
Research in Middleware Systems For In-Situ Data
Analytics and Instrument Data Analysis

Gagan Agrawal

The Ohio State University

(Joint work with Yi Wang, Yu Su, Tekin Bicer and others)

Outline

• Middleware Systems

– Work on In Situ Analysis

– Analysis of Instrument Data

• Compression/Summarization of Streaming
Data

– Post analysis using just summary

In Situ Analysis – Simulation Data

• In-Situ Algorithms

– No disk I/O

– Indexing, compression, visualization, statistical
analysis, etc.

• In-Situ Resource Scheduling Systems

– Enhance resource utilization

– Simplify the management of analytics code

– GoldRush, Glean, DataSpaces, FlexIO, etc.

3

Algorithm/Application Level

Platform/System Level

Seamlessly Connected?

Opportunity

• Explore the Programming Model Level in In-
Situ Environment

– Between application level and system level

– Hides all the parallelization complexities by
simplified API

– A prominent example: MapReduce

4

+In Situ

Challenges

• Hard to Adapt MR to In-Situ Environment

– MR is not designed for in-situ analytics

• 4 Mismatches

– Data Loading Mismatch

– Programming View Mismatch

– Memory Constraint Mismatch

– Programming Language Mismatch

5

System Overview

6

Shared-Memory
System

Distributed System

In-Situ System

In-Situ System = Shared-Memory System + Combination
= Distributed System – Partitioning

Two In-Situ Modes

7

Time Sharing Mode:
Minimizes memory consumption

Space Sharing Mode:
Enhances resource utilization when
simulation reaches its scalability bottleneck

Smart vs. Spark

• To Make a Fair Comparison
– Bypass programming view mismatch

• Run on an 8-core node: multi-threaded but not distributed

– Bypass memory constraint mismatch
• Use a simulation emulator that consumes little memory

– Bypass programming language mismatch
• Rewrite the simulation in Java and only compare computation time

• 40 GB input and 0.5 GB per time-step

8

813 424 210 105

15550

10403

7750
6559

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1.4E+04

1.6E+04

1.8E+04

1 2 4 8

C
o

m
p

u
ta

ti
o

n
 T

im
es

 (
se

cs
)

of Threads

Smart Spark

344 173 96 43

10361

6697

4766
3992

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1 2 4 8

C
o

m
p

u
ta

ti
o

n
 T

im
es

 (
se

cs
)

of Threads

Smart Spark

62X 92X

K-Means Histogram

Smart vs. Low-Level Implementations

• Setup
– Smart: time sharing mode; Low-Level: OpenMP + MPI
– Apps: K-means and logistic regression
– 1 TB input on 8–64 nodes

• Programmability
– 55% and 69% parallel codes are either eliminated or converted into sequential code

• Performance
– Up to 9% extra overheads for k-means
– Nearly unnoticeable overheads for logistic regression

9

0

200

400

600

800

1,000

1,200

1,400

1,600

8 16 32 64

C
o

m
p

u
ta

ti
o

n
 T

im
es

 (
se

cs
)

of Nodes

Smart

Low-Level

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

8 16 32 64

C
o

m
p

u
ta

ti
o

n
 T

im
es

 (
se

cs
)

of Nodes

Smart

Low-Level

K-Means Logistic Regression

Tomography at Advanced Photon Source

EuroPar’15 10

Tomographic Image Reconstruction

• Analysis of tomographic datasets is
challenging

• Long image reconstruction/analysis time
– E.g. 12GB Data, 12 hours with 24 Cores

– Different reconstruction algorithms
• Longer computation times

– Input dataset < Output dataset
• 73MB vs. 476MB

• Parallelization using MATE+
– Predecessor of Smart System

11EuroPar’15

12EuroPar’15

Inputs IS: Assigned projection slices
Recon: Reconstruction object
dist: Subsetting distance

Output Recon: Final reconstruction object

/* (Partial) iteration i */
For each assigned projection slice, is, in IS {
IR = GetOrderedRaySubset(is, i, dist);
For each ray, ir, in rays IR {
(k, off, val) = LocalRecon(ir, Recon(is));
ReconRep(k) = Reduce (ReconRep(k), off, val);

}
}
/* Combine updated replicas */
Recon = PartialCombination(ReconRep)
/* Exchange and update adjacent slices*/
Recon = GlobalCombination(Recon)

Mapping to a MapReduce-like API

Recon[i]

Node 0 Partial
Combination()

Local
Recon(…)

R
e

co
n

R
e

p

Thread m

…

…

Partial Combination
Phase

…

…

…

Node n Thread 0 …

Thread m …

…

…

Local Reconstruction Phase

Local
Recon(…)

R
e

co
n

R
e

p

Thread 0

…

G
lo

b
a

l C
o

m
b

in
a

tio
n

 P
h

a
se

Iteration i

…
…

P
ro

js
.

R
ec

o
n

 [
i-

1]

Inputs

Inputs

In Situ Analysis

• How do we decide what data to save?

– This analysis cannot take too much time/memory

– Simulations already consume most available memory

– Scientists cannot accept much slowdown for analytics

• How insights can be obtained in-situ?

– Must be memory and time efficient

• What representation to use for data stored
in disks?

– Effective analysis/visualization

– Disk/Network Efficient

Specific Issues

• Bitmaps as data summarization
– Utilize extra computer power for data reduction
– Save memory usage, disk I/O and network transfer time

• In-Situ Data Reduction
– In-Situ generate bitmaps

 Bitmaps generation is time-consuming
 Bitmaps before compression has big memory cost

• In-Situ Data Analysis
– Time steps selection

 Can bitmaps support time step selection?
 Efficiency of time step selection using bitmaps

• Offline Analysis:
– Only keep bitmaps instead of data
– Types of analysis supported by bitmaps

Time-Steps Selection

Full Data

IO Devices

Correlation Metrics (Slow) Correlation Metrics (Slow)

IO (Slow) IO (Slow)

Bitmaps

IO Devices

Correlation Metrics (Fast) Correlation Metrics (Fast)

IO (Fast) IO (Fast)

Efficiency Comparison for In-Situ Analysis -
MIC

• MIC:

• More cores

• Lower bandwidth

• Full Data (original):

• Huge data writing time

• Bitmaps:

• Good scalability of both bitmaps
generation and time step
selection using bitmaps

• Much smaller data writing time

• Overall: 0.81x to 3.28x
• Simulation: Heat3D; Processor: MIC

• Time steps: select 25 over 100 time steps

• 1.6 GB per time step (200*1000*1000)

• Metrics: Conditional Entropy

