Streaming Data in Cosmology



Data Flows in Cosmology: The Big Picture



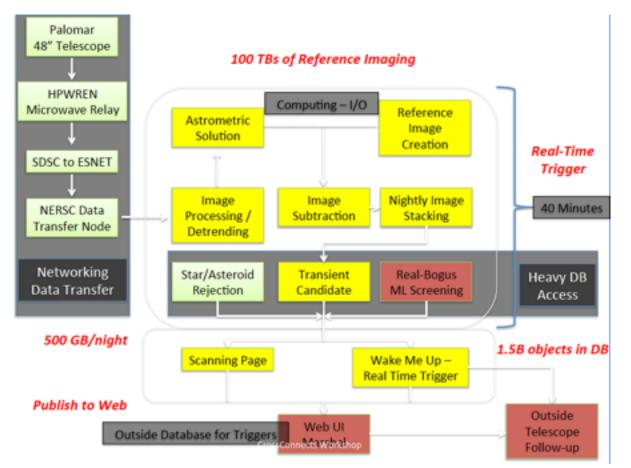
- Data/Computation in Cosmology: Data flows and associated analytics play an essential role in cosmology (combination of streaming and offline analyses)
- Streaming Data:
 - Observations: CMB experiments (ACT, SPT, —), optical transients (Sn surveys, GW follow-ups, —), radio surveys
 - **Simulations:** Large datastreams (in situ and co-scheduled data transformation)
 - Analytics: Transient classification pipelines, imaging pipelines

Data Flow Example

Transient Surveys:

Optical searches for transients (e.g., DES, LSST, PTF) can have cadences in the range of fractions of minutes to minutes, current data rates are about 500 GB/ night — LSST can go up to 20TB/night, about 10K alerts/night

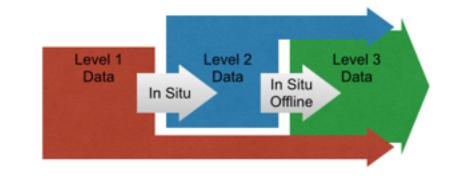
 Machine Learning: Major opportunity for machine learning for filtering and classification of transient sources (potentially one in a million interesting events) demonstrated at NERSC with PTF

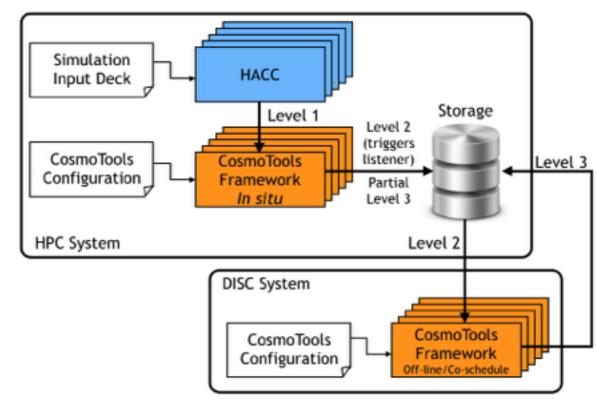


Palomar Transient Factory (courtesy Peter Nugent)

In Situ Analysis and Co-Scheduling

- Analysis Dataflows: Analysis data flows are complex and any future strategy must combine elements of in situ and offline approaches (Flops vs. IO/ storage imbalance)
- CosmoTools Test: Test of coordinated offline analysis ("co-scheduling")
- Portability: Analysis routines implemented using PISTON (part of VTK-m, built on NVIDIA's Thrust library)
- Example Case (Titan): Large halo analysis (strong scaling bottleneck) offloaded to alternative resource using a listener script that looks for appropriate output files

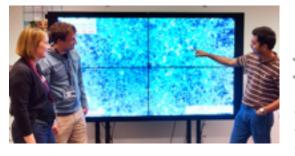


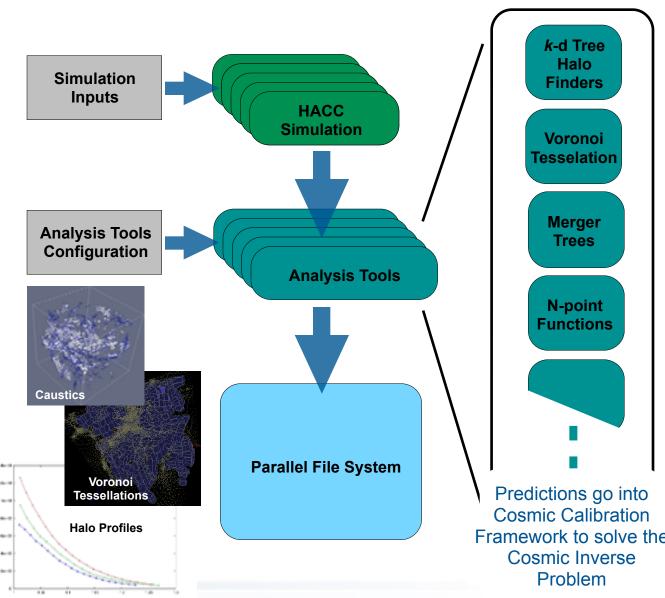


Sewell et al. 2015, SC15 Technical Paper

In Situ Analysis Example

- Data Reduction: A trillion particle simulation with 100 analysis steps has a storage requirement of ~4 PB -- in situ analysis reduces it to ~200 TB
- I/O Chokepoints: Large data analyses difficult because I/O time > analysis time, plus scheduling overhead
- Fast Algorithms: Analysis time is only a fraction of a full simulation timestep
- Ease of Workflow: Large analyses difficult to manage in post-processing



