
Streaming, Storing, and Sharing Big Data

 for Light Source Science

Justin M Wozniak <wozniak@mcs.anl.gov>

Kyle Chard, Ben Blaiszik, Michael Wilde, Ian Foster

Argonne National Laboratory

At STREAM 2015

Oct. 27, 2015

Chicago

2

Advanced Photon Source (APS)

Supercomputers

Advanced Photon Source (APS)

 Moves electrons at electrons at >99.999999% of the speed of light.

 Magnets bend electron trajectories, producing x-rays, highly focused onto
a small area

 X-rays strike targets in 35 different laboratories – each a lead-lined,
radiation-proof experiment station

 Scattering detectors produce images containing experimental results

3

Distance from Top Light Sources to

Top Supercomputer Centers

Light Source Distance to Top10 Machine

SIRIUS, Brazil > 5000Km, TACC, USA

BAP, China 2000Km, Tihane-2, China

MAX, Sweden 800Km, Jülich Germany

PETRA III, Germany 500Km, Jülich Germany

ESRF, France 400Km, Lugano, Switzerland

Spring 8, Japan 100Km, K-Machine, Kobe, Japan

APS, IL, USA ~1Km, ALCF & MCS*, ANL, USA

*ANL Computing Divisions
ALCF: Argonne Leadership Computing Facility
MCS: Mathematics & Computer Science

Proximity means
we can closely
couple computing
in novel ways

Terabits/s in the
near future

Petabits/s
are possible

ALCF

APS

MCS

TALK OVERVIEW

Goals and tools

Goals

 Automated data capture and analysis pipelines
To boost productivity during beamtime

 Integration with high-performance computers
To integrate experiment and simulation

 Effective use of large data sets
Maximize utility of high-resolution, high-frame-rate detectors
and automation

 High interactivity and programmability
Improve the overall scientific process

7

Tools

 Swift
Workflow language with very high scalability

 Globus Catalog
Annotation system for distributed data

 Globus Transfer
Parallel data movement system

 NeXpy/NXFS
GUI with connectivity to Catalog and Python remote object
services

8

SWIFT

High performance workflows

Goals of the Swift language

Swift was designed to handle many aspects of the computing campaign

 Ability to integrate many application components into a new workflow
application

 Data structures for complex data organization

 Portability- separate site-specific configuration from application logic

 Logging, provenance, and
plotting features

 Today, we will focus on running scripted
applications on large streaming data sets

10

THINK RUN

COLLECT IMPROVE

Swift programming model:

 All progress driven by concurrent dataflow

 A() and B() implemented in native code

 A() and B()run in concurrently in different processes

 r is computed when they are both done

 This parallelism is automatic

 Works recursively throughout the program’s call graph

11

(int r) myproc (int i, int j)

{

 int x = A(i);

 int y = B(j);

 r = x + y;

}

Swift programming model

 Data types
int i = 4;

int A[];

string s = "hello world";

 Mapped data types
file image<"snapshot.jpg">;

 Structured data
image A[]<array_mapper…>;

type protein {

 file pdb;

 file docking_pocket;

}

protein p<ext; exec=protein.map>;

12

 Conventional expressions
if (x == 3) {

 y = x+2;

 s = strcat("y: ", y);

}

 Parallel loops
foreach f,i in A {

 B[i] = convert(A[i]);

}

 Data flow
merge(analyze(B[0], B[1]),

 analyze(B[2], B[3]));

• Swift: A language for distributed parallel scripting. J. Parallel Computing, 2011

Swift/T: Distributed dataflow processing

13

Had this:
(Swift/K)

For extreme scale,
we need this:

(Swift/T)

• Armstrong et al. Compiler techniques for massively scalable implicit
task parallelism. Proc. SC 2014.

• Wozniak et al. Swift/T: Scalable data flow programming for
distributed-memory task-parallel applications . Proc. CCGrid, 2013.

 Write site-independent scripts

 Automatic parallelization and data movement

 Run native code, script fragments as applications

14

Swift
control
process

Swift
control
process

Swift/T
control
process

Swift worker
process

C
C

++

Fortr
an

C
C

++

Fortr
an

C C++ Fortran

MPI

Swift/T worker
64K cores of Blue Waters
2 billion Python tasks
14 million Pythons/s

Swift/T: Enabling high-performance workflows

• Wozniak et al. Interlanguage parallel
scripting for distributed-memory scientific
computing. Proc. WORKS 2015.

