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ABSTRACT 
We present the design of a dynamic provisioning system that is 
able to manage the resources of a federated cloud environment 
by focusing on their utilization. With our framework, it is not 
only possible to allocate resources at a particular time to a 
specific Infrastructure as a Service framework, but also to utilize 
them as part of a typical HPC environment controlled by batch 
queuing systems. Through this interplay between virtualized and 
non-virtualized resources, we provide a flexible resource 
management framework that can be adapted based on users' 
demands. The need for such a framework is motivated by real 
user data gathered during our operation of FutureGrid (FG). We 
observed that the usage of the different infrastructures vary over 
time changing from being over-utilized to underutilize and vice 
versa. Therefore, the proposed framework will be beneficial for 
users of environments such a FutureGrid where several 
infrastructures are supported with limited physical resources.  

Categories and Subject Descriptors 
D.4.8 [Performance]: Operational Analysis, Monitors, 
Measurements D.4.7 [Organization and Design]: Distributed 
systems 

General Terms 
Management, Measurement, Performance, Design, Economics,  

Keywords 
Cloud Metric, Dynamic Provisioning, RAIN, FutureGrid, 
Federated Clouds, Cloud busting, Cloud shifting. 

1. INTRODUCTION 
Batch, Cloud and Grid computing build the pillars of todays 
modern scientific compute environments. Batch computing has 
traditionally supported high performance computing centers to 
better utilize their compute resources with the goal to satisfy the 
many concurrent users with sophisticated batch policies utilizing 
a number of well managed compute resources. Grid Computing 

and its predecessor metacomputing elevated this goal by not 
only introducing the utilization of multiple queues accessible to 
the users, but by establishing virtual organizations that share 
resources among the organizational users. This includes storage 
and compute resources and exposes the functionality that users 
need as services. Recently, it has been identified that these 
models are too restrictive, as many researchers and groups tend 
to develop and deploy their own software stacks on 
computational resources to build the specific environment 
required for their experiments. Cloud computing provides here a 
good solution as it introduces a level of abstraction that lets the 
advanced scientific community assemble their own images with 
their own software stacks and deploy them on large numbers of 
computational resources in clouds. Since a number of 
Infrastructure as a Service (IaaS) exist, our experience [1] tells 
us the importance of offering a variety of them to satisfy the 
various user community demands. In addition, it is important to 
support researchers that develop such frameworks further and 
may need more access to the compute and storage hardware 
resources than is provided by the current IaaS frameworks. For 
this reason, it is also important to provide users with the 
capabilities of staging their own software stack. Recently a 
number of test-beds have been created that allow the 
provisioning of software stacks by users. This includes 
OpenCirrus [2], EmuLab [3], Grid5000 [4] and FutureGrid [5].  
Within FutureGrid we developed a sophisticated set of services 
that simplify the instantiation of images that can be deployed on 
virtualized and non-virtualized resources.  

The work described here significantly enhances the services 
developed and described in our publications about FutureGrid 
focusing on dynamic provisioning supported by image 
management, generation, and deployment [1]. 

In this paper, we enhance our services in the following aspects 

a) Implementation of a uniform cloud metric framework for 
Eucalyptus 3 and OpenStack Essex. 

b) Design of a flexible framework that allows resource re-
allocation between various IaaS frameworks, as well as 
bare metal. 

c) Design a meta-scheduler that re-allocates resources based 
on metric data gathered from the usage of different 
frameworks. 

d) Targeted prototype development and deployment for 
FutureGrid. 
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The paper is organized as follows. In Section 2, we introduce the 
current state of Cloud Metrics as used in various IaaS 
frameworks. We also introduce the efforts that  

2. Accounting Systems  
Accounting systems have been put into production since the 
early days of computing stemming back to the mainframe, 
which introduced batch processing, but also virtualization.  The 
purpose of such an accounting system is manifold, but one of its 
main purposes is to define a policy that allows the shared usage 
of the resources: 

• Enable tracking of resource usage so that an accurate 
picture of current and past utilization of the resources can 
be determined and become an input to determining a proper 
resource policy. 

• Enable tracking of jobs and service usage by user and 
group as they typically build the common unit of 
measurement in addition to the wall clock time as part of a 
resource allocation policy.    

