
Streaming In
Practice

KARTHIK RAMASAMY
@KARTHIKZ

#TwitterHeron

BEGIN

END

HERON
OVERVIEW

!
I

HERON
PERFORMANCE

(II

CONCLUSION

K
V

HERON
LOAD

SHEDDING

ZIV

TALK OUTLINE

HERON
BACKPRESSURE

b
III

HERON
OVERVIEW

b

STORM/HERON TERMINOLOGY
TOPOLOGY

Directed acyclic graph

Vertices=computation, and edges=streams of data tuples

SPOUTS

Sources of data tuples for the topology

Examples - Kafka/Kestrel/MySQL/Postgres

BOLTS

Process incoming tuples and emit outgoing tuples

Examples - filtering/aggregation/join/arbitrary function

,

%

STORM/HERON TOPOLOGY

%

%

%

%

%

SPOUT 1

SPOUT 2

BOLT 1

BOLT 2

BOLT 3

BOLT 4

BOLT 5

WHY HERON?

PERFORMANCE PREDICTABILITY

EASE OF MANAGEABILITY

!

d

"
IMPROVE DEVELOPER PRODUCTIVITY

HERON DESIGN DECISIONS
FULLY API COMPATIBLE WITH STORM

Directed acyclic graph

Topologies, spouts and bolts

USE OF MAIN STREAM LANGUAGES

C++/JAVA/Python

!

d

"
TASK ISOLATION

Ease of debug ability/resource isolation/profiling

HERON ARCHITECTURE

Topology 1

TOPOLOGY
SUBMISSION

Scheduler

Topology 2

Topology 3

Topology N

TOPOLOGY ARCHITECTURE

Topology
Master

ZK
CLUSTER

Stream
Manager

I1 I2 I3 I4

Stream
Manager

I1 I2 I3 I4

Logical Plan,
Physical Plan and
Execution State

Sync Physical Plan

CONTAINER CONTAINER

Metrics
Manager

Metrics
Manager

HERON SAMPLE TOPOLOGIES

Large amount of data
produced every day

Large cluster Several hundred
topologies deployed

Several billion
messages every day

HERON @TWITTER

1 stage 10 stages

3x reduction in cores and memory

Heron has been in production for 2 years

HERON USE CASES

REALTIME
ETL

REAL TIME
BI

SPAM
DETECTION

REAL TIME
TRENDS

REALTIME
ML

REAL TIME
MEDIA

REAL TIME
OPS

HERON ENVIRONMENT

Laptop/Server Cluster/Aurora Cluster/Mesos

HERON
RESOURCE
USAGE

x

9

HERON PERFORMANCE
Settings

COMPONENTS EXPT #1 EXPT #2 EXPT #3 EXPT #4

Spout 25 100 200 300

Bolt 25 100 200 300

Heron containers 25 100 200 300

Storm workers 25 100 200 300

HERON PERFORMANCE
m

illi
on

 tu
pl

es
/m

in

0

350

700

1050

1400

Spout Parallelism
25 100 200 500

Storm Heron

Word count topology - Acknowledgements enabled

la
te

nc
y

(m
s)

0

625

1250

1875

2500

Spout Parallelism
25 100 200 500

Storm Heron

10-14x

Throughput Latency

5-15x

HERON RESOURCE USAGE

Event Spout Aggregate Bolt

60-100M/min

Filter
8-12M/min

Flat-Map
40-60M/min

Aggregate
Cache 1 sec

Output
25-42M/min

Redis

RESOURCE CONSUMPTION

Cores
Requested

Cores
Used

Memory
Requested

(GB)

Memory
Used

Redis 24 2-4 48 N/A

Heron 120 30-50 200 180

RESOURCE CONSUMPTION

7%
9%

84%

Spout Instances Bolt Instances Heron Overhead

PROFILING SPOUTS

2%7%

16%

6%

6%
63%

Deserialize Parse/Filter Mapping Kafka Iterator Kafka Fetch Rest

PROFILING BOLTS

2%4%5%
2%

19%

68%

Write Data Serialize Deserialize Aggregation Data Transport Rest

RESOURCE CONSUMPTION - BREAKDOWN

8%
11%

21%
61%

Fetching Data User Logic Heron Usage Writing Data

HERON BACK
PRESSURE

x

9

BACK PRESSURE AND STRAGGLERS

PROVIDES
PREDICTABILITY

PROCESSES
DATA AT

MAXIMUM
RATE

REDUCE
RECOVERY

TIMES

HANDLES
TEMPORARY

SPIKES

/b \ Ñ

Stragglers are the norm in a multi-tenant distributed systems
Bad machine, inadequate provisioning and hot keys

BACK PRESSURE AND STRAGGLERS

MOST SCENARIOS BACK PRESSURE RECOVERS

Without any manual intervention

SOMETIMES USER PREFER DROPPING OF DATA

Care about only latest data

!

d

"
SUSTAINED BACK PRESSURE

Irrecoverable GC cycles

Bad or faulty host

LOAD SHEDDING

SAMPLING BASED APPROACHES

Down sample the incoming stream and scale up the results

Easy to reason if the sampling is uniform

Hard to achieve uniformity across distributed spouts

!

