

Array of Things & Waggle Sensors and Computing

Pete Beckman

Senior Scientist, Argonne National Laboratory Co-Director, Northwestern / Argonne Institute for Science and Engineering (NAISE) Senior Fellow, University of Chicago Computation Institute

The Centrality of Cities

Table 3

The 50 Largest Cities, C40 Cities, and Top 10 GHG Emitting cities⁴

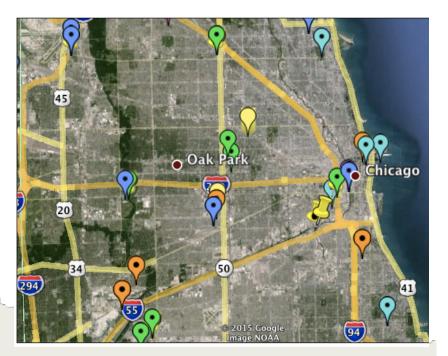
Population (Millions)	GHG Emissions (M tCO ₂ e)	GDP (billion \$ PPP)
1. China: 1,192	1. USA: 7,107	1. USA: 14,204
2. India: 916	2. China: 4,058	2. 50 Largest Cities: 9,564
3. 50 Largest Cities: 500	3. 50 Largest Cities: 2,606	3. C40 Cities: 8,781
4. C40 Cities: 393	4. C40 Cities: 2,364	4. China: 7,903
5. USA: 301	5. Russian Federation: 2,193	5. Japan: 4,354
6. Indonesia: 190	6. Japan: 1,374	6. Top 10 GHG Cities: 4,313
7. Brazil: 159	7. Top 10 GHG Cities: 1,367	7. India: 3,388
8. Russian Federation: 142	8. India: 1,214	8. Germany: 2,925
9. Top 10 GHG Cities: 136	9. Germany: 956	9. Russian Federation: 2,288
10. Japan: 128	10. Canada: 747	10. United Kingdom: 2,176

Source: See Annex D. Data for the urban agglomeration associated with each C40 city is used in calculations to maintain consistency with the 50 largest cities, 2005.

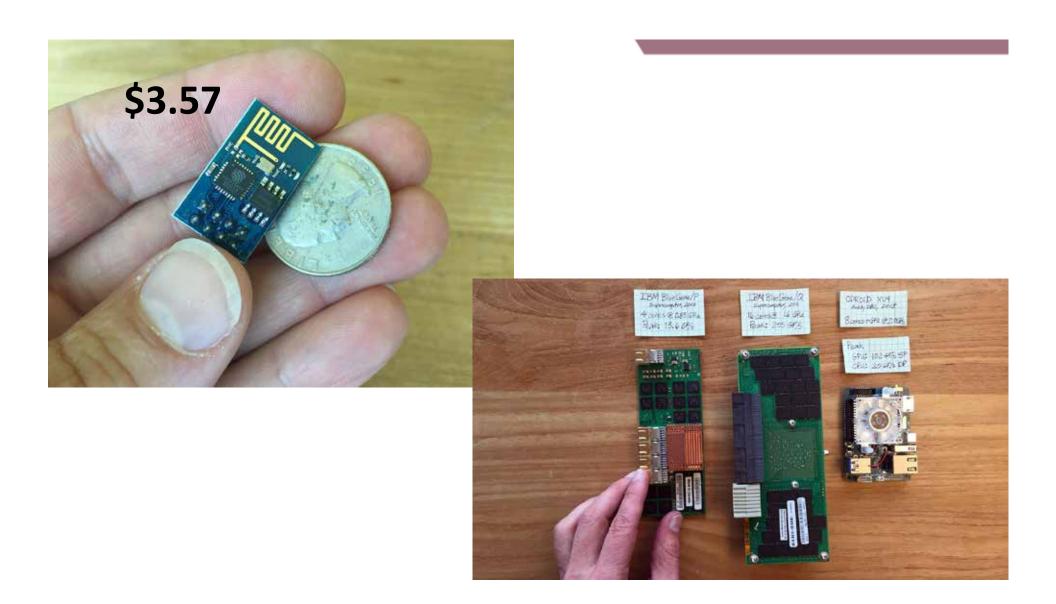
"Cities and Climate Change: An Urgent Agenda," World Bank, 2010

Sensors, Instrumentation, Measurement

Most topics of urban inquiry require data with greater in temporal and spatial resolution.


