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Advanced Photon Source (APS) 

Supercomputers 



Advanced Photon Source (APS) 

 Moves electrons at electrons at >99.999999% of the speed of light. 

 Magnets bend electron trajectories, producing x-rays, highly focused onto 
a small area 

 X-rays strike targets in 35 different laboratories – each a lead-lined,  
radiation-proof experiment station 

 Scattering detectors produce images containing experimental results 
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Distance from Top Light Sources to  

Top Supercomputer Centers 

Light Source Distance to Top10 Machine 

SIRIUS, Brazil > 5000Km, TACC, USA 

BAP, China 2000Km, Tihane-2, China 

MAX, Sweden 800Km, Jülich Germany 

PETRA III, Germany 500Km, Jülich Germany 

ESRF, France 400Km, Lugano, Switzerland 

Spring 8, Japan 100Km, K-Machine, Kobe, Japan 

APS, IL, USA ~1Km, ALCF & MCS*, ANL, USA 

*ANL Computing Divisions 
ALCF: Argonne Leadership Computing Facility 
MCS: Mathematics & Computer Science 
 



 
 
Proximity means  
we can closely 
couple computing 
in novel ways 
 
 
Terabits/s in the  
near future 
 
Petabits/s  
are possible 
 
 

ALCF 
 

APS 

MCS 



TALK OVERVIEW 

Goals and tools 



Goals 

 

 Automated data capture and analysis pipelines 
To boost productivity during beamtime  

 Integration with high-performance computers 
To integrate experiment and simulation 

 Effective use of large data sets 
Maximize utility of high-resolution, high-frame-rate detectors 
and automation 

 High interactivity and programmability 
Improve the overall scientific process  
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Tools 

 

 Swift 
Workflow language with very high scalability 

 Globus Catalog 
Annotation system for distributed data 

 Globus Transfer 
Parallel data movement system 

 NeXpy/NXFS 
GUI with connectivity to Catalog and Python remote object 
services 
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SWIFT 

High performance workflows 



Goals of the Swift language 

 

Swift was designed to handle many aspects of the computing campaign 

 

 Ability to integrate many application components into a new workflow 
application 

 Data structures for complex data organization 

 Portability- separate site-specific configuration from application logic 

 Logging, provenance, and  
plotting features 

 

 Today, we will focus on running scripted  
applications on large streaming data sets  
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THINK RUN 

COLLECT IMPROVE 



Swift programming model: 

   All progress driven by concurrent dataflow 

 

 A() and B() implemented in native code 

 A() and B()run in concurrently in different processes 

 r is computed when they are both done 

 

 This parallelism is automatic 

 Works recursively throughout the program’s call graph 
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(int r) myproc (int i, int j) 

{ 

    int x = A(i);     

    int y = B(j); 

    r = x + y; 

} 

 



Swift programming model 

 Data types 
int    i = 4; 

int    A[]; 

string s = "hello world"; 

 

 Mapped data types 
file image<"snapshot.jpg">; 

 

 Structured data 
image  A[]<array_mapper…>; 

type protein { 

 file pdb; 

 file docking_pocket; 

} 

protein p<ext; exec=protein.map>; 
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 Conventional expressions 
if (x == 3) {  

    y = x+2; 

    s = strcat("y: ", y); 

} 

 

 Parallel loops 
foreach f,i in A { 

    B[i] = convert(A[i]); 

} 

 

 Data flow 
merge(analyze(B[0], B[1]), 

      analyze(B[2], B[3])); 

 

• Swift: A language for distributed parallel scripting.  J. Parallel Computing, 2011 



Swift/T: Distributed dataflow processing 
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Had this: 
(Swift/K) 

For extreme scale,  
we need this: 

(Swift/T) 

• Armstrong et al. Compiler techniques for massively scalable implicit 
task parallelism.  Proc. SC 2014. 

• Wozniak et al. Swift/T: Scalable data flow programming for 
distributed-memory task-parallel applications . Proc. CCGrid, 2013.  



 Write site-independent scripts  

 Automatic parallelization and data movement 

 Run native code, script fragments as applications 
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Swift 
control 
process 

Swift 
control 
process 

Swift/T 
control 
process 

Swift worker 
process 

 
 
 
 
 
 

C 
C

++ 

Fortr
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C 
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++ 

Fortr
an 

 
 
 
 
 
 

C C++ Fortran 

MPI 

Swift/T worker 
64K cores of Blue Waters 
2 billion Python tasks 
14 million Pythons/s 

Swift/T: Enabling high-performance workflows 

• Wozniak et al. Interlanguage parallel 
scripting for distributed-memory scientific 
computing.  Proc. WORKS 2015.  



