

Elastic and Secure Energy Forecasting in Cloud Environments

<u>André Martin^{*}, Andrey Brito[#] and Christof Fetzer^{*}</u>

andre.martin@tu-dresden.de, andrey@dsc.ufcg.edu.br, christof.fetzer@tu-dresden.de

*SE Group - Technische Universität Dresden - Dresden, Germany #LSD Lab - Universidade Federal de Campina Grande - Campina Grande, Brazil

STREAM 2016 @ March, 23rd 2016, Tyson, VA

Application Example SmartGrid

ACM **DEBS'14** Challenge: SmartMeter recordings

- Query #1: Provide load predication (two times slices ahead) based on complete set of historical collected measurements
- Query #2: Detect outliers based on (global) median value of a 24hrs sliding time window

Challenges when Processing of SmartMeter data

1. Data growth

- Q1: Accumulating historic data (to improve forecasts)
- Q2: Temporary large states due to (24hr) sliding window
- Solution: Elastic stream processing & cloud computing
- 2. Privacy concerns *cloud computing*
 - Processing of privacy sensitive data (SmartPlugs)

State of The Art Open Source Technologies Elasticity & Privacy

State support

Feature	Seep Imperial College		samza
State support/pers	Yes	User	KV store
Exactly Once Sematic	User	Transactional proc.	Yes

Challenge #1: Elasticity

Scale Out (expand)	Yes	Partially (no migr)	(Yes) *
Scale In (contract)	No	No (killing proc.)	(Yes) *

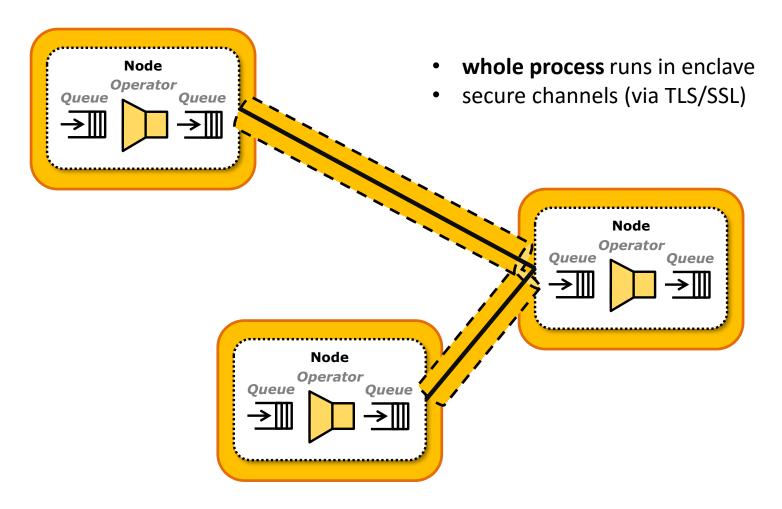
*at least once

Challenge #2: Privacy Preservation

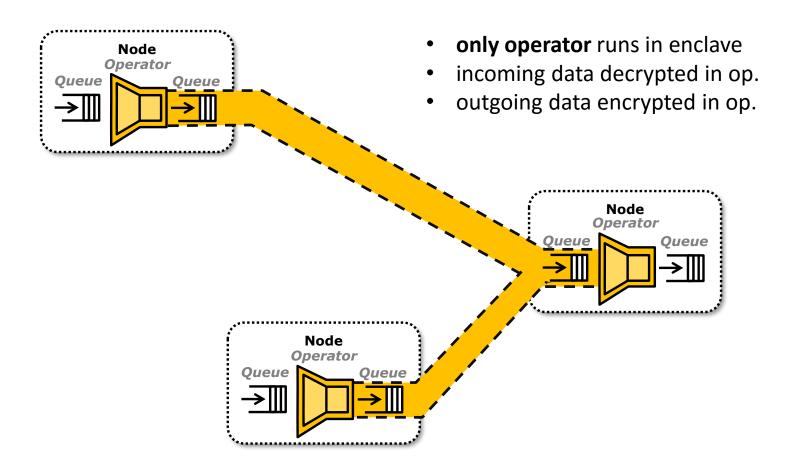
Channel	No	Partially (netty.io)	No
Processing	No	No	No

Our Approach to Elasticity

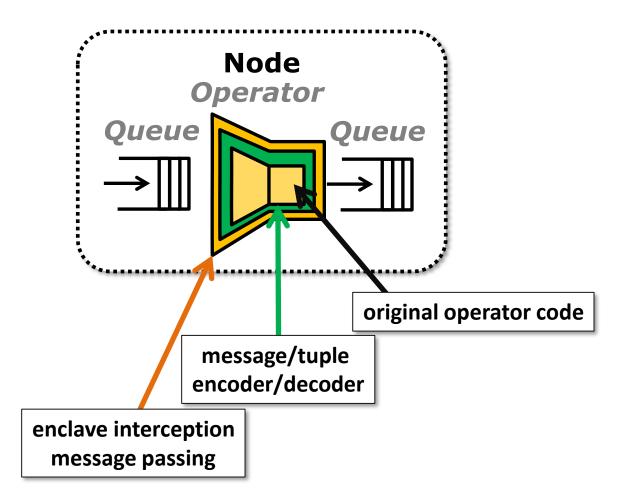
- Stateful stream processing using *StreamMine3G*
 - Operator migration protocol [1] provides:
 - Exactly once processing semantics
 - is based on active replication


[1] Elastic Scaling of a High-Throughput Content-Based Publish/Subscribe Engine (Raphaël Barazzutti, Thomas Heinze, André Martin, Emanuel Onica, Pascal Felber, Christof Fetzer, Zbigniew Jerzak, Marcelo Pasin, Etienne Rivière), In ICDCS '14: 34th IEEE International Conference on Distributed Computing Systems

Our Approach to Privacy Preserving Stream Processing


Intel SGX (Safe Guard Extensions)

- Trusted environment (enclave) for arbitrary code
- Enclave memory cannot be accessed from nonenclave code
- Enclave code has access to outside code/data
- Remote attestation of enclave code
- Available in all new Skylake processors since Q4/15
- User solely need to trust Intel


Intel SGX & Stream Processing Approach #1

Intel SGX & Stream Processing Approach #2

Approach #2 Transparent Wrapper

Intel SGX Research Challenges

- Limited EPC (Enclave Page Cache) size (128MB) → How to deal with large operator state?
 - "Swapping": Mechanisms provided by SGX vs. state eviction & encryption strategies tailored to ESP
- 2. System call interface protection
 - Ibmusl exchange data in a controlled manner
- 3. Enclave threads vs. user space threads
 - How to pass data efficiently between the two worlds?

Summary & Conclusions

- 1. Lack of **elasticity support** in open source technologies for highly dynamic applications
 - Explicit state support
 - Migration protocol
- 2. Lack of privacy preserving stream processing
 - Operators run in enclaves (Intel SGX)
 - Transparent/non-invasive approach
 - Promising direction roll out of Skylake processors in Q4/15

Thank you for your attention – Q&A

andre.martin@se.inf.tu-dresden.de