
Ego-net Sketching for Streaming Graph Analytics

Bortik Bandyopadhyay, David Fuhry, Aniket Chakrabarti and Srinivasan Parthasarathy
Department of Computer Science and Engineering

The Ohio State University

{bandyopadhyay.14, fuhry.4, chakrabarti.14, parthasarathy.2}@osu.edu

ABSTRACT
We propose a novel, scalable, and principled graph sketching
technique based on min-wise local neighborhood sampling.
For an n-node graph with e-edges, we incrementally main-
tain an in-memory min-wise neighbor sampled sub-graph,
bounded by a user configurable memory limit. This sketch
representation, capable of handling real-time edge stream-
ing rate, lowers the memory requirement to O(n) instead
of O(e), making it particularly useful for streaming graphs
commonly with e � n, with both n and e possibly un-
known apriori. Symmetrization and similarity-based tech-
niques can recover from these data structures a significant
portion of the original graph. With bounded memory, the
quality of results using the sketch representation is com-
petitive against baselines which use the full graph, and the
computational performance is often significantly better. Our
framework is flexible and configurable to be leveraged by nu-
merous other graph analytics algorithms.

1. OUR FRAMEWORK
Minwise independent permutation based hash functions

have seen ubiquitous use in graph and network problems, in
the context of graph sparsification [10], community detec-
tion [8, 9], dense subgraph detection [4], link prediction [11]
and computing various measures of interest like local trian-
gle count [1]. In this paper, we use minhash in a manner
orthogonal to its traditional usage. To the best of our knowl-
edge, it’s use has not been suggested as a fixed size sketch
for an edge-streamed graph with low memory footprint. We
additionally provide theoretical insights on the type of in-
formation retained by this representation.

Figure 1 shows a toy example of the min-wise neighbor-
hood sampling, graph construction, and edge recovery of our
graph sketching framework. Each row of Mk is initialized
with self-loop and C with zero. The edges of source graph G
are processed iteratively by Algorithm 1 to construct count
vector (C) and sketch matrix (Mk) using k different lin-
ear min-wise independent hash functions (hm) [3, 2]. Each
node i in graph G is represented by row i in Mk, which is
a min-wise sample of i’s egonet. Next, unique neighbors of
each node (row) in Mk form directed graph G∗, which is
symmetrized to generate Gm. Additionally, using Mk and
C, Gm is augmented with similarity induced edges thereby
generating Gs, which might be useful for scenarios where a
substantial portion of the original graph is lost due to sam-
pling (like Twitter data with its power-law degree distribu-
tion). Additionally, the user can run a myriad of existing

algorithms directly on Gm and Gs.

2. METHODOLOGY

2.1 Sketch Creation and Updating

Algorithm 1 Update Sketch Matrix

Parameter: Sketch Matrix Mk

Parameter: Count Vector C
Parameter: new edge (i,j)
1: for m = 1 to k do
2: if hm(j) < hm(Mk[i,m]) then
3: Mk[i,m] = j
4: end if
5: if hm(i) < hm(Mk[j,m]) then
6: Mk[j,m] = i
7: end if
8: end for
9: C[i] + +; C[j] + +;

2.2 Key Theoretical insights
We analyze the retention probability per edge due to min-

wise sampling and then use it to construct an unbiased es-
timator of the total number of edges to be retained in Gm.
The proofs have been omitted due to lack of space.

Lemma 2.1. For any node i with degree di, the probability
of losing any edge (i, j) of G in G∗ with k hashes is (1− 1

di
)k.

Lemma 2.2. The inclusion probability pij of any edge (i, j)
of G in Gm is

pij = 1− [(1− 1

di
)× (1− 1

dj
)]k

Lemma 2.3. From Gm, an unbiased estimator of the total
number of edges of G using edges Em of Gm is∑

{(i,j):Em∈Gm}

1

(1− [(1− 1
di

)× (1− 1
dj

)]k)

3. EXPERIMENTS
We implemented all code in C++ and ran the experiment

on a 3.40GHz Intel(R) Core(TM) i7-2600 machine with 256

1In this example let the randomized h1 permutation be
1, 5, 2, 4, 3, that is, h1(1) < h1(5) < . . . < h1(3), and h2

permutation be 4, 1, 5, 2, 3.

