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STORM/HERON TERMINOLOGY
TOPOLOGY 

Directed acyclic graph 

Vertices=computation, and edges=streams of data tuples

SPOUTS 

Sources of data tuples for the topology 

Examples - Kafka/Kestrel/MySQL/Postgres

BOLTS 

Process incoming tuples and emit outgoing tuples 

Examples - filtering/aggregation/join/arbitrary function
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STORM/HERON TOPOLOGY
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WHY HERON?

PERFORMANCE PREDICTABILITY

EASE OF MANAGEABILITY
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HERON DESIGN DECISIONS
FULLY API COMPATIBLE WITH STORM 

Directed acyclic graph 

Topologies, spouts and bolts

USE OF MAIN STREAM LANGUAGES 

C++/JAVA/Python
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TASK ISOLATION 

Ease of debug ability/resource isolation/profiling



HERON ARCHITECTURE

Topology 1

TOPOLOGY 
SUBMISSION

Scheduler

Topology 2

Topology 3

Topology N



TOPOLOGY ARCHITECTURE
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HERON SAMPLE TOPOLOGIES



Large amount of data 
produced every day

Large cluster Several hundred 
topologies deployed

Several billion 
messages every day

HERON @TWITTER

1 stage 10 stages

3x reduction in cores and memory

Heron has been in production for 2 years



HERON USE CASES

REALTIME 
ETL

REAL TIME 
BI 

SPAM  
DETECTION 

REAL TIME 
TRENDS 

REALTIME 
ML

REAL TIME 
MEDIA 

REAL TIME 
OPS 



HERON ENVIRONMENT

Laptop/Server Cluster/Aurora Cluster/Mesos
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HERON PERFORMANCE
Settings

COMPONENTS EXPT #1 EXPT #2 EXPT #3 EXPT #4

Spout 25 100 200 300

Bolt 25 100 200 300

# Heron containers 25 100 200 300

# Storm workers 25 100 200 300



HERON PERFORMANCE
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10-14x
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HERON RESOURCE USAGE

Event Spout Aggregate Bolt

60-100M/min

Filter
8-12M/min

Flat-Map
40-60M/min

Aggregate
Cache 1 sec

Output
25-42M/min

Redis



RESOURCE CONSUMPTION

Cores 
Requested

Cores 
Used

Memory 
Requested  

(GB)

Memory  
Used

Redis 24 2-4 48 N/A

Heron 120 30-50 200 180



RESOURCE CONSUMPTION

7%
9%

84%

Spout Instances Bolt Instances Heron Overhead



PROFILING SPOUTS

2%7%

16%

6%

6%
63%

Deserialize Parse/Filter Mapping Kafka Iterator Kafka Fetch Rest



PROFILING BOLTS

2%4%5%
2%

19%

68%

Write Data Serialize Deserialize Aggregation Data Transport Rest



RESOURCE CONSUMPTION - BREAKDOWN

8%
11%

21%
61%

Fetching Data User Logic Heron Usage Writing Data
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BACK PRESSURE AND STRAGGLERS

PROVIDES 
PREDICTABILITY

PROCESSES 
DATA AT 

MAXIMUM 
RATE

REDUCE 
RECOVERY 

TIMES

HANDLES 
TEMPORARY 

SPIKES

/b \ Ñ

Stragglers are the norm in a multi-tenant distributed systems 
Bad machine, inadequate provisioning and hot keys



BACK PRESSURE AND STRAGGLERS

MOST SCENARIOS BACK PRESSURE RECOVERS 

Without any manual intervention

SOMETIMES USER PREFER DROPPING OF DATA 

Care about only latest data
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SUSTAINED BACK PRESSURE 

Irrecoverable GC cycles 

Bad or faulty host



LOAD SHEDDING

SAMPLING BASED APPROACHES 

Down sample the incoming stream and scale up the results 

Easy to reason if the sampling is uniform 

Hard to achieve uniformity across distributed spouts

!

