
REAL-TIME STREAM PROCESSING FOR
SENSING ENVIRONMENTS

Shrideep Pallickara
Department of Computer Science
Colorado State University

October 27, 2015

STREAM-2015 http://granules.cs.colostate.edu 1

Outline

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

2

¨  Challenges in Stream processing

¨  Neptune
¤ Key Features
¤ Profiling refinements

¨  Contrasting Neptune with Storm

Stream Processing: Challenges in
Sensing Environments

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

3

¨  Small packets
¨  Arrival rates
¨  Context switches
¨  Object creations
¨  Buffer Overflows

Neptune: Key Features

¨  Builds on Granules (http://granules.cs.colostate.edu)

¨  Real-time, multi-stage stream processing
¤  Stateful computations

¤ Communications: direct, publish/subscribe, P2P

¨  Refinements
¤ Application buffering
¤  Batched scheduling
¤ Object reuse
¤  Backpressure for flow control
¤  Entropy-based dynamic message compactions

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

4

Impact of application layer buffer size
on Performance

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

5

Batched scheduling: Impact on context
switches

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

6

Mode Context Switches (Tracked every 5 seconds)

Mean Standard Deviation

Batched Scheduling 4085.2 91.8

Individual message
processing

89952.5 1086.5

N.B: The number of context switches is 22 times lower with
 batched scheduling

Object Reuse: Without it, the JVM spends too
long coping with memory pressure

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

7

Time spent on garbage collection

Without Object Reuse 8.63%

With Object Reuse 0.79%

Backpressure: It’s better to throttle
upstream than to be overrun downstream

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

8

N.B: Data emission rate at stage 1 is adjusted
according to the processing rate at stage 3.

CONTRASTING NEPTUNE & STORM
October 27, 2015

STREAM-2015 http://granules.cs.colostate.edu 9

Evaluation

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

10

¨  Metrics
¤ Latency, throughput, and bandwidth utilization
¤ CPU and memory utilization

¨  Two sets of benchmarks
¤ 3-stage relay based stream processing
¤ Manufacturing equipment ACM DEBS Grand Challenge

¨  Storm was optimized for high throughput

Throughput: Neptune outperformed
Storm by an order of magnitude

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

11

N.B: Neptune was able to achieve ~2 million messages/s (50 bytes)
which is 10 times higher than Storm.

Latency: Neptune provides consistent
performance

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

12

N.B: Neptune was able to maintain a latency of 68 ms for 99%
 of the messages for 100 bytes messages.

Bandwidth utilization

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

13

N.B: Neptune was able to maintain a 94% bandwidth consumption
 for message sizes > 50 bytes.

Equipment monitoring use case

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

14

Throughput: Manufacturing equipment
use case

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

15

N.B: With 32 concurrent jobs, Neptune’s cumulative throughput is
 8 times higher than Storm’s .

Contrasting resource consumption:
Manufacturing equipment use case

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

16

¨  Storm’s cluster-wide mean CPU utilization is 3.2x higher
than Neptune’s (t-test: p-value < 0.0001)

¨  There is no significant difference in memory consumption
¤  (t-test: p-value = 0.0863)

¨  Neptune does more with less

Conclusions

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

17

¨  Stream processing requires a holistic framework that
accounts for CPU, memory, network, and kernel
issues

¨  Reusing objects reduces memory utilization and
forestalls kernel issues

¨  Buffering utilizes bandwidth effectively
¨  Backpressure management alleviates memory

pressure as well

Acknowledgements

October 27, 2015 STREAM-2015 http://granules.cs.colostate.edu

18

¨  Graduate students contributing to Granules and
Neptune
¤ Thilina Buddhika
¤ Matthew Malensek
¤ Ryan Stern