• Enable a metric for economic charge so that it can be 
integrated into resource policies as one input for scheduling 
jobs within the system.  

• Enable a resource allocation policy so that multiple users 
can use the shared resource. The policy allows users to get 
typically a quota and establishes a priority order in which 
users can utilize the shared resource. Typically a number of 
metrics are placed into a model that determines the priority 
and order in which users and their jobs utilize the resource. 

• Enable the automation of the resource scheduling task to a 
systems service instead of being conducted by the 
administrator. 

One of the essential ingredients for such an accounting system 
are the measurements and metrics that are used as input to the 
scheduling model and is part of the active computer science 
research since 1960 with the advent of the first mainframes.   

2.1 High Performance Computing 
As High Performance Computing (HPC) systems have always 
been shared resources, batch systems usually include an 
accounting system. Typically metrics that are part of scheduling 
policies include number of jobs run by a user/group at a time, 
overall time used by a user/group on the HPC system, wait time 
for jobs to get started, size of the jobs, scale of the jobs, and 
more. Many batch systems are today available and include 
popular choices such as Moab which originated from Maui, 
SLURM [6], Univa Grid Engine [7] which originated from 
CODINE [8], PBS [9], LSF [9]. Recently many of these vendors 
have made access to manipulation of the scheduling policies and 
the resource inventory, managed by the schedules, much easier 
by adding Graphical user interfaces to them [9-11]. Many of 
them have also added services that provide cloud-bursting 
capabilities by submitting jobs for example to private or public 
clouds such as AWS.  

One of the more popular accounting systems with the 
community is Gold [?].  Gold introduces an economical charge 
model similar to that of a bank. Transactions such as deposits, 
charges, transfers, and refunds allow easy integration with 
scheduling tools. One of the strength of Gold was its free 
availability and the possibility to integrate it with Grid 
resources. Unfortunately, the current maintainers of Gold have 
decided to discontinue its development and instead provide an 
alternative as a paid solution. It has to be seen if the community 

will continue picking up Gold or if they switch to the new 
system.  

One of the most interesting projects that has recently been 
initiated is the XDMod project [12]  that is funded by NSF XD 
and is integrated into the XSEDE project. One of the tasks of 
this project includes the development of a sophisticated 
framework for analyzing account and usage data within XSEDE. 
However, we assume this project will develop an open source 
version that can be adapted for other purposes. This component 
contains an unprecedented richness of features to view, and 
creates reports based on user roles and access rights. It also 
allows the export of the data through Web services.  

2.2 Grids 
Accounting systems in Grids were initially pretty separated and 
not meant to be based on a centralized accounting system. 
Instead, each member of a virtual organization is pretty separate 
and has the right to assign and implement their own allocation 
and accounting policies. This can be backed up by the creation 
of the earliest virtual organization termed GUSTO [13], but also 
in more recent efforts such as the TeraGrid [14, 15], XSEDE 
[16]endnote, and the OpenScience Grid [17]. Efforts were put in 
place later to establish a common resource usage unit to allow 
trading between resources, as for example in TeraGrid and 
XSEDE. The earliest metric to establish usage of Grid services 
outside of such frameworks in an independent fashion was 
initiated by [18] for the usage of GridFTP and later on enhanced 
and integrated by the Globus project for other Grid services such 
as job utilization. Other systems such as Nimrod [19] provided a 
platform to the users in the Grid community that introduced 
economical metrics similar to Gold and allowed for the creation 
of trading and auction based systems. They have been followed 
up by a number of research activities [20] but such systems have 
not been part of larger deployments in the US.   

2.3 Clouds 
The de facto standard for clouds has been introduced by 
Amazon Web Services [21]. Since the initial offering, additional 
IaaS frameworks have become available to enable the creation 
of privately managed clouds. As part of these offering, we have 
additional components that address accounting and usage 
metrics. We find particularly relevant the work conducted by 
Amazon [22], Eucalyptus [23], Nimbus [24], OpenStack [25], 
and OpenNebula [26]. Other ongoing community activities also 
contribute in the accounting and metric area, most notably by 
integrating GreenIT [27] [28]. 

