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Workflow systems are in wide use in the scientific community today, facilitating complex computational 
and analytical processes. Their increasing popularity is particularly visible at workflow sharing sites such 
as MyExperiment [1] or Galaxy [2-4]. High-performance computing (HPC) users also are looking toward 
workflow solutions to manage their complex pre- and post-processing needs. This trend likely will 
continue with the advent of exascale architectures, which will require extreme-scale collaborations 
between applications running on an exascale system and community data and knowledge repositories 
needed for their validation and steering [5, 6]. A new emerging use for workflows is the in-situ / 
streaming, often adaptive analysis of large scale simulation runs and as well as the need to analyze and 
interpret experimental results [10], in both cases to steer the scientific work and optimize the scientific 
outcome. In particular in this last case the reliably performance of the workflow is absolutely key to its 
usefulness. 

One such use case is the steering of high end electron microscopy experiments at the Center for 
Functional Nanomaterials (CFN) at Brookhaven National Laboratory. In Transmission Electron 
Microscopy (TEM), a beam of electrons is transmitted through an ultra- thin specimen, interacting with 
the specimen as it passes through. These experiments can generate atomic resolution diffraction patterns, 
images and spectra under wide ranging environmental conditions. In-situ observations with these 
instruments, were physical, chemical or biological processes and phenomena are observed as they evolve, 
generate from 10GB-10’s of TB (e.g. at BNL) of data per experiment (and getting larger) at rates ranging 
from 100 images/sec for basic instruments to 1600 images/sec for state of the art systems. To optimize the 
scientific outcome of such experiments it is essential to analyze and interpret the results as they are 
emerging. Infrastructures such as the Analysis in Motion framework [9] developed by PNNL can provide 
the necessary analytical frameworks, if they can deliver reliable performance. 

However, it is becoming more difficult to design large-scale workflows for scientific computing that 
reliably deliver optimal performance, especially in situations where time-critical decisions must be made 
or computing resources are limited. Workflows, frequently composite applications built from loosely 
coupled parts, are designed to execute on a loosely connected set of distributed and heterogeneous 
computational resources. Each computational resource may have vastly diverse capabilities, ranging from 
sensors to high-performance clusters. Each workflow task may be designed for a different programming 
model and implemented in a different language, and most communicate via files sent over general 
purpose networks. As a result of this complex software and execution space, large-scale scientific 
workflows exhibit extreme performance variability. Going forward, it is critically important to have a 
clear understanding of the factors that influence workflow performance and sources for the potential 
variability in their execution to improve designs in advance and enable further optimization of workflow 
performance at runtime. 

The DOE ASCR funded Integrated End-to-End Performance Prediction and Diagnosis for Extreme 
Scientific Workflows (IPPD) project is addressing this important issue. IPPD is developing and integrated 
approach to the modeling of extreme scale scientific workflows, bringing together modeling, simulation 
and empirical approaches. Its goal is to provide scientists wit the tools to: 

• Explore in Advance - Design space exploration and sensitivity analysis 

• Optimize at run-time - Guide execution based on dynamic behavior 

To optimize workflow performance, we first and foremost need to understand the different sources of 
workflow performance variability and under performance. Our key interest is to identify patterns across 
different workflow classes that cause these issues, particularly in extreme-scale environments, to allow us 
to develop early-warning systems and optimization strategies both for workflow design and at runtime.  



Empirical Studies - To gain a quantitative understanding of workflow performance variability and its 
sources we need to capture empirical information about classes of workflows and the behavior of the 
surrounding system execution environment.   Traditionally, provenance has been largely focused on 
capturing workflow event history and tracing the data lineage from workflow results. On IPPD the scope 
has been expanded to collect metrics to gain greater insights into impacts of external factors influencing 
workflow behavior in clusters and in distributed workflow environments.  The metrics are collected from 
literally hundreds of physical sensors (for instrumented clusters) or more commonly existing off the 
performance modeling tools that can be streamed varuomg rates into indexed time-series databases to 
help frame a composite picture of the ecosystem influencing workflow behavior.   The IPPD provenance 
management solution (ProvEn) offers a horizontally scalable and load-balanced hybrid database solution 
for both the traditional semantic provenance describing the workflow history and the metrics streams 
describing environmental factors.  As the situation warrants, metrics collection can take in a distributed 
fashion, collected at different rates, and older metrics can either be pushed to cold storage or metrics can 
be collected on a rolling window of time   Our focus is to make these empirical measurements available 
for analytics and modeling teams in either ad-hoc or post-mortem fashion to as a means for workflows to 
adapt to changing conditions, or dynamically recover from soft/hard error conditions.[7]  

Performance Modeling – A key capability necessary for the efficient execution of complex workflows is 
performance prediction.  Because large-scale workflows are composed of a number of disparate parts, 
each with varying performance constraints and requirements, performance modeling is required at both 
the component and overall workflow levels.  Because of this, a number of techniques and tools are 
required, ranging from low-level architectural performance modeling to workflow scale intelligent 
scheduling.  These models must capture the behavior of each workload component, parameterize that 
behavior in terms of execution platform capabilities as well as input data characteristics, and most 
importantly, quantify the impact of contention for shared resources (e.g., file systems and networks) on 
task and workflow performance.  To this end, the IPPD project is utilizing analytical modeling methods 
and tools, empirical measurements, and advanced optimization techniques analogous to Unit 
Commitment approaches used in power grid allocation strategies.  Our goal is to improve overall 
workflow performance by using quantitative performance prediction to optimize the scheduling of 
workflow tasks in order to reduce contention on shared resources and improve utilization of distributed 
computing resources. [8] 

For many scientific workflows in distributed environments, I/O is often the bottleneck. Many factors such 
as background disk loads and inter-connection networks from different sites can affect data transfer 
speeds and these factors can change dynamically. Furthermore, computation cannot commence prior to 
whole files being transferred preventing the overlap of computation and I/O, also increasing user waiting 
time. Our approach is to introduce an integrated and adaptive I/O layer at user-level to enable efficient 
pipelining of I/O and computation while dynamically adjusting data stripping across different 
geographically distributed sites. This layer intercepts I/O related requests and initiates data transfers from 
remote sites. Computation is resumed as soon as the transfer of the requested data is completed. 
Additionally, dynamically striping the data transfer from different remote sites is possible. To account for 
the impact of background load on disk and background network traffic on throughput for different sites, 
the system dynamically adjusts which sites are used and the proportions of data are retrieved from each 
site. 
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