"
DROP BASED APPROACHES

Simply drop older data

Spouts takes a lag threshold and a lag adjustment value

Works well in practice

CURIOUS TO LEARN MORE…

 1

Twitter Heron: Stream Processing at Scale

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg,

Sailesh Mittal, Jignesh M. Patel
*,1

, Karthik Ramasamy, Siddarth Taneja

@sanjeevrk, @challenger_nik, @Louis_Fumaosong, @vikkyrk, @cckellogg,

@saileshmittal, @pateljm, @karthikz, @staneja

Twitter, Inc., *University of Wisconsin – Madison

ABSTRACT
Storm has long served as the main platform for real-time analytics
at Twitter. However, as the scale of data being processed in real-
time at Twitter has increased, along with an increase in the
diversity and the number of use cases, many limitations of Storm
have become apparent. We need a system that scales better, has
better debug-ability, has better performance, and is easier to
manage – all while working in a shared cluster infrastructure. We
considered various alternatives to meet these needs, and in the end
concluded that we needed to build a new real-time stream data
processing system. This paper presents the design and
implementation of this new system, called Heron. Heron is now
the de facto stream data processing engine inside Twitter, and in
this paper we also share our experiences from running Heron in
production. In this paper, we also provide empirical evidence
demonstrating the efficiency and scalability of Heron.
ACM Classification
H.2.4 [Information Systems]: Database Management—systems

Keywords
Stream data processing systems; real-time data processing.

1. INTRODUCTION
Twitter, like many other organizations, relies heavily on real-time
streaming. For example, real-time streaming is used to compute
the real-time active user counts (RTAC), and to measure the real-
time engagement of users to tweets and advertisements. For many
years, Storm [16, 20] was used as the real-time streaming engine
inside Twitter. But, using Storm at our current scale was
becoming increasingly challenging due to issues related to
scalability, debug-ability, manageability, and efficient sharing of
cluster resources with other data services.

A big challenge when working with Storm in production is the issue
of debug-ability. When a topology misbehaves – which could be for
a variety of reasons including load changes, misbehaving user code,
or failing hardware – it is important to quickly determine the root-
causes for the performance degradation. In Storm, work from
multiple components of a topology is bundled into one operating

system process, which makes debugging very challenging. Thus, we
needed a cleaner mapping from the logical units of computation to
each physical process. The importance of such clean mapping for
debug-ability is really crucial when responding to pager alerts for a
failing topology, especially if it is a topology that is critical to the
underlying business model.

In addition, Storm needs dedicated cluster resources, which requires
special hardware allocation to run Storm topologies. This approach
leads to inefficiencies in using precious cluster resources, and also
limits the ability to scale on demand. We needed the ability to work
in a more flexible way with popular cluster scheduling software that
allows sharing the cluster resources across different types of data
processing systems (and not just a stream processing system).
Internally at Twitter, this meant working with Aurora [1], as that is
the dominant cluster management system in use.

With Storm, provisioning a new production topology requires
manual isolation of machines, and conversely, when a topology is
no longer needed, the machines allocated to serve that topology
now have to be decommissioned. Managing machine provisioning
in this way is cumbersome. Furthermore, we also wanted to be far
more efficient than the Storm system in production, simply
because at Twitter’s scale, any improvement in performance
translates into significant reduction in infrastructure costs and also
significant improvements in the productivity of our end users.

We wanted to meet all the goals outlined above without forcing a
rewrite of the large number of applications that have already been
written for Storm; i.e. compatibility with the Storm and
Summingbird APIs was essential. (Summingbird [8], which
provides a Scala-idiomatic way for programmers to express their
computation and constraints, generates many of the Storm
topologies that are run in production.)1

After examining various options, we concluded that we needed to
design a new stream processing system to meet the design goals
outlined above. This new system is called Heron. Heron is API-
compatible with Storm, which makes it easy for Storm users to
migrate to Heron. All production topologies inside Twitter now
run on Heron. Besides providing us significant performance
improvements and lower resource consumption over Storm,
Heron also has big advantages in terms of debug-ability,
scalability, and manageability.

In this paper, we present the design of Heron, and also present
results from an empirical evaluation of Heron. We begin by
briefly describing related work in the next section. Then, in
Section 3, we describe Storm and motivate the need for Heron.

1 Work done while consulting for Twitter.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
ACM 978-1-4503-2758-9/15/05.
http://dx.doi.org/10.1145/2723372.2723374

239

Storm @Twitter

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel*, Sanjeev Kulkarni,
Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, Dmitriy Ryaboy

@ankitoshniwal, @staneja, @amits, @karthikz, @pateljm, @sanjeevrk,
@jason_j, @krishnagade, @Louis_Fumaosong, @jakedonham, @challenger_nik, @saileshmittal, @squarecog

Twitter, Inc., *University of Wisconsin – Madison

ABSTRACT
This paper describes the use of Storm at Twitter. Storm is a real-
time fault-tolerant and distributed stream data processing system.
Storm is currently being used to run various critical computations
in Twitter at scale, and in real-time. This paper describes the
architecture of Storm and its methods for distributed scale-out and
fault-tolerance. This paper also describes how queries (aka.
topologies) are executed in Storm, and presents some operational
stories based on running Storm at Twitter. We also present results
from an empirical evaluation demonstrating the resilience of
Storm in dealing with machine failures. Storm is under active
development at Twitter and we also present some potential
directions for future work.

