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ABSTRACT

Ground-penetrating radar on planes and satellites now makes

it practical to collect 3D observations of the subsurface struc-

ture of the polar ice sheets, providing crucial data for under-

standing and tracking global climate change. But convert-

ing these noisy readings into useful observations is generally

done by hand, which is impractical at a continental scale. In

this paper, we propose a computer vision-based technique for

extracting 3D ice-bottom surfaces by viewing the task as an

inference problem on a probabilistic graphical model. We first

generate a seed surface subject to a set of constraints, and then

incorporate additional sources of evidence to refine it via dis-

crete energy minimization. We evaluate the performance of

the tracking algorithm on 7 topographic sequences (each with

over 3000 radar images) collected from the Canadian Arctic

Archipelago with respect to human-labeled ground truth.

Index Terms— Glaciology, Radar tomography, 3D re-

construction, Graphical models

1. INTRODUCTION

Scientists increasingly use visual observations of the world in

their work: astronomers collect telescope images at unprece-

dented scale [1], biologists image live cells [2, 3], sociologists

record social interactions [4], ecologists collect large-scale re-

mote sensing data [5], etc. Although progress in technology

has made collecting this imagery affordable, actually ana-

lyzing it is often done by hand. But with recent progress in

computer vision, automated techniques may soon work well

enough to remove this bottleneck, letting scientists analyze

visual data more thoroughly, quickly, and economically.

As a particular example, glaciologists need large-scale

data about the polar ice sheets and how they are changing

over time in order to understand and predict the effects of

melting glaciers. Aerial ground-penetrating radar systems

have been developed that can fly over an ice sheet and collect

evidence about its subsurface structure. The raw radar re-

turn data is typically mapped into 2D radar echogram images

which are easier for people to interpret, and then manually

labeled for important semantic properties (ice thickness and

structure, bedrock topography, etc.) in a slow, labor-intensive

process [6, 7, 8, 9]. Some recent work has shown promis-

ing results on the specific problem of layer-finding in 2D

echograms [10, 11, 12], although the accuracy is still far be-

low that of a trained human annotator. The echograms are

usually quite noisy and complex, requiring experience and

intuition that is difficult to encode in an algorithm. Using

echograms as input data also inherently limits the analysis to

the ice structure immediately under the radar’s flight path.

In this paper we take an alternative approach, using ad-

ditional data collected by the radar in order to actually esti-

mate the 3D structure of the ice sheet, including a large area

on either side, instead of simply tracing 2D cross-sections

(Figure 1). In particular, the Multichannel Coherent Radar

Depth Sounder (MCoRDS) instrument [13] uses three trans-

mit beams (left, nadir, right) to collect data from below the

airplane and to either side (for a total swath width of about

3km). Although an expert may be able to use intuition and

experience to produce a reasonable estimate of the 3D ter-

rain from this data, the amount of weak evidence that must be

considered at once is overwhelming. As with structure-from-

motion in images [14], this gives automatic algorithms an ad-

vantage: while humans are better at using intuition to estimate

from weak evidence, algorithms can consider a large, hetero-

geneous set of evidence to make better overall decisions.

We formulate the problem as one of discrete energy min-

imization in order to combine weak evidence into a 3D re-

construction of the bottom of the ice sheet. We first estimate

layer boundaries to generate a seed surface, and then incorpo-

rate additional sources of evidence, such as ice masks, surface

digital elevation models, and optional feedback from humans

to refine it. We investigate the performance of the algorithm

using ground truth from humans, showing that our technique

significantly outperforms several strong baselines.

2. RELATED WORK

Detecting boundaries between material layers in noisy radar

images is important for glaciology. Semi-automated and

automated methods have been introduced for identifying fea-

tures of subsurface imaging. For example, in echograms

from Mars, Freeman et al. [6] find layer boundaries by ap-

plying band-pass filters and thresholds to find linear sub-

surface structures, while Ferro and Bruzzone [15] identify

subterranean features using iterative region-growing. For the



Fig. 1. Illustration of our task. Radar flies along the X-axis, collecting noisy evidence about the ice surface distance and depth

immediately below it. This yields a 2D echogram (Sample (c)), with depth on one axis and flight path on the other, and prior

work has used these echograms to estimate 2D ice structure but only along the flight path. Our approach also includes (very

noisy) evidence from either side of the radar, yielding a sequence of 2D topographic slices (e.g. Sample (a) and (b)). Each slice

is represented in polar coordinates, where Y- and Z-axis denote the direction of arrival of radar waves and the distance from

each voxel to plane, respectively. We combine this noisy evidence with prior information to produce 3D ice reconstructions.

specific case of ice, Crandall et al. [10] detect the ice-air and

ice-bottom layers in echograms along the flight path by com-

bining a pretrained template model for the vertical profile of

each layer and a smoothness prior in a probabilistic graphical

model. Lee et al. [11] present a more accurate technique that

uses Gibbs sampling from a joint distribution over all possible

layers. Carrer and Bruzzone [12] reduce computational com-

plexity with a divide-and-conquer strategy. In contrast to the

above work which all infers 2D cross-sections, we attempt to

reconstruct 3D subsurface features and are not aware of other

work that does this. We pose this as an inference problem on

a Markov Random Field similar to that proposed for vision

problems (e.g. stereo [16]), except that we have a large set

of images and wish to produce a 3D surface, whereas they

perform inference on a single 2D image at a time.