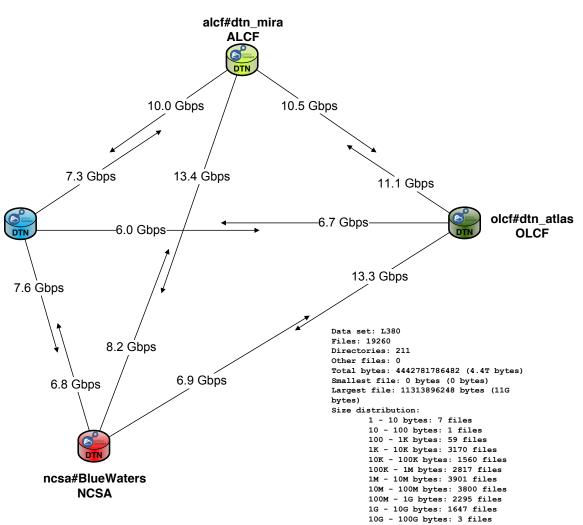


Offline Data Flow: Large-Scale Data Movement

Offline Data Flows:

Cosmological simulation data flows already require ~PB/week capability, next-generation streaming data will require similar bandwidth

- ESnet Project: Aim to achieve a production capability of 1 PB/ week (FS to FS) across major compute sites
- Status: Very close but not there yet (600+ TB/week); numbers from a simulation dataset "package" (4 TB)
- Future: Automate entire process within the data workflow including retrieval from archival storage (HPSS); add more compute/data hubs



Petascale DTN project, courtesy Eli Dart

Extreme-Scale Analytics Systems (EASy) Project (ASCR/HEP)

- New Approaches to Large-Scale Data Analytics: Combine aspects of High Performance Computing, Data-Intensive Computing, and High Throughput Computing to develop new pathways for large-scale scientific analyses enabled through Science Portals
- EASy Elements (Initial focus on cosmological simulations and surveys):
 - Surveys: DESI, LSST, SPT, —
 - Software Stack: Run complex software stacks on demand (containers and virtual machines)
 - **Resilience:** Handle job stream failures and restarts
 - Resource Flexibility: Run complex workflows with dynamic resource requirements
 - Wide-Area Data Awareness: Seamlessly move computing to data and vice versa; access to remote databases and data consistency
 - Automated Workloads: Run automated production workflows
 - End-to-End Simulation-Based Analyses: Run analysis workflows on simulations and data using a combination of in situ and offline/coscheduling approaches

EASy Project: Infrastructure Components

Component	Description	Notes
Observational Data	Data from Dark Energy Survey (DES), Sloan Digital Sky Survey (SDSS), South Pole Telescope (SPT), and upcoming surveys (DESI, LSST, WFIRST, -)	Make selected data subsets available given storage limits; make analysis software available to analyze the datasets
Simulation Data	Simulations for optical surveys (raw data, object catalogs, synthetic catalogs, predictions for observables); simulations for CMB observations	Very large amounts of simulation data need to be made available; hierarchical data views; data compression methods
Data Storage	Multi-layered storage on NVRAM, spinning disk, and disk- fronted tape (technologies include RAM disk, HPSS, parallel file systems)	Current storage availability for the project is ~PB on spinning disk; larger resources available within HPSS; RAM disk testbeds
Data Transfer	Data transfer synced with computational infrastructure and resources; data transfer as integral component of data-intensive workflows	Use of Globus transfer as an agreed mechanism; current separate project with ESnet to have a production capability at 1PB/week
Computational Infrastructure	Wide range of computational resources include high performance computing, high throughput computing, and data-intensive computing platforms	How to bring together a number of distinct resources to solve analysis tasks in a layered fashion? What is the optimal mix?
Computational Resources	Resources at NERSC include Edison and Cori Phase 1; at Argonne, Cooley, Jupiter/Magellan, Theta (future)	Melding HPC and cluster resources; testbeds for using HPC resources for data-intensive tasks and elastic computing paradigms
Containers and Virtualization	Running large-scale workflows with complex software stacks; allowing for interactive as well as batch modes for running jobs; use of web portals	Data management and analysis workflows, especially workflows that combine simulation and observational datastreams
Algorithmic Advances	New data-intensive algorithms with improved scaling properties, including approximate algorithms with error bounds; new statistical methods	As data volumes increase rapidly, new algorithms are needed to produce results in finite time, especially for interactive appliications

Future Challenges

- Data Filtering and Classification: The major challenges for machine learning approaches are high levels of throughput and lack of training datasets — these approaches are the only ones that are likely to succeed, however
- Data Access: View of streaming as "one-shot" is actually a statement of a technology limitation; to overcome this will require cheap and fast storage with databases (or equivalent) overlays
- Software Management: Current data pipelines can be very complex (although not very computationally intensive) with many software interdependencies — work using VMs and containers shows substantial promise
- Resource Management: Cloud resources have attractive features, such as on-demand allocation — can enterprise-level science requirements for high-throughput data analytics be met by the cloud?