Energy

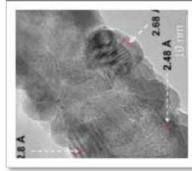
How can hyper-local weather information improve energy efficiency? Reliability?


• Climate and Heat Islands What is the impact of the Urban boundary layer on regional climate?

- Air Quality, Transportation, and Health
 What are the dynamics of urban air pollutants and how can traffic flow be modified to improve air quality?
- Social Sciences

How might diverse data sources including ambient sensors provide data relevant to predictive analytics w.r.t. disease, public safety/sentiment?

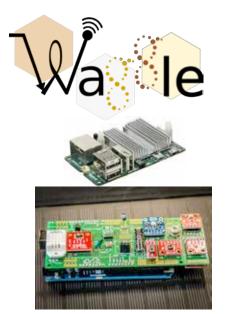
Map of EPA monitoring sites from EPA.



Disruption: Intelligent, Attentive Sensors

- Sensors:
 - Explosion of nano & imaging tech
- CPUs:
 - Powerful, low-power, embedded with network
- In-situ/Edge Computing:
 - Data in flight, can't store it all
 - Sensors+CPUs = new programming model for in-situ computation
- Open Source: Reusable, extensible software communities

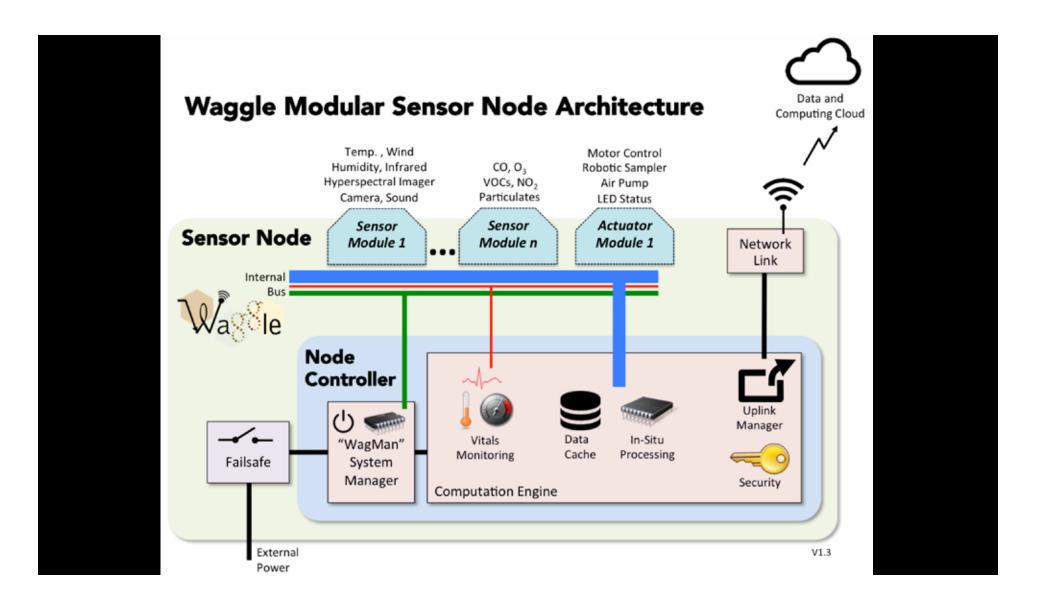
Opportunity: Predictive Models:

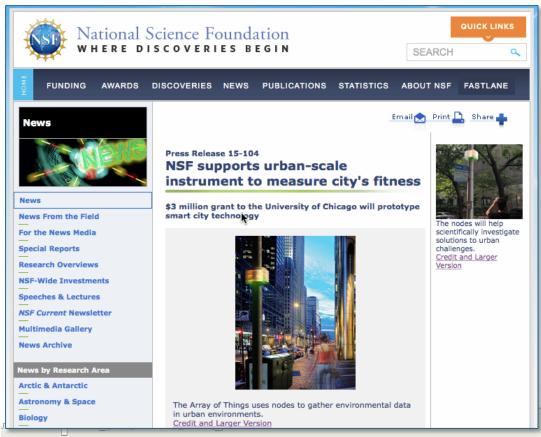

Smart Sensors + Supercomputers = predictions and analysis

CNM carbon nanotube methane sensor


Introducing Waggle (www.wa8.gl)

- **Powerful CPU**, accurate sensors
- In-Situ Analysis for adaptive feature detection, attentive control
- "Deep Space Probe" design for resilience
 - (safe mode, multiple kernels, heartbeats)
- Scalable to 100Ks of nodes; can be linked to supercomputer predictions
- Scalable/hackable Open Source platform adaptable for new science & sensors
 - host active education community





A Science-Driven Instrument: The Array of Things

Climate, Environmental and Life Sciences (Robert Jacob, ANL)

Potosnak (DePaul); Niyogi (Purdue); Gilbert, Graham, Kotamarthi, (UC/ANL); Fernando (Notre Dame)

Urban Infrastructure Systems

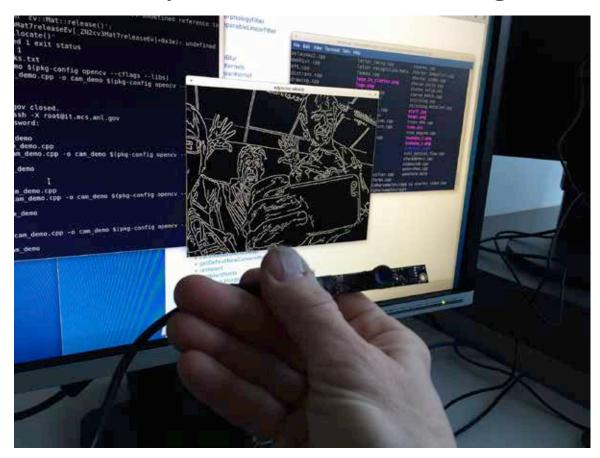
(Danie Work, UIUC)

Markoupolou (IaaC); Negri, Snyder (UC/ANL); Buttlar, Peschel, Garcia (UIUC), Gonzales (MIT), Pancoast (SAIC), Guzowski, Rosner (UC/ANL), Claudel (UT); Liu (UMich), Chen (UW)

Education, Health, Social and Behavioral Sciences (Kathleen Cagney, UChicago)

Diez (UCL/IaaC); Contractor (Northwestern); Epley, Gilliam, Lindau, Meltzer, Hampton-Marcel, Zarraonaindia (UC); Bellingham (Strathclyde)

Computer Science and Cyber-Physical Systems (Michael Papka, UC/NIU/ANL)


Derrible, Lin, Eriksson (UIC); Alok Choudhary (NU); Beckman, Sankaran, Chien (UC/ANL)

In-Situ/Edge Computing Analysis and Feature Recognition

Gensburg-Markham Prairie 370 acres, owned/managed by Nature Conservancy and Northeastern IL Univ. Registered as National Natural Landmark

Lead: Aaron Packman@NU

Cristina Negri

Lead: Cristina Negri

Edge Sensors Computing

O(10K)

Initial QA Live Stream & Calibration Analysis

On-Demand HPC

STREAM: Research Questions

- STREAMing Data and Analytics.
 - O(10K) Computationally Powerful sensors → limiting network → Live HPC/Analysis
- How do we program in-situ analysis?
 - Constructing multilayer pipelines for multiple features
 - Building machine learning corpus
 - Dropping in improved classification algorithms?
- How do we leverage machine learning research to build classification libraries?
- How do design large-scale collective management, trust, distributed command and control?
- How will high-performance streaming analytics and simulation be connected to live data?
- Can we use neuromorphic engines or FPGAs to reduce power while streaming?

Waggle Team & Collaborators

