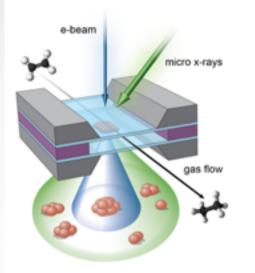
Reliable Performance forStreaming Analysis Workflows

BNL: Kerstin Kleese van Dam SDSC: Ilkay Altintas PNNL: Eric Stephan, Todd Elsethagen, Bibi Raju, Darren Kerbyson, Kevin Barker, Nathan Tallent, Jian Yin

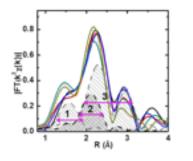
a passion for discovery

Use Case: In Operando catalysis experiments



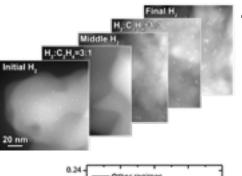
- Experimental measurements made with sample 'in a working condition'
- Different measurements needed to capture all aspect of system
- Multi-Modal, In-situ analysis coupled with predictive modeling transformative providing understanding and control of process

Data sets from different techniques: Integration of data for highest scientific impact



X-ray Absorption Spectroscopy

Global average structure and electronic structure



0.12

0.08

5000

2958

2900

Wavenumber /om

2850

Transmission Electron Microscopy

Physical and electronic structure of individual catalysts

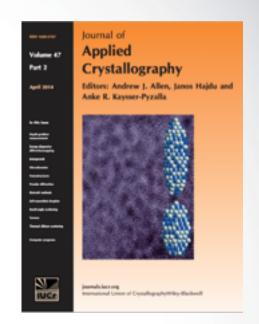
Infrared Spectroscopy Direct determination of surface adsorbates

> Stach, Frenkel Nat. Comm. 2015

Complex Modeling

•Use of multiple data and information improves reliability by defining limits of both calculated and experimental results

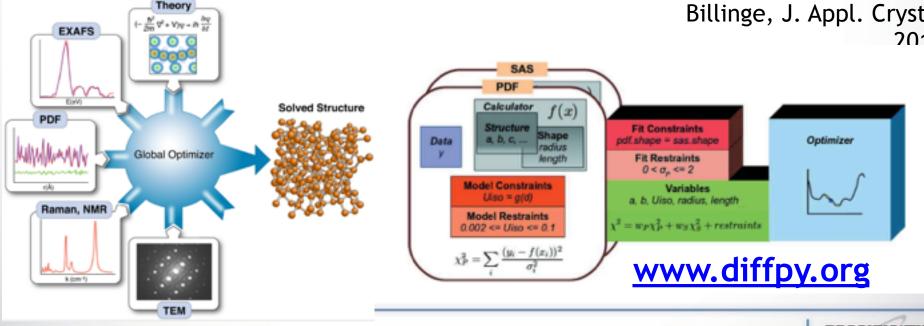
 DiffPy-CMI, SumLib and SciKit-Beam in the CiffPy framework provide a streaming data integration and analysis framework for experimental and numerical simulation data.



Billinge, J. Appl. Cryst., 2014

ATIONAL LABORATO

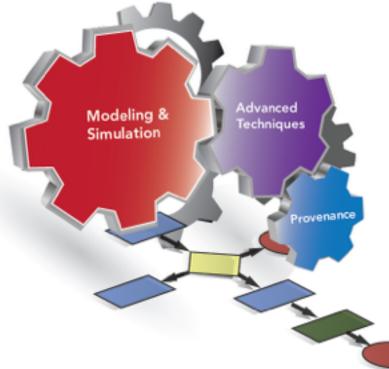
•Many application use cases see web site.



