
Pilot-Streaming: Design Considerations for a
Stream Processing Framework for

High-Performance Computing
Andre Luckow1,2, Peter M. Kasson3, Shantenu Jha1

1RADICAL, ECE, Rutgers University, Piscataway,NJ 08854, USA
2Clemson University, Clemson, SC 29634, USA

3University of Virginia, Charlottesville, VA 22908, USA

I. INTRODUCTION

Streaming capabilities are becoming increasingly important
for scientific applications [1], [2] supporting important needs,
such as the ability to act on incoming data and steering. The
interoperable use of streaming data sources within HPC en-
vironments is a critical capability for an emerging set of ap-
plications. Scientific instruments, such as x-ray light sources
(e. g., the Advanced Photon Source (APS) and the Advanced
Light Source (ALS) [3]), can generate large amounts of high-
velocity data in a diverse set of experiments. Coupling data
streams produced by such experiments to computational HPC
capabilities is an important challenge.

Supporting the processing of high data rates streams exe-
cuting, e. g., predictions and outlier detection algorithms on
it, while running larger models in batch mode on the entire
dataset, is a challenging task. The increasing demands lead to a
heterogeneous landscape of infrastructures and tools support-
ing streaming needs on different levels. Batch frameworks,
such as Spark [4] have been extended to provide streaming
capabilities [5], while different native streaming frameworks,
such as Storm [6] and Flink [7] have emerged.

We define a streaming application as an application that
processes and acts on real-time data, also referred to as event
stream. Different usage modes for stream processing can be
observed:
• Coordination: Usage of stream processing to connect a data

source and data analysis phase. Sometime this includes the
pre-processing and transformation of the data before it be-
comes persistent (e. g. the Hadoop Filesystem (HDFS)) and
analyzed (e. g. using a Hadoop processing framework).

• Realtime Analytics: This type of application utilizes ma-
chine learning on incoming data, e. g. for scoring, classifi-
cation or outlier detection.

• Analytics and Model Update: The applications combine
stream processing with other forms of processing, e. g. the
continuous update of a machine learning model on historical
data and real-time scoring/classification or a simulation.
The complexity of the application increases from the top to

bottom. In the last application type streaming, batch and in-
teractive processes utilizing different abstractions and runtime

systems need to be combined, algorithms need to be adapted
to process windows of data instead of the complete bounded
data-set.

There are several challenges that need to be address when
developing streaming applications:

• Infrastructure: How to efficiently handle data streams (de-
livery guarantees, low latencies, varying data rate)? How to
decouple data producer and consumer? How to store data
to allow flexible stream and batch processing (event stream
as a log, random access and mutable storage)?

• Abstractions: How to decouple application concerns from
streaming infrastructures? How can high-level abstraction,
such as SQL oder data pipelines be efficiently supported in
streaming mode?

• Applications: The application itself needs to be capable
of utilizing streaming data. Often, the algorithm needs to
be adapted to meaningful incorporate incoming data. While
batch algorithms assume that they operate on a complete
dataset, streaming applications need to operate on a win-
dow of data (e. g. a fixed, sliding or session window) [8].
Thus, it is often necessary to balance historical and recent
data in machine learning algorithms using e.g. decay factors.
Simulations e. g. need an algorithm for including streaming
data into their current state.

As alluded in Ref. [1], there is no consensus on software
and hardware infrastructure for streaming applications, which
increases the barrier for adoption of streaming technology in
a broader set of application. Notwithstanding the lack of gen-
eral consensus, in this White Paper we will explore the usage
of the existing Pilot-Abstractions as a unified layer for the
development of streaming applications. We further explore a
specific application example from the domain of genome se-
quencing where computational and streaming capabilities are
critical for real-time sequencing control.

