
Can Commercial BigData Ideas Benefit Analysis of
Instrument Data?

Gagan Agrawal
Computer Science and Engineering

The Ohio State University, Columbus, OH 43210
{agrawal}@cse.ohio-state.edu

Introduction

Analysis of data from large-scale instruments often re-

quires in-situ or streaming analytics. Moreover, it also

requires high level of parallelism to allow analysis of

large-scale data with either real-time constraints, or

otherwise with acceptable response times.

Both streaming data analysis and in-situ data anal-

ysis have received attention. Particularly, in the HPC

community, in-situ analysis has been a subject of sig-

nificant research. This work has been in the context of

analyzing simulation outputs, and not instrument data

analysis. The landscape of the current in-situ analyt-

ics research mainly falls into two levels: 1) in-situ al-

gorithms at the application level, including indexing,

compression, visualization, and other analytics; and 2)

in-situ resource scheduling platforms at the system level,

which aims to enhance resource utilization and simplify

the management of co-located analytics code. These in-

situ middleware systems mainly play the role of a coor-

dinator, aiming to facilitate the underlying scheduling

tasks, such as cycle stealing and asynchronous I/O.

Despite a large volume of recent work in this area,

an important question remains almost completely un-

explored: “can the applications be mapped more easily

to the platforms for in-situ and/or streaming analyt-

ics?”. In other words, we posit that programming model

research on in-situ/streaming analytics is needed. Par-

ticularly, in-situ algorithms are currently implemented

with low-level parallel programming libraries such as

MPI, OpenMP, and Pthread, which offer high perfor-

mance but require that programmers manually handle

all the parallelization complexities.

Streaming and in-situ applications (or at least the

ones documents in the literature) perform statistical

analysis, feature extraction, data mining, preprocess-

ing, or other closely related tasks. For this class of

applications, and from the programmability (and not

necessarily performance) view-point, MapReduce is the

most widely adopted programming model [3]. Not only

the MapReduce API simplifies parallelization of an ap-

plication, but also MapReduce implementations handle

much of scheduling, task management, and data move-

ment. However, performance of these frameworks has

usually not matched that of MPI-based systems. Over-

all, it is an interesting question whether a MapReduce-

like framework can support analysis of (streaming) large-

scale scientific data, improving productivity and not com-

promising the performance.

Our Middleware Series

Our group at Ohio State has developed a series of mid-

dleware systems providing MapReduce(-like) APIs [4,

2, 5]. However, unlike the existing commercial frame-

works, our systems have been developed in languages

like C or C++. Moreover, these systems involve a num-

ber of design choices that improve performance. One of

the common features is that there is no need to load

data into a specialized file system (like the Hadoop Dis-

tributed File System (HDFS)). As another example, a

common design choice has been the use of a variant of

the original MapReduce API, to ensure that key-value

pairs need not be emitted. Our optimization achieves

reduction in memory requirements well beyond what is

possible with combination functions.

Also noteworthy is the most recent version of the sys-

tem that focuses on in-situ analysis of the output of a

scientific simulation [5]. Our system can support a vari-

ety of scientific analytics on simulation nodes, with min-

imal modification of simulation code and without any



specialized deployment (such as installing HDFS). Com-

pared with traditional MapReduce frameworks, our mid-

dleware supports efficient in-situ processing by access-

ing simulated data directly from memory in each node

of a cluster or a distributed memory parallel machine.

To address the mismatch between parallel programming

view of simulation code and sequential programming

view of MapReduce, our middleware can be launched

from parallel (OpenMP and/or MPI) code region once

each simulation output partition is ready, while the

global analytics result can be directly obtained after

the parallel code converges. Further, we have devel-

oped both time sharing and space sharing modes for

maximizing the performance in different scenarios. Ad-

ditionally, for memory-intensive window-based analyt-

ics, we improve the in-situ efficiency by supporting early

emission of reduction object.

Application to Analysis of Instrument Data

In a collaboration with Argonne National Labs, a mid-

dleware from our group has been successfully used for

analysis of data (image reconstruction) of the output

from x-ray tomography systems [1]. The context of the

work was as follows. The x-ray tomography systems

available at the imaging beamlines of the Advanced

Photon Source (APS, located at Argonne National Lab-

oratory) are routinely used in materials science appli-

cations where high-resolution and fast 3D imaging are

instrumental in extracting valuable information. Sci-

entists often want quasi-instant feedback so that they

can check results and adjust the experimental setup.

More specifically, Quasi-instant feedback can help iden-

tify optimal experimental parameters (beamline condi-

tion and sample environment such as temperature and

pressure) and accelerate the end-to-end scientific pro-

cess. Specifically, our work developed two paralleliza-

tion techniques, per-slice and in-slice, for tomo-

graphic reconstruction algorithms. The MapReduce-

like framework, MATE [4], is extended and optimized

to help implement these parallel methods efficiently. We

extensively evaluate the proposed methods and middleware-

based implementations (for different reconstruction al-

gorithms and real-world datasets). Our experimental

results show that our middleware can scale almost lin-

early up to 8K cores and can achieve execution times

on 32K cores that are ≥ 95.4% less than those on 1K

cores.

1. REFERENCES
[1] T. Bicer, D. Gürsoy, R. Kettimuthu, F. D. Carlo, G. Agrawal,

and I. T. Foster. Rapid tomographic image reconstruction via
large-scale parallelization. In Euro-Par 2015: Parallel
Processing - 21st International Conference on Parallel and
Distributed Computing, Vienna, Austria, August 24-28, 2015,
Proceedings.

[2] L. Chen and G. Agrawal. Optimizing MapReduce for GPUs with
Effective Shared Memory Usage. In Proceedings of Conference
on High Performance Distributed Computing (HPDC), June
2012.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, pages 137–150, 2004.

[4] W. Jiang, V. Ravi, and G. Agrawal. A Map-Reduce System with
an Alternate API for Multi-Core Environments. In Proceedings
of Conference on Cluster Computing and Grid (CCGRID),
2010.

[5] Y. Wang, G. Agrawal, T. Bicer, and W. Jiang. Smart: A
mapreduce-like framework for in-situ scientific analytics. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC ’15, 2015.


