate multiple such requests,

Reservation Service. As we also expect that we will obtain from
users definite requests to be fulfilled at predefined times, such as
in the case of tutorials, classes, and regularly executed
experiments our design also includes the introduction of a
reservation service.

State Prediction and Service. A state prediction service will
provide input to how our cloud universe will be configured. Our
instance database and instance analyzer will provide valuable
input for the runtime configuration of the resource and service
fabrics. An important aspect of our design is that the prediction
service can be augmented and enhanced by various scheduling
algorithms as well as the utilization of various metrics. This is of
special importance as we expect to analyze usage patterns of real
Cloud services provided by FutureGrid.

Metrics. An elementary input to our prediction service is are
metrics provided to our framework. These metrics are feed by
elementary information in regards to job and virtual machine
traces.

Traditionally in a computing system, the common resource
metrics are CPU, memory, storage, network bandwidth, and
electricity and those are on the bills as what users pay for.
In case of VMs, we have to expand this information with VM
specific information as such as VM state, size, type, os,
memory, disk, CPU, kernel, Network IP, owner, and label. In
addition, we are concerned with how much time it costs to create
the VM, transfer it to a resource, instantiate and dynamically
provision it, as well as bringing it in a state that allows access by
the user. Furthermore, once the machine is shut down, we need
to account for the shutdown time and eventual cleanup or
removal of the VM. Naturally we also need to keep track on
which user, group or project instantiated the VM and if the
image is a replication run in parallel on other resources in the
fabric.

When dealing with services that are dependent on performance
metrics we also have to deal with periodicity of the events and
filter out events not only based potentially on an a yearly,
monthly, weekly, daily, hourly, minute or per second basis, but
to eliminate events that do not contribute significantly to the
trace of a virtual machine image. We have practically devised
such a service for Eucalyptus that reduced 4 million lag events
to about 10000 trace events for virtual machine images. This
allows us to query needed information for our predictive
services in milliseconds rather than hours of reanalyzing such
log entries over and over again. Hence our design is not only to
retrieve standard information such as average, sum, minimum
and maximum, as well as count of VM related events, but can
input this data efficiently into a time series analysis and
predictive service.

6. STATUS AND IMPLEMENTATION
As already pointed out we have developed the basic
infrastructure to support rain by enabling the image management
services. These services are in detail documented in [?].
Recently we have started the development of rain services that
address the issue of cloud shifting. We have already developed
the ability to add and remove dynamically resources from and to
Eucalyptus clouds. At present we are enhancing these activities
for OpenStack and HPC. Once implemented we will be easily be

able to move resources between OpenStack, Eucalyptus, and
HPC services. Based on our requirements, FutureGrid is also
funding the Nimbus project to enhance their services so they
allow similar features as other IaaS frameworks in regards to
image management. In parallel we have significantly contributed
towards the analysis of instance data for Eucalyptus and
OpenStack clouds. Such data is instrumental for our predictive
services. Such a service was not available as part of the existing
development efforts. This effort includes the creation of a
comprehensive database for instance traces that records
important changes conducted as part of the VM instance runtime
documented in our design section. A previous analysis effort
that analysis log files in a repeated fashion was replaced with an
effort that allows the ingestion and extraction of important log
files from newly created log events. As a result we were able to
reduce over 4 million log entries to a couple of 10000 important
events. The reduction in this data lead to a speedup of our
analyze capabilities from hours to milliseconds. In addition we

have separated the dependency on a web interface for this
activity be introducing a command line interface, a web
services, as well as a simple graphical interface to this data (see
Figure 3).
At the same time the code was significantly reduced and
modularized so that future maintenance and enhancements
become easier. One of the results is that we even can switch out
the library that presents the data to the user through the Web
interface. Examples for data currently presented in our We
interface is based on the utilization of several metrics. This
includes:

• Total running hours of VM instances:
• Total count of VM instances in a particular state:
• CPU cores / Memory / Disk allocations:
• Delay of Launching and termination requests (provisioning

Interval [49]
• Geographical locations of VM instances

Figure 3: Screenshot of our Cloud Instance analyzing
framework applied to data from FutureGrid for
Eucalyptus.

Additional metrics such as Traffic intensity for a particular time
period [50, 51]. Metrics projecting a per user, per group, or per
project view, metrics per cloud view, as well as metrics for the
overall infrastructure and metrics related to the resource and
service fabric are under development.

