
Timescale Stream Statistics for
Hierarchical Management

Chen Ding
University of Rochester

March 23
STREAM 2016
Tysons, VA

Chen Ding, University of Rochester 2

56 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

practice
DOI:10.1145/2814342

 Article development led by
queue.acm.org

Implications of the datacenter’s
shifting center.

BY MIHIR NANAVATI, MALTE SCHWARZKOPF,
JAKE WIRES, AND ANDREW WARFIELD

FOR T HE ENTIRE careers of most practicing computer
scientists, a fundamental observation has consistently
held true: CPUs are significantly more performant
and more expensive than I/O devices. The fact that
CPUs can process data at extremely high rates, while
simultaneously servicing multiple I/O devices, has had
a sweeping impact on the design of both hardware and
software for systems of all sizes, for pretty much as
long as we have been building them.

This assumption, however, is in the process of being
completely invalidated.

The arrival of high-speed, non-vol-
atile storage devices, typically referred
to as storage class memories (SCM),
is likely the most significant architec-
tural change datacenter and software
designers will face in the foreseeable
future. SCMs are increasingly part of
server systems, and they constitute a
massive change: the cost of an SCM, at
$3,000–$5,000, easily exceeds that of a
many-core CPU ($1,000–$2,000), and
the performance of an SCM (hundreds
of thousands of I/O operations per sec-
ond) is such that one or more entire ma-
ny-core CPUs are required to saturate it.

This change has profound effects:
1. The age-old assumption that I/O

is slow and computation is fast is no
longer true: This invalidates decades
of design decisions that are deeply em-
bedded in today’s systems.

Non-
Volatile
Storage
“The arrival of high-speed, non-volatile storage … is likely the most significant
architectural change that datacenter and software designers will face in the
foreseeable future. ”

Hierarchical Cache Memory
• Science

• nothing travels faster than light
• the faster the access, the smaller the data capacity

• Engineering
• speed, size and cost

• no single technology can satisfy all demands
• e.g. SCM mentioned in the CACM article

• Programmability
• automatic, transparent, modular, efficient, portable
• efficient sharing of fast/local memory

• Uses
• CPU/GPU caches, virtual memory
• software cache, e.g. Memcached, Redis

3

Chen Ding, University of Rochester

11

bandwidth constrained. For existing applications that use Shared memory as software

managed cache, code can be streamlined to take advantage of the hardware caching system,

while still having access to at least 16 KB of shared memory for explicit thread cooperation.

Best of all, applications that do not use Shared memory automatically benefit from the L1

cache, allowing high performance CUDA programs to be built with minimum time and effort.

Summary Table

GPU G80 GT200 Fermi
Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating
Point Capability

None 30 FMA ops / clock 256 FMA ops /clock

Single Precision Floating
Point Capability

128 MAD
ops/clock

240 MAD ops /
clock

512 FMA ops /clock

Special Function Units
(SFUs) / SM

2 2 4

Warp schedulers (per SM) 1 1 2
Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or

16 KB
L1 Cache (per SM) None None Configurable 16 KB or

48 KB
L2 Cache None None 768 KB

ECC Memory Support No No Yes
Concurrent Kernels No No Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

Second Generation Parallel Thread Execution ISA

Fermi is the first architecture to support the new Parallel Thread eXecution (PTX) 2.0 instruction

set. PTX is a low level virtual machine and ISA designed to support the operations of a parallel

thread processor. At program install time, PTX instructions are translated to machine

instructions by the GPU driver.

The primary goals of PTX are:

 Provide a stable ISA that spans multiple GPU generations

 Achieve full GPU performance in compiled applications

 Provide a machine-independent ISA for C, C++, Fortran, and other compiler targets.

 Provide a code distribution ISA for application and middleware developers

 Provide a common ISA for optimizing code generators and translators, which map PTX
to specific target machines.

 Facilitate hand-coding of libraries and performance kernels

 Provide a scalable programming model that spans GPU sizes from a few cores to many
parallel cores

Whitepaper

NVIDIA’s Next Generation

CUDA
TM

 Compute Architecture:

Fermi
TM

V1.1

What is Locality?