In addition to the build in monitoring and accounting features, 
some cloud platforms can be enhanced by existing monitoring 
tools that are well known within the HPC community. Such 
tools include Nagios [29] and Ganglia [30], which are both open 
source. 
For IaaS frameworks we make the following observations. 
Amazon CloudWatch [22] provides real-time monitoring of 
resource utilization such as CPU, disk and network. It also 
enables users to collect metrics about AWS resources, as well as 
publish custom metrics directly to Amazon CloudWatch. 
Amazon CloudWatch functionality is accessible via API, 
command-line tools, the AWS SDK, and the AWS Management 
Console. It provides a facility to create alarms on any of users 
metrics to receive notifications or take other automated actions 
when the metric crosses user specified threshold. given 
threshold over a number of time periods. It provides statistics 
based on metric data. Statistics for a metric can be obtained in 



different ways like Statistics Aggregated Across All Instances, 
Statistics Aggregated by Auto Scaling Group, Statistics 
Aggregated by Image (AMI) ID, and Statistics for a Specific 
EC2 Instance.  

Users can view graphs and statistics for any of their metrics, and 
get a quick overview of their alarms and monitored AWS 
resources in one location on the Amazon CloudWatch dashboard. 
Amazon CloudWatch integrates with AWS Identity and Access 
Management (AWS IAM) to control user access to AWS 
account. It makes easier to specify which CloudWatch actions a 
user or group in AWS account can perform. Permissions granted 
using IAM cover all the cloud resources used with CloudWatch.  

Eucalyptus enables since version 3.0, usage reporting as part of 
its resource management [31]. However a sophisticated 
accounting systems are not yet provided that lets users and 
administrators observe details about particular VM insatnces. 
Eucalyptus supports monitoring features with popular third party 
applications such as Nagios and Ganglia to help measuring VM 
instances and storage utilization since version 1.6 [23]. Nagios 
typically allows checking the health of cloud clusters and 
Ganglia provides resource utilization such as CPU, memory, and 
load average. Eucalyptus also provides audit trails for user 
requests and resource usage via log messages. The log files can 
be parsed and analyzed for generating usage statistics in terms of 
the cloud metric and for more information, in the debug mode of 
logs, traceable events of VM instances, storages and networks 
are recorded for performing proper measurement. However, a 
convenient framework that provides such features to the users is 
not provided by default. We have developed as part of our effort 
described here such a framework that is made available as open 
source project [32]. In addition to Eucalyptus we can also depict 
usage data from OpenStack, thus our framework targets 
federated cloud environments with heterogeneous cloud 
infrastructures rather than a single IaaS framework. 

Nimbus claims per-client usage tracking and per-user storage 
quota in cumulus (the VM image repository manager for 
Nimbus) as accounting features. The per-client usage tracking 
provides information of requested VM instances and historical 
usage data. The per-user storage quota enables restriction of file 
system usage. Nimbus also uses Torque resource manager for 
gathering accounting logs. For monitoring features, Nimbus 
utilizes Nagios and Cloud Aggregator, which is a utility to 
receive system resource information. 

OpenNebula has a utility named OpenNebula Watch [26] as an 
accounting information module. It stores activities of VM 
instances and hosts (clusters) to show resource utilization or 
charging data based on the aggregated data. OpenNebula Watch 
requires database handler like sequel, sqlite3 or MySQL to store 
the accounting information. It checks the status of hosts so 
physical systems can be monitored, for example, CPU and 
memory except network.  

OpenStack is currently under heavy development in regards to 
many of its more advanced components. An on-going effort for 
developing accounting systems of OpenStack exists which is 
named Efficient Metering or ceilometer. It aims to collect all 
events from OpenStack components for billing and monitoring 
purposes [33]. This service will measure general resource 
attributes such as CPU core, memory, disk and network as used 
by the nova components. Additional metrics might be added to 
provide customization. Efficient Metering is planned to be 
released in the next version of Openstack (Folsom) late in 2012. 

Besides this effort, other metric projects esist and include 
several billing projects such as [34], [35], and [35].  