7. CONCLUSION
In this paper we have presented a unique design of a federated
cloud environment that is not focused on just supporting a single
IaaS framework. In addition we are able to integrate traditional
HPC services. This work is based on our services developed
previously that have been significantly enhanced by addressing
challenges arising in cloud busting and cloud shifting. One of
the other contributions of this paper is the creation of a metric
framework that allows us to manage traces of virtual machine
instances that can be derived from Eucalyptus and OpenStack
log files. We are currently continuing our implementation efforts
following our design. We welcome additional collaborators to
contribute to our efforts and to use FutureGrid.

8. Acknowledgement
This material is based upon work supported in part by the
National Science Foundation under Grant No. 0910812 and
1025159. We like to thank the members of FG for their help and
support.

9. References
[1] G. von Laszewski, J. Diaz, F. Wang, and G. C. Fox,

"Comparison of Multiple Cloud Frameworks," presented at
the IEEE CLOUD 2012, 5th International Conference on
Cloud Computing, Honolulu, 2012.

[2] I. A. Arutyun, "Open Cirrus: A Global Cloud Computing
Testbed," vol. 43, pp. 35-43, 2010.

[3] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M.
Newbold, M. Hibler, C. Barb, and A. Joglekar, "An
Integrated Experimental Environment for Distributed
Systems and Networks," presented at the Proceedings of the
5th Symposium on Operating Systems Design &
Implementation, 2002.

[4] (2012). Grid5000 Home Page. Available:
https://http://www.grid5000.fr/mediawiki/index.php/Gr
id5000:Home

[5] G. von Laszewski, G. C. Fox, Fugang Wang, A. J. Younge,
A. Kulshrestha, G. G. Pike, W. Smith, J. Vöckler, R. J.
Figueiredo, J. Fortes, and K. Keahey, "Design of the
FutureGrid experiment management framework," presented
at the Gateway Computing Environments Workshop (GCE)
at SC10, New Orleans, LA, 2010.

[6] A. Yoo, M. Jette, and M. Grondona, "SLURM: Simple Linux
Utility for Resource Management," in Job Scheduling
Strategies for Parallel Processing. vol. 2862, D. Feitelson, L.
Rudolph, and U. Schwiegelshohn, Eds., ed: Springer Berlin /
Heidelberg, 2003, pp. 44-60.

[7] Univa. Grid Engine. Available:
http://www.univa.com/products/grid-engine/

[8] Genias. CODINE: Computing in distributed networked
environments (1995). Available:
http://www.genias.de/genias/english/ codine.html

[9] Altair. PBS. Available: http://www.pbsworks.com/
[10] (2012). Moab. Available:

http://www.adaptivecomputing.com/products/hpc-
products/

[11] Bright-Computing. Cluster Manager. Available:
http://www.brightcomputing.com/Bright-Cluster-
Manager.php

[12] XDMoD. XDMoD (XSEDE Metrics on Demand). Available:
https://xdmod.ccr.buffalo.edu/

[13] Globus-Project. Globus Ubiquitous Supercomputing Testbed
Organization (GUSTO). Available:
http://www.startap.net/PUBLICATIONS/news-
globus2.html

[14] TerraGrid. TeraGrid Web Page. Available:
http://www.teragrid.org/

[15] D. Hart, "Measuring TeraGrid: Workload Characterization
for an HPC Federation," presented at the Proceedings of
IJHPCA, 2011.

[16] (July 15). XSEDE: Extreme Science and Engineering
Discovery Environment. Available:
https://http://www.xsede.org

[17] OSG. Open Science Grid. Available:
http://www.opensciencegrid.org

[18] G. von Laszewski, J. DiCarlo, and B. Allcock, "A Portal for
Visualizing Grid Usage," Concurrency and Computation:
Practice and Experience, vol. 19, pp. 1683-1692, presented
in GCE 2005 at SC'2005 2007.

[19] D. Abramson, I. Foster, J. Giddy, A. Lewis, R. Sosic, R.
Sutherst, and N. White, "The Nimrod Computational
Workbench: A Case Study in Desktop Metacomputing,"
presented at the Proceedings of the 20th Australasian
Computer Science Conference, 1997.

[20] R. Buyya, C. S. Yeo, and S. Venugopal, "Market-oriented
cloud computing: Vision, hype, and reality for delivering IT
services as computing utilities, in," 2008.