Chen Ding, University of Rochester 6

“During any interval of execution, a program favors a
subset of its pages, and this set of favored pages
changes slowly” -- Peter Denning

• locality analysis is a streaming problem
• too many data points, unusable for optimization

Chen Ding, University of Rochester

Locality Theory

• Since 1960s
• working-set theory [Denning 1968]
• stack simulation [Mattson et al. 1970]

• Since 1999
• reuse distance (i.e. LRU stack distance)
• 5 dimensions of locality [TOPLAS’09]
“The authors were supported by the National Science Foundation (CAREER Award
CCR-0238176 and two grants CNS-0720796 and CNS-0509270), the Department of Energy
(Young Investigator Award DE-FG02-02ER25525), IBM CAS Faculty Fellowship, and a gift
from Microsoft Research. ”

• HPCToolkit by Mellor-Crummey et al. at Rice [CCPE’10]
• not composable, unable to derive shared-cache performance

• Since 2008
• footprint — timescale statistics

7

Chen Ding, University of Rochester

Timescale Stream Statistics

• A stream
• “a possibly unbounded sequence of events” [Stream workshop

2015]
• a time window or interval
• a timescale x is a length of time
• f(x) is the average behavior of all windows of length x

• a function for all non-negative x
• Peak temperature variation pv(x)

• each window has a peak variation
• pv(x) is the average of all windows of length x

• e.g. a week time or a month time
• avoid data bias

• e.g. if we were to measure just calendar weeks/months

8

Chen Ding, University of Rochester

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6
window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

cache size C

vol. fill time vt(C)

average footprint fp

Figure 1: Defining the volume fill time using the footprint.

the same problem happens if there are x1, x2 such that fp(x1) =

fp(x2). However, this problem does not occur using the footprint-
based definition. We will prove later in Section 2.7 that the average
footprint is a concave function. As a result, it is strictly increasing,
and as its inverse, vt is a proper function and strictly increasing as
well. We call the footprint-based definition the Filmer fill time.

Alternatively, we can define the fill time in a different way. For
the volume v, we find all windows in which the program accesses v
amount of data. The average window length is then the fill time. We
refer to the second definition the direct fill time, since it is defined
directly, not through function inversion.

Consider another example trace “abbc”. The Filmer fill time is
vt

Filmer

(1) = 1, since all single-element windows access one
datum. The direct fill time takes the 5 windows with the unit-size
data access: “a”, “b”,“b”, “bb”, and “c” and computes the average
vt

direct

(1) = (1+1+1+2+1)/5 = 6/5. The Filmer definition
uses the windows of the same length. The direct definition uses the
windows of possibly different lengths.

The cache fill time is related to the residence time in the working
set theory [14]. Once a program accesses in a data block but stops
using it afterwards, its residence time in cache is the time it stays
in cache before being evicted.

In Appendix A, we give an algorithm to measure the direct fill
time. In Section 4.4, we show that the direct definition has serious
flaws and is unusable in practice. Unless explicitly specified in the
rest of the paper, by fill time we mean the Filmer fill time.

2.4 Inter-miss Time and Miss Ratio
We derive the inter-miss time for fully associative LRU cache of
size c. Starting at a random spot in an execution, run for time vt(c),
the program accesses c amount of data and populates the cache of
size c. It continues to run and use the data in the cache until the time
vt(c+1), when a new data block is accessed, triggering a capacity
or a compulsory miss [24]. The time interval, vt(c+ 1)� vt(c), is
the miss-free period when the program uses only the data in cache.
We use this interval as the average inter-miss time im(c)1. The
reciprocal of im(c) is the miss ratio mr(c).

im(c) =

(
vt(c+ 1)� vt(c) if 0  c < m
n

m

if c � m

Since the fill time is the inverse function of the footprint, we
can compute the miss ratio from the footprint directly. The direct
conversion is simpler and more efficient. In practice, we measure

