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Q: Who are more popular, you or your 
friends (on average)?
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How can everyone 
feel that his/her friends 

are more popular?
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“Friendship Paradox”

Sunday, October 7, 12



Sunday, October 7, 12



Sunday, October 7, 12



When are we living?
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Google processes 
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per day
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Most populated countries

1,300,000,000+
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300,000,000+
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Billions of people 

recording their social life 

in Bits.
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COMPLEX SYSTEMS
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COMPLEX SYSTEMS

MANY parts, 

INTERACTING with each other 

in NON-TRIVIAL WAYS
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NETWORKS
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Nodes
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Links (edges) between nodes

Sunday, October 7, 12



Links (edges) between nodes

Degree: # of neighbors
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herbs

plant derivatives
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flowers

animal products

plants
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Categories

Prevalence

Shared
compounds

Y.-Y. Ahn, S. Ahnert, J. P. Bagrow, A.-L. Barabási, Sci. Rep. 2011
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So what?
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Pagerank = 
Random walk problem on a network
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H1N1 Pandemic prediction

Real Prediction

Reaction-diffusion system with 
transportation networks
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Can we understand a 
complex system

without knowing the structure 
of it?
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NETWORKS
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Leonhard Euler
Graph Theory 
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“Sociogram”
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What’s the structure of 
networks?
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Clustering

Small-world

Heterogeneity
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It’s not random! We 
form clusters.
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Stanley Milgram

“Small world experiment”
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We’re clustered, but 
at the same time we 
are well-connected.

Sunday, October 7, 12



Steven H. Strogatz

Duncan J. Watts

Watts and Strogatz model Watts & Strogatz, Nature 1998
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Networks are 
heterogeneous!

Albert-László Barabási Réka Albert Hawoong Jeong
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Poisson distribution 

Degree: # of neighbors
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Jeong et al., Nature 2001
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Liljeros et al., Nature 2001
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P(k) ~k-3 

GROWTH:   
add a new node with m links 

PREFERENTIAL ATTACHMENT: the 
probability that a node connects to a 
node with k links is proportional to k. 
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Alessandro Vespignani

“We can’t block epidemic 
spreading on scale-free 

networks” 
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Epidemic spreading: 
“following links”
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Epidemic spreading: 
“following links”

“Friendship Paradox”
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Epidemic spreading: 
“following links”

The disease quickly get to 
the hubs

“Friendship Paradox”
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How to effectively 
detect & prevent the 
disease spreading?
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“Hubs”

D
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Random person -> immunize a 
random friend of the person (but 

not the original one!)
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Communities
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Networks are not just 
clustered, but form 

communities

Sunday, October 7, 12



ar
X

iv
:c

o
n
d
-m

at
/0

3
0
8
2
1

7
v
1
  

[c
o
n

d
-m

at
.s

ta
t-

m
ec

h
] 

 1
1

 A
u
g

 2
0
0

3

Finding and evaluating community structure in networks

M. E. J. Newman1, 2 and M. Girvan2, 3

1Department of Physics and Center for the Study of Complex Systems,
University of Michigan, Ann Arbor, MI 48109–1120

2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501
3Department of Physics, Cornell University, Ithaca, NY 14853–2501

We propose and study a set of algorithms for discovering community structure in networks—
natural divisions of network nodes into densely connected subgroups. Our algorithms all share two
definitive features: first, they involve iterative removal of edges from the network to split it into
communities, the edges removed being identified using one of a number of possible “betweenness”
measures, and second, these measures are, crucially, recalculated after each removal. We also propose
a measure for the strength of the community structure found by our algorithms, which gives us an
objective metric for choosing the number of communities into which a network should be divided.
We demonstrate that our algorithms are highly effective at discovering community structure in both
computer-generated and real-world network data, and show how they can be used to shed light on
the sometimes dauntingly complex structure of networked systems.

I. INTRODUCTION

Empirical studies and theoretical modeling of networks
have been the subject of a large body of recent research in
statistical physics and applied mathematics [1, 2, 3, 4].
Network ideas have been applied with great success to
topics as diverse as the Internet and the world wide
web [5, 6, 7], epidemiology [8, 9, 10, 11], scientific ci-
tation and collaboration [12, 13], metabolism [14, 15],
and ecosystems [16, 17], to name but a few. A property
that seems to be common to many networks is commu-
nity structure, the division of network nodes into groups
within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to
find and analyze such groups can provide invaluable help
in understanding and visualizing the structure of net-
works. In this paper we show how this can be achieved.

The study of community structure in networks has a
long history. It is closely related to the ideas of graph
partitioning in graph theory and computer science, and

FIG. 1: A small network with community structure of the
type considered in this paper. In this case there are three
communities, denoted by the dashed circles, which have dense
internal links but between which there are only a lower density
of external links.

hierarchical clustering in sociology [18, 19]. Before pre-
senting our own findings, it is worth reviewing some of
this preceding work, to understand its achievements and
where it falls short.

