Data Processing for the Square Kilometre Array Telescope

Streaming 2015 Workshop – Indianapolis 27th October 2015

Bojan Nikolic Astrophysics Group, Cavendish Lab University of Cambridge Email: b.nikolic@mrao.cam.ac.uk

Project Engineer & Architecture Task Leader SKA Science Data Processor Consortium

Not covered in this talk

Not covered:

- Science Objectives of the SKA
- Timelines, project programmatic and organisational structure
- Design of the receptors (aperture arrays & dishes) and their associated digital electronics/communications equipment

Also quite a few spare slides on topics covered.

Find me later if you'd like information on these

THE SQUARE KILOMETRE ARRAY TELESCOPE

What is the Square Kilometre Array (SKA)?

Mid frequency dishes and dense aperture array concept

Low frequency array and the survey telescope concept

Phased Aperture array for 40 – 650 MHz

Phased Aperture array: 3 million antennas

Scientific Context – a partner to ALMA, EELT, JWST

Credit:A. Marinkovic/XCam/ALMA(ESO/NAOJ/NRAO)

Credit: Northrop Grumman (artists impression)

Credit: ESO/L. Calçada (artists impression)

Credit: SKA Organisation (artists impression)

Scientific Context – a partner to ALMA, EELT, JWST

SCIENCE DATA PROCESSOR

66 high precision sub-mm antennas Completed in 2013 Budget ~1.5 bn USD 3 3 33 3

Credit:A Marinkovic/XCam/ALMA(ESO/NAOJ/NRAO)

JWST:

ALMA:

- 6.5m space near-infrared telescope
- Launch 2018
- Budget ~8 bn USD

Credit: Northrop Grumman (artists impression)

Credit:ESO/L. Calçada (artists impression)

Square Kilometre Array

- Two next generation low-frequency arrays
- Completion ~2022 for Phase 1
- Budget 0.65 bn EUR for Phase 1

Construction

Credit: SKA Organisation (artists impression)

What will the Square Kilometre Array (SKA) be?

Radio Telescope	Makes Images of the Sky at radio (5m-3cm) wavelengths
	~100 more sensitive than current telescopes
	Complements ALMA, JWST (successor to Hubble), and E-ELT
Currently in Design	Construction begins 2018
	Full operations expected at end 2022
	Significant funds already committed by participating countries
Major Engineering Project	Two remote desert sites
	>100k receiving elements
Major ICT Project	Subject of this talk!

SCIENCE DATA PROCESSOR CONTEXT

The SKA Observatory – Phase 1 : "SKA₁"

People, buildings, roads, ground works, communications, electrical power, maintenance, transportation, catering at desert sites....

Data Processing: general computing

Digital Signal Processing: FPGA + (maybe) ASICS & GPUs

Receptors: Aperture Arrays and Dishes

SKA Context Diagram

COMPUTING IS THE MAJOR PART OF SKA TELESCOPES <u>BY DESIGN</u>

Role of computing/processing in SKA:

Large "D" – vs – Large "N"

GBT 100-m diameter telescope

SKA LFAA prototype array

No 1 aim: collect as many photons as possible No 2 aim: maximum separation of collectors -> achieve high angular resolution

Basics of Interferometry – how signals are combined

• Visibility:

$$V(\mathbf{B}) = E_1 E_2^*$$

= $I(s) \exp(i \omega \mathbf{B} \cdot s/c)$

- Resolution determined by maximum baseline $\theta_{max} \sim \lambda / B_{max}$
- Field of View (FoV) determined by the size of each dish $\theta_{\text{dish}} \thicksim \lambda \: / \: D$

SKA SCIENCE DATA PROCESSOR OVERVIEW

Noisy Data	Very large data volumes, all data are processed in each observation
Sparse and Incomplete Sampling	Corrected for by deconvolution using iterative algorithms (~10 iterations)
Corrupted Measurements	Corrected by jointly solving for the sky brightness distribution and for the slowly changing corruption effects using iterative algorithms
Multiple dimensions of data parallelism	Loosely coupled tasks, large degree of parallelism is inherently available

