
Streaming, Storing, and Sharing Big Data

 for Light Source Science

Justin M Wozniak <wozniak@mcs.anl.gov>

Kyle Chard, Ben Blaiszik, Michael Wilde, Ian Foster

Argonne National Laboratory

At STREAM 2015

Oct. 27, 2015

Chicago

2

Advanced Photon Source (APS)

Supercomputers

Advanced Photon Source (APS)

 Moves electrons at electrons at >99.999999% of the speed of light.

 Magnets bend electron trajectories, producing x-rays, highly focused onto
a small area

 X-rays strike targets in 35 different laboratories – each a lead-lined,
radiation-proof experiment station

 Scattering detectors produce images containing experimental results

3

Distance from Top Light Sources to

Top Supercomputer Centers

Light Source Distance to Top10 Machine

SIRIUS, Brazil > 5000Km, TACC, USA

BAP, China 2000Km, Tihane-2, China

MAX, Sweden 800Km, Jülich Germany

PETRA III, Germany 500Km, Jülich Germany

ESRF, France 400Km, Lugano, Switzerland

Spring 8, Japan 100Km, K-Machine, Kobe, Japan

APS, IL, USA ~1Km, ALCF & MCS*, ANL, USA

*ANL Computing Divisions
ALCF: Argonne Leadership Computing Facility
MCS: Mathematics & Computer Science

Proximity means
we can closely
couple computing
in novel ways

Terabits/s in the
near future

Petabits/s
are possible

ALCF

APS

MCS

TALK OVERVIEW

Goals and tools

Goals

 Automated data capture and analysis pipelines
To boost productivity during beamtime

 Integration with high-performance computers
To integrate experiment and simulation

 Effective use of large data sets
Maximize utility of high-resolution, high-frame-rate detectors
and automation

 High interactivity and programmability
Improve the overall scientific process

7

Tools

 Swift
Workflow language with very high scalability

 Globus Catalog
Annotation system for distributed data

 Globus Transfer
Parallel data movement system

 NeXpy/NXFS
GUI with connectivity to Catalog and Python remote object
services

8

SWIFT

High performance workflows

Goals of the Swift language

Swift was designed to handle many aspects of the computing campaign

 Ability to integrate many application components into a new workflow
application

 Data structures for complex data organization

 Portability- separate site-specific configuration from application logic

 Logging, provenance, and
plotting features

 Today, we will focus on running scripted
applications on large streaming data sets

10

THINK RUN

COLLECT IMPROVE

Swift programming model:

 All progress driven by concurrent dataflow

 A() and B() implemented in native code

 A() and B()run in concurrently in different processes

 r is computed when they are both done

 This parallelism is automatic

 Works recursively throughout the program’s call graph

11

(int r) myproc (int i, int j)

{

 int x = A(i);

 int y = B(j);

 r = x + y;

}

Swift programming model

 Data types
int i = 4;

int A[];

string s = "hello world";

 Mapped data types
file image<"snapshot.jpg">;

 Structured data
image A[]<array_mapper…>;

type protein {

 file pdb;

 file docking_pocket;

}

protein p<ext; exec=protein.map>;

12

 Conventional expressions
if (x == 3) {

 y = x+2;

 s = strcat("y: ", y);

}

 Parallel loops
foreach f,i in A {

 B[i] = convert(A[i]);

}

 Data flow
merge(analyze(B[0], B[1]),

 analyze(B[2], B[3]));

• Swift: A language for distributed parallel scripting. J. Parallel Computing, 2011

Swift/T: Distributed dataflow processing

13

Had this:
(Swift/K)

For extreme scale,
we need this:

(Swift/T)

• Armstrong et al. Compiler techniques for massively scalable implicit
task parallelism. Proc. SC 2014.

• Wozniak et al. Swift/T: Scalable data flow programming for
distributed-memory task-parallel applications . Proc. CCGrid, 2013.

 Write site-independent scripts

 Automatic parallelization and data movement

 Run native code, script fragments as applications

14

Swift
control
process

Swift
control
process

Swift/T
control
process

Swift worker
process

C
C

++

Fortr
an

C
C

++

Fortr
an

C C++ Fortran

MPI

Swift/T worker
64K cores of Blue Waters
2 billion Python tasks
14 million Pythons/s

Swift/T: Enabling high-performance workflows

• Wozniak et al. Interlanguage parallel
scripting for distributed-memory scientific
computing. Proc. WORKS 2015.