Microsoft Azure The System Center Monitoring Pack for 
Windows Azure applications is the most cost effective and 
flexible platform for managing traditional data centers, private 
and public clouds, and client computers and devices [36]. It is 
the only unified management platform where multiple 
hypervisors, physical resources, and applications can be 
managed in a single offering. From a single console view, the IT 
assets like network, storage and compute can be organized into a 
hybrid cloud model spanning the private cloud and public cloud 
services. By default, the monitoring is not enabled. Therefore, 
the discovery must be configured by using the Windows Azure 
Application monitoring template for each Windows Azure 
Application to be monitored. The performance monitoring can 
also be enabled by using some tools like Powershell cmdlets for 
Windows Azure [37] and Azure Diagnostics Manager 2 from 
Cerebrata [38]. The monitoring data can be visualized using 
System Center Operation Manager Console. The monitoring 
pack provides functionalities such as discover Windows Azure 
applications, providing status for each role instance, collecting 
and monitoring performance information, collecting and 
monitoring windows events, collecting an d monitoring the 
.NET framework trace messages from each role instance, 
grooming performance, events and the .NET framework trace 
data from Windows Azure storage account and changing the 
number of role instances. The monitoring pack provides 
Operation Manafer GUI to view all the metrics and graphs. 
From Operation Manager, user can create custom dashboard or 
publish graphs on SharePoint to people who do not have the 
SCOM console. 

Google Compute Engine is a IaaS product launched end of June, 
2012 apart from Google App Engine which is a Google’s PaaS 
cloud platform [39]. Some features are limited due to ongoing 
development.  Google currently supports several options for 
networking and storage while managing virtual machines 
through the compute engine. Presently, there is no accounting 
APIs for Google Compute Engine, but there a monitoring API 
for Google App Engine exists. Google App Engine supports a 
usage report for displaying resource utilization of instances in 
the administration console [40] and provides a runtime API [41] 
to retrieve measured data from the application instances such as 
CPU, memory, and status. We expect that similar functionality 
will become available for the Google Compute Engine as well. 

3. FutureGrid A TestBed suitable for Federated 
Cloud Research 
FutureGrid [42] provides a set of distributed resources totaling 
about 3000 compute cores. Resources include a variety of 
different platforms allowing users to access heterogeneous 
distributed computing, network, and storage resources. Services 
to conduct HPC, Grid, and Cloud projects including various 
IaaS and PaaS are offered. This variety of resources and services 
allow interesting interoperability and scalability experiments 
that foster research in the area of for example federated clouds. 
Users can experiment with various IaaS frameworks at the same 
time, but also integrate Grid and HPC services that are of 
especial interest to the scientific community. One important 
feature of the FutureGrid software services is the ability to 
dynamically provision resources not only by using virtualization 
technologies, but also by dynamically provision on bare-metal 
[1]. This feature allows us to rain not only a software stack onto 
an OS that is hosted on a resource, but also to replace the entire 



OS onto the compute server. Authorized users have access to 
this feature that is ideal for performance experiments. Via the 
help of Rain we can now shift compute servers into various 
clouds determined by user demand.  

4. REQUIREMENTS 
Within the [1] we presented qualitative and quantitative 
evidence that users are experimenting with a variety of IaaS 
frameworks. To support this need, we have instantiated multiple 
clouds on distributed compute clusters in FG. Furthermore, we 
are able to support multiple IaaS frameworks on our resources. 
However, the association of compute servers to the various IaaS 
frameworks is conducted currently by hand through a best effort 
attempt by the system administrators. From our experience cast 
from a variety of projects, we have seen some interesting use 
patterns. One such use pattern arises from educational classes in 
the distributed computing area. In this case we observe that 
classes cycle through topics to teach students about HPC, Grid, 
and Cloud computing. When teaching cloud computing they 
also introduce multiple cloud frameworks. Thus, the demand to 
access the resources one after another is a logical consequence 
based on the way such classes are taught.   

On the other hand, we observe some projects that utilize the 
resources in a federated fashion either while focusing on 
federation within the same IaaS framework [43], but more 
interestingly also to federate between IaaS frameworks while 
focusing on scientific workflows that utilize cycle scavenging 
[44] or select frameworks that are most suitable for a particular 
set of calculations as part of the workflow [45]. 

As a consequence of our observations, we derived the following 
requirements that will shape the design of the services that 
support cloud federation.  

• Support for multiple IaaS: This includes OpenStack, 
Nimbus, Eucalyptus, and OpenNebula. Furthermore we 
like to integrate with AWS and potentially other clouds 
hosted outside of FG. 

• Support for bare-metal provisioning to the privately 
managed resources: This will allow us the to rain custom 
designed software stacks on OS we choose onto each of the 
servers on demand. 