Graph partitioning is a problem that arises in, for ex-
ample, parallel computing. Suppose we have a num-
ber n of intercommunicating computer processes, which
we wish to distribute over a number g of computer proces-
sors. Processes do not necessarily need to communicate
with all others, and the pattern of required communica-
tions can be represented by a graph or network in which
the vertices represent processes and edges join process
pairs that need to communicate. The problem is to allo-
cate the processes to processors in such a way as roughly
to balance the load on each processor, while at the same
time minimizing the number of edges that run between
processors, so that the amount of interprocessor commu-
nication (which is normally slow) is minimized. In gen-
eral, finding an exact solution to a partitioning task of
this kind is believed to be an NP-complete problem, mak-
ing it prohibitively difficult to solve for large graphs, but
a wide variety of heuristic algorithms have been devel-
oped that give acceptably good solutions in many cases,
the best known being perhaps the Kernighan–Lin algo-
rithm [20], which runs in time O(n3) on sparse graphs.

A solution to the graph partitioning problem is how-
ever not particularly helpful for analyzing and under-
standing networks in general. If we merely want to find
if and how a given network breaks down into commu-
nities, we probably don’t know how many such com-
munities there are going to be, and there is no reason
why they should be roughly the same size. Furthermore,
the number of inter-community edges needn’t be strictly
minimized either, since more such edges are admissible
between large communities than between small ones.

As far as our goals in this paper are concerned, a more
useful approach is that taken by social network analysis
with the set of techniques known as hierarchical cluster-
ing. These techniques are aimed at discovering natural
divisions of (social) networks into groups, based on var-

“a group of densely 
interconnected nodes”
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We propose and study a set of algorithms for discovering community structure in networks—
natural divisions of network nodes into densely connected subgroups. Our algorithms all share two
definitive features: first, they involve iterative removal of edges from the network to split it into
communities, the edges removed being identified using one of a number of possible “betweenness”
measures, and second, these measures are, crucially, recalculated after each removal. We also propose
a measure for the strength of the community structure found by our algorithms, which gives us an
objective metric for choosing the number of communities into which a network should be divided.
We demonstrate that our algorithms are highly effective at discovering community structure in both
computer-generated and real-world network data, and show how they can be used to shed light on
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I. INTRODUCTION

Empirical studies and theoretical modeling of networks
have been the subject of a large body of recent research in
statistical physics and applied mathematics [1, 2, 3, 4].
Network ideas have been applied with great success to
topics as diverse as the Internet and the world wide
web [5, 6, 7], epidemiology [8, 9, 10, 11], scientific ci-
tation and collaboration [12, 13], metabolism [14, 15],
and ecosystems [16, 17], to name but a few. A property
that seems to be common to many networks is commu-
nity structure, the division of network nodes into groups
within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to
find and analyze such groups can provide invaluable help
in understanding and visualizing the structure of net-
works. In this paper we show how this can be achieved.

The study of community structure in networks has a
long history. It is closely related to the ideas of graph
partitioning in graph theory and computer science, and

FIG. 1: A small network with community structure of the
type considered in this paper. In this case there are three
communities, denoted by the dashed circles, which have dense
internal links but between which there are only a lower density
of external links.

hierarchical clustering in sociology [18, 19]. Before pre-
senting our own findings, it is worth reviewing some of
this preceding work, to understand its achievements and
where it falls short.

Graph partitioning is a problem that arises in, for ex-
ample, parallel computing. Suppose we have a num-
ber n of intercommunicating computer processes, which
we wish to distribute over a number g of computer proces-
sors. Processes do not necessarily need to communicate
with all others, and the pattern of required communica-
tions can be represented by a graph or network in which
the vertices represent processes and edges join process
pairs that need to communicate. The problem is to allo-
cate the processes to processors in such a way as roughly
to balance the load on each processor, while at the same
time minimizing the number of edges that run between
processors, so that the amount of interprocessor commu-
nication (which is normally slow) is minimized. In gen-
eral, finding an exact solution to a partitioning task of
this kind is believed to be an NP-complete problem, mak-
ing it prohibitively difficult to solve for large graphs, but
a wide variety of heuristic algorithms have been devel-
oped that give acceptably good solutions in many cases,
the best known being perhaps the Kernighan–Lin algo-
rithm [20], which runs in time O(n3) on sparse graphs.

A solution to the graph partitioning problem is how-
ever not particularly helpful for analyzing and under-
standing networks in general. If we merely want to find
if and how a given network breaks down into commu-
nities, we probably don’t know how many such com-
munities there are going to be, and there is no reason
why they should be roughly the same size. Furthermore,
the number of inter-community edges needn’t be strictly
minimized either, since more such edges are admissible
between large communities than between small ones.