3. METHODOLOGY

As the radar system flies over ice, it collects a sequence of

topographic slices I = {I1, · · · , Il} that characterizes the re-

turned radar signals (Figure 1). Each slice Ii is a 2D radar

image that describes a distribution of scattered energy in po-

lar coordinates (with dimensions φ× ρ) at a discrete position

i of the aircraft along its flight path. Given such a topographic

sequence of dimension l×φ×ρ, we wish to infer the 3D ice-

bottom surface. We parameterize the surface as a sequence

of slices S = {S1, · · · , Sl} and Si = {si,1, · · · , si,φ}, where

si,j denotes the row coordinate of the boundary of the ice-

bottom for column j of slice i, and si,j ∈ [1, ρ] since the

ice-bottom layer can occur anywhere within a column.

3.1. A graphical model for surface extraction

Because radar is so noisy, our goal is to find a surface that

not only fits the observed data well but that is also smooth

and satisfies other prior knowledge. We formulate this as an

inference problem on a Markov Random Field. In particular,

we look for a surface that minimizes an energy function,

E(S|I) =
l

∑

i=1

φ
∑

j=1

ψ1(si,j |I) + (1)

l
∑

i=1

φ
∑

j=1

∑

i′∈±1

∑

j′∈±1

ψ2(si,j , si+i′,j+j′) (2)

where ψ1(·) defines a unary cost function which measures

how well a given labeling agrees with the observed image

in I , and ψ2(·, ·) defines a pairwise interaction potential on

the labeling which encourages the surface to be continuous

and smooth. Note that each column of each slice contributes

one term to the unary part of the energy function, while the

pairwise terms are a summation over the four neighbors of

a column (two columns on either side within the same slice,

and two slices within the same column in neighboring slices).

Unary term. Our unary term ψ1(·) consists of three parts,

ψ1(·) = ψtemp(·) + ψair(·) + ψbin(·). (3)

First, similar to [10], we define a template model T of fixed

size 1× t (we use t = 11 pixels) for the vertical profile of the

ice-bottom surface in each slice. For each pixel p in the tem-

plate, we estimate a mean µp and a variance σp on greyscale

intensity assuming that the template is centered at the location

of the ice-bottom surface, suggesting a template energy,

ψtemp(si,j |I) =
∑

p∈T

(I(si,j + p)− µp)
2/σp. (4)

We learn the parameters of this model with a small set of la-

beled training data.

Second, to capture the fact that the ice-bottom surface

should always be below the ice-air surface by a non-trivial



Error Precision

Mean Median Mean 1 pixel 5 pixels

(a) Ice-bottom surfaces:

Crandall [10] 101.6 95.9 0.2% 2.5%

Lee [11] 35.6 30.5 3.6% 29.9%

Ours with DV 13.3 13.4 20.2% 58.3%

Ours with TRW 11.9 12.2 35.9% 63.9%

(b) Bedrock layers:

Crandall [10] 75.3 42.6 0.5% 21.5%

Lee [11] 47.6 36.6 2.2% 20.5%

Ours with TRW 4.1 4.2 28.8% 81.4%

Table 1. Error in terms of the mean and median mean ab-

solute column-wise difference compared to ground truth, in

pixels. Precision is the percentage of correct labeled pixels.

margin, we add a cost to penalize intersecting surfaces,

ψair(sij) =











+∞ si,j − ai,j < 0

0 si,j − ai,j > τ

τ − |si,j − ai,j | otherwise,

(5)

with ai,j the label of the air-ice boundary of slice i, column j.
Finally, we incorporate an additional weak source of evi-

dence produced by the radar system. The bottom bin gives a

constraint on a single column in each slice, specifying a sin-

gle coordinate (j, bi) that the true surface boundary must be

below. Despite how weak this evidence is, it helps to distin-

guish between the ice-air and ice-bottom surface boundary in

practice. Formally, we formulate this cost function as,

ψbin(si,j) =

{

+∞ si,j < bi

0 otherwise.
(6)

Pairwise term. The ice-bottom surface is encouraged to be

smooth across both adjacent columns and adjacent slices,

ψ2(s, ŝ) =

{

−βj lnN (s− ŝ; 0, σ̂) |s− ŝ| < α

+∞ otherwise,
(7)

where ŝ denotes the labeling of an adjacent pixel of (i, j), and

parameters α and σ̂ are learned from labeled training data.

Parameter βj models smoothness on a per-slice basis, which

is helpful if some slices are known to be noisier than others (or

set to a constant if this information is not known). This term

models the similarity of the labeling of two adjacent pixels by

a zero-mean Gaussian that is truncated to zero outside a fixed

interval α. Since all parameters in the energy function are

considered penalties, we transform the Gaussian probability

to a quadratic function by using a negative logarithm.

Our energy function introduces several important im-

provements over that of Crandall et al. [10] and Lee et al. [11].