• Support for dynamic adjustment of service assignments: 
The services placed on a server are not fixed, but can 
change over time via rain. 

• Support for educational class patterns: Compute classes 
often require a particular set of services that are accessed 
by many of its members concurrently leading to spikes in 
the demand for one service type. 

• Support for advance provisioning: Sometimes users know 
in advance when they need a particular service motivating 
the need for the instantiation of services in advance. This is 
different from advance reservation of a service, as the 
service is still shared by the users. 

• Support for advance reservation: Some experiments 
require the exclusive access to the services. 

• Support for automation: Managing such an environment 
should be automatized as much as possible. 

• Support for inter-cloud federation experiments: Ability to 
access multiple IaaS instances at the same time.  

• Support for divers user communities: Users, 
Administrators, Groups, and services are interested in using 
the framework. 

We intend to implement this design gradually and verify it on 
FG. The resulting software and services will be made available 
open source so others can utilize them also. 

Due to these requirements we must support three very important 
functions of our framework. These functions include: 

Cloud busting, which enables the instantiation of new cloud 
frameworks within FutureGrid. 

Cloud shifting, which enables moving (or re-allocating) compute 
resources between the various clouds and HPC. 

Resource Provisioning, which is a basic functionality to enable 
cloud busting and shifting as it allows the dynamic provisioning 
of the OS and software stack on bare-metal. 

Together these three functions build an enhancement to our rain 
tool that is important for the work described in this paper. 

However, we will not address topics such as cloud bursting, that 
enables to outsource services in case of over-provisioning, or 
inter cloud federation enabling to use the compute or storage 
resources across various clouds, and is sometimes referred to as 
sky computing. 

5. DESIGN 
Before we explain our architecture we have to point out some 
features of the resource and service fabric building a central 
component within our design. We assume that the Resource 
Fabric consists of a resource pool that contains a number of 
compute services. Such services are provided either as a cluster 
or as part of a distributed network of workstations (NOW). The 
resources are grouped based on network connectivity proximity. 
This will allow the creation of regions within cloud IaaS 
environments to perform more efficiently among its servers. We 
assume a rich variety of services offered in the Service Fabric. 
This includes multiple IaaS, PaaS frameworks, and HPC 
environments. Instead of assuming that there can only be one 
cloud for a particular IaaS framework, we envision multiple 
independent clouds could be managed. This assumption allows 
users potentially to host their own privately managed clouds. 
Such a model is currently deployed as part of the FutureGrid 
Operation allowing users to access a variety of preconfigured 
clouds to conduct interoperability experiments among the same 
IaaS and also different IaaS frameworks, as well as the inclusion 
of dedicated HPC services. 

Having access to such a comprehensive environment opens up a 
number of interesting design challenges. We observe that our 
operational mode is significantly enhanced in contrast to other 
academic clouds that typically only install a single IaaS 
framework on their resource [46, 47]. Thus such environments 
cannot offer by themselves the comprehensive infrastructure 
needed to conduct many of the topics that arise in cloud 
federation. 

One of the question we need to answer is how we can best 
utilize such an environment that supports inter-cloud and bare-
metal demands posed by the users as we have practically 
observed in FutureGrid and how we can integrate these 
requirements into a software architecture.  

We designed a software architecture to address the requirements 
presented earlier. In Error! Reference source not found. we 
present a layered view of this architecture. We distinguish the 
user layer allowing administrators, but also users (and groups of 
users) to interact with the framework. In addition we point out 
that Web services can interact with it to develop 3rd party 



automated tools and services leveraging the capabilities. Access 
to the various functions is provided in secure fashion. Due to the 
diverse user communities wishing to use the environment, our 
design supports a variety of access interfaces including 
command line, dashboard, web services, as well as libraries and 
APIs. 

An important feature is to be able to integrate existing and future 
information services to provide the data to guide dynamic and 
automatic resource provisioning, cloud busting, and cloud 
shifting. Due to this reason we allow in our design the 
integration of events posted by services such as Inca, Ganglia, 
and Nagios. Moreover, we obtain information from the running 
clouds and, when the provided information is not sufficiently, 
we will be able to ingest our own information by analyzing log 
files or other information obtained when running a cloud. For 
clouds we also host an instance archive that allows us to capture 
traces of data that can be associated with a particular virtual 
machine instance. A metric archive allows the registration of a 
self-contained service that analyses the data gathered while 
providing a data series according to the metric specified. Metrics 
can be combined and can result in new data series.  

