Exploring Copy Number Variation from the 1000 Genomes Project
Yuchen Gao, Blaine Rothrock, Ryan Konz

Abstract

The genetic information that encodes each individual’s physical traits (phenotypes) is stored in the form of deoxyribonucleic acids (DNA). While each individual possesses a unique set of traits: appearance, health, etc., at a molecular level, human DNA is 99.9% identical. Copy number variation (CNV) is one form of DNA structural variation that can account for differences among humans. CNVs are sections of DNA that exist in higher or lower copies than normal. These copy numbers have been implicated in a variety of diseases.

We were interested in exploring new approaches to CNV analysis. This was accomplished through the large-scale use of data from the 1000 Genomes Project, analysis of exome data with the newly developed ExomeCNV package, and cloud computing through the FutureGrid testbed. The 1000 Genomes Project is a current collaborative effort to sequence the DNA of large numbers of participants from multiple countries. The sequencing data is freely available for public use. ExomeCNV is one of several new softwares designed to analyze copy number variation only in coding regions of DNA. The FutureGrid testbed allowed generation of multiple virtual machines to run our software in parallel. Our methodology was tested by analyzing copy number variation among individuals in the Great Britain population sequenced by the 1000 Genomes Project. The study generated a list of regions of DNA that have copy number variation among the Great Britain population. We hope this information will lead to further analysis of the phenotypic implications of variation in these regions.

Introduction and Statement of Research Problem

In humans and nearly all living organisms, genetic information encoding all of one’s physical features is stored in the form of deoxyribonucleic acids or DNA. DNA can code for genetic information in base-4 by using four chemical bases: thymine (T), adenine (A), guanine (G), and cytosine (C). These bases can form complementary pairs: A pairs with T, and G pairs with C. Together, these base pairs give rise to the double-helical structure of DNA. The human genome contains over 3 billion base pairs, which are divided between two sets of 23 chromosomes, one set from each parent. These chromosomes contain both regions of DNA that code for RNA or protein products (exons) and regions that are non-coding (introns). The coding regions are composed of independent units called genes, of which there are over 30,000 in human DNA.

At a genetic level, human beings are remarkably similar. For any two individuals, the DNA in their cells is 99.9% identical. The remaining 0.1% of genetic variation is spread across many different genes and is responsible for the different appearances and different health of the individuals. Furthermore, these differences can be inherited, which explains why close relatives share many similar traits. Genetic variation primarily exists in two forms. The first is single nucleotide polymorphisms (SNPs). These are individual bases in the DNA where the base has been changed (e.g. A to G). It was previously thought that SNPs were the most important and numerous form of genetic variation. However, recent sequencing projects have revealed the existence of a second form of genetic variation. While genes normally exist in two copies in each person, one inherited from each parent, it is now known that these genetic copy numbers can vary.

Copy number variation (CNV) is a type of structural variation that occurs in genomic DNA where a region of DNA one kilobase to several megabases in length occurs in higher copies or lower copies than normal (Stankiewicz & Lupski, 2010). They comprise at least three times as much DNA as SNPs. CNVs arise from errors during DNA replication such as deletion, duplication, translocation, and inversion. These regions are important because they account for 12% of the genomic DNA in humans and are associated with many types of physical variation. This can include appearance, susceptibility and resistance to disease, and susceptibility to different drugs. For instance, non-small cell lung cancer patients tend to have high copy numbers of the EGFR gene than the normal population (Cappuzzo et al., 2005). Similarly, individuals who are resistant to HIV infection have been found to have a higher copy number of the CCL3L1 gene (Gonzalez et al., 2005).

CNV can lead to physical variation by affecting gene dosage. A copy number of 0 resulting from gene deletion can have severe effects if the gene were essential to cellular function. Similarly, if the deletion occurs in regulatory regions, the genes being regulated will have altered expression levels. A copy number of 1 can reveal recessive traits that also affect the cell. An individual who is heterozygous for cystic fibrosis will have a copy of the normal gene and one copy of the cystic fibrosis form of the gene. Since cystic fibrosis is a recessive trait, it is normally masked by the expression of the normal gene. Deletion of the normal gene would lead to onset of cystic fibrosis in the individual. Higher copy numbers can lead to over-expression of certain proteins. Over-expression of the mannose-6-phosphate receptor protein has been linked to Alzheimer’s disease (Mathews et al., 2002).


