
Automated Sharded MongoDB Deployment and Benchmarking
for Big Data Analysis

Mark McCombe, Gregor von Laszewski, Geoffrey C. Fox
Indiana University, Smith Research Center, 2805 E 10th St, Bloomington, Indiana, 47408

laszewski@gmail.com

ABSTRACT
Project CH-818664, KVM: Using Python, Ansible, Bash Shell, and
Cloudmesh Client a fully automated process is created for deploying
a configurable MongoDB sharded cluster on Chameleon, FutureSys-
tems, and Jetstream cloud computing environments. A user runs a
single Python program which configures and deploys the environ-
ment based on parameters specified for numbers of Config Server
Replicas, Mongos Instances, Shards, and Shard Replication. The
process installs either MongoDB version 3.4 or 3.2 as requested by
the user. Additionally, functionality exists to run benchmarking
tests for each deployment, capturing statistics in a file as input for
python visualization programs, the results of which are displayed
in this report. These reports depict the impact of MongoDB version
and degrees of sharding and replication on performance. Key per-
formance findings regarding version, sharding, and replication are
abstracted from this analysis. As background, technologies and con-
cepts key to the deployment and benchmarking, such as MongoDB,
Python, Ansible, Cloudmesh Client, and Openstack are examined
while comparing and using them within different clouds.

KEYWORDS
Chameleon CLoud, Jetstream, Futuresystems, MongoDB, Cloud
Computing, Ansible, Python, Cloudmesh Client, Openstack

1 INTRODUCTION
Three clouds were selected for deployment: Chameleon Cloud,
Futuresystems (also referred to as Kilo in some sections of this doc-
ument), and Jetstream. In our automated deployment and bench-
marking process, the cloud name is passed as a parameter to the
deploy function of the main script and a customized version of
MongoDB is deployed to the selected cloud.

2 CLOUD USAGE
We compared within the allocation limitations of a class multiple
cloud performances by varying a number of parameters. In addition
to Chameleon cloud we also used Jetstream and the Futuresystems
cloud. Adding these clouds was essential to obtain comparisons of
chameleon cloud to other clouds. A full report is available as part
of the Class proceedings.

Table 1 shows a comparison of key server computing resources
on Chameleon, FutureSystems, and Jetstream cloud environments.

3 PROJECTS
4 EXPERIMENTAL CONFIGURATION
Cloudmesh client is used to simplify management of vms accross
different clouds. The Cloudmesh Client toolkit is an open source

Table 1: Cloud Server Hardware Specification Comparison
[1] [3] [2]

FutureSystems Chameleon Jetstream
CPU Xeon E5-2670 Xeon X5550 Haswell E-2680
cores 1024 1008 7680
speed 2.66GHz 2.3GHz 2.5GHz
RAM 3072GB 5376GB 40TBr
storage 335TB 2TB 2 TB

client interface that standardizes access to various clouds, clusters,
and workstations [4]. Cloudmesh Client is a python based applica-
tion. In the deployment, Cloudmesh Client is used to handle most
interaction with the Virtual Machines in the clouds. Cloudmesh
Client provides functionality in three main areas: Key Management,
OpenStack Security, and virtual machine management. For key
management, Cloudmesh’s key add and upload commands simplify
secure interaction with the cloud environments. For Openstack se-
curity, Cloudmesh’s secgroup commands allow new security rules
to be added and uploaded to the cloud. Virtual machine manage-
ment is performed with Cloudmesh’s cluster functionality, which
allows easy creation and deletion of virtual machines and communi-
cation between them. Cloudmesh Client simplifies and standardized
interaction with the cloud for these tasks. This allows us to more
easily port the deployment to additional clouds that are supported
by Cloudmesh. Furthermore, by encapsulating the logic necessary
to perform these tasks we are shielded from changes in interfaces
made by individual clouds.

4.1 Resource Requirements
As this project was a class project the available VM hours were
limited, HOwever we have been able to conduct a significant com-
parision given the restrictions.