[21] Amazon. Amazon Web Services. Available:
http://aws.amazon.com/

[22] Amazon. Web Services Cloud Watch. Available:
http://docs.amazonwebservices.com/AmazonCloudWa
tch/latest/DeveloperGuide/CloudWatch_Introduction.
html

[23] Eucalyptus. Eucalyptus Monitoring. Available:
http://open.eucalyptus.com/wiki/EucalyptusMonitorin
g_v1.6

[24] Nimbus-Project. Per Client Tracking. Available:
http://www.nimbusproject.org/docs/current/features.ht
ml

[25] OpenStack. Multi-Tenant Accounting. Available:
http://wiki.openstack.org/openstack-
accounting?action=AttachFile&do=get&target=accou
nts.pdf

[26] OpenNebula. OpenNebula Watch - Accounting and Statistics
3.0. Available:
http://opennebula.org/documentation:archives:rel3.0:a
cctd_conf

[27] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, "A
Taxonomy and Survey of Energy-Efficient Data Centers and
Cloud Computing Systems," 2010.

[28] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De
Meer, M. Q. Dang, and K. Pentikousis, "Energy-Efficient
Cloud Computing," 2010.

[29] W. Barth, Nagios: System and Network Monitoring. San
Francisco, CA, USA: No Starch Press, 2006.

[30] M. L. Massie, B. N. Chun, and D. E. Culler, "The ganglia
distributed monitoring system: design, implementation, and
experience," Parallel Computing, vol. 30, pp. 817 - 840,
2004.

[31] Eucalyptus. Eucalyptus 3.0.2 Administration guide. Available:
http://www.eucalyptus.com/docs/3.0/ag.pdf

[32] G. v. Laszewski, H. Lee, and F. Wang. Eucalyptus Metric
Framework (Source Code). Available:
https://github.com/futuregrid/futuregrid-cloud-metrics

[33] OpenStack. Blue print of Efficient Metering. Available:
http://wiki.openstack.org/EfficientMetering

[34] Z. Luo. Dough. Available: https://github.com/lzyeval/dough
[35] OpenStack. Billing Plugin for OpenStack. Available:

https://github.com/trystack/dash_billing

[36] Microsoft. Introduction to the Monitoring Pack for Windows
Azure Applications.

[37] Microsoft. Windows Azure PowerShell Cmdlets. Available:
http://wappowershell.codeplex.com/

[38] Red-Gate-Software. Cerebrata. Available:
http://www.cerebrata.com/

[39] Google. Google Compute Engine. Available:
http://en.wikipedia.org/wiki/Google_Compute_Engine

[40] Google. Monitoring Resource Usage of Google App Engine.
Available:
https://developers.google.com/appengine/docs/python/backen
ds/overview#Monitoring_Resource_Usage

[41] Google. Runtime API for Google App Engine. Available:
https://developers.google.com/appengine/docs/python/backen
ds/runtimeapi

[42] G. von Laszewski, G. C. Fox, F. Wang, A. J. Younge, A.
Kulshrestha, G. G. Pike, W. Smith, J. Voeckler, R. J.
Figueiredo, J. Fortes, K. Keahey, and E. Deelman, "Design of
the FutureGrid experiment management framework,"
presented at the Gateway Computing Environments
Workshop (GCE), 2010 in conjunction with SC10, New
Orleans, LA, 2010.

[43] K. Katarzyna. (2009) Sky Computing. 43-51. Available:
http://doi.ieeecomputersociety.org/10.1109/MIC.2009.
94

[44] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C.
Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A.

Laity, J. C. Jacob, and D. S. Katz, "Pegasus: A framework for
mapping complex scientific workflows onto distributed
systems," Sci. Program., vol. 13, pp. 219-237, 2005.

[45] Thilina Gunarathne, Judy Qiu, and Geoffrey Fox, "Iterative
MapReduce for Azure Cloud " presented at the CCA11
Cloud Computing and Its Applications, Chicago, ILL, 2011.

[46] Cornell. Cornell University Red Cloud. Available:
http://www.cac.cornell.edu/redcloud/

[47] Clemson. Clemson University One Cloud. Available:
https://sites.google.com/site/cuonecloud/

[48] J. Diaz, G. von Laszewski, F. Wang, and G. Fox, "Abstract
Image Management and Universal Image Registration for
Cloud and HPC Infrastructures," presented at the IEEE
CLOUD 2012, 5th International Conference on Cloud
Computing, Honolulu, HI, 2012.

[49] "Report on Cloud Computing to the OSG Steering
Committee."

[50] R. N. Calheiros, R. Ranjan, and R. Buyya, "Virtual Machine
Provisioning Based on Analytical Performance and QoS in
Cloud Computing Environments," Parallel Processing,
International Conference on, vol. 0, pp. 295-304, 2011.

[51] S. T. Maguluri, R. Srikant, and L. Ying, "Stochastic Models
of Load Balancing and Scheduling in Cloud Computing
Clusters," 2012.