We are interested in studying new approaches to CNV analysis. To accomplish this task, we are utilizing data from the 1000 Genomes Project. The 1000 Genomes project is a collaborative effort between numerous scientific organizations to sequence the genomes of large numbers of people. Its goal is to provide a comprehensive collection on human genetic variation by identifying genetic variants that are present in at least 1% of the population studied. This data is freely available to the public through the Project’s website. Data on the website is divided based on the ethnic ancestry of the sequenced populations. 


Due to the size of the human genome, the analysis of large numbers of sequencing samples would require a significant investment of time and computational resources. We are reducing these costs in two ways. First, we are only analyzing the exon data instead of genomic data. Exons are the regions of the genome that encode protein or RNA products. While exons only account for 1% of the total genome, approximately 85% of disease-causing mutations are found in these coding regions (Choi et al., 2009). Second, we are processing the data in parallel. Second, we are parallel processing our exome analysis by utilizing the FutureGrid system. Through the OpenStack project on FutureGrid, we are able to create multiple virtual machines (VMs) that can independently process the raw sequencing data and search for CNVs. The output files from each VM are then consolidated and analyzed using basic statistical tests.


We are testing our novel methodology by attempting to identify regions of highest copy number variation within the British population based on 100 sequencing samples from the 1000 Genomes Project. Our study focused on the British population because it is a largely homogeneous group, so variations we identify in our study will likely consist of regions that diversified recently in evolutionary time. We believe that the recent diversification of these regions may be indicative that the affected genes are under heavy selective pressure to evolve. Specifically, we wanted to identify exon regions with the highest mean copy number and the highest copy number standard deviation. A high mean copy number allows a region to be more susceptible to mutation, generating mutation “hotspots” along the chromosome. If a gene has an essential cellular function, mutation can lead to death of the cell. However, with additional copies, mutation in one copy of the gene will not be likely to kill the cell, as long as the remaining copies remain functional. Areas of high standard deviation are interesting because they are indicative of variation already present in the population. This may reveal exons where evolution is currently occurring in the Great Britain population as a result of natural selection for an increase or decrease in copy number.

Time permitting, we hope to identify specific genes of interest within the highly variable regions and associate them with phenotypic variation. Specifically, we are highly interested in identifying regions that may be linked to to health and disease risk.

Background and Related Work

Current CNV Research


Until recently, copy number variation had been overlooked as having effect on functions of a DNA molecule. Due to modern advancements in technology and readily available data from sources like the 1000 Genomes Project, copy number variation is now known as a structural variation (Baker, 2012). Various research is being done to determine how these variations affect phenotype, whether it be in humans, other animals, plants or single-celled bacteria. In human research, CNVs have been associated with people’s susceptibility to certain drugs or their risk of developing certain diseases. Research on CNVs is relatively new, but is starting to become an extremely important aspect of genomic research.

One recent article estimated that 14.2% of diseases in children are caused by CNVs greater than 400 kilobases in length (Cooper et al., 2011). This study focused on children with cardiovascular defects and craniofacial anomalies in comparison with children with epilepsy and autism. 1,492 CNVs in genomic regions that had previously been associated with disorders were compared for 1,400 individuals. CNVs greater than 400 kb were found to be much more frequent in individuals with the disorders than in the control group. 

Research done on Leishmaniasis, a disease caused by various species of a parasite called Leishmania, show that copy number variations between different species of Leishmania could account for environmental effects such as disease tropism (Rodgers et al., 2011). Tropism is a biological phenomenon when an organism reacts differently in different environments, or adapts to surrounding environment in a unique way. A common example of tropism is when a plant grows towards sunlight. This specific study attempted to prove why aneuploidy cells, cells with more than normal number of chromosomes, can have a strong advantage under environmental stress, which includes phenotypic differences. The conclusion hypothesized that unlicensed copying of DNA due to copy number variations lead to aneuploidy cells rather than sexual recombination, which was a previous hypothesis.     

