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The Data Deluge: Streaming Data Everywhere
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Data does not exist in isolation.




Data almost always exists In
connection with other data —
integral part of the value
proposition.
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Challenges with Graph Analytics

* Scale

* Noise

* Topological Constraints
* Dynamics

Graph sketching under a streaming model




Models of Graph Streaming
* Snapshot model [Muthukrishnan 2003, Asur 2007]

— Graphs are presented in sequence in logical batches
— Sketch -- Lossless compression [Buehrer 2008, 2015]
¢ Semi-streaming model [Feigenbaum 2005]

— Memory budget proportional to node set; edges are

streamed in.

— Sketch — Lossy

¢ Fully streaming model [Muthukrishnan 2003]
— Memory budget is fixed. Sketch — Lossy.




EgoNet: Definition

e EgoNet (one-hop neighborhood of a node)

— for directed graphs split into in-links and out-links
e EgoNet (L) — L-hop neighborhood

e EgoNet-sf (L) — subset of EgoNet(L) with semantic
filtering




Sketching EgoNets

e Key Idea: Leverage Locality Sensitive Hashing
[Broder’98, Indyk’99]

— K minwise independent hashes (K controls sketch size)

e Asedges arrive (semi-streaming model), update
Sketch associated with nodes incident on each edge

* One pass algorithm to generate sketches — provably
equivalent to generating the sketch on snapshot
model!

— Can compute properties of the original graph with
strong guarantees




Measures on EgoNet Sketch |

Horvitz-Thompson Estimators from Egonet sketch to estimate edge/
triangle density

0.12
0.11

0.1
0.09
0.08

0.07
0.06
0.05

Relative Error

0.04
0.03
0.02
0.01 ¢




Absolute Error

Measures on EgoNet Sketch II: Computing
Clustering Coefficient

0.014

0.012

0.01

0.008

0.006

0.004

0.002




|
Measures on EgoNet Sketch Ill: Conductance
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Analytics on EgoNet Sketch: Page Rank
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Concluding Thoughts

e Described a Topographical Sketching Algorithm for
Graph streams under semi-streaming model

— Strong theoretical guarantees (statistical and spectral)
— Can perform analytics directly on the sketch
— Scales orders of magnitude faster

e Easy to parallelize under a privatize and reduce model

— Can be accommodated on an accelerator

e Can couple with real-time content analysis (e.g. Twitter)
— For disease surveillance and disaster response.




Questions