Application
Dataflow,
annotations

Features for Big Data analysis

15

• Location-aware scheduling
User and runtime coordinate data/task
locations

• Collective I/O
User and runtime coordinate data/task
locations

Runtime
Hard/soft locations

Distributed data

Application
I/O hook

Runtime
MPI-IO transfers

Distributed data

Parallel FS

• F. Duro et al. Exploiting data locality in
Swift/T workflows using Hercules.
Proc. NESUS Workshop, 2014.

• Wozniak et al. Big data staging with
MPI-IO for interactive X-ray science.
Proc. Big Data Computing, 2014.

Next steps for streaming analysis

16

• Integrated streaming solution
Combine parallel transfers and stages with
distributed in-memory caches

• Parallel, hierarchical data ingest
Implement fast bulk transfers from
experiment to variably-sized ad hoc caches

• Retain high programmability
Provide familiar programming interfaces

Distributed stage (RAM)

Application
Analysis tasks

Runtime
MPI-IO transfers

Distributed data

APS
Detector

Parallel Transfers

Bulk Transfers

H
P

C

D
ata Facility

Abstract, extensible MapReduce in Swift

main {

 file d[];

 int N = string2int(argv("N"));

 // Map phase

 foreach i in [0:N-1] {

 file a = find_file(i);

 d[i] = map_function(a);

 }

 // Reduce phase

 file final <"final.data"> = merge(d, 0, tasks-1);

}

(file o) merge(file d[], int start, int stop) {

 if (stop-start == 1) {

 // Base case: merge pair

 o = merge_pair(d[start], d[stop]);

 } else {

 // Merge pair of recursive calls

 n = stop-start;

 s = n % 2;

 o = merge_pair(merge(d, start, start+s),

 merge(d, start+s+1, stop));

 }}

17

• User needs to implement

map_function() and merge()

• These may be implemented

in native code, Python, etc.

• Could add annotations

• Could add additional custom

application logic

Hercules/Swift

 Want to run arbitrary workflows over distributed filesystems that expose data
locations: Hercules is based on Memcached

– Data analytics, post-processing

– Exceed the generality of MapReduce without losing data optimizations

 Can optionally send a Swift task to a particular location with simple syntax:

 Can obtain ranks from hostnames:
 int rank = hostmapOneWorkerRank("my.host.edu");

 Can now specify location constraints:
 location L = location(rank, HARD|SOFT, RANK|NODE);

 Much more to be done here!

18

foreach i in [0:N-1] {

 location L = locationFromRank(i);

 @location=L f(i);

}

GLOBUS CATALOG

Annotation system for distributed scientific data

Catalog Goals

 Group data based on use, not location

– Logical grouping to organize, reorganize, search, and describe usage

 Annotate with characteristics that reflect content …

– Capture as much existing information as possible

– Share datasets for collaboration- user access control

 Operate on datasets as units

 Research data lifecycle is continuous and iterative:

– Metadata is created (automatically and manually) throughout

– Data provenance and linkage between raw and derived data

 Most often:

– Data is grouped and acted on collectively

• Views (slices) may change depending on activity

– Data and metadata changes over time

– Access permissions are important (and also change)

20

Catalog Data Model

 Catalog: a hosted resource
that enables the grouping
of related datasets

 Dataset: a virtual
collection of (schema-less)
metadata and distributed
data elements

 Annotation: a piece of
metadata that exists
within the context of a
dataset or data member