Application
Dataflow,
annotations

Features for Big Data analysis

15

• Location-aware scheduling
User and runtime coordinate data/task
locations

• Collective I/O
User and runtime coordinate data/task
locations

Runtime
Hard/soft locations

Distributed data

Application
I/O hook

Runtime
MPI-IO transfers

Distributed data

Parallel FS

• F. Duro et al. Exploiting data locality in
Swift/T workflows using Hercules.
Proc. NESUS Workshop, 2014.

• Wozniak et al. Big data staging with
MPI-IO for interactive X-ray science.
Proc. Big Data Computing, 2014.

Next steps for streaming analysis

16

• Integrated streaming solution
Combine parallel transfers and stages with
distributed in-memory caches

• Parallel, hierarchical data ingest
Implement fast bulk transfers from
experiment to variably-sized ad hoc caches

• Retain high programmability
Provide familiar programming interfaces

Distributed stage (RAM)

Application
Analysis tasks

Runtime
MPI-IO transfers

Distributed data

APS
Detector

Parallel Transfers

Bulk Transfers

H
P

C

D
ata Facility

Abstract, extensible MapReduce in Swift

main {

 file d[];

 int N = string2int(argv("N"));

 // Map phase

 foreach i in [0:N-1] {

 file a = find_file(i);

 d[i] = map_function(a);

 }

 // Reduce phase

 file final <"final.data"> = merge(d, 0, tasks-1);

}

(file o) merge(file d[], int start, int stop) {

 if (stop-start == 1) {

 // Base case: merge pair

 o = merge_pair(d[start], d[stop]);

 } else {

 // Merge pair of recursive calls

 n = stop-start;

 s = n % 2;

 o = merge_pair(merge(d, start, start+s),

 merge(d, start+s+1, stop));

 }}

17

• User needs to implement

map_function() and merge()

• These may be implemented

in native code, Python, etc.

• Could add annotations

• Could add additional custom

application logic

Hercules/Swift

 Want to run arbitrary workflows over distributed filesystems that expose data
locations: Hercules is based on Memcached

– Data analytics, post-processing

– Exceed the generality of MapReduce without losing data optimizations

 Can optionally send a Swift task to a particular location with simple syntax:

 Can obtain ranks from hostnames:
 int rank = hostmapOneWorkerRank("my.host.edu");

 Can now specify location constraints:
 location L = location(rank, HARD|SOFT, RANK|NODE);

 Much more to be done here!

18

foreach i in [0:N-1] {

 location L = locationFromRank(i);

 @location=L f(i);

}

GLOBUS CATALOG

Annotation system for distributed scientific data

Catalog Goals

 Group data based on use, not location

– Logical grouping to organize, reorganize, search, and describe usage

 Annotate with characteristics that reflect content …

– Capture as much existing information as possible

– Share datasets for collaboration- user access control

 Operate on datasets as units

 Research data lifecycle is continuous and iterative:

– Metadata is created (automatically and manually) throughout

– Data provenance and linkage between raw and derived data

 Most often:

– Data is grouped and acted on collectively

• Views (slices) may change depending on activity

– Data and metadata changes over time

– Access permissions are important (and also change)

20

Catalog Data Model

 Catalog: a hosted resource
that enables the grouping
of related datasets

 Dataset: a virtual
collection of (schema-less)
metadata and distributed
data elements

 Annotation: a piece of
metadata that exists
within the context of a
dataset or data member

