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Abstract—

Reactive programming paradigm successfully overcomes the
limitations of observer pattern which has traditionally been
used for developing event-driven distributed systems. Due to its
declarative style, compositionality and automatic management
of dependencies, reactive programming offers a promising new
way for building complex distributed data-flow systems. This
article outlines some open challenges in extending the reactive
programming paradigm for distributed stream processing.
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I. INTRODUCTION

The “internet of things” (IoT) paradigm is driven by the
expansion of internet to include physical objects; thereby
bridging the divide between the physical world and cy-
berspace. Large number of devices are increasingly getting
connected to the internet. As per Gartner, approximately
26 billion devices will be a part of IoT by 2020 [1].
These devices or “things” are uniquely identifiable, fitted
with sensors and actuators, which enables them to gather
information about their environment and respond intelli-
gently [2]. IoT paradigm has helped realize critical infras-
tructures like smart-grids, intelligent transportation systems,
advanced manufacturing, health-care tele-monitoring, etc.
Such systems are also called Industrial IoT (IIoT) or Cyber-
Physical Systems (CPSs).

Data pushed by sensors in a CPS can be visualized as a
stream of tuples, which needs to be processed in a distributed
and parallel manner for timely processing. This requirement
has given rise to Stream Processing Engines (SPEs); a new
class of applications, specifically tailored for high-volume
stream data analysis. In SPEs, data is continuously processed
by user-defined queries that “sit” on top of streaming data
and produce results each time query predicate is satisfied [3]].
A query is represented as a Directed Acyclic Graph (DAG),
where vertices define operators and edges define the flow of
data between these operators [3].From centralized SPEs like
Aurora [4], the state of the art has advanced to Distributed
Stream Processing Systems (DSPSs) like Storm [5]], S4 [6],
etc. to facilitate large-scale, real-time complex data analytics.

Resilience (i.e. tolerating faults), responsiveness (i.e.
timely and predictable processing) and elasticity (i.e. ac-
commodating growing/shrinking load patterns) - which are
the desired characteristics of a dependable DSPS, require

asynchrony and loose-coupling between system compo-
nents [7]]. Data-centric publish-subscribe technologies like
Object Management Group (OMG)’s Data Distribution Ser-
vice (DDS) [8l, offer asynchrony and loose-coupling be-
tween publishers (data generators) and subscribers (data
receivers). This makes DDS particularly well suited for dis-
tributed stream processing, where subscription to a publisher
can be viewed as having a continuous query registered over
streams [9].

We have developed a DSPS which integrates DDS with
a reactive programming library [10]], for scalable and high-
performance stream processing [7]. This article describes
some benefits that reactive programming offers for stream
processing and discusses future directions of research.

II. REACTIVE PROGRAMMING

Reactive languages [11] provide a dedicated abstraction
for time-changing values called signals or behaviors. Hence,
a reactive value (singal or behavior) can be used to represent
an external/incoming source of data stream over which
computations can be composed using inbuilt functional oper-
ators to produce an output reactive value (data-stream). The
language runtime tracks changes to the values of signals/be-
haviors and propagates the change through the application
by re-evaluating dependent variables automatically. Hence,
the application can be visualized as a data-flow, wherein data
and respectively changes thereof implicitly flow through the
application [12].

Taditionally,event-driven systems have been programmed
using the observer pattern [13] wherein reaction to events
occurs via call-backs and inversion of control [14]. How-
ever, the observer pattern has many well-documented draw-
backs [15], [L16], which are addressed by reactive pro-
gramming languges which offer the following benefits [12]:
1) Declarative Style- functional dependencies between val-
ues/streams are expressed directly thereby enhancing the
readability of the code unlike the observer pattern which in-
verts the control flow. 2) Composition- reactive values can be
composed to capture complex dependencies unlike callbacks
which aren’t composable. 3) Automation- language runtime
automatically tracks and safely propagates changes through
the application to ensure consistent re-computation [17]
of dependencies. Hence, the programmer is relieved from
the responsiblity of co-ordinating callbacks and ensuring



consistent updates. 4) Interoperability- Different reactive
abstractions can inter-operate with each other, i.e., signals
can be converted into events and back.

III. RESEARCH ROADMAP

In addition to consistent propagation of changes through
the distributed data-flow network, the reactive runtime
should be able to monitor and auto-tune its performance
in order to sustain desired throughput and latency of stream
processing. We intend to systematically assess the perfor-
mance of our distributed reactive data-flow system [7]] with
existing stream data processing systems like Samza [18]],
Storm [S]], Spark [19]], etc. and gain insights into potential
areas of improvement.

For example, reactive frameworks lack backpressure to
throttle the source if a downstream operator can’t keep up
with incoming data-rate. When this happens, the operator
keeps buffering incoming samples causing unbounded in-
crease in queue lengths, arbitrarily large response times or
out-of-memory exceptions. Reactive-Streams [20] project
has suggested a dynamic push-pull model for implementing
backpressure. Their model can shift dynamically from being
push-based (when consumer can keep up with data rate) to
a pull-based model if the consumer is getting overwhelmed.
The consumer specifies its “demand” using the backpressure
channel to throttle the source. The producer can also use
the “demand” specifications of downstream operators to
perform intelligent load-distribution. Instead of throttling
the source which can decrease the overall throughput, the
system should be able to provision more resources or
distribute load to relieve the bottleneck dynamically similar
to the HashPartition function in Timestream or dynamic
load balancing in Streamcloud. We intend to develop the
reactive runtime with implicit support for load monitoring
and appropriate reaction to handing load by distribution over
cores and distributed nodes. To this effect, the concept of
auto-parallelization [21] can also be used to identify parallel
regions within a distributed node’s local data-flow graph so
as to distribute the processing across available cores.

Introducing concurrency is profitable only when gain
in performance is greater than its overhead because of
context-switching, synchronization, etc. The system should
be able to auto-tune its degree of concurrency dynamically to
achieve higher performance e.g. like in SEDA [22]]. A SEDA
application is composed of a set of stages much like stream-
operators, connected via explicit event queues. Every stage
has an associated controller that monitors its event-queue
depth and runtime characteristics to dynamically tune its
operation. For example, a threadpool controller adaptively
configures pool size to meet perceived concurrency demands
and batching controller dynamically adjusts batch sizes to
trade-off throughput and latency.

Language level reactive abstractions for various events
specific to distributed systems like node failures, network

partitioning, topology changes etc. can also be developed
with clear and verifiable semantics. For example, ambient
references [23]] represent a collection of connected publish-
ers. This collection is kept updated to reflect the currently
available set of publishers and made available to the applica-
tion as a reactive value. This will allow encoding the system
in response to failures, topology changes in a declarative
manner and help us reason about the distributed system more
easily.

We intend to incorporate the outlined research ideas in
our existing solution [[7] that unifies local and distributed
processing aspects in a common data-flow programming
model.
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