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Abstract—Although Event Stream Processing (ESP) systems
exit for already more than a decade, we recently witness a
true renaisance for ESP systems that have adopted the popular
MapReduce paradigm. In this white paper, we advocate for
the StreamMapReduce approach as it allows a (i) quick and
easy transition of legacy MapReduce-based applications to ESP,
(ii) simplifies the implementation of fault tolerance mechanisms,
and (iii) elasticity in order to operate in nowadays cloud
environments. We will furthermore showcase two real world
applications from the area of SmartGrids and geo-spatial data
stream analysis where the StreamMapReduce approach has been
successfully applied.
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I. INTRODUCTION

ESP systems exist for nearly a decade by now: The first
generation of such systems evolved mainly as an extension
of database systems such as TelegraphCQ [1] while in
the following years, a second generation of ESP systems
evolved where ESP became its own independent branch
with the advent of the Borealis system [2]. Although those
systems were already equipped with novel mechanisms such
as load shedding, fine grained load distribution and fault
tolerance, they all have a CQL-like programming interface in
common. However, the advent of Google’s MapReduce [3]
approach paved the way for a new generation of ESP systems.
Mostly driven by industry, a number of MapReduce-inspired
open-source ESP systems such as Apache S4 [4], Storm [5]
and Samza [6] evolved over the past five years gaining an
enormous traction. But, not only industry pushed for the
new MapReduce-like ESP approach as the evolvement of
ESP systems such as SEEP [7] and STREAMMINE3G [8]
originating from academia shows.

II. PROGRAMMING MODEL & APPLICATION EXAMPLES

The StreamMapReduce programming model is quite trivial
as it consists only of a single method, a user-defined function
(UDF) often called process(). The method takes the (i) in-
coming event, which can either be provided in un-serialized
or serialized form, (ii) a collector object to emit events to the
following stage, and (iii) a state object in order to provide
stateful ESP. Note that some modern ESP systems such as
SEEP do not provide an explicit state object as they require that
state is maintained as member variables of the class providing
the process() method for the event processing loop. Once
the user has implemented the operators, a topology defines
the flow of events, i.e., how events traverse those operators

carrying out the complete application. The advantage of such
a design is that it provides scalability similar as in MapReduce
where the input stream of an operator can be easily partitioned
by a simple hash-based or user-provided partitioner function.

Although the proposed programming model may seem to
require a lot of programming effort when working on time
series contrary to CQL-like approaches that provide already
implicit window semantics, authors in [9] have shown that
window semantics can be easily provided and adopted using
the StreamMapReduce approach.

Moreover, the simplicity of the MapReduce programming
model and the provided state object allows the implementation
of standard CQL-like operators such as joins and aggregations
that can run on top of ESP systems as a thin layer as authors
have shown in [10]. This abstraction allows users to utilize
standard CQL operators for convenience paired with UDFs
where needed.

Although CQL operators provide a convenient way of
processing time series, many real world applications such as
provided by the annual DEBS challenge require also access
to historical data. For example, in the DEBS 2014 challenge,
application developers were asked to provide a short term load
prediction using historical data as well as detecting outliers
using a sliding window in the context of SmartGrids. Authors
in [11] have shown that the given problem can be solved
efficiently using the StreamMapReduce approach reducing the
size in code significantly in contrast to CQL-based approaches.
The approach presented provides not only scalability but also
elasticity which allows the application to run also in cloud
environments reducing monetary costs as authors have shown
in [12].

However, the StreamMapReduce paradigm proved to be
successful also in other application areas such when processing
geo-spatiel data streams in near real-time: In the DEBS 2015
challenge, application developers were challenged to provide
an application that continuously provides a top-k of the most
frequently driven routes and most profitable areas within a
sliding 30mins window based on the provided stream of taxi
rides. Although the operation on the provided time series calls
for a CQL-like approach at its first sight, the complexity for the
computation of the profit for an area as well the ranking of the
most frequently driven routes calls for a more flexible approach
such as StreamMapReduce where custom data structures can
be utilized as authors have shown in [13].

III. FAULT TOLERANCE & ELASITICY

In StreamMapReduce, we consider an operator as a black-
box where the ESP system is neither aware of its functionality
nor the properties of the associated state. Using the black-box
approach, fault tolerance can be implemented in the following



way: The user solely needs to provide a (i) serialize and
de-serialize method for the operator state (if the operator
is stateful) and for the incoming and outgoing events, and
(ii) timetamps associated with every event. Using the pro-
vided methods, the ESP system can now offer fault tolerance
based on checkpointing and logging (rollback recovery) by
performing periodic checkpointing of the operator state as
well as maintaining an in-memory log of events for a replay
of in-flight events in the event of a system crash. Using the
associated timestamps, events can be processed deterministi-
cally to recover precisely when using rollback recovery, or
alternatively for active replication using the state machine
replication approach which results in an almost instantaneous
recovery.

Although the black-box approach provides exactly-once
processing semantics which is per-se expensive due to event
ordering, user-provided annotations can be used in order to
reduce the overhead imposed by fault tolerance as authors
have shown in [14]. Such an optimization can be applied if for
example an operators is commutative and works on tumbling
windows where the ESP system is then allowed to omit to
enforce a strict event ordering within such windows without
distorting the final result. Using this approach, authors have
shown that the throughput can be considerably increased.

Since the black-box approach requires the user to provide
operator state and events in binary form, many of those
mechanisms used initially for fault tolerance can be reused for
elasticity. Authors in [7], [12] have shown that the checkpoint-
ing mechanism originally designed for state persistence can
also be used to move stateful operators to new nodes in order
to expand or contract clusters based on the current demand
on resources. Hence, the StreamMapReduce abstraction allows
ESP systems to scale elastically while providing fault tolerance
with exactly-once processing semantics at the same time.

Confidentiality has been always an issue when running
applications in cloud environments. Using the black-box ap-
proach of StreamMapReduce in concert with the new upcom-
ing Intel SGX [15] extension, we can establish trust by simply
having the operator code executed in a so called enclave,
a trusted execution environment. We therefore believe that
StreamMapReduce is a suitable approach for trusted, elastic
and fault tolerant stream processing.

IV. CONCLUSION & SUMMARY

In this paper we presented the StreamMapReduce approach
and showcased its benefits using several real world applications
originating from different application domains. We highlight
that the flexibility of such a paradigm allows users to intermix
custom written operators in form of UDFs with higher level
abstractions for stream processing such as CQL that can run on
top of StreamMapReduce-based ESP systems as an additional
thin layer. By considering operators and state as black-boxes,
we can furthermore provide fault tolerance using exactly-once
processing semantics. Moreover, it is possible to reuse several
mechanisms originally designed for fault tolerance for elastic
scaling of applications to run cloud environments such as
Amazon EC2. To establish trust in those environments, we
propose the use of Intel SGX. Especially the strong demand
in industry during the past few years confirms our belief that
the StreamMapReduce approach can be considered the next
generation of ESP systems.
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