4.2 Capability Requirements
The main feture we needed for this project was the creation of VMs
and the execution of our applications within these VMs

4.3 Monitoring Requirements
Monitoring and benchmarking was conducted by hand without
need for specialized services.

4.4 Features offered by Chameleon Cloud
Chameleon provided one of three clouds to the project.



4.5 New software created
As part of this class we improved the cloudmesh client software
[5][6] [7] that was essential to the success of the class.

4.6 Performance Comparison
We have conducted a significant performance comparision among
all clouds. However in thsis document we only list a few highlights.

4.7 Computing Resources
In all cases, virtual machines are deployed with the Ubuntu 16.04
LTS (Xenial Xerus) operating system. On Openstack the flavor or
the machine determines the amount of computing resources (CPU,
memory, storage) allocated to it. In our testing, m1.medium was
used as the flavor for Chameleon Cloud and FutureSystems, while
m1.small was used on Jetstream. Jetstream has more resources
allocated to each flavor than Chameleon and FutureSystems, which
are similar. In order to perform similar tests on each cloud, flavors
with identical CPU and memory were selected. Table ?? shows the
comparative resources of the flavors used in our testing. While
storage is lower on Jetstream, it is sufficient for out tests and should
not significantly impact performance.

5 DEPLOYMENT EXAMPLES
The configuration parameters and cluster and Ansible deployment
times are captured in a file for each deployment (benchmarking tim-
ings are later captured as well). Total run time for a few interesting
configurations are shown in Table ??.

Deployment A constitutes a simple deployment with only one
of each component being created. This deployment may only be
suitable for a development or test environment. Deployment A
completed in 330 seconds.

Deployment B constitutes a more complex deployment with pro-
duction like replication factors for Config Servers and Shards and
an additional Mongos instance. This deployment may be suitable
for a production environment as it has greater fault tolerance and
redundancy. Deployment B took 1059 seconds to deploy.

Deployment C focused on high performance. It has a high num-
ber of shards, nine, but no fault tolerance or redundancy. The de-
ployment may be suitable where performance needs are high and
availability is less critical. Deployment C finished in 719 seconds.

5.1 Benchmarking Analysis
5.1.1 Cloud Analysis. Chameleon Cloud was significantly more

stable and reliable than FutureSystems and Jetstream Clouds for our
testing. Chameleon yields the fastest and most consistent results
with very few errors. Jetstream initially had stability problems that
were eventually resolved by the Jetstream support team. Once these
issues were resolved, Jetstream performance and stability was very
close to Chameleon’s. FutureSystem performance was the poorest
with respect to run time. Environmental errors were initially fre-
quent, but after allocating new floating IPs test would be completed
successfully. JetStream performance was good, but the environment
was very unstable. Due to its stability and performance, Chameleon
was chosen as the environment to test MongoDB version 3.4 versus
3.2, due to its stability.

5.1.2 Impact of Sharding on Reads. gure 1 depicts the impact on
performance of various numbers of shards on a find command in
Chameleon, FutureSystems, and Jetstream Clouds. All three clouds
show a strong overall decline in run time as the number of shards
increases, which shows the positive impact of sharding on perfor-
mance. For all clouds, reads were over 35 seconds for one shard
and less than 10 seconds for five shards. This is a significant gain
in performance.

Figure 1: Find Command - Sharding Test

All three clouds show a particularly large gain in performance
when in increasing from one shard to two. Run time for two shards
is less than one third the run time of one shard. Increases in shards
beyond two show much smaller incremental gains.

Perfomance on Chameleon Cloud and Jetstream is very similar
for the find test. Kilo performance is worse, although proportu-
nately better than on the mongoimport test. This is an interesting
observation as for both deployment andmongoimport, performance
was much better on Chameleon and Futuresystems than Kilo. One
difference from the mongoimport test is that much less data is being
sent over the network. Network speeds could be a factor in this
discrepancy.