Challenges in in-situ experimental analysis

- Goal Provide enough targeted information to the scientists, early enough, to enable them to take critical decisions on steering of the data taking and its analysis
- Critical characteristics:
 - Speed, Accuracy, Completeness (incl. background, prediction)
 - Information selection and representation
 - Different programing languages, programming models, heterogenous data, computing and networking infrastructure
 - Essential Reliable in Time Result Delivery

DOE ASCR - Integrated End-to-End Performance Prediction and Diagnosis for Extreme Scientific Workflows



Aim to provide an integrated approach to the modeling of extreme scale scientific workflows

Brings together researchers working on modeling / simulation / empirical analysis, workflows and domain scientists

Builds upon existing research much of which has focused to date on largescale HPC systems and applications

Explore in advance - Design-space exploration & Sensitivity Analyses

Optimize at run-time - Guide execution based on dynamic behavior

Brookhaven Science Associates

Expanding Provenance: Empirical Information Gathering

Today we only have hypothesis on what causes the variability in workflow performance or how performance could be improved

IPPD will use provenance to capture empirical performance information from workflows and systems to:

- Collect quantitative performance information to investigate workflow performance variability, degradation, sensitivity and impact
- Provide empirical data backed assessments of particularly prevalent performance bottlenecks and sources of performance variability

Provide a record of performance changes over time that can be correlated with changes to applications, workflows and systems

ProvEn Overview

Provenance Environment (ProvEn) - A Provenance production and collection framework.

Provides services and libraries to collect provenance produced in a distributed environment

ProvEn Client API aids in the production of provenance from client applications

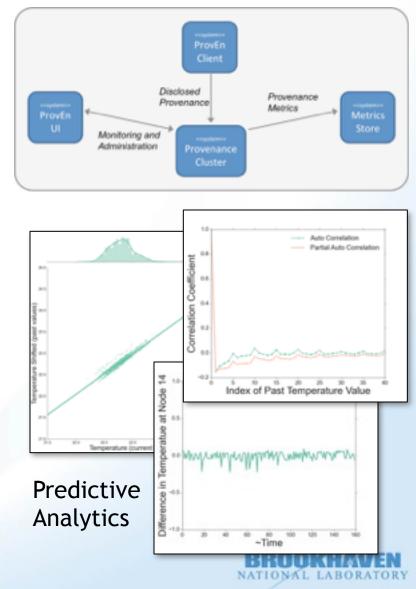
The following types of provenance are collected:

Time series-based information from a system/host perspective

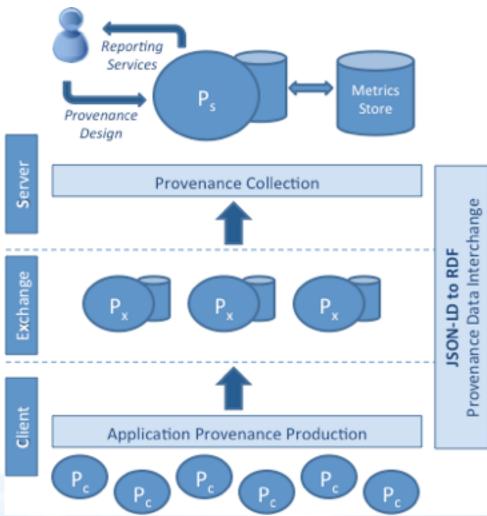
Performance metrics tracking from an application/ workflow perspective

ProvEn enables building of accurate Machine Learning models by capturing detailed footprints of large-scale execution traces.

ProvEn will support identification of sources of performance variability in streaming analysis workflows, and provide runtime guidance to resource allocation systems.



Provenance Environment (ProvEn) Architecture



ProvEn Services Infrastructure

> Provenance capture through messaging services and web service APIs Server / provenance consumer (semantic information, triple store)

Client API library / provenance producer Time-series client/server (in progress, InfluxDB)

Initial System Test and Validation

Test System: SeaPearl at PNNL - 52 node cluster, instrumented with sensors that include temperature and power usage

Test Application: Firestarter, a stress test tool that can create varying workloads with predictable amounts of heat generation by the CPUs

Sampling Speed: Two nodes are monitored at 10KHz / 36M measurements / hour using a Lua script running on each node that pipes streaming measurements in parallel into the InfluxDB database.

Correlation: To correlate performance measures in the time series database to the provenance store the Network Time Protocol (NTP) is relied upon as the time source.

Questions?

Kerstin Kleese van Dam, kleese@bnl.gov

Brookhaven Science Associates