– Specified as key-value
pairs

 Member: a specific data
item (file, directory)
associated with a dataset

 21

Web interface for annotations

22

GLOBUS TRANSFER

High-speed wide area data transfers

Globus Transfer

24

Personal Resources Supercomputers and
Campus Clusters

Block/Drive Storage Instance Storage Object Storage

Transfer

Synchronize

Share

InCommon/
CILogon

MyProxy
OAuth

OpenID

G
lo

b
u

s N
exu

s

Globus Connect Globus Connect Globus Connect Globus Connect

Globus Endpoints

Globus Transfer

 Reliable, secure, high-performance file transfer and synchronization

 “Fire-and-forget” transfers

 Automatic fault recovery

 Seamless security integration

 10x faster than SCP

25

Data

Source

Data

Destination

User initiates

transfer

request

1

Globus moves

and syncs

files

2

Globus notifies

user

3

Globus Transfer: CHESS to ALCF

 K. Dedrick. Argonne group sets record for largest X-ray dataset ever
at CHESS. News at CHESS, Oct. 2015.

 26

The Petrel research data service

 High-speed, high-capacity data store

 Seamless integration with data fabric

 Project-focused, self-managed

27

1.7 PB GPFS store

32 I/O nodes with GridFTP

Other sites,
facilities,
colleagues

100 TB allocations
User managed access

globus.org

NEXPY / NXFS

Rapid and remote structured data visualization

 A toolbox for manipulating and visualizing
arbitrary NeXus data of any size

 A scripting engine for GUI applications

 A portal to Globus Catalog

 A demonstration of the value of combining:

• a flexible data model

• a powerful scripting language

29

http://nexpy.github.io/nexpy
$ pip install nexpy

+ =

NeXpy: A Python Toolbox for Big Data

Mullite

30

NeXpy in the Pipeline

 Use of NeXpy throughout the
analysis pipeline

31

The NeXus File Service (NXFS)

32

• Wozniak et al. Big data remote access interfaces for
light source science. Proc. Big Data Computing, 2015.

NXFS Performance

 Faster than application-agnostic remote filesystem technologies
• Compared Pyro to Chirp and SSHFS from inside ANL (L) and AWS EC2 (W)

 Plus ability to invoke remote methods!

33

• File open (10-1s) • Metadata read (10-2s) • Pixel read (1s)

Operation and Time Scale

CASE STUDY: NF-HEDM

Near Field – High Energy Diffraction Microscopy

Collaboration with APS Sector 1: Jon Almer, Hemant Sharma, et al.

Determining the crystal structure

of metals non-destructively

Ni-based Superalloy

Confidence Index Orientation Map Tomo reconstruction Confidence Index

Gold calibrant wire

NF-HEDM

36

High-Energy Diffraction Microscopy

 Near-field high-energy diffraction microscopy discovers metal grain
shapes and structures

 The experimental results are greatly improved with the application of
Swift-based cluster computing (RED indicates higher confidence in results)

37

October 2013: Without Swift
April 2014: With Swift

Big picture: Task-based HPC on Big Data

 Existing C code assembled into scalable HPC program with Swift/T

 Problem: Each task must consumes ~500 MB of experimental data

 Runs on the Blue Gene/Q

 Relevant to Big Data – HPC convergence

 Could use Swift/T data locality annotations for high-level, data
location-aware programming

Intended use of broadcast operation

 Grain orientation optimization workflow runs on BG/Q once data is there

 Each task needs to read all input from a given dataset

 Desire to use MPI-IO before running tasks

Big Data Staging with MPI-IO

 Solution: Broadcast experimental data on HPC system with MPI-IO

 Tasks consume data normally from node-local storage

Scalability result: End-to-end

 21 GB/s

101 GB/s

8K cores

Scalability result: Stage+Write

42

 134 GB/s

8K cores

• This plot breaks I/O hook into 1) stage+write and 2) read phases
• Read phase is node-local: consistently 10.8 ±0.1 s

NF-HEDM: Conclusions

 Blue Gene/Q can be used for big data problems and a many-task
programming model

– Just broadcast the data to compute nodes first with MPI-IO

 The Swift I/O hook enables efficient I/O in a many-task model

– Reduces I/O time by factor of 4.7!

 Connecting HPC to a real-time experiment saved an experiment by
detecting a loose cable

 Code is now being reused by about 5 different groups

– Now must accommodate extra users on HPC resources!

Summary

 Described Big Data + HPC application: X-ray crystallography

 Described four relevant tools:

 Swift

 Globus Catalog

 Described path forward, integrating tools for streaming workflows

 Thanks to the organizers

 Thanks to our application collaborators

 Questions?

44

• http://swift-lang.org

 Globus Transfer

 NeXpy/NXFS