1000 Genomes Project

Since early 2010 there has been much attention drawn to the 1000 Genomes Project, whose original goal was to discover all genetic variation that occurs at a population frequency greater than 1% by deep sequencing of at least 1,000 individual genomes from a worldwide sample population. Today the 1000 Genomes Project is working to sequence 2,000 individuals from 20 different worldwide populations covering Africa, Europe, East Asia and the Americas (Via et al., 2010). Each population section includes 60 to 100 genome sequences. The project is a international collaboration between China, Germany, the United Kingdom, and the United States with an original estimated cost of $30-$50 million to now $120 million for its 5 year duration. (Patterson, 2012). 

Currently, most of the research done from the 1000 Genomes Project has been for its first three pilots data sets. More than half of the variants found with this data had previously been unknown. The pilot data shows that about 1% or about 250 to 300 genes in the average human had loss-of-function variants (mutations that result in a gene product having less or no function), of which 50 to 100 had previously been associated with inherited disease (Patterson, 2012). The data released by the 1000 Genomes Project over the last 3 years has opened new doors for genome analysis by providing genomic data freely accessible to researchers.

Susceptibility to tuberculosis is a leading research topic in which some projects are using data from the 1000 Genomes Project to identify variants in certain genes. With the organization of the sample populations within the data of the 1000 Genomes Project, it is easy for researchers to apply test and control sets for different experiments to uncover variants. This particular analysis was done on the Eastern African sequencing samples and found that for one common SNP, chromosome 11 locus 11p13, variation indicates a possible resistance to TB. After analyzing the data from the 1000 Genomes Project this research yielded a relationship between the locus in chromosome 11 to a locus only 45 kilobases from WT1 (encoding Wilms Tumor). WT1 has been associated with activation of vitamin D receptors and suppression of interleukin 10 (IL-10), both of which are known to affect susceptibility to TB (Thye et al., 2012). This study indicates that locus 11p13 may be involved in regulating WT1. This study and others conducted with data from the 1000 Genomes Project provide promising results when providing new data would otherwise be too costly.  

FutureGrid


FutureGird is an experimental, high performance testbed that supports cloud and grid computing. Over the last few years the rise of cloud technology has lead to the exploration of scalable computing tasks in a cloud environment (Fox et al., 2011). FutureGrid’s main goal is to test such computing tasks. Much of the research done on the system, given that it is experimental, have been testing how to perform tasks over a cloud environment. With cloud computing being implemented in research there is also concern and therefore research being conducted on security and cloud computing environments. 


Major research is being done with the FutureGrid project that includes testing of applications to run various computing tasks over a cloud environment. Research done here at Indiana University uses FutureGrid to test multiple approaches to cloud computing, specifically using Infrastructure as a Service (IaaS) frameworks (Diaz et al., 2012). IaaS is one of the most basic cloud computing models in which the cloud provider offer virtual machines accesses to the users of the system to perform various tasks inside a secure environments with raw block storage, firewalls, load balancers and networks.


The goal behind the FutureGrid Project is simply to understand the behavior and utility of cloud computing approaches. Researches are able to deploy virtual machines and run computing tasks in parallel, with the hope of gaining insights that can further develop cloud computing on large scale data. FutureGrid is still very much experimental and novel, but holds promising advancements in cloud computing technology especially on large scale computing.

Research Methodology 


Our research methodology was to retrieve raw sequencing data from the 1000 Genomes Project, process individual data to determine copy number variation, then compile the individual samples to analyze population statistics. The primary challenge of our methodology was finding and testing various CNV analysis software to find one suitable for our data. After finding a path that took a sample’s raw sequencing data and outputted CNV information, we worked to implement this path for the exome sequences of 100 samples from the Great Britain population from the 1000 Genomes Project. This was done using the cloud computing testbed, FutureGrid. We created virtual machines running OpenStack, a software for scalable cloud computing, on FutureGrid’s cluster India, hosted here at Indiana University. 
CNV Analysis


We experimented with three CNV analysis programs throughout the duration of this project before finding one that best fit our needs.The CNV analysis programs we tested were:
· SeqGene

· CONTRA

· ExomeCNV

For each of these programs, we tested its functionality using a single individual’s chromosome 20 exon sequence. We then analyzed the process and output to determine whether the program was suitable. The program we chose for our final analysis was ExomeCNV. We also used scripts of our own creation to streamline our workflow and to compile the individual samples to analyze population statistics.