At the center of this design is a comprehensive RAIN service 
Layer. Rain is an acronym for Runtime Adaptable INsertion 
service signifying services that on the one hand adapt to runtime 
conditions and on the other allow to be inserting or dynamically 
provision software environments and stacks. We use the terms 
rain and raining to refer to the process of instantiate services on 
the resource and service fabrics. In this analogy we can rain 
onto a cluster services that correspond to an IaaS, a PaaS, or a 
HPC batch system. Rain can be applied to virtualized and non-

virtualized machine images and software stacks. This is refereed 
to as Cloud busting.  

In addition Rain can also be used to move resources between 
already instantiated environments, hence supporting cloud-
shifting. The most elementary operation to enable cloud busting 
and cloud shifting is to provision the software and services onto 
the resources. We have devised this elementary operation and 
introduced in [48]. In our past effort we focused on the problem 
of image management, while in this work we extend this work to 
focus on cloud shifting.  

Image Management. Rain allows us to dynamically provision 
images on IaaS and HPC resources. As users need quite a bit of 
sophistication to enable a cross platform independent image 
management, we have developed some tools that significantly 
simplify this problem. This is achieved by creating template 
images that are stored in a common image repository and 
adapted according to the environment or IaaS framework in 
which the image is to be deployed. Hence users have the ability 
to setup experiment environments that provide similar 
functionality in different IaaS such as OpenStack, Eucalyptus, 
Nimbus1, and HPC. Our image management services support the 
entire lifecycle including image generation, image storage, 
image reuse, and image deployment. Furthermore, we started to 
provide extensions for image usage monitoring and quota 
management. 

Cloud Shifting. To enable cloud shifting we have introduced a 
number of low-level tools and services that allow the de-
registration of resources form an IaaS or HPC service and move 
it over to another. This is done obviously the following steps: 

1. Identify which resources should be moved as part of the 
shift. 

2. Deregister the resources from the service they are currently 
registered with and move them into our available resource 
pool. 

3. Pick resources from the available resource pool and rain the 
needed OS and other services onto that resource (if not 
already available) 

4. Register the resource with the appropriate service and 
advertise its availability 

5. Use as appropriate within the new framework. 

Cloud Busting. Cloud busting enhances the previous process by 
two additional steps. 

0.1. Decide which IaaS or HPC services to instantiate 
0.2. Set up the new cloud or HPC environment  

This is not a simple process, but requires a great deal of 
planning and knowledge about the available infrastructure. 
Currently we execute this step by hand but intend to further 
automatize it as much as possible. However, more details about 
Cloud busting will be discussed in another upcoming paper that 
is not yet available. 

Queue Service. As we anticipate that users may have demands 
that can not immediately be fulfilled to conduct cloud shifting or 

                                                                    
1  Nimbus is only partially supported based on predefined 

images, as it does at this time not allow adaptation of kernel 
and other features that are exposed by other IaaS frameworks. 

 
Figure 1: Design of the rain-based federated cloud 
management services. 
 



cloud busting, our design includes the introduction of a queuing 
service that can coordinate multiple such requests, 

Reservation Service. As we also expect that we will obtain from 
users definite requests to be fulfilled at predefined times, such as 
in the case of tutorials, classes, and regularly executed 
experiments our design also includes the introduction of a 
reservation service.  

State Prediction and Service. A state prediction service will 
provide input to how our cloud universe will be configured. Our 
instance database and instance analyzer will provide valuable 
input for the runtime configuration of the resource and service 
fabrics. An important aspect of our design is that the prediction 
service can be augmented and enhanced by various scheduling 
algorithms as well as the utilization of various metrics. This is of 
special importance as we expect to analyze usage patterns of real 
Cloud services provided by FutureGrid.  

Metrics. An elementary input to our prediction service is are 
metrics provided to our framework. These metrics are feed by 
elementary information in regards to job and virtual machine 
traces. 

