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1 Introduction
Twitter is a pioneer and global leader in social media, generating tens of billions of events per hour with over 315 million
monthly active users. Analyzing these events to surface relevant content and to derive insights in real time is a challenge.
To address this need, we developed Heron, a new real time distributed streaming engine.

Stream processing platforms enable enterprises to extract business value from data in motion similar to batch processing
platforms that facilitated the same with data at rest [10]. The goal of stream processing is to enable real time or near real
time decision making by providing capabilities to inspect, correlate and analyze data as it flows through data processing
pipelines. There is an emerging trend to transition from predominant batch analytics to streaming analytics driven by a
combination of the increased data collection in real time and the need to make decisions instantly. Several scenarios in
different industries require stream processing capabilities that can process millions and even hundreds of millions of events
per second. Twitter is no exception.

Twitter is synonymous with real time. When a user tweets, his or her tweet can reach millions of users instantly.
Twitter users post several hundred millions of tweets every day. These tweets vary in diversity of content [3] including but
not limited to news, pass along (information or URL sharing), status updates (daily chatter), and real time conversations
surrounding events such as the Super Bowl, the Oscars, etc. Due to the volume and variety of tweets, it is necessary to
surface the relevant content in the form of break out moments and trending #hashtags to users in real time. In addition,
there are several use cases in real time such as analyzing user engagements, extract/transform/load (ETL), model building,
etc.

In order to power the aforementioned crucial use cases, Twitter developed an entirely new real time distributed stream
processing engine called Heron. Heron is designed to provide

• Ease of Development and Troubleshooting: Users can easily debug and identify the issues in their topologies
(aka standing queries), allowing them to iterate fast during development. This is possible because of the funda-
mental change in architecture in Heron from thread based to process based. User can easily reason about how their
topologies work and profile/debug its components in isolation.

• Efficiency and Performance: Heron is 2x-5x more efficient than Storm [8]. This resulted in significant cost savings
for Twitter both in capital and operational expenditure.

• Scalability and Reliability: Heron is highly scalable both in the ability to execute large number of components for
each topology and the ability to launch and track large numbers of topologies. Such a large scale is achieved because
of the clean separation of topology scheduling and monitoring.

• Compatibility with Storm: Heron is API compatible with Storm and hence no code change is required for migra-
tion.

• Simplified and Responsive UI: Heron UI gives a visual overview of each topology. The UI uses metrics to show at
a glance where the hot spots are and provides detailed counters for tracking the progress and troubleshooting.

• Capacity Allocation and Management: Users can take a topology from development to production in a shared
cluster infrastructure instantly since Heron runs as yet another framework of the scheduler that manages capacity
allocation.
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2 Heron Data Model
Heron uses a directed acyclic graph (DAG) for representing a real time computation. The graph is referred to as a topology.
Each node in the topology contains the processing logic and the links between the nodes indicate how the data flows
between them. These data flows are called streams. A stream is an unbounded sequence of tuples. Nodes take one or more
streams and transform them into one or more new new streams. There are two types of nodes: spouts and bolts. Spouts are
the sources of streams. For example, a Kafka [4] spout can tap into a Kafka queue and emit it as a stream. A bolt consumes
tuples from streams, applies the processing logic and emits tuples in outgoing streams. Typical processing logic includes
filtering, joining and aggregation of streams.

In this topology, the spouts S1 taps into its data source and injects two streams consumed by the first stage bolts B1,
and B2. These bolts transform the streams and emit three new streams feeding bolts B3 and B4. Since the incoming data
rate might be higher than the processing capability of a single process or even a single machine, each spout and bolt of the
topology is run on multiple tasks. The number of tasks for each spout and bolt is specified in the topology configuration
by the programmer. Such a task specification is referred to as the degree of parallelism.

3 Heron in Practice

3.1 Back Pressure
Spout based back pressure helped us reduce the data loss significanlty as stragglers are the norm in a multi-tenant distributed
systems. Heron back pressure recovery mechanism allows us to process data at a maximum rate such the recovery times are
very low. Since most topologies are provisioned with extra capacity to handle increased traffic during well-known events
(like the Super Bowl, the Oscars etc.), the recovery rate is usually much higher than the steady state. In cases where the
topologies have not been provisioned to handle increased traffic, the back pressure mechanism acts as a shock absorber to
handle any temporary spikes. In cases where these spikes are not temporary, back pressure also allows users to add more
capacity and restart their topologies with minimal loss of data.

We have encouraged topology writers to test their back pressure (and recovery) mechanism in staging environments by
artificially creating traffic spikes (e.g., by reading from older offsets in Kafka). This allows them to understand the dynamic
behavior of the back pressure and measure the recovery time. To monitor this process in real time, several metrics have
been exposed on the dashboard. Back pressure also helps topology writers in tuning their topology.

In our experience, we have found that in most of the scenarios back pressure recovers without manual intervention.
While most users see back pressure as a requirement, some users prefer dropping of data as they only care about the latest
data. To handle such cases, we added the load shedding feature in spouts as decribed in the following section.

3.2 Load Shedding
Load shedding has been studied extensively in the context of second generation streaming systems [6, 1, 7, 9, 2, 5].
Most of the proposed alternatives broadly fall into two broad categories, sampling based approaches and dropping based
approaches. The idea behind sampling based approaches is that if the system can automatically downsample an incoming
stream in a predictable way, the user can potentially scale up the results of the computation in order to compensate for this.

Due to added complexity in sampling, Heron currently implements a dropping-based approach that will drop older data
and prefer more recent data when the Heron topology is unable to keep up. Heron spouts allow configuring a lag threshold
and a lag adjustment value. The lag threshold will indicate how much lag is tolerable before the spout drops any data. The
lag adjustment value will indicate how much of the old data the system will drop when this threshold is reached.

Given the lag threshold and lag adjustment value configuration, the system will monitor the lag for each individual
spout instance and periodically skip ahead by the lag adjustment value whenever the lag is above the threshold value.
A key point here is that the decision to drop data is a completely local decision in each spout instance. There will be
no attempt made to synchronize amongst different spouts or otherwise coordinate such that the spouts work together in
deciding what data to drop.
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