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I. INTRODUCTION: STREAMING MIDDLEWARE

Event- and stream-based systems for science are playing an
increasingly important role. In high performance computing,
the I/O bottleneck as we move into the near-exascale regime
puts an increasing focus on in situ analytics pipelines, many
of which share important characteristics with other streaming
middleware solutions. Additionally, there is an increasing
desire to dynamically process experimental and observational
data streams, sometimes in concert with validation simulation
runs. Altogether, this demonstrates a core need for further
developments in high performance streaming services that can
be shared and developed across communities.

However, streaming software systems have a mixed history
within computational and experimental science. Although there
are numerous examples from both high performance comput-
ing as well as experimental and observational data, most of
these have been built as individual, bespoke infrastructures.
One facet that we believe has helped to drive this diversity of
solutions is the fact that streaming is in many cases tightly tied
to some control or decision process within the experiment or
run. Even within a single experiment, the scientist may need
to use several different types of decision processes, each with
their own time scale and impact, and this diversity of needs
leads to a diversity of solutions. For instance, data quality
issues (e.g. dirty images) may be addressed with one type of
control loop, while data validity issues (e.g. picture of the right
phenomenon) are addressed at a different scale.

Mapping streaming concepts to modern computational sci-
ence involves a sort of “M ∗ N” task of making multiple
choices in multiple dimensions to address a given scenario. As
noted above, there is a large diversity of control operations and
their timeliness requirements that are needed across streaming
scenarios (e.g. microsecond feedback times for dynamic load
balancing). Similarly, there is a significant variety of data
processing requirements so that actions are taken based on
proper information (e.g. data fusion across several image
streams to validate that a phenomenon is occurring). Finally,
there is a wide variety in the distances and between end
points, from shared memory to shared interconnect to wide
area linkages.
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Informed by our experience over many years in building
middleware for high performance applications, we contend
that efforts to build a single streaming service to meet these
needs are misguided. It is not necessary, however, to reinvent
the wheel for each new system or application. Instead, one
should think about building a generalized toolkit – a palette
of operators and high performance connections that allow one
to easily build and validate your particular streaming system.
Like a selection of pipettes, flasks, vials and assay reagents,
the high performance streaming constructor approach aims to
give the scientist tools to build and reason about the correct
streaming solutions, without trying to dictate a “one-size-fits-
all” approach. As a working example of the issues at hand, we
consider next a case based on combustion science.

II. MOTIVATION: EXPERIMENTAL COMBUSTION SCIENCE

The typical workflow in the combustion community is
highly collaborative. The collaborative structure often consists
of one or more groups of experimentalists, experimental data
analysts, modelers, computationalists, and project coordina-
tors. These teams are typically composed of groups whose
skills best complement each other for the problem at hand; they
disband and reform with different participants as new projects
arise. The scientific goals of such teams are to develop models
of the combustor physics that human beings can understand,
and often to construct physics-based engineering tools. These
collaborations currently rely on a great deal of post-hoc
processing, sneaker-net transmission of data, and grad-student
mediated transfers of information. We have been evaluating
how their existing tools and decision processes can be extended
as appropriate, by removing “rough edges” from the streaming
infrastructures and making processing decisions, control, and
data management both more natural and more flexible for the
scientists.

The first use case considers a collaborative program that
features a stereo Particle Image Velocimetery (PIV) exper-
iment. Velocities of calculated by injecting small particles
into the flow, and then the changes in positions between
closely-timed pairs of images are calculated. In a stereo
PIV measurement, the flow is simultaneously imaged with
two cameras instead of one. This allows the PIV algorithm
to compute all three velocity vector components throughout
the measurement plane. An experimental campaign usually
consists of many (tens) of measurements (each consisting of



Fig. 1. Functional categories of data stream requirements for this combustion science use case. In addition to streams directly supporting computational science
workflows, a streaming infrastructure must establish several publish/subscribe interfaces through which information about the service itself is communicated.
A discovery stream will allow clients to subscribe and receive information about interrogate each instances manifest what indexes and what data are being
managed by that instance. We envision a larger information environment where these manifests are advertised on well-known subscribable streams. As service
instances receive changes to their manifests (a new data abstraction created, a new index made available or a new entry in an existing index), those changes
will also be pushed to interested subscribers.

tens of thousands of digital photographs). Most experiments
will implement four or more cameras, such that raw data from
a 1 second measurement will occupy on the order of 100 GB
of PIV and PLIF photographs. The output of the PIV algorithm
is another 100 GB of velocity vector field data.

At this point, the data is algorithmically validated to check
that it is a physically realistic result; if not, the parameters
of the PIV algorithm must be tuned, or a higher quality
set of PIV images must be captured, after which the PIV
algorithm is re-run. In many labs, diagnostic equipment is
shared between different groups, and is passed to the next
group before the PIV algorithm is complete. If the PIV images
must be re-captured, the experimentalists may have to wait
several months for another turn with the diagnostic system.
This iterative measurement/calculation/refinement process is
repeated until it produces data of suitable quality, after which
sharing and analysis of the data may begin. After the long
validation/refinement stage discussed above, the data is ready
for analysis. The analysis stage offers an opportunity to assess
the initial design of experiments. This assessment answers
questions such as ”are we exploring a range of parameters
where the interesting physics occur?” Often, this analysis
informs the next iteration of design of experiments, which is
refined to focus on the interesting part of the parameter space.
At this point, the current dataset is deemed preliminary, and
the whole procedure is repeated to produce the final dataset.

Tracing through this example, therefore, are many oppor-
tunities for decisions and management of the streams of data

and metadata throughout the collaboration:

• immediate control time scales, where experimentalists
focus on trying to assess whether there are experimental
errors, such as mistuned laser illumination or misaligned
cameras;

• stream processing opportunities that might affect a pa-
rameter sweep during a day’s run;

• cross-stream computations for feature extraction, to see if
the evolution fits with previous runs and simulated results;

• streams between collaborators at multiple sites, requiring
shared synchronization of multiple sources of data so that
different expertise can be brought to bear.

III. A WAY FORWARD

Inspired by the commonalities we have observed among
these and other use cases, we seek to demonstrate that a flexi-
ble, expressive stream construction toolkit will provide signifi-
cant leverage to end-users, improving individual computational
and experimental data processes, making collaborations with
other scientists easier to set up and maintain, and offering great
potential for reuse of design metaphors, data, and code. Careful
attention to the nature of the operations performed on data as
well as to the structure of the control loops involved, in these
and other use cases, can provide insights crucial to the adoption
of a toolkit-based approach.

Some of the open questions in this space that we believe
should motivate future work includes:



• Interactivity is not just human-in-the-loop. How can
advanced middleware enable the delegation of control
decisions?

• What is the right balance between functionality and ease-
of-use for streaming solutions?

• Science occurs today, using existing ad hoc tooling. What
sort of change-management is needed as processes change
from a bulk processing approach to a streaming one?

• Decisions are frequently made not on timeliness of data,
but on data quality. How can quality of information
metrics achieve parity with quality of service ones?

• We need decision tree support for different accesses –

workflow, web, storage, human, delegated/automated, etc.
As the tool makers, how best to guide the science designer
towards the right approach for their end goals?

Middleware to support stream computing has great po-
tential for supporting science at the extreme scale, whether
experimental, computational, or a hybrid. By rethinking current
approaches to constructing the many overlapping types of
streams that are needed, we hope to realize next-generation
collaborative environments which support the multiple types
and timescales of decisions required.