5.1.3 Impact of Sharding on Writes. Figure 2 depicts the impact
on performance of various numbers of shards on a mongoimport
command in the three clouds. For all clouds, run time of the mon-
goimport command in our tests does not appear to be impacted by
the number of shards. Since the same amount of data is written with
more computing resources available when there are more shards,
we might expect to see a performance gain. However, there are
possible explanations for performance not improving. First, the
mongoimport command may not write data in parallel. This is not
indicated in the documentation, but it seems likely that it reads the
file serially. Second, resources on the server the data is written to
may not be the bottleneck in the write process. Other resources
like the network time seem more likely to be the bottleneck. Since
we are always going over the network from the mongos instance

2



to a data shard, regardless of the number of shards, a bottleneck in
the network would impact all shard configurations equally.

Figure 2: Mongoimport Command - Sharding Test

While sharding did not benefit a single threaded mongoimport
command, it is likely it would benefit other heavy write operations,
particularly coming through multiple mongos instances. In a non-
sharded environment, this would lead to a heavy load on the single
data shard. In a sharded environment, the load on each shard would
drop as the number of shards increased.

While performance on Chameleon and FutureSystems was very
similar for the find command, performance of the mongoimport
command was significantly better on Chameleon than on Kilo. We
see approximately 50% better performance on both Chameleon and
Jetstream Clouds compared to FutureSystems. Jetstream perfor-
mance is slightly better than Chameleon for the import test.

5.1.4 Impact of Sharding on MapReduce. Figure 3 shows the
performance of MapReduce across varous sharding configurations
on our three clouds. These results are relatively similar to the find
results. While results are inconsistent, particularly on Futuresys-
tems, likely due to environmental issues, all clouds show an overall
decrease in processing time with addition of shards. Relative to
Mongoimport performance, performance is more similar across the
three clouds for MapReduce.

5.1.5 Impact of Replication on Reads. Figure 4 depicts the impact
on performance of various numbers of replicas on a find command
in Chameleon, FutureSystems, and Jetstream Clouds. These results
show no correlation between the number of replicas and find per-
formance.

Similarly to other tests, performance on Chameleon was best for
the majority of the test runs in the find replication test, followed
by Jetstream, with Futuresystems performing the worst.

5.1.6 Impact of Replication on Writes. Figure 5 depicts the im-
pact on performance of various numbers of replicas on a mongoim-
port command on our three Clouds. The results show poorer write
performance as the number of replicas increase. Given that an extra

Figure 3: MapReduce - Sharding Test

Figure 4: Find Command - Replication Test

copy of data is written with each increase in the replication factor,
this performance hit is expected.

Performance on Jetstream and Chameleon were very close on
this test with Chameleon only performing significantly better with
four or more replicas. FutureSystems import performance was by
far the worst of the three clouds.

5.1.7 Impact of Replication on MapReduce. As shown in Figure
6, replication appears to have no impact on MapReduce operations.
While there are variations in FutureSystems and Jetstream per-
formance for different numbers of replicas, they do not follow a
consistent pattern and appear to be caused by environmental issues.
This is an interesting result as increased levels of replication came
with a performance penalty for the find commmand, which also
reads data.

3



Figure 5: Mongoimport Command - Replication Test

Figure 6: MapReduce - Replication Test

As with several other tests, Chameleon MapReduce performance
was the best, followed by Jetstream, with FutureSystems again
being the worst.

5.1.8 Impact of Version and Sharding on Reads. Figure 7 shows
the MongoDB version 3.4 and 3.2 find performance on Chameleon
Cloud. Results are very close, with version 3.2 having the best
performance for one shard and performance being similar for all
other sharding levels.

5.1.9 Impact of Version and Sharding on Writes. Figure 8 shows
the MongoDB version 3.4 and 3.2 Mongoimport performance on
Chameleon Cloud. Runtimes are similar for each version. Version
3.2 is slightly faster at the lowest sharding levels and Version 3.4 is
slightly faster at the highest sharding level. Given the mixed results
and close run times, neither version shows a significant advantage
for write operations.

