
For Fast Data Management

Milinda Pathirage & Beth Plale

School of Informatics and Computing, Indiana University

§ Introduction

§ Motivation

§ Requirements

§ SamzaSQL

§ Future Work

§ SamzaSQL: Streaming SQL implementation on top of Apache Kafka and Apache
Samza

§ Utilizes Apache Calcite for query planning

§ Extension of standard SQL

§ Streams and Relations are first class citizens of both language and runtime

§ Nearline applications

§ The sources of information over which real time processing can be done is
significantly multiplied and varied

§ Lambda Architecture5

§ Kappa Architecture6

§ Current distributed stream processing systems require developers to use
programming APIs in high-level languages

§ Wide adoption of SQL based Big Data management solutions like Hive, Drill and
Presto

§ Often real-time or near real-time processing applications are backed by computed
summaries or modeled information generated by traditional batch-oriented
processing systems

§ LinkedIn’s stream analytics use cases3,4

Jay Kreps; http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html

Jay Kreps; http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html

§ Extension to standard SQL

§ Streams and relations as first class entities in both language and runtime

§ Produce same results on a stream as if the same data were in a table

§ Rich set of window constructs for streaming aggregates and joins
§ SELECT STREAM START(rowtime), COUNT(*) FROM Orders GROUP BY TUMBLE(rowtime,
INTERVAL '1' HOUR)

§ SELECT STREAM START(rowtime), COUNT(*) FROM Orders GROUP BY HOP(rowtime,
INTERVAL '1' HOUR, INTERVAL '1' HOUR)

§ Session windows

§ Scaling across thousands of stream partitions4

§ Fault tolerance and ability to recover by replaying local storage change stream

§ Out of order event handling

§ Incremental processing and early results

§ Support for multiple stream processing back-ends.

§ Uses Samza as stream processing back-end

§ Uses Apache Calcite for query planning

§ One or more partitions are mapped to a stream task

§ Local storage is checkpointed to a stream

§ In case of a failure tasks will be rescheduled in a different container and
bootstrapped from local storage change stream

§ Performance evaluation

§ Session windows in SQL

§ How to handle stragglers

§ Streaming specific cost model for enabling more optimizations

§ SQL to Lambda Architecture style query plans

§ Backend independent implementation

§ Integrating with Big Data frameworks like HBase, Apache Phoenix

§ Julian Hyde; Apache Calcite and Hortonworks

§ Chris Riccomini; Apache Samza, WePay (Previously LinkedIn Data Infrastructure
Team)

§ Yi Pan; Apache Samza and LinkedIn Data Infrastructure Team

§ Apache Samza Community

§ Members of LinkedIn Data Infrastructure Team

1. Apache Samza

2. Apache Calcite

3. Moving faster with data streams: The rise of Samza at LinkedIn

4. Real time insights into LinkedIn's performance using Apache Samza

5. Lambda Architecture

6. Kappa Architecture

7. Summingbird: A Framework for Integrating Batch and Online MapReduce
Computations

8. https://issues.apache.org/jira/browse/SAMZA-390

Questions?

