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ABSTRACT
We propose a novel, scalable, and principled graph sketching
technique based on min-wise local neighborhood sampling.
For an n-node graph with e-edges, we incrementally main-
tain an in-memory min-wise neighbor sampled sub-graph,
bounded by a user configurable memory limit. This sketch
representation, capable of handling real-time edge stream-
ing rate, lowers the memory requirement to O(n) instead
of O(e), making it particularly useful for streaming graphs
commonly with e � n, with both n and e possibly un-
known apriori. Symmetrization and similarity-based tech-
niques can recover from these data structures a significant
portion of the original graph. With bounded memory, the
quality of results using the sketch representation is com-
petitive against baselines which use the full graph, and the
computational performance is often significantly better. Our
framework is flexible and configurable to be leveraged by nu-
merous other graph analytics algorithms.

1. OUR FRAMEWORK
Minwise independent permutation based hash functions

have seen ubiquitous use in graph and network problems, in
the context of graph sparsification [10], community detec-
tion [8, 9], dense subgraph detection [4], link prediction [11]
and computing various measures of interest like local trian-
gle count [1]. In this paper, we use minhash in a manner
orthogonal to its traditional usage. To the best of our knowl-
edge, it’s use has not been suggested as a fixed size sketch
for an edge-streamed graph with low memory footprint. We
additionally provide theoretical insights on the type of in-
formation retained by this representation.

Figure 1 shows a toy example of the min-wise neighbor-
hood sampling, graph construction, and edge recovery of our
graph sketching framework. Each row of Mk is initialized
with self-loop and C with zero. The edges of source graph G
are processed iteratively by Algorithm 1 to construct count
vector (C) and sketch matrix (Mk) using k different lin-
ear min-wise independent hash functions (hm) [3, 2]. Each
node i in graph G is represented by row i in Mk, which is
a min-wise sample of i’s egonet. Next, unique neighbors of
each node (row) in Mk form directed graph G∗, which is
symmetrized to generate Gm. Additionally, using Mk and
C, Gm is augmented with similarity induced edges thereby
generating Gs, which might be useful for scenarios where a
substantial portion of the original graph is lost due to sam-
pling (like Twitter data with its power-law degree distribu-
tion). Additionally, the user can run a myriad of existing

algorithms directly on Gm and Gs.

2. METHODOLOGY

2.1 Sketch Creation and Updating

Algorithm 1 Update Sketch Matrix

Parameter: Sketch Matrix Mk

Parameter: Count Vector C
Parameter: new edge (i,j)
1: for m = 1 to k do
2: if hm(j) < hm(Mk[i,m]) then
3: Mk[i,m] = j
4: end if
5: if hm(i) < hm(Mk[j,m]) then
6: Mk[j,m] = i
7: end if
8: end for
9: C[i] + +; C[j] + +;

2.2 Key Theoretical insights
We analyze the retention probability per edge due to min-

wise sampling and then use it to construct an unbiased es-
timator of the total number of edges to be retained in Gm.
The proofs have been omitted due to lack of space.

Lemma 2.1. For any node i with degree di, the probability
of losing any edge (i, j) of G in G∗ with k hashes is (1− 1

di
)k.

Lemma 2.2. The inclusion probability pij of any edge (i, j)
of G in Gm is

pij = 1− [(1− 1

di
)× (1− 1

dj
)]k

Lemma 2.3. From Gm, an unbiased estimator of the total
number of edges of G using edges Em of Gm is∑

{(i,j):Em∈Gm}

1

(1− [(1− 1
di

)× (1− 1
dj

)]k)

3. EXPERIMENTS
We implemented all code in C++ and ran the experiment

on a 3.40GHz Intel(R) Core(TM) i7-2600 machine with 256

1In this example let the randomized h1 permutation be
1, 5, 2, 4, 3, that is, h1(1) < h1(5) < . . . < h1(3), and h2

permutation be 4, 1, 5, 2, 3.
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Figure 1: Toy example for Min-wise Neighborhood Graph Sketching framework
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Figure 2: Sketch matrix construction (Algorithm 1) time varying k. Datasets grouped by size for scale.
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Figure 3: NDCG score for Page Rank on Gm com-
pared with G, for varying k. Even for a small k = 8,
NDCG score for all datasets is around 0.99, provided that
their average degree is greater than 8.

KB L1, 1 MB L2, and 8 MB L3 cache and 16 GB memory.
The datasets have been obtained from [6] and [10]. Bloom
filter has been used to pre-process the input graph on-the-
fly. The memory used by the sketch matrix representation
is [(2 ∗ k + n ∗ k + n) ∗ 4] bytes, where the first term is for
hash function parameters, the second term is for Mk, and
the third term is for C, making memory footprint O(n ∗ k),
significantly smaller than the O(e) size of G.

Sketch construction is very fast as observed in Figure 2;
even for the largest value of k = 256, on cit-Patents (us-
ing streaming edgelist format) processing speed is 205,980
edges/sec. For context, about 500 million tweets are gener-
ated per day on the Twitter social network, for an average of
5,800 tweets/sec, well within our processing capacity, espe-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

am
azon0312

am
azon0505

am
azon0601

as-skitter

cit-Patents

roadNet-CA

web-BerkStan

web-Google

web-Stanford

wiki-Talk

Orkut

DIP
Hum

an

Flickr

Twitter

R
e
la

ti
v
e
 E

rr
o
r 

(%
)

8
16
32
64

128
256

Figure 4: Edge Estimator Performance: The estimated
value of number of edge converges to observed value of
edges in Gm with increasing k.

cially considering that only 30% of tweets involve an edge-
inducing user interaction (retweet or response) [7]. While
G∗ retains some percentage of edges proportional to k, Gm

has a lot more edges recovered and graph properties like
Page Rank are estimated very accurately.

4. FUTURE WORK
Using this sketch, we can generate multiple bootstrapped [5]

variants(Gs) of the original graph (G) and estimate the
properties of G from these samples. Parallel versions of our
framework can be realized in multi-core CPU, GPU and
MIC architectures for further scalability.
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