
Stream Processing for Remote Collaborative Data Analysis

Scott Klasky146, C. S. Chang2, Jong Choi1, Michael Churchill2, Tahsin Kurc51, Manish Parashar3, Alex

Sim7, Matthew Wolf14, John Wu7 1 ORNL, 2 PPPL, 3 Rutgers, 4GT, 5 SBU, 6UTK, 7 LBNL

Due to the recent advances in technologies, large-scale science projects – such as, International

Thermonuclear Experimental Reactor (ITER), Korea Superconducting Tokamak Advanced Research

(KSTAR), and National Spherical Torus Experiment (NSTX) – are generating or going to soon generate

huge amounts of data. At the same time, such projects are drawing large international collaborations

with scientists from all over the world. In all these experiments, a team of scientists have to be present

at the facilities to monitor the progress of the on-going data collection, adjust the control settings, and

prevent catastrophic events; while most others access the data remotely. Allowing these remote users to

conduct their analysis operations in real time as the data is being collected would enable more scientists

to provide feedback to the execution of the shared experiments and increase scientific output. Often there

is a strong desire for (near) real-time participation at running the experiments, however there are

significant roadblocks to such a remote participation. For example, the computer network might not be

fast enough to transfer a sufficient amount of data for a meaningful analysis, the analysis operations

might take too long to provide timely feedback from the local resources, or there might not be proper

software framework to compose the analysis procedures to conduct the necessary analyses and provide

timely feedback. At the present time, the wide-area computer network is fast enough to transmit many

gigabytes for a second, and the application scientists often have a variety of data analysis algorithms.

What is lacking is a software system that allows scientists to quickly and conveniently compose complex

analysis tasks, manage the necessary data movement, execute the specified tasks, and provide timely

feedback to the users.

In building such a near real-time system, we need to address a number of critical challenges. First, to

reduce the data access latency, we should avoid reading and writing disks. We designed a system to

process, analyze, summarize and reduce the data before data reaches to the relatively slow disk storage

system, through a process known as in transit processing. Even though the network speed has been

steadily increasing over the years, it is still relatively slow compared to the CPUs consuming data, and

this trend is only getting worse. We believe it is essential to transfer the minimal amount of necessary

data for an analysis operation, and then only work on this sub-chunk of data. The approach we believe

the community must take is to integrate indexing data structures to minimize the amount of raw data

accessed by the analysis operations, and have this sparse data representation worked on by the analysis

and visualization tasks.

ECEI Analysis on KSTAR: The Korea Superconducting Tokamak Advanced Research (KSTAR) is

conducting nuclear fusion experiments, which is an important precursor to the ITER project. Currently,

it is one of the few long pulse fusion devices, with pulses up to 10s of seconds and targeting up to 300

seconds (expecting pulse lengths of 300-500 seconds in ITER).

Among many diagnostics captured during KSTAR experiments, we focused on a workflow to diagnose

high-speed image datasets (0.5 million images per second), called Electron Cyclotron Emission Images

(ECEI) [5], which need to be analyzed on two geographically distant locations. The requirement is to

connect the ECEI acquisition server in KSTAR to a remote repository, located in Korea Institute of

Science and Technology Information (KISTI), and again to another remote analysis site, Postech (120

miles apart from KSTAR) for on-line (or near real-time) processing (fig. 1).

Figure 1. KSTAR workflow for Electron Cyclotron Emission Images (ECEI) diagnosis; (a) remote

workflow execution diagram for processing ECEI data, and (b) an example output.

Figure 2. (a) ICEE software stack, and (b) Remote processing as a part of the ADIOS ecosystem.

Method

To address the challenges discussed above, we developed a system, named ICEE, to support remote data

stream processing over WAN environments. One of our key design decisions is that we develop ICEE

as an extension of our high-performance IO solution, called Adaptive IO System (ADIOS) [4], in order

to take full advantage of high-performance I/O functions provided by ADIOS and support additional

functions for remote processing on top of it. In short, ICEE is designed to provide flexible I/O services

to scientific applications for both local and remote processing. The key advantage of our solution is that

data is staged from a data generator (or a group of MPI processes in some cases) and the data can be

moved by either files (using gridFTP, etc.) or via socket connections, or RDMA connections. The

services (executables) can then run on the same machine (we have implemented this on the DOE LCFs

and NERSC) or on different machines, and they can even run on the same node (using different cores,

or even time share the cores) or different nodes.

