Streaming Programming Systems at Exascale
Stefano Markidis, Ivy Bo Peng and Erwin Laure
KTH Royal Institute of Technology

The emerging research area of data-intensive applications and big data analytics
within the HPC community promotes the streaming computational paradigm with
growing relevance. With the exascale era approaching, it is important to understand
which streaming programming system is the most effective for the development of
streaming applications on exascale supercomputers.

In this white paper, we analyze the uptake of the streaming computational paradigm
on exascale supercomputers. We argue that MPI is likely to be the dominant
programming system at exascale and the development of streaming programming
systems requires an MPI streaming model. The support in MPI for a streaming
model helps promote the adoption of the streaming computational paradigm in the
HPC community. We discuss the current state of MPI streaming model and propose
a stream benchmark to investigate the performance of streaming programming
systems and HPC systems.

Streaming Programming Systems at Exascale. Exascale supercomputers will
deliver 1018 floating-point operations per second (FLOPS) in the High-Performance
Linpack (HPL) benchmark that solves a dense linear system. Despite the growing
importance of big data problems in HPC community, the hardware and software for
exascale supercomputers are still designed for compute-intense applications, such
as HPL. Challenges remain in achieving maximum performance for data-centric
streaming computing using hardware and software that are mainly designed for
compute-intensive tasks.

Existing popular streaming software frameworks, such as Apache Spark and Flink,
are designed for maximizing productivity and programmability. Such frameworks
are intended for deployment in loosely coupled computing environment, e.g. cloud
systems. On the other hand, MPI has been designed for strongly coupled systems
with high performance interconnection networks, e.g. supercomputers. The main
strengths of MPI have been portability and performance. As a matter of fact, the
first exascale application will be an MPI-based HPL application. For this reason, MPI
will be the first programming system that breaks the exascale barrier. Only very
recently, the HPC community started investigating the possibility of including
streaming model in MPIL. An initial MPI library to support streaming computing
paradigms has been developed as proof-of-concept. The use of such library enables
streaming computing in traditional HPC applications.

We note that the streaming framework built on the top of MPI can achieve high
productivity. The application developer can then decide whether to use MPI directly
or higher-level frameworks for streaming computing based on MPI streaming
model.



Uptake of Streaming Models in HPC. The vast majority of HPC applications uses
MPI as the main parallel programming system. For this reason, it is likely that an
HPC application developer that is interested in using streaming computing will
investigate the support in MPL By supporting a streaming model in MPI, the
interoperability of the existing HPC application with new MPI streaming processes
is guaranteed.

MPI promoted a widespread use among community and created a very large user-
base through the presence of MPI Forum and a standardization process. Support in
MPI for streaming model would help boost the use of streaming computing
paradigm within the HPC user community.

High Performance Implementation of Streaming Models in MPI. A high
performance implementation of MPI streaming model requires a native MPI
implementation. The long standardization process will likely take more than five
years for the MPI streaming model to be added to the MPI standard. The new
streaming functions would be a major addition to the MPI standard, making this
work comparable to the work done for one-sided communication in the second
main release of MPI standard.

Meanwhile, it is possible to have high quality and high performance
implementations of MPI streaming library, built on the top of MPI. Support for active
messages and active access to data could lead to the development of such high
performance streaming libraries.

The Need of Benchmark. There is a need for a
benchmark to investigate the performance of Cray XC40

=)

streaming programming systems and HPC
systems. We propose to adopt a benchmark in
similar spirit as the widely used STREAM
benchmark. The original STREAM benchmark
calculates the sustainable memory bandwidth
using four computational kernels: copy(), scale(),

©

Processing Rate (GB/s)
N S (]
M,

o

— 256-Double Max
———- 256-Double Min
—— 512-Double Max
—---512-Double Min

1024-Double Max|
1024-Double Min
—\
= X
\
\
AN

sum() and triad(). We suggest that a benchmark ' o im0 o0 1000

FLOPS/Stream Element

with the same four kernel operations can be used
Blue Gene/Q

&

1x108

to calculate the amount of data being processed in — Zapote e

—— 512-Double Max

———-512-Double Min
1024-Double Max
1024-Double Min

time (processing rate) by using a given streaming
programming system on a given platform. The
Figure on the right shows an example of using
such a benchmark with scale() kernel to
determine the performance of a MPI streaming
library on 64 cores on Cray XC40 and Blue Gene/Q B

Processing Rate (GB/s)
N w S

o

o

architectures. FLOPS/Stream Element

1x10°