1 In the working-set theory, the corresponding metric is the time between
page faults and known as the lifetime.

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

∆x

average footprint fp
∆ycache size c

mr(c) = ∆x
∆y

im(c) = ∆y
∆x

Figure 2: Equivalent conversions of the footprint to the miss ratio
and the fill time to the inter-miss time.

the footprint not for all window sizes but only those in a logarithmic
series. Let x and x + �x be two consecutive window sizes we
measure, we then compute the miss ratio for cache size c = fp(x):

mr(c) = mr(fp(x)) =
fp(x+�x)� fp(x)

�x

Being a simpler and more general formula, we will use it in the
theoretical analysis and empirical evaluation. To cover all cache
sizes in practice, we use it as the miss ratio for all cache sizes
c 2 [fp(x), fp(x+�x)).

The fill time (vt) conversion and the footprint (fp) conversion
are equivalent. Figure 2 shows the two visually. For the same two
data points on the footprint curve, let �x = x2 � x1 be the
difference in the window length and �y = y2�y1 be the difference
in the amount of data access. The fill time conversion computes the
inter-miss time im(y1) =

vt(y2)�vt(y1)
y2�y1

=

�x

�y

, and the footprint
conversion computes the miss ratio mr(fp(x1)) = mr(y1) =

fp(x2)�fp(x1)
x2�x1

=

�y

�x

.
For associative cache, Smith showed that cache conflicts can

be estimated based on the reuse distance [37]. Hill and Smith
evaluated how closely such estimate matched with the result of
cache simulation [25]. We next derive the reuse distance. Once
derived, we can use it and the Smith formula to estimate the effect
of cache conflicts and refine the miss ratio prediction.

2.5 Reuse Distance
For each memory access, the reuse distance, or LRU stack distance,
is the number of distinct data used between this and the previous
access to the same datum [31]. The reuse distance includes the
datum itself, so it is at least 1. The probability function P (rd = c)
gives the fraction of data accesses that have the reuse distance
c. The capacity miss ratio, mr(c), is the total fraction of reuse
distances greater than the cache size c, i.e. mr(c) = P (rd > c).
Consequently,

P (rd = c) = mr(c� 1)�mr(c)

The reuse distance has extensive uses in program analysis and
locality optimization. Any transformation that shortens a long reuse
distance reduces the chance of a cache miss. At the program level,
reuse distance analysis extends dependence analysis, which identi-
fies reuses of program data [1], to count the volume of the interven-
ing data [4, 8, 10]. At the trace level, the analysis can correlate the
change in locality in different runs to derive program-level patterns
and complement static analysis [21, 30, 49].

Timescale Locality

• Footprint fp(x)
• working-set size (WSS): the amount data

accessed in a window
• fp(x): average WSS of all length x windows

• Theoretical properties (selected)
• composable
• miss ratio is the increase of footprint
• concavity [ASPLOS’13]

• (computed) miss ratio is monotone
• linear time measurement [PACT’11]

• real-time sampling [CCGrid’15]
• A function is worth a thousand pictures

9

Chen Ding, University of Rochester

Theory is for Optimization
• Key-value store Memcached [USENIX’15]

• DRAM as cache for database
• optimization vs. heuristics by Facebook and Twitter

• faster steadystate/convergence on a Facebook test set
• monotonicity: no Belady anomaly

• Concurrent memory allocation [see white paper]
• optimization vs. Google’s tcmalloc

• 26% higher throughput 64-thread MongoDB
• consistency: intermediate steps order insensitive

• Storage cache [Wires/Warfield et al. OSDI’14]
• independent validation of footprint theory

• Other theories
• optimal data placement [PLDI’04, POPL’06, POPL’16]
• optimal collaborative caching [LCPC’08, ISMM’11/12/13]

10

Summary: Locality Theory/Optimization

• Locality theory
• partly a streaming problem/solution
• equivalent* definitions of locality

• reuse distance, footprint, working set, miss ratio curve
• Possible uses in a streaming system

• Nathan’s IPPD
• memory resource steering

• timescale statistics
• user decision support

• A conjecture
• memory: hierarchical and shared
• timescale stream statistics: optimal sharing of a hierarchy

11