First, while their model gives all pairs of adjacent pixels the
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Fig. 2. Results of the ice-bottom surface finding on a sample

dataset. The color represents the depth from plane (Z).

same pairwise weight (β), we have observed that layers in

different slices usually have particular shapes, such as straight

lines and parabolas, depending on the local ice topography.

By using a dynamic weight βj , we can roughly control the

shape of the layer and adjust how smooth two adjacent pixels

should be. More importantly, those techniques consider a

single image at a time, which could cause discontinuities in

the ice reconstruction. We correct this by defining pairwise

terms along both the intra- and inter-slice dimensions.

3.2. Statistical inference

The minimization of equation (1) can be formulated as dis-

crete energy minimization on a first-order Markov Random

Field (MRF) [17]. Given the large size of this MRF, we use

Sequential Tree-reweighted Message Passing (TRW) [18],

which breaks the MRF into several monotonic chains, and

perform belief propagation (BP) on each chain. TRW only

passes messages within each of these chains, rather than to

all four directions (like Loopy BP [19]). Benefiting from this,

TRW converges faster and requires half as much memory

as traditional message passing methods. We assign a row-

major order for pixels in the graph and define the monotonic

chains based on this order. In each iteration, TRW first passes

messages in increasing order, and then back in decreasing
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Fig. 3. Results of the bedrock layer finding on a sample

echogram. In each image, the upper (red) boundary is the ice-

air layer, and the lower (green) boundary is the ice-bottom

layer. The ice-air layer in our result is from the radar.

order. We pre-define a maximum number of iterations to be

the same as the width of each slice, φ, which allows evidence

from one side of the slice to be reach the other. When mes-

sage passing is finished, we assign a label to each pixel in

row-major order: for pixel (i, j), we choose the label si,j that

minimizes ψ1(si,j) + ψ2(si,j , si,j−1) + ψ2(si,j , si−1,j).
The usual implementation of TRW has time complexity

O(lφρ2) for each loop. To speed this up, we use linear-time

generalized distance transforms [16], yielding a total running

time of O(lφρL) where L is the number of iterations. This is

possible because of our pairwise potentials are log-Gaussian.

4. EXPERIMENTS

We tested our surface extraction algorithm on the basal topog-

raphy of the Canadian Arctic Archipelago (CAA) ice caps,

collected by the Multichannel Coherent Radar Depth Sounder

(MCoRDS) instrument [13]. We used a total of 7 topographic

sequences, each with over 3000 radar images which corre-

sponds to about 50km of flight data per sequence. For these

images, we also have the associated ice-air surface ground

truth, a subset (excluded from the testing data) of which we

used to learn the parameters of the template model and the

weights of the binary costs.

We then ran inference on each topographic sequence and

measured the accuracy by comparing our estimated surfaces

to the ground truth, which was produced by human annota-

tors. However, these labels are not always accurate at the

pixel-level, since the radar images are often full of noise, and

some boundaries simply cannot be tracked precisely even by

experts. To relax the effect of inaccuracies in ground truth,

we consider a label to be correct when it is within a few pix-

els. We evaluated with three summary statistics: mean devi-

ation, median mean deviation, and the percentage of correct

labeled pixels over the whole surface (Table 1(a)). The mean

error is about 11.9 pixels and the median-of-means error is

about 12.2 pixels. The percentage of correct pixels is 35.9%,

or about 63.9% within 5 pixels, which we consider the more

meaningful statistic given noise in the ground truth.

To give some context, we compare our results with three

baselines. Since no existing techniques solve the 3D recon-

struction problem that we consider here, we adapted three

techniques from 2D layer finding to the 3D case. Crandall

et al. [10] use a fixed weight for the pairwise conditional

probabilities in the Viterbi algorithm, which cannot automat-

ically adjust the shape of the layer in each image slice. Lee et

al. [11] generate better results by using Markov-Chain Monte

Carlo (MCMC). However, neither of these approaches con-

siders constraints between adjacent slices. We introduce Dy-

namic Viterbi (DV) as an additional baseline that incorporates

a dynamic weight for the pairwise term, but it still lacks the

ability to smooth the whole surface in 3D. As shown in Table

1(a) and Figure 2, our technique performs significantly better

than any of these baselines on 3D surface reconstruction. We

also used our technique to estimate layers in 2D echograms,

so that we could compare directly to the published source

code of [10, 11] (i.e. using our approach to solve the prob-

lem they were designed for). Figure 3 and Table 1(b) present

results, showing a significant improvement over these base-

lines also.

Similar to [10, 11], additional evidence can be easily

added into our energy function. For instance, ground truth

data (e.g. ice masks) may be available for some particular

slices, and human operators can also provide feedback by

marking true surface boundaries for a set of pixels. Either of

these can be implemented by putting additional terms into the

unary term defined in equation (3).

5. CONCLUSION

To the best of our knowledge, this paper is the first to propose

an automated approach to reconstruct 3D ice features using

graphical models. We showed our technique can effectively

estimate ice-bottom surfaces from noisy radar observations.

This technique also demonstrated its accuracy and efficiency

in producing bedrock layers on radar echograms against the

state-of-the-art.
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