Figure 7: Find Command - Version 3.2 vs 3.4

Figure 8: Mongoimport Command - Version 3.2 vs 3.4

5.1.10 Impact of Version and Sharding on MapReduce. Figure 9
shows the MongoDB version 3.4 and 3.2 Mongoimport performance
on Chameleon Cloud. Runtimes are similar for each version and
with each version being faster at some shard level, which appears
to be random. Given the mixed results and close run times, neither
version shows a significant advantage for MapReduce operations.

6 CONCLUSION
We have created, tested, and demonstrated a fully automated pro-
gram to configure and deploy a sharded MongoDB clus- ter to three
cloud environments: Chameleon, Jetstream, and FutureSystems.
Using a combination of Python, Bash, and Cloudmesh Client, the a
cluster is dynamically deployed with a selected number of Config
Server Replicas, Mongos Routers, Shards, and Shard Replicas and
either MongoDB version 3.4 or 3.2. Functions also exist for terminat-
ing the environment, reporting on data distribution, benchmarking,

4



Figure 9: MapReduce - Version 3.2 vs 3.4

and reporting on performance testing. An automated benchmarking
process to show the impact of well distributed data across shards of
a large data set has been run for various configurations. The impact
of MongoDB ver- sion 3.4 versus 3.2, Sharding, and Replication
on performance have been assessed. Testing showed performance
and stability on Chameleon Cloud to be the best of our three cloud
environ- ments with Jetstream a close second after an operational
issue was resolved by the support team. Futuresystems performance
consistently lagged behind the other two clouds due to its older
hardware. A key finding is that read performance, typically a high
priority for noSQL data stores and Big Data operations, increases
significantly as shards are added. Testing also showed that a pre-
dictable performance penalty is associated with replication. Our
comparison of version 3.4 and 3.2 showed no significant differences
between version 3.2 and 3.4 performance across various sharding
levels.

REFERENCES
[1] Chameleon. 2016. Hardware Description. web page. (Nov. 2016). https://www.

chameleoncloud.org/about/hardware-description/
[2] JetStream. 2016. System Specs. web page. (April 2016). http://www.

jetstream-cloud.org/leadership.php
[3] Gregor von Laszewski. 2013. Hardware. web page. (Jan. 2013). http://futuregrid.

github.io/manual/hardware.html
[4] Gregor von Laszewski. 2016. Cloudmesh Client Toolkit. web page. (Sept. 2016).

http://cloudmesh.github.io/client/
[5] Gregor von Laszewski. 2017. Cloudmesh Client Framework. Github. (2017).

https://github.com/cloudmesh/client
[6] Gregor von Laszewski. 2017. Cloudmesh CMD5. Github. (2017). https://github.

com/cloudmesh/cloudmesh.cmd5
[7] Gregor von Laszewski. 2017. Cloudmesh REST Framework. Github. (2017).

https://github.com/cloudmesh/cloudmesh.rest

5

https://www.chameleoncloud.org/about/hardware-description/
https://www.chameleoncloud.org/about/hardware-description/
http://www.jetstream-cloud.org/leadership.php
http://www.jetstream-cloud.org/leadership.php
http://futuregrid.github.io/manual/hardware.html
http://futuregrid.github.io/manual/hardware.html
http://cloudmesh.github.io/client/
https://github.com/cloudmesh/client
https://github.com/cloudmesh/cloudmesh.cmd5
https://github.com/cloudmesh/cloudmesh.cmd5
https://github.com/cloudmesh/cloudmesh.rest

	Abstract
	1 Introduction
	2 Cloud Usage
	3 Projects
	4 Experimental configuration
	4.1 Resource Requirements
	4.2 Capability Requirements
	4.3 Monitoring Requirements
	4.4 Features offered by Chameleon Cloud
	4.5 New software created
	4.6 Performance Comparison
	4.7 Computing Resources

	5 Deployment Examples
	5.1 Benchmarking Analysis

	6 Conclusion
	References

