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We argue for data-driven control as an approach to adaptive computation in the context of large-scale data 

exploration in science and engineering applications. Here, a streaming scientific analysis workflow is continuously 

tuned with a decoupled, semi-autonomous control task to maximize domain-specific analysis objectives. Data 

stream systems and big data systems increasingly support iterative computations for machine learning and 

analytics tasks that repeatedly modify a set of parameters (e.g., convex optimization or matrix factorization) as 

part of their computation. However, while both adaptive computations and iterative computations build on cyclic 

dataflows and parameter updates, current iterative computation abstractions are poorly suited to the 

requirements of adaptive and steered computation: Their cyclic dataflows and parameter modifications are tightly 

coupled to the algorithm of interest, supporting only a limited degree of adaptability and elasticity on resources. In 

this whitepaper, we outline a series of systems design challenges for data-driven control motivated by large-scale 

simulation science, and with broader potential applicability to mobile healthcare, and sensor networks. 

Motivating application: adaptive control of molecular dynamics simulations. Large-scale scientific simulations use 

national supercomputing resources to generate high-resolution datasets for use in exploring complex scientific 

processes. Molecular dynamics simulations that generate molecular trajectories are widely used in biophysics, and 

biochemistry for conformation and protein dynamics analysis. These analyses often seek rare events (e.g., 

transitions in state space) that only occur at long simulation time scales. As such, these simulations are often 

launched as long-running jobs, using parameter sweeps to study pertinent configurations. This is a natural 

application for data-driven control: We aim to leverage streaming analysis of the simulation data to intelligently 

decompose, and manage simulation tasks. By breaking up large sweeping simulation tasks into fine-grained units, 

we can perform data exploration on-the-fly at the supercomputer, and at the same time, substantially reduce the 

data movement requirements that impede the use of these datasets outside supercomputer environments. 

Motivating application: adaptive sourcing in metabolic syndrome monitoring. With advances in low-cost medical 

monitoring devices, and lab testing, continuous primary healthcare workflows are rapidly emerging as a high-

impact streaming application. Our group is actively developing an iPhone application based on Apple’s ResearchKit 

and HealthKit frameworks to collect and analyze human circadian rhythms spanning eating, exercise and sleep 

activities. Our focus is on understanding metabolic syndrome in a large-scale population, and correlations and 

impacts from the temporal relationships in the aforementioned activities. Here, data-driven control can be used to 

adaptively source sensing data from users’ iPhone devices, to collect data pertinent to exploration tasks and 

hypothesis tests, while minimizing energy expended on communication and querying against population-wide 

aggregates pushed to devices. 

Challenges and Design Goals in Data-Driven Control Systems: 

1. New abstractions for autonomous, elastic and interruptible computation. As inspired by the supercomputing 

and mobile settings, data-driven control is often necessary in ad-hoc computing environments, where we 

cannot deploy daemonized software infrastructure as commonly used in databases, streaming and big data 

frameworks. For example, supercomputers typically use scheduler frameworks such as SLURM, PBS or SGE to 

launch jobs, and while parallel batch jobs can be used to instantiate HDFS, Hadoop or Spark, such deployments 

are typically at a much smaller scale than on cloud deployments due to the waiting times involved in 

simultaneously acquiring large numbers of nodes. Instead, we argue that serverless abstractions as commonly 

found in embedded databases such as SQLite are necessary, where no critical system component is 

implemented as a long-running process system state in memory. We propose a self-managing macrothread 

abstraction in place of the standard operator-centric abstraction of data systems, to enable the specification 

of a high-level, autonomous, iterative unit of computation that maintains an efficient, persistent (on-disk) 

representation of its state. A macrothread is comprised of multiple subtasks that execute in parallel, with 



elastic growth and reduction in its resource usage through an external scheduler framework. In our simulation 

application, by implementing each workflow task (simulation, analysis, querying, optimization and control) as 

separate macrothreads, our framework is fully interruptible, enabling a maximal ad-hoc usage of available 

resources for each task. Given their design for repeated ad-hoc computations, we envisage that this 

abstraction will also be beneficial for programming cloud-based workflows that can take advantage of spare 

resources such as EC2 spot instances. 

 

2. Joint optimization of control and analysis. A key design principle of data-driven control is to exploit both 

analysis outcomes and resource availability in performing workflow tuning. For example, in our molecular 

dynamics application, simulation tasks that generate uninteresting analysis results are given a low execution 

priority. The challenge here is to couple analysis and control with low overheads, and to this end, we consider 

multi-resolution analysis techniques that realize multiple levels of dimensionality reduction for both 

exploration and control purposes. Our cost-based control objective balances the convergence of our analyses 

at each resolution, while using the coarsest resolution for adaptively managing candidate simulation runs. 

 

3. Declarative programming of control systems, and compiling specialized data workflows. While macrothreads 

are the building blocks of our data-driven control framework, we see a need to provide control-oriented 

programming abstractions that target these macrothreads. By viewing control systems as specifying a user-

defined objective and (soft) operational constraints in a declarative rule-based language (e.g., Datalog), one 

challenge is to synthesize and compile the controller macrothread and its interaction with analysis tasks. This 

must occur alongside other mechanisms that define dataflows based on the inputs and outputs of each 

macrothread in a data-driven control system. 

 

In addition to the steering and adaptive computation that are the immediate focus of this whitepaper, our 

group’s broader interests lie in declarative systems programming for big data applications. To this end, we 

have developed the K3 big data systems framework (https://github.com/damsl/k3), which comprises an 

event-driven programming language, compiler, and runtime for building novel distributed data systems, and 

distributed shared memory abstractions. Our experiments with K3 on a range of analytics database 

benchmarks (TPC-H, and Amplab Big Data Benchmark), and machine learning queries show that K3 

outperforms Apache Spark (a popular generic compute platform) and Cloudera Impala (an open-source 

distributed database) by 2.6x-74x and 1.8x-56x respectively at scales up to 250GB deployments across 256 

cores. K3’s research focus is on achieving memory-efficient processing in distributed functional dataflows as 

popularized by the MapReduce paradigm. In particular, K3 provides a distributed functional and actor-based 

programming paradigm while supporting consistent in-place updates with the use of program effects and 

lineage analysis techniques. Furthermore, K3 provides a specialization framework that allows systems 

developers to customize query and engine logic, in addition to co-optimizing their functionality through the 

use of aspect-oriented generative programming techniques. 
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