1



1

2 3

4

5

G
A

lg
o
ri

th
m

1

(S
k
et

ch
M

a
tr

ix
)1 1 2

1 1 4

2 1 1

3 1 1

4 1 4

5 5 4

K

n

Mk

3

2

3

2

2

C

U
n
iq

u
e

N
g
h

1

2 3

4

5

G∗

(S
y
m

m
et

ri
ze

)

1

2 3

4

5

Gm

(S
im

-A
u
g
m

en
t)

1

2 3

4

5

Gs

Figure 1: Toy example for Min-wise Neighborhood Graph Sketching framework

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

DIP
Hum

an

Flickr

Ti
m

e
 (

se
c)

K=8
K=16
K=32
K=64

K=128
K=256

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

am
azon0312

am
azon0505

am
azon0601

as-skitter

cit-Patents

roadNet-CA

web-BerkStan

web-Google

web-Stanford

wiki-Talk

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

Orkut

Twitter

Figure 2: Sketch matrix construction (Algorithm 1) time varying k. Datasets grouped by size for scale.

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

am
azon0312

am
azon0505

am
azon0601

web-BerkStan

web-Google

web-Stanford

8
16
32
64

128
256

Figure 3: NDCG score for Page Rank on Gm com-
pared with G, for varying k. Even for a small k = 8,
NDCG score for all datasets is around 0.99, provided that
their average degree is greater than 8.

KB L1, 1 MB L2, and 8 MB L3 cache and 16 GB memory.
The datasets have been obtained from [6] and [10]. Bloom
filter has been used to pre-process the input graph on-the-
fly. The memory used by the sketch matrix representation
is [(2 ∗ k + n ∗ k + n) ∗ 4] bytes, where the first term is for
hash function parameters, the second term is for Mk, and
the third term is for C, making memory footprint O(n ∗ k),
significantly smaller than the O(e) size of G.

Sketch construction is very fast as observed in Figure 2;
even for the largest value of k = 256, on cit-Patents (us-
ing streaming edgelist format) processing speed is 205,980
edges/sec. For context, about 500 million tweets are gener-
ated per day on the Twitter social network, for an average of
5,800 tweets/sec, well within our processing capacity, espe-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

am
azon0312

am
azon0505

am
azon0601

as-skitter

cit-Patents

roadNet-CA

web-BerkStan

web-Google

web-Stanford

wiki-Talk

Orkut

DIP
Hum

an

Flickr

Twitter

R
e
la

ti
v
e
 E

rr
o
r 

(%
)

8
16
32
64

128
256

Figure 4: Edge Estimator Performance: The estimated
value of number of edge converges to observed value of
edges in Gm with increasing k.

cially considering that only 30% of tweets involve an edge-
inducing user interaction (retweet or response) [7]. While
G∗ retains some percentage of edges proportional to k, Gm

has a lot more edges recovered and graph properties like
Page Rank are estimated very accurately.

4. FUTURE WORK
Using this sketch, we can generate multiple bootstrapped [5]

variants(Gs) of the original graph (G) and estimate the
properties of G from these samples. Parallel versions of our
framework can be realized in multi-core CPU, GPU and
MIC architectures for further scalability.

5. REFERENCES

2



[1] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides
Gionis. Efficient semi-streaming algorithms for local
triangle counting in massive graphs. KDD ’08.

[2] Tom Bohman, Colin Cooper, and Alan Frieze. Min-wise
independent linear permutations. Electronic Journal of
Combinatorics, 7:R26, 2000.

[3] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and
Michael Mitzenmacher. Min-wise independent
permutations. JCSS, 60:327–336, 1998.

[4] David Gibson, Ravi Kumar, and Andrew Tomkins.
Discovering large dense subgraphs in massive graphs. In
Proceedings of the 31st International Conference on Very
Large Data Bases, VLDB ’05, pages 721–732. VLDB
Endowment, 2005.

[5] Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and
Michael I. Jordan. The Big Data Bootstrap. In ICML, 2012.

[6] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[7] Replies and retweets on twitter.
http://sysomos.com/insidetwitter/engagement/.

[8] Yiye Ruan, David Fuhry, and Srinivasan Parthasarathy.
Efficient community detection in large networks using
content and links. In Proc. of eedings of the 22Nd
International Conference on World Wide Web, WWW ’13,
pages 1089–1098, Republic and Canton of Geneva,
Switzerland, 2013. International World Wide Web
Conferences Steering Committee.

[9] Yiye Ruan and Srinivasan Parthasarathy. Simultaneous
detection of communities and roles from large networks. In
Proceedings of the Second ACM Conference on Online
Social Networks, COSN ’14, pages 203–214, New York, NY,
USA, 2014. ACM.

[10] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan.
Local graph sparsification for scalable clustering. SIGMOD
’11.

[11] Jaroslaw Zola. Constructing similarity graphs from
large-scale biological sequence collections. In Proceedings of
the 2014 IEEE International Parallel & Distributed
Processing Symposium Workshops, IPDPSW ’14, pages
500–507, Washington, DC, USA, 2014. IEEE Computer
Society.

3