Traditionally in a computing system, the common resource 
metrics are CPU, memory, storage, network bandwidth, and 
electricity and those are on the bills as what users pay for.   
In case of VMs, we have to expand this information with VM 
specific information as such as VM state, size, type, os, 
memory, disk, CPU, kernel, Network IP, owner, and label. In 
addition, we are concerned with how much time it costs to create 
the VM, transfer it to a resource, instantiate and dynamically 
provision it, as well as bringing it in a state that allows access by 
the user. Furthermore, once the machine is shut down, we need 
to account for the shutdown time and eventual cleanup or 
removal of the VM. Naturally we also need to keep track on 
which user, group or project instantiated the VM and if the 
image is a replication run in parallel on other resources in the 
fabric. 

When dealing with services that are dependent on performance 
metrics we also have to deal with periodicity of the events and 
filter out events not only based potentially on an a yearly, 
monthly, weekly, daily, hourly, minute or per second basis, but 
to eliminate events that do not contribute significantly to the 
trace of a virtual machine image. We have practically devised 
such a service for Eucalyptus that reduced 4 million lag events 
to about 10000 trace events for virtual machine images. This 
allows us to query needed information for our predictive 
services in milliseconds rather than hours of reanalyzing such 
log entries over and over again. Hence our design is not only to 
retrieve standard information such as average, sum, minimum 
and maximum, as well as count of VM related events, but can 
input this data efficiently into a time series analysis and 
predictive service. 
 

6. STATUS AND IMPLEMENTATION 
As already pointed out we have developed the basic 
infrastructure to support rain by enabling the image management 
services. These services are in detail documented in [?]. 
Recently we have started the development of rain services that 
address the issue of cloud shifting. We have already developed 
the ability to add and remove dynamically resources from and to 
Eucalyptus clouds. At present we are enhancing these activities 
for OpenStack and HPC. Once implemented we will be easily be 

able to move resources between OpenStack, Eucalyptus, and 
HPC services. Based on our requirements, FutureGrid is also 
funding the Nimbus project to enhance their services so they 
allow similar features as other IaaS frameworks in regards to 
image management. In parallel we have significantly contributed 
towards the analysis of instance data for Eucalyptus and 
OpenStack clouds. Such data is instrumental for our predictive 
services. Such a service was not available as part of the existing 
development efforts.  This effort includes the creation of a 
comprehensive database for instance traces that records 
important changes conducted as part of the VM instance runtime 
documented in our design section. A previous analysis effort 
that analysis log files in a repeated fashion was replaced with an 
effort that allows the ingestion and extraction of important log 
files from newly created log events. As a result we were able to 
reduce over 4 million log entries to a couple of 10000 important 
events. The reduction in this data lead to a speedup of our 
analyze capabilities from hours to milliseconds. In addition we 

have separated the dependency on a web interface for this 
activity be introducing a command line interface, a web 
services, as well as a simple graphical interface to this data (see 
Figure 3).  
At the same time the code was significantly reduced and 
modularized so that future maintenance and enhancements 
become easier. One of the results is that we even can switch out 
the library that presents the data to the user through the Web 
interface. Examples for data currently presented in our We 
interface is based on the utilization of several metrics. This 
includes: 

• Total running hours of VM instances:  
• Total count of VM instances in a particular state:  
• CPU cores / Memory / Disk allocations:  
• Delay of Launching and termination requests (provisioning 

Interval [49] 
• Geographical locations of VM instances 

 
Figure 3: Screenshot of our Cloud Instance analyzing 
framework applied to data from FutureGrid for 
Eucalyptus.  
 



Additional metrics such as Traffic intensity for a particular time 
period [50, 51]. Metrics projecting a per user, per group, or per 
project view, metrics per cloud view, as well as metrics for the 
overall infrastructure and metrics related to the resource and 
service fabric are under development. 
 

7. CONCLUSION 
In this paper we have presented a unique design of a federated 
cloud environment that is not focused on just supporting a single 
IaaS framework. In addition we are able to integrate traditional 
HPC services. This work is based on our services developed 
previously that have been significantly enhanced by addressing 
challenges arising in cloud busting and cloud shifting. One of 
the other contributions of this paper is the creation of a metric 
framework that allows us to manage traces of virtual machine 
instances that can be derived from Eucalyptus and OpenStack 
log files. We are currently continuing our implementation efforts 
following our design. We welcome additional collaborators to 
contribute to our efforts and to use FutureGrid. 
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