SDP Top-level Components & Key Performance Requirements -- SKA Phase 1

S

Ρ

Telescope Manager SCIENCE DATA PROCESSOR Science Data Processor **SDP Local Monitor & Control** Data Processor Delivery Long Term System Archive High Performance Data Distribution С ~100 PetaFLOPS High Volume & ~100 PetaByte/year High Growth Rate from Cape Town & **Data Intensive** Perth to rest of ~100 PetaByte/year World ~100 PetaBytes/observation (job) Data Discovery Infrequent Access Partially real-time Visualisation of 100k by 100k by ~10s response time ~few times/year max 100k voxel cubes Tera Partially iterative Byte/s ~10 iterations/job (~3 hour)

Regional Centres Q Astronomers

SDF

The challenges?

- Power efficiency
 - Funding agencies more tolerant of cap-ex then power op-ex
- Scalability of software
 - Hardware roadmaps indicate h/w will reach requirements
 - Demonstrated software scaling is only <u>1/1000th</u> of requirement
- Project risks
 - Inevitable significant interaction between software engineers and idiosyncratic domain specific knowledge
 - Software project
- Extensibility, system scalability, maintainability
 - SKA1 is the first "milestone" expecting significant expansion in the 2020s
 - 50yr observatory lifetime

Relevance of Streaming 2015 technologies

- Multiple Loosely Coupled Task Yes
 - Within each iteration & between observation
- BSP Yes: a few (~10) iterations
 - Synchronisation at end of each iteration
 - Relatively small synchronised state (sky model + calibration)
- Workflow yes
- Streaming yes (but not interactive)
- Steering yes (feed back of calibration solutions to the receptors)
- Data Driven yes & yes
 - In the dataflow execution model sense (i.e., not demand-driven)
 - In the programming model sense (i.e., a declarative description of how to reduce the data are attached to the data themselves)

- Detecting transient phenomena
 - Need to generate alerts latest about ~10s after receiving the data
- Impractical to store data for later processing
 - Data rate in ~ 1 TeraByte/s
 - -> "stream" but with data chunked by observation

SCIENCE DATA PROCESSOR

SKA Science Data Processor

ARCHITECTURE HIGHLIGHTS

Programming model

- Hybrid programming model:
 - Dataflow at **coarse-grained** level:
 - About 1 million tasks/s max over the whole processor (-> ~10s – 100s milli second tasks), consuming ~100 MegaByte each
 - **Static scheduling** at coarsest-level (down to "data-island")
 - Static partitioning of the large-volume input data
 - **Dynamic scheduling** within data island:
 - Failure recovery, dynamic load-balancing
 - Data driven (all data will be used)
 - Shared memory model at **fine-grained** level e.g.: threads/OpenMP/SIMT-like
 - ~100s active threads per shared memory space
 - Allows manageable working memory size, computational efficiency

- Shared memory model <u>essential</u> at finegrain to control working memory requirements
- Dataflow (but all of these are still to be proven in our application):
 - Load-balancing
 - Minimisation of data movement
 - Handling failure
 - Adaptability to different system architectures

- Classify arcs in the dataflow graph as precious or non-precious
- Precious data are treated in usual way failover, restart, RAID, etc.
- Non-precious data can be <u>dropped</u>:
 - If they are input to a map-type operation then no output
 - If they are input to a reduction then result is computed without them
- <u>Stragglers</u> outputting non-precious data can be terminated after a relatively short time-out

The non-precious data concept - illustration

Data Ingress and Interconnect Concept

From SKA-SDP <u>Phase 1</u> perspective:

- Probably all of the paradigms and ideas we <u>need</u> are available
- Most technologies required for implementing these are available but <u>scattered</u> between many products and platforms
- Need to move towards integrating these together and stable APIs