1. INTRODUCTION
Many modern data processing environments require processing
complex computation on streaming data in real-time. This is
particularly true at Twitter where each interaction with a user
requires making a number of complex decisions, often based on
data that has just been created.

Storm is a real-time distributed stream data processing engine at
Twitter that powers the real-time stream data management tasks
that are crucial to provide Twitter services. Storm is designed to
be:

1. Scalable: The operations team needs to easily add or remove

nodes from the Storm cluster without disrupting existing data
flows through Storm topologies (aka. standing queries).

2. Resilient: Fault-tolerance is crucial to Storm as it is often
deployed on large clusters, and hardware components can fail.
The Storm cluster must continue processing existing topologies
with a minimal performance impact.

3. Extensible: Storm topologies may call arbitrary external
functions (e.g. looking up a MySQL service for the social
graph), and thus needs a framework that allows extensibility.

4. Efficient: Since Storm is used in real-time applications; it must
have good performance characteristics. Storm uses a number of
techniques, including keeping all its storage and computational
data structures in memory.

5. Easy to Administer: Since Storm is at that heart of user
interactions on Twitter, end-users immediately notice if there
are (failure or performance) issues associated with Storm. The
operational team needs early warning tools and must be able to
quickly point out the source of problems as they arise. Thus,
easy-to-use administration tools are not a “nice to have
feature,” but a critical part of the requirement.

We note that Storm traces its lineage to the rich body of work on
stream data processing (e.g. [1, 2, 3, 4]), and borrows heavily
from that line of thinking. However a key difference is in bringing
all the aspects listed above together in a single system. We also
note that while Storm was one of the early stream processing
systems, there have been other notable systems including S4 [5],
and more recent systems such as MillWheel [6], Samza [7], Spark
Streaming [8], and Photon [19]. Stream data processing
technology has also been integrated as part of traditional database
product pipelines (e.g. [9, 10, 11]).

Many earlier stream data processing systems have led the way in
terms of introducing various concepts (e.g. extensibility,
scalability, resilience), and we do not claim that these concepts
were invented in Storm, but rather recognize that stream
processing is quickly becoming a crucial component of a
comprehensive data processing solution for enterprises, and Storm

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SIGMOD’14, June 22–27, 2014, Snowbird, Utah, USA.
Copyright © 2014 ACM 978-1-4503-2376-5/14/06…$15.00.
http://dx.doi.org/10.1145/2588555.2595641

147

Streaming@Twitter

Maosong Fu, Sailesh Mittal, Vikas Kedigehalli, Karthik Ramasamy, Michael Barry,
Andrew Jorgensen, Christopher Kellogg, Neng Lu, Bill Graham, Jingwei Wu

Twitter, Inc.

Abstract

Twitter generates tens of billions of events per hour when users interact with it. Analyzing these
events to surface relevant content and to derive insights in real time is a challenge. To address this, we
developed Heron, a new real time distributed streaming engine. In this paper, we first describe the design
goals of Heron and show how the Heron architecture achieves task isolation and resource reservation
to ease debugging, troubleshooting, and seamless use of shared cluster infrastructure with other critical
Twitter services. We subsequently explore how a topology self adjusts using back pressure so that the
pace of the topology goes as its slowest component. Finally, we outline how Heron implements at most
once and at least once semantics and we describe a few operational stories based on running Heron in
production.

1 Introduction

Stream processing platforms enable enterprises to extract business value from data in motion similar to batch
processing platforms that facilitated the same with data at rest [42]. The goal of stream processing is to enable
real time or near real time decision making by providing capabilities to inspect, correlate and analyze data as
it flows through data processing pipelines. There is an emerging trend to transition from predominant batch
analytics to streaming analytics driven by a combination of the increased data collection in real time and the
need to make decisions instantly. Several scenarios in different industries require stream processing capabilities
that can process millions and even hundreds of millions of events per second. Twitter is no exception.

Twitter is synonymous with real time. When a user tweets, his or her tweet can reach millions of users
instantly. Twitter users post several hundred millions of tweets every day. These tweets vary in diversity of
content [28] including but not limited to news, pass along (information or URL sharing), status updates (daily
chatter), and real time conversations surrounding events such as the Super Bowl, the Oscars, etc. Due to the
volume and variety of tweets, it is necessary to surface the relevant content in the form of break out moments
and trending #hashtags to users in real time. In addition, there are several use cases in real time such as analyzing
user engagements, extract/transform/load (ETL), model building, etc.

In order to power the aforementioned crucial use cases, Twitter developed an entirely new real time dis-
tributed stream processing engine called Heron. Heron is designed to provide

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

"

#ThankYou
FOR LISTENING

QUESTIONS

 and

ANSWERS

R
Go ahead. Ask away.

HERON LOAD
SHEDDING

x

9