"
DROP BASED APPROACHES 

Simply drop older data 

Spouts takes a lag threshold and a lag adjustment value 

Works well in practice
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ABSTRACT 
Storm has long served as the main platform for real-time analytics 
at Twitter. However, as the scale of data being processed in real-
time at Twitter has increased, along with an increase in the 
diversity and the number of use cases, many limitations of Storm 
have become apparent. We need a system that scales better, has 
better debug-ability, has better performance, and is easier to 
manage – all while working in a shared cluster infrastructure. We 
considered various alternatives to meet these needs, and in the end 
concluded that we needed to build a new real-time stream data 
processing system. This paper presents the design and 
implementation of this new system, called Heron. Heron is now 
the de facto stream data processing engine inside Twitter, and in 
this paper we also share our experiences from running Heron in 
production. In this paper, we also provide empirical evidence 
demonstrating the efficiency and scalability of Heron. 
ACM Classification 
H.2.4 [Information Systems]: Database Management—systems 

Keywords 
Stream data processing systems; real-time data processing. 
 

1. INTRODUCTION 
Twitter, like many other organizations, relies heavily on real-time 
streaming. For example, real-time streaming is used to compute 
the real-time active user counts (RTAC), and to measure the real-
time engagement of users to tweets and advertisements. For many 
years, Storm [16, 20] was used as the real-time streaming engine 
inside Twitter. But, using Storm at our current scale was 
becoming increasingly challenging due to issues related to 
scalability, debug-ability, manageability, and efficient sharing of 
cluster resources with other data services.  

A big challenge when working with Storm in production is the issue 
of debug-ability. When a topology misbehaves – which could be for 
a variety of reasons including load changes, misbehaving user code, 
or failing hardware – it is important to quickly determine the root-
causes for the performance degradation. In Storm, work from 
multiple components of a topology is bundled into one operating 

system process, which makes debugging very challenging. Thus, we 
needed a cleaner mapping from the logical units of computation to 
each physical process. The importance of such clean mapping for 
debug-ability is really crucial when responding to pager alerts for a 
failing topology, especially if it is a topology that is critical to the 
underlying business model.  

In addition, Storm needs dedicated cluster resources, which requires 
special hardware allocation to run Storm topologies. This approach 
leads to inefficiencies in using precious cluster resources, and also 
limits the ability to scale on demand. We needed the ability to work 
in a more flexible way with popular cluster scheduling software that 
allows sharing the cluster resources across different types of data 
processing systems (and not just a stream processing system). 
Internally at Twitter, this meant working with Aurora [1], as that is 
the dominant cluster management system in use.  

With Storm, provisioning a new production topology requires 
manual isolation of machines, and conversely, when a topology is 
no longer needed, the machines allocated to serve that topology 
now have to be decommissioned. Managing machine provisioning 
in this way is cumbersome. Furthermore, we also wanted to be far 
more efficient than the Storm system in production, simply 
because at Twitter’s scale, any improvement in performance 
translates into significant reduction in infrastructure costs and also 
significant improvements in the productivity of our end users.  

We wanted to meet all the goals outlined above without forcing a 
rewrite of the large number of applications that have already been 
written for Storm; i.e. compatibility with the Storm and 
Summingbird APIs was essential. (Summingbird [8], which 
provides a Scala-idiomatic way for programmers to express their 
computation and constraints, generates many of the Storm 
topologies that are run in production.)1 

After examining various options, we concluded that we needed to 
design a new stream processing system to meet the design goals 
outlined above. This new system is called Heron. Heron is API-
compatible with Storm, which makes it easy for Storm users to 
migrate to Heron. All production topologies inside Twitter now 
run on Heron. Besides providing us significant performance 
improvements and lower resource consumption over Storm, 
Heron also has big advantages in terms of debug-ability, 
scalability, and manageability. 

In this paper, we present the design of Heron, and also present 
results from an empirical evaluation of Heron. We begin by 
briefly describing related work in the next section. Then, in 
Section 3, we describe Storm and motivate the need for Heron. 

                                                                 
1 Work done while consulting for Twitter. 
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ABSTRACT 
This paper describes the use of Storm at Twitter. Storm is a real-
time fault-tolerant and distributed stream data processing system. 
Storm is currently being used to run various critical computations 
in Twitter at scale, and in real-time. This paper describes the 
architecture of Storm and its methods for distributed scale-out and 
fault-tolerance. This paper also describes how queries (aka. 
topologies) are executed in Storm, and presents some operational 
stories based on running Storm at Twitter. We also present results 
from an empirical evaluation demonstrating the resilience of 
Storm in dealing with machine failures. Storm is under active 
development at Twitter and we also present some potential 
directions for future work.  

