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NSLS-II

S912M
791 m circumference

58 beam ports
3 GeV, 500 mA

LO8 1 (BLDG, 741)

Each x-ray beam is ~10'3 ph/s



Motivation BROOKHAUEN

e Modern scientific experiments generate
massive amounts of data

e Complex data analysis consumes scientists’
precious time, distracting from deep
scientific questions

e \We can train machines to perform much of
the workflow

e Deep learning can extract meaningful
insights and detect patterns from massive
amount of data; well-suited to image-like
datasets



Impact to Materials Science

NSLS-Il beamlines study materials from many
perspectives:

e Complex, multi-component, hierarchical materials
e Diffraction, scattering, coherence experiments

Instrument
Agency

e Structure & dynamics across many scales

If machine automation/learning become part of
experimental workflow, scientist is liberated to focus on
scientific discoveries

Will shorten the latency between experiment to deep
scientific insight, Impact for material design of battery
components, solar PV, etc.

Develop at CMS and CHX; and extend to other beamlines
(SMI, LiX, FXI, HXN)

To enable automated materials discovery across many
synchrotron beamlines (Multimodal Analysis)
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Objectives

Low-level: identifying characteristic features in a
diffraction image;

Intermediate-level: detecting the occurrence of a
physical process from a sequence of images;

and 3) High-level: learning and predicting
scientifically-meaningful trends.

On-line Recognition and Prediction with
Incremental Information

The velocity of processing must be
commensurate with that of data generation.



Preliminary Work e A

e [nitial work has demonstrated the viability of applying machine-learning
methods to synchrotron data

e Applied machine-vision methods to tagging and classifying x-ray scattering
images

e Materials Discovery: Fine-Grained Classification of X-ray Scattering
Images Kiapour, M.H.; Yager, K.G.; Berg, A.C.; Ber, T.L., Winter Conference
on Applications of Vision (WACV) 2014 (Steamboat Springs)

e Used advanced clustering methods to organize synchrotron data

e Diffusion-based Clustering Analysis of Coherent X-ray Scattering Patterns
of Self-assembled Nanoparticles Huang, H.; Yager, K.G.; et al., 29th
Symposium On Applied Computing (SAC'14) March 24-28, 2014,
Gyeongju, Korea

e Exploring machine-video methods to identify events in time-sequence
scattering data

e Ongoing collaboration with M.H. Nguyen, Stony Brook University



New ldeas BROOKHAUEN

e Physical systems have natural hierarchies

e Deep-learning trains multiple levels of features/representations to extract meaning from data

e We will explore machine-learning hierarchies tuned to extract physics layers and meaning
from scientific datasets

Functionality

Output

energy storage, catalysis, ; : :
data storage, light management, (object identity)
electronics, surface-wetting,

filtration, medicine, ...

3rd hidden layer
(object parts)
elastic modulus,
refractive index,
polarizability,
wettability, ...
2nd hidden layer
(corners and
contours)
unit cell, crystallinity,

grain size, orientation,
packing density,

try, ... .
Symmen 1st hidden layer
(edges)
Constituents
small molecules,
polymers, Visible layer
> nanoparticles, : ;
colloids, ... (input pixels)



Technical Approach
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Synchrotron images analyzed using a combination of existing domain and image-analysis

techniques, as well as new algorithms

(Supervised/Unsupervised) Cluster and tag the data with physically-meaningful attributes
Attributes/features used to extract higher-order trends, and to extract scientifically-

relevant insights

For example, this procedure could be mapped to a four-layer convolution neural network

for trend analysis

Scientific trends
& insights

Data
characteristics

Image
features

Raw data

amorphous,
crystalline,
low-dimensional, ...

structured,
disordered,
strong scattering, ...

image analysis
new algorithms
scattering analysis

2D array of
pixel intensities



On-Line Detection
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Co-Desigh Deep Learning Applications
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Future Machine Learning Aided Material Design BROOKHRAVEN

e X-ray scattering generates various ‘images’ that can be analyzed using machine-learning

Processed area Grid of data forms Physical phase-diagram
detector frame map of sample for experimental system
C

Composition

Temperature

e Computer-directed beamline experiments would allow the instrument to explore physical
parameter spaces, without human intervention

queue rich exploration
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Machine-learning is a critical component of automated materials discovery; a
new experimental mode that:

e Liberates scientists to work on science
e Enables computer-controlled ‘intelligent” exploration of materials questions
e Accelerate scientific discoveries
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Deep-learning is a crucial tool, allowing the computer to extract physically-
relevant meaning from abstract datasets



CFN/NSLS-1l Beamline: CMS TN,

CFN/X9 program has been extremely successful: premiere,

highly-sought (>2:1) scattering instrument; highly productive
(>25 publications/year)

sample micro-focusing
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Complex Materials Scattering beamline will provide:

e Sample environments for in-situ and stimuli-responsive
studies of (non-equilibrium) nanomaterials

e Automation and software for intelligent exploration of
multidimensional parameter spaces

e New paradigm for rapid materials discovery

Constituents Processing Structure Functionality
small molecules, polymers, compositions, concentration, unit cell, crystallinity, energy stO(age, catalysis,
biomolecules, nanoparticles, temperature, pressure, stress, grain size, orientation, data storage, light management,
colloids, porous materials, humidity, solvent annealing, ... packing density, electronics, surface-wetting,
nanopatterned materials, ... i

symmetry, ... filtration, medicine, ...



CFN/NSLS-1l Beamline: SMI Uit

e Soft Matter Interfaces beamline: high-flux and high-resolution
grazing-incidence scattering instrument

e Wide energy range (2 to 24 keV) for resonant scattering on

hybrid (soft/hard) materials, including edges relevant to soft
matter (P, S, K, Ca)

e Wide g-range for studies of hierarchical materials

e Microbeams (~2 um) for mapping of heterogeneous
samples

e High-flux and fast detectors for kinetic, in-situ, and in-
operando experiments
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