– Specified as key-value
pairs

 Member: a specific data
item (file, directory)
associated with a dataset

 21

Web interface for annotations

22

GLOBUS TRANSFER

High-speed wide area data transfers

Globus Transfer

24

Personal Resources Supercomputers and
Campus Clusters

Block/Drive Storage Instance Storage Object Storage

Transfer

Synchronize

Share

InCommon/
CILogon

MyProxy
OAuth

OpenID

G
lo

b
u

s N
exu

s

Globus Connect Globus Connect Globus Connect Globus Connect

Globus Endpoints

Globus Transfer

 Reliable, secure, high-performance file transfer and synchronization

 “Fire-and-forget” transfers

 Automatic fault recovery

 Seamless security integration

 10x faster than SCP

25

Data

Source

Data

Destination

User initiates

transfer

request

1

Globus moves

and syncs

files

2

Globus notifies

user

3

Globus Transfer: CHESS to ALCF

 K. Dedrick. Argonne group sets record for largest X-ray dataset ever
at CHESS. News at CHESS, Oct. 2015.

 26

The Petrel research data service

 High-speed, high-capacity data store

 Seamless integration with data fabric

 Project-focused, self-managed

27

1.7 PB GPFS store

32 I/O nodes with GridFTP

Other sites,
facilities,
colleagues

100 TB allocations
User managed access

globus.org

NEXPY / NXFS

Rapid and remote structured data visualization

 A toolbox for manipulating and visualizing
arbitrary NeXus data of any size

 A scripting engine for GUI applications

 A portal to Globus Catalog

 A demonstration of the value of combining:

• a flexible data model

• a powerful scripting language

29

http://nexpy.github.io/nexpy
$ pip install nexpy

+ =

NeXpy: A Python Toolbox for Big Data

Mullite

30

NeXpy in the Pipeline

 Use of NeXpy throughout the
analysis pipeline

31

The NeXus File Service (NXFS)

32

• Wozniak et al. Big data remote access interfaces for
light source science. Proc. Big Data Computing, 2015.

NXFS Performance

 Faster than application-agnostic remote filesystem technologies
• Compared Pyro to Chirp and SSHFS from inside ANL (L) and AWS EC2 (W)

 Plus ability to invoke remote methods!

33

• File open (10-1s) • Metadata read (10-2s) • Pixel read (1s)

Operation and Time Scale

CASE STUDY: NF-HEDM

Near Field – High Energy Diffraction Microscopy

Collaboration with APS Sector 1: Jon Almer, Hemant Sharma, et al.

Determining the crystal structure

of metals non-destructively

Ni-based Superalloy

Confidence Index Orientation Map Tomo reconstruction Confidence Index

Gold calibrant wire

NF-HEDM

36

High-Energy Diffraction Microscopy

 Near-field high-energy diffraction microscopy discovers metal grain
shapes and structures

 The experimental results are greatly improved with the application of
Swift-based cluster computing (RED indicates higher confidence in results)

37

October 2013: Without Swift
April 2014: With Swift

Big picture: Task-based HPC on Big Data

 Existing C code assembled into scalable HPC program with Swift/T

 Problem: Each task must consumes ~500 MB of experimental data

 Runs on the Blue Gene/Q

 Relevant to Big Data – HPC convergence

 Could use Swift/T data locality annotations for high-level, data
location-aware programming

Intended use of broadcast operation

 Grain orientation optimization workflow runs on BG/Q once data is there

 Each task needs to read all input from a given dataset

 Desire to use MPI-IO before running tasks

Big Data Staging with MPI-IO

 Solution: Broadcast experimental data on HPC system with MPI-IO

 Tasks consume data normally from node-local storage

Scalability result: End-to-end

 21 GB/s

101 GB/s

8K cores

Scalability result: Stage+Write

42

 134 GB/s

8K cores

• This plot breaks I/O hook into 1) stage+write and 2) read phases
• Read phase is node-local: consistently 10.8 ±0.1 s

NF-HEDM: Conclusions

 Blue Gene/Q can be used for big data problems and a many-task
programming model

– Just broadcast the data to compute nodes first with MPI-IO

 The Swift I/O hook enables efficient I/O in a many-task model

– Reduces I/O time by factor of 4.7!

 Connecting HPC to a real-time experiment saved an experiment by
detecting a loose cable

 Code is now being reused by about 5 different groups

– Now must accommodate extra users on HPC resources!

Summary

 Described Big Data + HPC application: X-ray crystallography

 Described four relevant tools:

 Swift

 Globus Catalog

 Described path forward, integrating tools for streaming workflows

 Thanks to the organizers

 Thanks to our application collaborators

 Questions?

44

• http://swift-lang.org

 Globus Transfer

 NeXpy/NXFS