1. INTRODUCTION 
Many modern data processing environments require processing 
complex computation on streaming data in real-time. This is 
particularly true at Twitter where each interaction with a user 
requires making a number of complex decisions, often based on 
data that has just been created.  

Storm is a real-time distributed stream data processing engine at 
Twitter that powers the real-time stream data management tasks 
that are crucial to provide Twitter services. Storm is designed to 
be: 

1. Scalable: The operations team needs to easily add or remove 

nodes from the Storm cluster without disrupting existing data 
flows through Storm topologies (aka. standing queries).  

2. Resilient: Fault-tolerance is crucial to Storm as it is often 
deployed on large clusters, and hardware components can fail. 
The Storm cluster must continue processing existing topologies 
with a minimal performance impact.  

3. Extensible: Storm topologies may call arbitrary external 
functions (e.g. looking up a MySQL service for the social 
graph), and thus needs a framework that allows extensibility.  

4. Efficient: Since Storm is used in real-time applications; it must 
have good performance characteristics. Storm uses a number of 
techniques, including keeping all its storage and computational 
data structures in memory. 

5. Easy to Administer: Since Storm is at that heart of user 
interactions on Twitter, end-users immediately notice if there 
are (failure or performance) issues associated with Storm. The 
operational team needs early warning tools and must be able to 
quickly point out the source of problems as they arise. Thus, 
easy-to-use administration tools are not a “nice to have 
feature,” but a critical part of the requirement.  

We note that Storm traces its lineage to the rich body of work on 
stream data processing (e.g. [1, 2, 3, 4]), and borrows heavily 
from that line of thinking. However a key difference is in bringing 
all the aspects listed above together in a single system. We also 
note that while Storm was one of the early stream processing 
systems, there have been other notable systems including S4 [5], 
and more recent systems such as MillWheel [6], Samza [7], Spark 
Streaming [8], and Photon [19]. Stream data processing 
technology has also been integrated as part of traditional database 
product pipelines (e.g. [9, 10, 11]).  

Many earlier stream data processing systems have led the way in 
terms of introducing various concepts (e.g. extensibility, 
scalability, resilience), and we do not claim that these concepts 
were invented in Storm, but rather recognize that stream 
processing is quickly becoming a crucial component of a 
comprehensive data processing solution for enterprises, and Storm 
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Abstract

Twitter generates tens of billions of events per hour when users interact with it. Analyzing these
events to surface relevant content and to derive insights in real time is a challenge. To address this, we
developed Heron, a new real time distributed streaming engine. In this paper, we first describe the design
goals of Heron and show how the Heron architecture achieves task isolation and resource reservation
to ease debugging, troubleshooting, and seamless use of shared cluster infrastructure with other critical
Twitter services. We subsequently explore how a topology self adjusts using back pressure so that the
pace of the topology goes as its slowest component. Finally, we outline how Heron implements at most
once and at least once semantics and we describe a few operational stories based on running Heron in
production.

1 Introduction

Stream processing platforms enable enterprises to extract business value from data in motion similar to batch
processing platforms that facilitated the same with data at rest [42]. The goal of stream processing is to enable
real time or near real time decision making by providing capabilities to inspect, correlate and analyze data as
it flows through data processing pipelines. There is an emerging trend to transition from predominant batch
analytics to streaming analytics driven by a combination of the increased data collection in real time and the
need to make decisions instantly. Several scenarios in different industries require stream processing capabilities
that can process millions and even hundreds of millions of events per second. Twitter is no exception.

Twitter is synonymous with real time. When a user tweets, his or her tweet can reach millions of users
instantly. Twitter users post several hundred millions of tweets every day. These tweets vary in diversity of
content [28] including but not limited to news, pass along (information or URL sharing), status updates (daily
chatter), and real time conversations surrounding events such as the Super Bowl, the Oscars, etc. Due to the
volume and variety of tweets, it is necessary to surface the relevant content in the form of break out moments
and trending #hashtags to users in real time. In addition, there are several use cases in real time such as analyzing
user engagements, extract/transform/load (ETL), model building, etc.

In order to power the aforementioned crucial use cases, Twitter developed an entirely new real time dis-
tributed stream processing engine called Heron. Heron is designed to provide

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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