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Motivation

Analyzing high velocity and large volume data
streams has been one of critical challenges in various
fields including business analytics, defense, energy,
health, environment and science. Due to continuous
improvement of sensing technology, better computing
power and bigger data business models, we are in
pressing need for streaming analytics than at any given
time in the history. To cope with such high velocity data
stream analytics challenges, we are going to focus on
significantly improving streaming algorithms which read
only once with limited available memory constraints. For
basic statistics or supervised learning tasks, there are
solid prior works such as reservoir sampling, Bloom filter,
itemset mining, online adaptive learnings, margin-infused
relaxed algorithm (MIRA), etc. At the same time, for
unsupervised learning, there is a clear performance gap
between batch algorithms and streaming algorithms. In
particular, prior works have difficulties in handling high
dimensional data and non-linear relationship. On the
other hand, manifold learning has proven to outperform
on learning high dimensional and complex data in an
unsupervised way. However it demonstrates low efficiency
when applied to large volume of data. Therefore, we
propose to approximate manifold learning algorithms
such as MCFS (Multi-cluster Feature Selection) [1] and
Spectral Clustering (SC) [5] into streaming environment.

Challenges

Recognizing actionable patterns from huge volumes of
high-dimensional data is a critical topic. Manifold
learning is an effective technique designed to tackle
this problem through advanced dimensionality reduction,
and it has been widely used in a lot of the modern
applications. However, approximating batch manifold
learning algorithm in streaming environment poses
daunting challenges. First, these manifold learning
algorithms used to require building pairwise affinity
matrix (a.k.a. similarity matrix), which is O(n2) space
complexity. Second, such pairwise affinity may use
non-linear kernel, which is hard to approximate linearly
on data streams. Third, the normalization of such affinity
matrix such as random walk normalization, symmetric
normalization, Laplace normalization, etc. is inherently
batch process. Fourth, eigenvalue decomposition (EVD)

is O(n3) time complexity which is not scalable for large
data streams. Finally, the streaming manifold learning
should be adaptable to any change of the underlying data
distribution over the stream.

Our Approach

To overcome the above challenges, we extended
frequent direction approach [4] and proposed streaming
approximation of Graph Laplacian Embeddings [3][7].
The basic idea is the same to itemset mining but
extended to matrix. We also adopted chunk of the
stream to be input instead of one data point at a time.
Laplacian normalization, which is a normalization with
node degree, is one of the bottleneck in the streaming
environment, since the degree distribution is continuously
changed as new streams arrive. We derived streaming
approximation of symmetric Laplacian normalization
by maintaining the normalized dataset centroid instead
of the exact degree distribution. Also for non-linear
kernel approximation, we adopted Gaussian kernel linear
approximation method, to approach nonlinear pattern in
the dataset without sacrificing the efficiency.

We propose streaming feature selection method
(FSDS) [3] based on such streaming manifold learning
techniques, and maintained 98% accuracy (NMI, or
normalized mutual information) of the state-of-the-art
batch algorithms (MCFS, or Multi Cluster Feature
Selection) [1] or Laplacian Score [2] (Fig 1a). More
importantly, it achieves two or more order of speed
up compared with the batch algorithm that have
inherent scaling issues in larger benchmark dataset,
while our proposed algorithm can be applicable to
infinite data stream, as shown in Fig 1b. We also
utilize this manifold learning to design a streaming
spectral clustering (SSC) [7] as shown in Fig 2a
and 2b. SSC achieved almost twice better accuracy
(NMI) than other state-of-the-art streaming clustering
algorithms such as BIRCH [8] or HDDStr [6] but
demonstrated the similar scaling performance against
the other state-of-the-art streaming clustering algorithms,
which are quite encouraging results.

On-going work

We are working on further improvement of manifold
learning algorithms and other type of learning algorithms
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(a) Feature Selection on 20Newsgroup
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(b) Feature Selection Scalability

Figure 1: On 20 news group dataset, our proposed FSDS shows similar accuracy with state-of-the-art MCFS but
shows strong scalibility. Feature selection result shows better results than both streaming and batch K-means results.
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(a) Clustering on 20Newsgroup
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(b) Clustering Scalability

Figure 2: On 20 news group dataset, our proposed SSC shows almost two times better resultsthan baselines and
shows strong scalibility.

in streaming setting to address current DOEs data
challenges. We are working on the following three major
DOE application areas at the moment.

• For material science, TEM (Transmission Electron
Microscopy) at CFN (Center for Functional
Nanomaterials) generates 3GB/s raw video streams
(up to 1600 frames / sec) that are very challenging
and time consuming to manage and analyse.
To address these challenges we are going to
apply streaming manifold learning (dimensionality
reduction algorithm) that will allow us to handle and
process high velocity data streams in a manageable
fashion. For instance, a detection of a material
morphology and structural changes over video data
stream would be much easier on such manifold space
than the original video stream.

• For climate science, LES (Large Eddy
Simulation)-DNS(Direct Numerical Simulation),
one of Exascale problem, will generate large scale
of simulation output data stream. We want to
analyze the simulation output on the fly to avoid
storing whole intermediate output files. Analyzing
such simulation on the fly can also steer simulation
(parameterization) toward the interesting and
meaningful simulation study.

• For biology application, clustering analysis of
meta-genomics data can be applicable to various
levels from assembly quality improvement to
abundance profile analysis. The key challenges
are due to the scale of raw data (i.e. 1TB). An

intermediate analysis may generate much larger scale
of data, and thus streaming analytics is a viable
choice to pursue high quality analysis.

References

[1] D. Cai, C. Zhang, and X. He. Unsupervised feature
selection for multi-cluster data. SIGKDD 2010.

[2] X. He, D. Cai, and P. Niyogi. Laplacian score for
feature selection. NIPS 2005.

[3] H. Huang, S. Yoo, and S. P. Kasiviswanathan.
Unsupervised feature selection on data streams.
CIKM 2015.

[4] E. Liberty. Simple and deterministic matrix sketching.
In SIGKDD, pages 581–588, 2013.

[5] A. Ng, M. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. Advances in
Neural Information Processing Systems, 14:846–856,
2002.

[6] I. Ntoutsi, A. Zimek, T. Palpanas, P. Kröger, and
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