Application 
Dataflow,  
annotations 

Features for Big Data analysis 
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• Location-aware scheduling 
User and runtime coordinate data/task 
locations 

• Collective I/O 
User and runtime coordinate data/task 
locations 

Runtime 
Hard/soft locations 

Distributed data 

Application 
I/O hook 

Runtime 
MPI-IO transfers 

Distributed data 

Parallel FS 

• F. Duro et al.  Exploiting data locality in 
Swift/T workflows using Hercules. 
Proc. NESUS Workshop, 2014.  

• Wozniak et al. Big data staging with 
MPI-IO for interactive X-ray science. 
Proc. Big Data Computing, 2014.  



Next steps for streaming analysis 
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• Integrated streaming solution 
Combine parallel transfers and stages with 
distributed in-memory caches 
 

• Parallel, hierarchical data ingest 
Implement fast bulk transfers from 
experiment to variably-sized ad hoc caches 
 

• Retain high programmability 
Provide familiar programming interfaces 

Distributed stage (RAM) 

Application 
Analysis tasks 

Runtime 
MPI-IO transfers 

Distributed data 

APS 
Detector 

Parallel Transfers 

Bulk Transfers 

H
P

C
 

D
ata Facility 



Abstract, extensible MapReduce in Swift 

main { 

  file d[]; 

  int N = string2int(argv("N")); 

  // Map phase 

  foreach i in [0:N-1] { 

    file a = find_file(i); 

    d[i] = map_function(a); 

  } 

  // Reduce phase 

  file final <"final.data"> = merge(d, 0, tasks-1); 

} 

 

(file o) merge(file d[], int start, int stop) { 

  if (stop-start == 1) { 

    // Base case: merge pair 

    o = merge_pair(d[start], d[stop]); 

  } else { 

    // Merge pair of recursive calls 

    n = stop-start; 

    s = n % 2; 

    o = merge_pair(merge(d, start,     start+s), 

                   merge(d, start+s+1, stop)); 

  }} 
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• User needs to implement  

map_function() and merge() 

• These may be implemented  

in native code, Python, etc. 

• Could add annotations 

• Could add additional custom  

application logic 

 



Hercules/Swift 

 Want to run arbitrary workflows over distributed filesystems that expose data 
locations: Hercules is based on Memcached 

– Data analytics, post-processing 

– Exceed the generality of MapReduce without losing data optimizations 
 

 Can optionally send a Swift task to a particular location with simple syntax: 
 

 

 

 

 Can obtain ranks from hostnames:  
     int rank = hostmapOneWorkerRank("my.host.edu"); 

 Can now specify location constraints: 
     location L = location(rank, HARD|SOFT, RANK|NODE); 

 Much more to be done here! 
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foreach i in [0:N-1] {  

  location L = locationFromRank(i); 

  @location=L f(i); 

} 



GLOBUS CATALOG 

Annotation system for distributed scientific data 



Catalog Goals 

 Group data based on use, not location 

– Logical grouping to organize, reorganize, search, and describe usage 

 Annotate with characteristics that reflect content … 

– Capture as much existing information as possible 

– Share datasets for collaboration- user access control 

 Operate on datasets as units 

 Research data lifecycle is continuous and iterative: 

– Metadata is created (automatically and manually) throughout 

– Data provenance and linkage between raw and derived data 

 Most often: 

– Data is grouped and acted on collectively 

• Views (slices) may change depending on activity 

– Data and metadata changes over time 

– Access permissions are important (and also change) 
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Catalog Data Model 

 Catalog: a hosted resource 
that enables the grouping 
of related datasets 

 Dataset:  a virtual 
collection of (schema-less) 
metadata and distributed 
data elements 

 Annotation: a piece of 
metadata that exists 
within the context of a 
dataset or data member 

– Specified as key-value 
pairs  

 Member:  a specific data 
item (file, directory) 
associated with a dataset 
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Web interface for annotations 
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GLOBUS TRANSFER 

High-speed wide area data transfers 



Globus Transfer 
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Personal Resources Supercomputers and 
Campus Clusters 

Block/Drive Storage Instance Storage Object Storage 

Transfer 

Synchronize 

Share 

InCommon/
CILogon 

MyProxy 
OAuth 

OpenID 

G
lo

b
u

s N
exu

s 

Globus Connect Globus Connect Globus Connect Globus Connect 

Globus Endpoints 



Globus Transfer 

 Reliable, secure, high-performance file transfer and synchronization 

 