Our workflow started with processing raw sequencing files through GATK (Genome Analysis Toolkit). GATK is a java application that generates coverage files based on a raw sequencing file, a list of exon regions, and a reference genome. These coverage files are lists of exon regions on a chromosome and the number of times the raw sequences aligned to that region, which can be then used to estimate copy number. For the list of exon regions, we took the known list of exons in the human genome and ran a python script to format it for use in GATK. A reference genome is an assembled genome sequence that is a representative example of species, in this case human. Reference genomes are publicly available, and we used the most recent reference Human_hg19. 

We were able to then process the GATK-generated coverage files using the R package ExomeCNV, which calculated copy numbers based on the amount of coverage in a given region. ExomeCNV then found adjacent regions of equal copy numbers and combined them to form segments. These segments span the entirety of a chromosome and give indication to where duplications and deletions occurred.

Taking each individual’s CNV output, we then created a list of all individuals’ copy numbers for each exon. This allowed us to calculate the mean copy number and the variance of the copy number for each exon and analyze them from a population level. We were then able to determine exons that have the highest mean copy number and exons that have the most variation among the population.


FutureGrid

In order to perform the rigorous computational needs of this project, we needed to take full advantage of the resources offered here at Indiana University. In the beginning phases of the project, each member of the team created virtual machines on our laptops running Ubuntu. This allowed us all to run a Linux-based operating system that would support our needed software. While this method worked well for testing individual samples, we quickly ran out of spatial resources. This pushed us to implement a much larger computing cluster into our project

For this project we used the India computing cluster on FutureGrid, located here at Indiana University, to handle our computational needs. FutureGrid is a high performance grid testbed that allows scientists to collaboratively develop and test innovative approaches to parallel, grid and cloud computing.

Our initial thoughts for utilizing FutureGrid was to create multiple virtual machines and run several processes in parallel, thus shortening the work load and the time of the overall process. In order to create our virtual machines we built our own custom Ubuntu image and registered it with OpenStack compute (Nova), a collection of open-source technology that provides scalable cloud computing software. Creating our own image allowed us to put all of the basic components for our analysis, such as essential software, control data and scripts for streamlining, into our image. This was a vital step as OpenStack did not allow us to save our state in virtual machines. By creating our own image we were no longer required to upload all of our software each time we created a virtual machine. Using these Virtual Machines we were able to run GATK and ExomeCNV then SFTP our results to server for later review.
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Fig. 1: Workflow of exome CNV analysis
Analysis

CNV Software


In our initial testing phase, we attempted three different CNV analysis software packages. The first was SeqGene. Although SeqGene had the most documentation available out of our three packages, the results of our test run did not appear to account for exon versus intron sequences. Though the program was able to both perform exon sequencing and CNV analysis, it was apparently unable to perform exon CNV analysis. We were also unable to get into contact with the developer of the software for help. This caused us to look for further software options.


The second program we tested was Copy-Number Analysis for Targeted Resequencing (CONTRA). CONTRA was explicitly designed for exome CNV analysis. Out of the three programs we tested, it also had the least amount of documentation. Unlike the other programs, CONTRA compiled all of its individual scripts into one file. We ran into run-time errors while executing this file and were unable to find a solution in the available resources.


The final program we tested was ExomeCNV. This was the first program that we found during our search, but was set in reserve when we were initially unable to find supporting documentation. After experiencing issues with CONTRA, we decided to take a second look at ExomeCNV and eventually found a user manual that provided adequate instructions.

However, there were several shortcomings with the ExomeCNV package. ExomeCNV is designed to test paired data samples (e.g. tumor and normal cell) and not necessarily a pooled population of samples. This means that each sample ideally should be compared with its own control file. However, in our pooled population, there is no available control file. Our solution was to take one sequencing sample and designate it as the control file for all of the remaining samples. We hoped that the large sample size of our analysis would make up for any inaccuracies in our control file.

In addition, ExomeCNV is highly dependent on the resolution of the samples (Sathirapongsasuti et al., 2011). Because the 1000 Genomes Project only aims for coverage of between 3 and 5 in their sequencing, errors are more likely to arise simply due to random variation in the samples. Having higher coverage samples would increase the likelihood of CNV variations we find being representative of the population rather than artifacts resulting from the software algorithm.