II. BACKGROUND AND RELATED WORK

The landscape of tools and frameworks for stream process-
ing is manifold (see [9] for survey). The majority of these
tools are open source and emerged in the Hadoop ecosystem.
In the following, we briefly highlight three main components

Storage and Format
(e.g. Lustre, HDFS,…)

Compute
(e.g. YARN, SLURM, Torque, PBS)

Streaming
Framework ETL Hadoop

SQL
Machine
Learning

Raw Text Columnar

Data

HDF5 Other

Broker

Broker

Broker Mutable/
Random
Access

Message Broker Storage Stream Processing

Fig. 1. Streaming Applications Architecture: The message broker decou-
ples streaming applications from incoming data feeds and enables multiple
applications to process the data. The streaming framework typically provides
a window function abstraction on which a user-defined function is performed.
Another important consideration are data formats: mutable/random access for-
mats are particular desirable as they simplify the reconciliation of streaming
and historical data.

for stream processing (see Figure 1): the message brokering
system, the storage and the stream processing engine.

Broker: Message broker are a key component for stream-
ing application. The brokering system decouples data sources
and applications; it enables application to observe a consistent
event stream of data at its own pace executing complex ana-
lytics on that data stream. Kafka [10] is one such distributed
message broker optimized for large volume log files contain-
ing event streams of data. RabbitMQ and ZeroMQ provide
more complex capabilities (e.g., with respect to message rout-
ing and delivery guarantees), but are generally less scalable
than Kafka. Amazon Kinesis and Google Cloud Pub-Sub are
two distinct message brokers offered as “platform as a service”
in the cloud.

Storage: Several storage formats optimized for high data
velocities and random access read/writes have been proposed.
HBase [11] introduced a random access storage engine on top
of the Hadoop filesystem. Kudu [12] attempts to improve the
HBase design providing a storage system that enables both
high-throughput reads as well as mutable datasets.

Processing Engines for Streaming: The landscape of
streaming engines is still evolving. The most widely used en-
gines are currently: Storm [6], Flink [7], Spark Streaming [5],
Samza [13] and Heron [14]. The different streaming engines
differs significantly in the ways they handle data and pro-
vide processing guarantees: Native stream engines, such as
Storm and Flink, continuously process data as it arrives. Spark
Streaming uses micro-batches, i. e., incoming data is parti-
tioned into batches according to a user-defined criteria (e. g.
time window). The advantage of micro-batching is that it pro-
vides better fault tolerance and exactly-once processing guar-
antees. Google’s Dataflow [8] is another native stream pro-
cessing engine available in the Google cloud. The engine is

based on a rigorous model for stream processing and provides
well-defined and rich semantics for windowing and operations.
Apache Beam attempts to implement the model proposed by
Google Dataflow on top of different open source streaming
engines [15].

Higher-Level Abstractions for Streaming: For batch pro-
cessing various high-level abstractions for data analytics have
emerged, e. g., in SQL, dataframes and machine learning li-
braries. There is ongoing work in providing similar abstrac-
tions for streaming data, e. g., extend Spark Dataframes [16]
for stream processing. Further, MLlib offers some algorithms
for streaming machine learning (e. g. K-Means). In general,
streaming applications are required to combine and mix a com-
plex landscape of infrastructures, frameworks and tools. It can
be expected, that the design space for abstractions will be fur-
ther explored and more hybrid approaches will emerge.

Pilot-Abstraction: The Pilot-Abstraction offers a unified
approach for data management in conjunction with Pilot-Jobs
across complex storage hierarchies comprising of local disks,
cloud storage, parallel filesystems, SSD and memory, and al-
lows the efficient management of Pilot-/task-level input data
as well as intermediate and output data taking into account
data locality. We have explored the applicability of the Pilot-
Abstraction [17], [18] to data-intensive applications on HPC
and Hadoop environments [20], [21]. The Pilot-Data abstrac-
tion [19] supports the management of data in conjunction with
Pilot-Jobs and compute tasks. In this white paper, we propose
the extension of the Pilot-Abstraction to streaming to enable
applications to combine streaming and batch analytics.