 “Fire-and-forget” transfers 

 

 Automatic fault recovery 

 

 Seamless security integration 

 

 10x faster than SCP 
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Data 

Source 

Data 

Destination 

User initiates 

transfer 

request 

1 

Globus moves 

and syncs 

files 

2 

Globus notifies 

user 
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Globus Transfer: CHESS to ALCF 

 

 

 

 

 

 

 

 

 

 

 

 

 K. Dedrick.  Argonne group sets record for largest X-ray dataset ever 
at CHESS.  News at CHESS, Oct. 2015. 
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The Petrel research data service 

 High-speed, high-capacity data store 

 Seamless integration with data fabric 

 Project-focused, self-managed 
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1.7 PB GPFS store 

32 I/O nodes with GridFTP 

Other sites, 
facilities, 
colleagues  

100 TB allocations 
User managed access 

globus.org 



NEXPY / NXFS 

Rapid and remote structured data visualization 



 A toolbox for manipulating and visualizing 
arbitrary NeXus data of any size 

 A scripting engine for GUI applications 

 A portal to Globus Catalog 

 A demonstration of the value of combining: 

• a flexible data model 

• a powerful scripting language 
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http://nexpy.github.io/nexpy 
$ pip install nexpy 

+ = 

NeXpy: A Python Toolbox for Big Data 



Mullite 
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NeXpy in the Pipeline 

 Use of NeXpy throughout the 
analysis pipeline 
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The NeXus File Service (NXFS) 
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• Wozniak et al. Big data remote access interfaces for 
light source science.  Proc. Big Data Computing, 2015.  



NXFS Performance  

 Faster than application-agnostic remote filesystem technologies 
• Compared Pyro to Chirp and SSHFS from inside ANL (L) and AWS EC2 (W) 

 Plus ability to invoke remote methods! 
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• File open (10-1s)  • Metadata read (10-2s)  • Pixel read (1s) 

Operation and Time Scale 



CASE STUDY: NF-HEDM 

 

Near Field – High Energy Diffraction Microscopy 

Collaboration with APS Sector 1: Jon Almer, Hemant Sharma, et al. 



Determining the crystal structure 

of metals non-destructively 

Ni-based Superalloy 

Confidence Index Orientation Map Tomo reconstruction Confidence Index 

Gold calibrant wire 



NF-HEDM 
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High-Energy Diffraction Microscopy 

 

 

 

 

 

 

 

 

 

 Near-field high-energy diffraction microscopy discovers metal grain 
shapes and structures 

 The experimental results are greatly improved with the application of 
Swift-based cluster computing (RED indicates higher confidence in results)  
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October 2013: Without Swift 
April 2014: With Swift 



Big picture: Task-based HPC on Big Data 

 Existing C code assembled into scalable HPC program with Swift/T 

 Problem: Each task must consumes ~500 MB of experimental data  

 Runs on the Blue Gene/Q 

 Relevant to Big Data – HPC convergence 

 Could use Swift/T data locality annotations for high-level, data  
location-aware programming 



Intended use of broadcast operation 

 Grain orientation optimization workflow runs on BG/Q once data is there 

 Each task needs to read all input from a given dataset 

 Desire to use MPI-IO before running tasks 



Big Data Staging with MPI-IO 

 Solution: Broadcast experimental data on HPC system with MPI-IO 

 Tasks consume data normally from node-local storage  



Scalability result: End-to-end 

 

 21 GB/s 

101 GB/s 

8K cores 



Scalability result: Stage+Write 
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 134 GB/s 

8K cores 

• This plot breaks I/O hook into 1) stage+write and 2) read phases 
• Read phase is node-local: consistently 10.8  ±0.1 s 



NF-HEDM: Conclusions 

 Blue Gene/Q can be used for big data problems and a many-task 
programming model 

– Just broadcast the data to compute nodes first with MPI-IO 

 

 The Swift I/O hook enables efficient I/O in a many-task model 

– Reduces I/O time by factor of 4.7! 

 

 Connecting HPC to a real-time experiment saved an experiment by 
detecting a loose cable 

 

 Code is now being reused by about 5 different groups 

– Now must accommodate extra users on HPC resources!  

 

 



Summary 

 

 Described Big Data + HPC application: X-ray crystallography 

 Described four relevant tools:  

 Swift 

 Globus Catalog  

 Described path forward, integrating tools for streaming workflows 

 

 Thanks to the organizers 

 Thanks to our application collaborators 

  

 Questions? 

 

44 

• http://swift-lang.org 

 

 

 

 Globus Transfer 

 NeXpy/NXFS 

 


