

Research in Middleware Systems For In-Situ Data Analytics and Instrument Data Analysis

Gagan Agrawal The Ohio State University (Joint work with Yi Wang, Yu Su, Tekin Bicer and others)

Outline

- Middleware Systems
 - Work on In Situ Analysis
 - Analysis of Instrument Data
- Compression/Summarization of Streaming Data
 - Post analysis using just summary

In Situ Analysis – Simulation Data

- In-Situ Algorithms
 - No disk I/O

Algorithm/Application Level

- Indexing. compression. visualization. statistical
 - ^a Seamlessly Connected?
- In-Situ Resource Scheduling Systems
 - Enhance resource utilization Platform/System Level
 - Simplify the management of analytics code
 - GoldRush, Glean, DataSpaces, FlexIO, etc.

Opportunity

- Explore the Programming Model Level in In-Situ Environment
 - Between application level and system level
 - Hides all the parallelization complexities by simplified API
 - A prominent example: MapReduce

Challenges

- Hard to Adapt MR to In-Situ Environment
 MR is not designed for in-situ analytics
- 4 Mismatches
 - Data Loading Mismatch
 - Programming View Mismatch
 - Memory Constraint Mismatch
 - Programming Language Mismatch

System Overview

In-Situ System = Shared-Memory System + Combination = Distributed System – Partitioning

Two In-Situ Modes

Space Sharing Mode:

Enhances resource utilization when simulation reaches its scalability bottleneck

Time Sharing Mode: Minimizes memory consumption

Smart vs. Spark

- To Make a Fair Comparison
 - Bypass programming view mismatch
 - Run on an 8-core node: multi-threaded but not distributed
 - Bypass memory constraint mismatch
 - Use a simulation emulator that consumes little memory
 - Bypass programming language mismatch
 - Rewrite the simulation in Java and only compare computation time
- 40 GB input and 0.5 GB per time-step

9

Smart vs. Low-Level Implementations

- Setup
 - Smart: time sharing mode; Low-Level: OpenMP + MPI
 - Apps: K-means and logistic regression
 - 1 TB input on 8–64 nodes
- Programmability
 - 55% and 69% parallel codes are either eliminated or converted into sequential code
- Performance
 - Up to 9% extra overheads for k-means
 - Nearly unnoticeable overheads for logistic regression

Tomography at Advanced Photon Source

Tomographic Image Reconstruction

- Analysis of tomographic datasets is challenging
- Long image reconstruction/analysis time
 - E.g. 12GB Data, 12 hours with 24 Cores
 - Different reconstruction algorithms
 - Longer computation times
 - Input dataset < Output dataset</p>
 - 73MB vs. 476MB
- Parallelization using MATE+
 - Predecessor of Smart System

Mapping to a MapReduce-like API

In Situ Analysis

- How do we decide what data to save?
 - This analysis cannot take too much time/memory
 - Simulations already consume most available memory
 - Scientists cannot accept much slowdown for analytics
- How insights can be obtained in-situ?
 Must be memory and time efficient
- What representation to use for data stored in disks?
 - Effective analysis/visualization
 - Disk/Network Efficient

Specific Issues

- Bitmaps as data summarization
 - Utilize extra computer power for data reduction
 - Save memory usage, disk I/O and network transfer time
- In-Situ Data Reduction
 - In-Situ generate bitmaps
 - ✓ Bitmaps generation is time-consuming
 - ✓ Bitmaps before compression has big memory cost
- In-Situ Data Analysis
 - Time steps selection
 - ✓ Can bitmaps support time step selection?
 - ✓ Efficiency of time step selection using bitmaps
- Offline Analysis:
 - Only keep bitmaps instead of data
 - Types of analysis supported by bitmaps

Time-Steps Selection

Efficiency Comparison for In-Situ Analysis MIC

- Simulation: Heat3D; Processor: MIC ۲
- Time steps: select 25 over 100 time steps •
- 1.6 GB per time step (200*1000*1000) •
- Metrics: Conditional Entropy

MIC:

- More cores
- Lower bandwidth
- Full Data (original):
 - Huge data writing time
- Bitmaps:
 - Good scalability of both bitmaps generation and time step selection using bitmaps
 - Much smaller data writing time
 - Overall: 0.81x to 3.28x