III. PILOT-STREAMING: COUPLING REALTIME AND
BATCH PROCESSING

Pilot-Jobs and Pilot-Data [19] provide efficient mechanisms
for managing data and compute across different, possibly dis-
tributed backends. As shown in Figure 2 the Pilot-Abstraction
facilitates the orchestration of Compute-Units and associated
datasets, the so called Data-Units across heterogeneous in-
frastructures. While the original framework was designed for
batch-oriented applications, we believe the addition of stream-
ing capabilities will enhance its applicability and suitability of
distributed data-intensive applications. We are planning to add
streaming capabilities to this framework: Pilot-Streaming - a
framework for HPC stream processing.

Pilot-Data is an extensible framework allowing the simple
addition of new data sources and processing frameworks. In
particular we plan the following two extensions:

• Stream Data Source Access: Make streaming source (e. g.
Kafka topics) accessible for Compute-Units and enable the
micro-batch processing of discretized chunks of incoming
data. The Kafka adaptor will be implemented using the
Kafka Python API.

• Extensibility and Interoperability: An interoperable ac-
cess to streaming platforms (e. g. Spark Streaming and
Flink) enables applications to utilize the different capabili-
ties of these frameworks in a unified way. By generalizing

HTC (OSG/EGI) Cloud

In
fra

st
ru

ct
ur

e
Us

er
-S

pa
ce

Distributed Application

HPC

Node n

SSH

Node n

SSH

Node

Pilot Agent

Hadoop

Pilot API

SAGA

Pilot Compute Pilot Data

Cloud YARN SSH Cloud

SRM
(iRODS)

S3
(HTTP)

Local/
Parallel FS
(SSH/GO)

Globus Online

HDFS
(WebHDFS)

Node n

SSH

Node n

SSH

YARN

Pilot Agent

Node n

SSH

Node n

SSH

Node

Pilot Agent

Node n

SSH

Node n

SSH

EC2 VM

Pilot Agent

Local /
EBS

(SSH)
GFFS Local

(iRODS)

iRODS HDFS Kafka

Fig. 2. Pilot-Job Extensions for Streaming: The Kafka adaptor for Pilot-
Data enables application to subscribe to data streams and execute Compute-
Units on discretized micro-batches of incoming data.

the window function abstraction into a higher-level abstrac-
tion, applications can be expressed independently of the un-
derlying execution engine.

IV. APPLICATION EXEMPLAR

Real-time sequencing control: Some current-generation
nanopore sequencing devices include the capability for se-
lective sequencing: either continuing to read a DNA strand
in one of the nanopore channels or ejecting it to enable an-
other DNA molecule to bind [22]. This ejection decision can
be made based on the individual-channel conductance trace.
Such a capability enables optimization of sequencing “cover-
age”: rejecting unwanted sequences to enrich a rare sample
from a more frequent background, equalizing coverage across
a sample, or other more complex optimization strategies.

Taking advantage of this however, requires two sets of
streaming computations: modeling the channel conductance
trace as a nucleic acid sequence and, if the statistical model
for sampling is not fixed, updating this model in real time
based on many parallel channel inputs (512 per sensor chip
in current implementations, but multiple sensor chips may be
used). Both of these computations carry substantial latency re-
quirements: DNA transits the nanopore channel at 500 bases
per second, while the sampling model should be updated in
approximately real time but permits a somewhat greater la-
tency. This sampling model might be unique to the physical
sample being processed and thus specific to the sensor(s) at
one location or might be global in scope.

Furthermore, both scenarios require significant computa-
tional processing in order to investigate, either via models
or simulations with adequate atomistic precision and accu-
racy. Thus, the desired computational platform is a high-
performance resource with both streaming and batch capabil-
ities.

V. CONCLUSION

The number of applications requiring stream processing ca-
pabilities is increasing. The landscape of tool and frameworks
for message brokering, data storage, processing and analytics
is manifold. The Pilot-Abstraction can serve an important gap

in unifying streaming and batch processing for HPC appli-
cations. It enables applications e. g. to couple streaming data
with task parallel applications (e. g. for data processing and
machine learning).