ICEE provides two key features; i) enabling data stream processing and ii) remote communication. First,

ICEE provides routines enabling data stream analysis in favor of on-line chunk-wise data processing

over batch processing which conventionally used for analyzing data at rest. Secondly, ICEE integrates

network functions to send and receive data streams over wide area networks (WANs) by connecting

geographically distributed remote processes in a time-critical fashion. To support various cutting edge

network environments, ICEE is based on flexible network library, called EVPath [3], under the hood

(fig. 2a). With the tight integration with ADIOS, the network operations provided by ICEE is transparent

for users in a sense that users can switch between file IO (for storing data in a local area) and network

IO (to stream out data) without rewriting applications. Wide-area data steaming was also supported using

RDMA by DataSpaces [1], which also provides high-level abstractions for data coupling and scientific

workflows. DataSpaces is a part of the ADIOS ecosystem.

In the following, we describe the two main components of ICEE in details; i) stream interface and ii)

connection module.

Stream interface: ICEE is an extension of ADIOS, which has been developed to support data-intensive

scientific applications suffering from the I/O bottleneck problem. In a recent update, ADIOS added a set

of APIs for stream data processing [6]. The newly added stream mode is specifically intended for

memory-to-memory data movement between data sources and online analytics, and maintaining the new

interface compatible with file I/O in that it can be switched to file mode without code changes. With

stream APIs, users can handle streams of data, i.e., a series of data written in multiple times.

More detailed steps on ADIOS/ICEE stream data processing are as follows. A data stream writer creates

a unique stream name, and a stream receiver opens the stream with the same name. This will establish a

network connection between the writer and the reader via user-specified network transportation method

as a parameter. Then, stream writer periodically writes data, and the data is delivered to the reader as it

continues working. The receiver receives the data streams in a background process, and is able to read

data when ready directly from the memory.

Connection module: To connect geographically remote processes to communicate in timecritical

fashion, the choice of efficient connection methods is important. In addition, we should take into account

of various network environments to support non-uniform collaborations, as observed in our motivational

applications. To support such various environments and provide cutting-edge high-performance network

functions, we use an event-driven messaging library, called EVPath [2, 3]. One of the biggest advantages

of EVPath is that it provides various high-end network transportation methods, such as Infiniband

RDMA, TCP/IP, and UDP.

References

1. Ciprian Docan, Manish Parashar, and Scott Klasky. Dataspaces: an interaction and coordination

framework for coupled simulation workflows. Cluster Computing, 15(2):163–181, 2012.

2. Greg Eisenhauer, Karsten Schwan, and Fabi´an E Bustamante. Publish-subscribe for

highperformance computing. Internet Computing, IEEE, 10(1):40–47, 2006.

3. Greg Eisenhauer, Matthew Wolf, Hasan Abbasi, and Karsten Schwan. Event-based systems:

opportunities and challenges at exascale. In Proceedings of the Third ACM International Conference

on Distributed Event-Based Systems, page 2. ACM, 2009.

4. Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Podhorszki, Jong Youl Choi,Scott

Klasky, Roselyne Tchoua, Jay Lofstead, Ron Oldfield, et al. Hello ADIOS: the challenges and lessons

of developing leadership class I/O frameworks. Concurrency and Computation: Practice and

Experience, 26(7):1453–1473, 2014.

5. GS Yun, W Lee, MJ Choi, J Lee, HK Park, B Tobias, CW Domier, NC Luhmann Jr, AJH

Donn´e, JH Lee, et al. Two-dimensional visualization of growth and burst of the edge-localized

filaments in kstar h-mode plasmas. Physical review letters, 107(4):045004, 2011.

6. Fang Zheng, Hongbo Zou, Greg Eisenhauer, Karsten Schwan, Matthew Wolf, Jai Dayal,Tuan-

Anh Nguyen, Jianting Cao, Hasan Abbasi, Scott Klasky, et al. Flexio: I/o middleware for location-

flexible scientific data analytics. In Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on, pages 320–331. IEEE, 2013.

