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Significance: The National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL) is
now providing some of the world’s brightest x-ray beams. This state-of-the-art scientific user facility offers enhanced
capabilities and higher measurement throughputs, for a wide range of applications: biology and medicine, (nano)
materials and chemical sciences, and environmental sciences. A series of imaging technologies and megapixel detectors
with kilohertz frame-rates at the NSLS-IIs beamlines generate a variety of image streams in unprecedented velocities
and volumes. A complete understanding of a complex material system often requires a suite of x-ray characterization
tools that can reveal its elemental, structural, chemical and physical properties at different length-scales and time-scales.
The flourish and continuing refinement of X-ray image techniques enable that the same sample may be studied with
different perspectives and granularities, and at different time and locations, and thereby generate a big data problem of
multiple image streams that outpaces any manual efforts and traditional data analysis practice. This data deluge can
only be addressed using automated methods, ones that are capable of processing and anlyzing image streams in real-
time and intelligent fashion. These methods would empower scientists by providing timely insights, allowing them to
steer experiments efficiently during their precious x-ray beamtime allocation.

Figure 1: Illustration of a computer-directed beamline experiment.

The x-ray scattering experiment is con-
trolled by a A.I. software that runs a deep-
learning algorithm and has access to a
stream of samples. The software automat-
ically analyzes the stream of x-ray scatter-
ing images, clustering them and organiz-
ing them so as to generate scientifically-
meaningful results. The extracted trends are
used to inform further automated measure-
ments, leading to a rich exploration of pa-
rameter spaces.

Goal: We envision be a transformative paradigm for synchrotron studies, where data acquisition and analysis are
automated, and thereby liberating scientists to focus on deep scientific questions. Towards this goal, we propose to
develop a set of intelligent automated methods, which will be the “brain” of a computed-directed beamline experiment,
as illustrated in Figure 1. These methods will be used in real-time to extract hierarchical and physically-meaningful
insights from scientific datasets collected at NSLS-II beamlines: 1) Low-level: identifying characteristic features in a
diffraction image; 2) Intermediate-level: detecting the occurrence of a physical process from a sequence of images;
and 3) High-level: learning and predicting scientifically-meaningful trends.

Approach and challenges: We propose to develop these methods based on the recent advances of Machine Learning.
Machine Learning itself is undergoing a shift, with a re-thinking from traditional, naive, neural networks, towards
deep learning models where the neural hierarchy is more rational, optimized, and informative. This has already led to
clear advances in several fields including computer vision and speech recognition, and we aim to demonstrate similarly
transformative gains with respect to scientific image streams. The core idea in deep learning is to design multiple
levels of representations corresponding to a hierarchy of features, wherein the high-level concepts and knowledge are
derived from the lower layers. This multi-level representation can capture the complex relationships hidden within rich
datasets. This hierarchical representation motif closely matches how scientific knowledge is organized, and indeed
how physical systems can be understood, as illustrated in Figure 2.

Our research objectives are to develop several deep learning algorithms for analyzing streams of x-ray images.
However, the proposed algorithms are more than a naive application of existing techniques. Most current deep-learning
algorithms focus on off-line processing, ignoring the tasks and challenges posed by real-time analysis of streaming data.
First, most existing deep-learning algorithms were developed to address the recognition problem. They cannot be used
for prediction and anticipation of the future. These requirements, however, are very crucial for real-time adaptive ex-
perimentation. Second, existing deep learning algorithms for image processing are computationally intensive, which
cannot be used to analyze every single frame generated by a NSLS-II beamline. To address this issue, the proposed
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Figure 2: Comparison of hierarchies underlying physical systems and deep learning models. Constituents orga-
nize into well-defined structures, which give rise to emergent properties, which in turn dictate functional response. By
developing a machine-learning hierarchy closely aligned with this physically-relevant hierarchy, we will enable mean-
ingful insights to be automatically extracted from scientific data at multiple levels. Similarly, deep learning recognizes
raw images represented as a collection of pixel values to an object identify by breaking the complicated mapping into
a series of simple mappings recursively, which creates a hierarchy. The input pixels are fed to the bottom visible layer,
then a series of hidden layers abstract complex features from the lower layer. Both of them demonstrate similarity in
feature extractions.

algorithms must leverage the most advanced computer architectures such as multiple GPUs and FPGAs. More im-
portantly, the calculation for each frame must be simplified, removing the analyses that have no or little benefits for
the tasks being considered. Aiming to maximize the overall performance, the proposed algorithms must determine the
optimal trade-offs between spatial analysis and temporal consideration (i.e, how much time to spend analyzing a frame
versus how many frames we can analyze per second).

Focus area – nanomaterial scientific case: Modern materials research investigates complex motifs, including multi-
component assemblies and composites, self-assembly of nanomaterials, and the influence of process history. These
trends all yield a corresponding explosion of the size of the associated experimental datasets. Multi-component materi-
als inherently require exploring multi-dimensional phase-spaces; responsive materials require also in-situ and operando
studies across a myriad of environments (temperature, pressure, solvent, humidity, etc.) and applied fields (electric,
shear, temperature-gradients, etc.). The process history of materials assembly is also crucial. Self-assembly is usu-
ally described as an energy-minimization process—that is, driven by equilibrium physics—whereas it is now being
appreciated that assembly is often strongly pathway-dependent and kinetically-trapped. All of these trends give rise to
large, complex, multi-dimensional parameter spaces. It is no longer feasible to explore these complex physical systems
manually. Instead, automation at both the hardware and software levels is crucially required. More specifically, under-
standing these multi-component and multi-scalar materials requires a hierarchy of scientific insights: at the level of the
constituents, at the level of their organizations, at the level of the emergent properties, and finally with respect to their
functional response. As a concrete example: photo-voltaic devices involve a delicate layering of different materials,
where each layer is typically multi-component, and exhibiting properties that depend strongly on the nanostructure and
microstructure. Only through precise control of material composition and processing history, can optimal solar energy
collection performance be achieved.

This white paper will address the complexity of hierarchical self-assembling nano-materials by developing a cor-
responding hierarchy of analysis methods. Importantly, these analysis results will be organized into a computational
hierarchy, where low-level analysis methods feed into higher-level insights. In this way, we will measure physical prop-
erties of material systems at all levels in the hierarchy (from constituents to properties), allowing the facile extraction
of high-level scientific insights.
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