REFERENCES

[1] Stream 2015 final report. http://streamingsystems.org/finalreport.pdf,
2015.

[2] Geoffrey Fox, Shantenu Jha, and Lavanya Ramakrishnan. Scalable hpc
workflow infrastructure for steering scientific instruments and streaming
applications. Technical report, 2015.

[3] US Department of Energy. X-Ray Light Sources. http://science.energy.
gov/bes/suf/user-facilities/x-ray-light-sources/, 2016.

[4] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working sets.
In Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010.
USENIX Association.

[5] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13, pages 423–438, New
York, NY, USA, 2013. ACM.

[6] Nathan Marz. Storm: Distributed and fault-tolerant realtime computa-
tion. http://cloud.berkeley.edu/data/storm-berkeley.pdf, 2011.

[7] Apache Flink. https://flink.apache.org/, 2015.
[8] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,

Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, and Sam Whittle. The dataflow
model: A practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing. Proceedings
of the VLDB Endowment, 8:1792–1803, 2015.

[9] Supun Kamburugamuve and Geoffrey Fox. Survey of distributed stream
processing. Technical report, Indiana University, Bloomington, IN, USA,
2016.

[10] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasi-
vam, Mammad Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe
Stein. Building a replicated logging system with apache kafka. PVLDB,
8(12):1654–1665, 2015.

[11] HBase. http://hadoop.apache.org/hbase/.
[12] Todd Lipcon, David Alves, Dan Burkert, Jean-Daniel Cryans, Adar

Dembo, Mike Percy, Silvius Rus, Dave Wang, Matteo Bertozzi,
Colin Patrick McCabe, and Andrew Wang. Kudu: Storage for fast ana-
lytics on fast data. 2015.

[13] Martin Kleppmann and Jay Kreps. Kafka, Samza and the Unix philos-
ophy of distributed data. IEEE Data Engineering Bulletin, December
2015. Journal Article.

[14] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ra-
masamy, and Siddarth Taneja. Twitter heron: Stream processing at scale.
In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 239–250, New York, NY,
USA, 2015. ACM.

[15] Apache beam proposal. https://wiki.apache.org/incubator/BeamProposal,
2016.

[16] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, and Matei Zaharia. Spark sql: Relational data processing in
spark. In Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’15, pages 1383–1394, New
York, NY, USA, 2015. ACM.

[17] Andre Luckow, Mark Santcroos, Andre Merzky, Ole Weidner, Pradeep
Mantha, and Shantenu Jha. P*: A model of pilot-abstractions. 2012
IEEE 8th International Conference on E-Science, pages 1–10, 2012.
http://doi.org/10.1109/eScience.2012.6404423.

[18] Andre Luckow, Lukas Lacinski, and Shantenu Jha. SAGA BigJob: An
Extensible and Interoperable Pilot-Job Abstraction for Distributed Appli-
cations and Systems. In The 10th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pages 135–144, 2010.

[19] Andre Luckow, Mark Santcroos, Ashley Zebrowski, and Shantenu Jha.
Pilot-data: An abstraction for distributed data. Journal of Parallel and
Distributed Computing, 2014.

[20] André Luckow, Pradeep Kumar Mantha, and Shantenu Jha. Pilot-
abstraction: A valid abstraction for data-intensive applications on hpc,
hadoop and cloud infrastructures? CoRR, abs/1501.05041, 2015.

[21] A. Luckow, I. Paraskevakos, G. Chantzialexiou, and S. Jha. Hadoop
on HPC: Integrating Hadoop and Pilot-based Dynamic Resource Man-
agement. IEEE International Workshop on High-Performance Big Data
Computing in conjunction with The 30th IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2016), 2016.

[22] Matthew Loose, Sunir Malla, and Michael Stout. Real time selective
sequencing using nanopore technology. bioRxiv, 2016. http://biorxiv.
org/content/early/2016/02/03/038760.