FutureGrid


Complication arose with the stability of our virtual machines running full exome sequences. These virtual machines needed to stay running for upwards of 80 hours in order to process a full exome sequence and provide CNV results using ExomeCNV. However, we had our connections time out between 5 and 18 hours after initiating our virtual machine instance, after which the machine would no longer be accessible. This resulted in the complete loss of our whole-exome data. Due to time constraints of this project, we decided against further pursuing whole-exome analysis.

Instead, we directed our focus to chromosome 20 alone. Chromosome 20 is one of the longest chromosomes in humans and is also readily sequenced within the 1000 Genomes Project. This shift in experimental approach resulted only from inconsistencies with FutureGird and time constraints of the project. Although we were able to obtain results from ExomeCNV with an entire exome sequence from the 1000 Genomes Project on our individual computers, we were not able to streamline the process through FutureGrid to obtain an entire sample population. We were, however, able to utilize FutureGrid to analyze a large portion of chromosomes 20 for the Great Britain population on the 1000 Genomes Project. 

Results

Using our methodology, we were able to calculate CNV in the ~5000 exons on chromosome 20 for the Great Britain population. Below is a sample CNV output for one individual’s chromosome 20.
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Fig. 2:  Copy number in chromosome 20 of one sample (bottom histogram indicates gene distribution)
We ran a total of 50 sequencing samples through ExomeCNV and calculated the population statistics using a custom Python script. As mentioned earlier, the goals was to focus on outliers in the copy number variation of these exons. We calculated the mean and standard deviation of each exon. The histogram below shows the distribution of mean copy numbers we found in the Great Britain population.
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Fig. 3: Frequency of chromosome 20 mean exon copy numbers in the Great Britain population
We also sorted the results to find the exons with the highest mean and standard deviation. The tables below list the five exons with the highest mean and standard deviation and the genes associated with those exons.
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Table 1: Chromosome 20 regions with the highest mean copy number
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Table 2: Chromosome 20 regions with the highest copy number standard deviation
Conclusion

While we were able to find several software packages that claimed to be capable of analyzing CNV, the only package that worked was ExomeCNV. This is likely due to the novelty of this field of research. Many of these packages are still in the testing phases, and there are still many bugs to be solved. As more focus is given to CNV analysis, we expect further development of existing software and creation of new software such that a larger variety of usable software would be available for a further project similar to ours.

ExomeCNV provided us with software that worked, but not necessarily the best solution for what we wanted to originally accomplish. We were able to obtain copy number variations data from individual samples of an exome sequence. The accuracy of our data was put up for question after our final population statistics from ExomeCNV were reviewed.  Our statistics showed that the average copy number variation was around 2.6, whereas it theoretically should be much closer to 2.0, which is the normal copy number. The task of managing the massive amounts of data from an entire sample population also posed problems, but using FutureGrid has the potential to handle such computing tasks.  

FutureGrid proved to be potentially useful for our analysis of CNV, but due to complications with failing virtual machines, the cloud computing system does not seem stable enough to rely on consistent results at this time. There is no doubt that the methodology we used could work on OpenStack, since we were able to use ExomeCNV to analyze an entire exome on our local machines. The only constraint was the stability in the virtual machines on OpenStack. We were not able to sustain a virtual machine for long enough to run a full genome sequence for a single individual, let alone for an entire sample population, but we were able to run smaller sequences in the same manner. The problem we were encountering with the failing virtual machines, seemed to be something of great importance when brought up to FutureGrid administrators. With that said, if that issue could be fixed in the near future, obtaining results from with our methodology would work just the same as our results from chromosome 20, only with a greater time cost.       

The experimental results we obtained were promising in that we proved that our methodology could successfully obtain lists of high copy number variations. However, there are areas requiring future work. For our current results, future work can focus on identifying the phenotypic effects of the genes we identified as having highest copy number variation in order to determine whether there exists a known evolutionary reason for their high variation. For our methodology, more refinement is needed in  adjusting the parameters of ExomeCNV and creating a better control file in order to increase the accuracy of our results. Furthermore, if stability of the OpenStack virtual machines could be improved on FutureGrid, then we can increase the scope of our analysis to the entire exome of the Great Britain sample from the 1000 Genomes Project.

In a broader sense, our study could set a methodology for new approaches to genomic analysis. Future research on health conditions can utilize data from the 1000 Genomes Project and parallel processing through a FutureGrid-like system to obtain results.
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