As far as our goals in this paper are concerned, a more
useful approach is that taken by social network analysis
with the set of techniques known as hierarchical cluster-
ing. These techniques are aimed at discovering natural
divisions of (social) networks into groups, based on var-

“a group of densely 
interconnected nodes”

Strong ties vs. weak ties
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Hierarchy implies 
communities.
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Hierarchical structure and the prediction of missing links in networks∗

Aaron Clauset,1, 2 Cristopher Moore,1, 2, 3 and M. E. J. Newman2, 4

1Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM, 87501, USA

3Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
4Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA

Networks have in recent years emerged as an invalu-

able tool for describing and quantifying complex systems

in many branches of science [1, 2, 3]. Recent studies sug-

gest that networks often exhibit hierarchical organization,

where vertices divide into groups that further subdivide

into groups of groups, and so forth over multiple scales.

In many cases these groups are found to correspond to

known functional units, such as ecological niches in food

webs, modules in biochemical networks (protein interac-

tion networks, metabolic networks, or genetic regulatory

networks), or communities in social networks [4, 5, 6, 7].

Here we present a general technique for inferring hierar-

chical structure from network data and demonstrate that

the existence of hierarchy can simultaneously explain and

quantitatively reproduce many commonly observed topo-

logical properties of networks, such as right-skewed de-

gree distributions, high clustering coefficients, and short

path lengths. We further show that knowledge of hier-

archical structure can be used to predict missing connec-

tions in partially known networks with high accuracy, and

for more general network structures than competing tech-

niques [8]. Taken together, our results suggest that hierar-

chy is a central organizing principle of complex networks,

capable of offering insight into many network phenom-

ena.

A great deal of recent work has been devoted to the study

of clustering and community structure in networks [5, 6, 9,

10, 11]. Hierarchical structure goes beyond simple clustering,

however, by explicitly including organization at all scales in

a network simultaneously. Conventionally, hierarchical struc-

ture is represented by a tree or dendrogram in which closely

related pairs of vertices have lowest common ancestors that

are lower in the tree than those of more distantly related

pairs—see Fig. 1. We expect the probability of a connec-

tion between two vertices to depend on their degree of relat-

edness. Structure of this type can be modelled mathematically

using a probabilistic approach in which we endow each inter-

nal node r of the dendrogram with a probability pr and then

connect each pair of vertices for whom r is the lowest com-

mon ancestor independently with probability pr (Fig. 1).

This model, which we call a hierarchical random graph, is

similar in spirit (although different in realization) to the tree-

based models used in some studies of network search and nav-

igation [12, 13]. Like most work on community structure, it

∗This paper was published as Nature 453, 98 – 101 (2008);

doi:10.1038/nature06830.

assumes that communities at each level of organization are

disjoint. Overlapping communities have occasionally been

studied (see, for example [14]) and could be represented using

a more elaborate probabilistic model, but as we discuss below

the present model already captures many of the structural fea-

tures of interest.

Given a dendrogram and a set of probabilities pr, the hi-

erarchical random graph model allows us to generate artifi-

cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-

lyze the hierarchical structure, if any, of networks in the real

world. We accomplish this by fitting the hierarchical model

to observed network data using the tools of statistical infer-

ence, combining a maximum likelihood approach [15] with

a Monte Carlo sampling algorithm [16] on the space of all

 

FIG. 1: A hierarchical network with structure on many scales and

the corresponding hierarchical random graph. Each internal node r
of the dendrogram is associated with a probability pr that a pair of

vertices in the left and right subtrees of that node are connected. (The

shades of the internal nodes in the figure represent the probabilities.)

A. Clauset, C. Moore, and M. E. J. Newman, Nature (2008)

Hierarchical Random Graph model
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A. Clauset, C. Moore, and M. E. J. Newman, Nature (2008)
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Uncovering the overlapping community structure of
complex networks in nature and society
Gergely Palla1,2, Imre Derényi2, Illés Farkas1 & Tamás Vicsek1,2

Many complex systems in nature and society can be described in
terms of networks capturing the intricate web of connections
among the units they are made of1–4. A key question is how to
interpret the global organization of such networks as the co-
existence of their structural subunits (communities) associated
with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins5,6,
industrial sectors7 and groups of people8,9) is crucial to the
understanding of the structural and functional properties of
networks. The existing deterministic methods used for large net-
works find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of
nodes. Here we introduce an approach to analysing the main
statistical features of the interwoven sets of overlapping commu-
nities that makes a step towards uncovering the modular structure
of complex systems. After defining a set of new characteristic
quantities for the statistics of communities, we apply an efficient
technique for exploring overlapping communities on a large scale.
We find that overlaps are significant, and the distributions we
introduce reveal universal features of networks. Our studies of
collaboration, word-association and protein interaction graphs
show that the web of communities has non-trivial correlations and
specific scaling properties.
Most real networks typically contain parts in which the nodes

(units) are more highly connected to each other than to the rest of
the network. The sets of such nodes are usually called clusters,
communities, cohesive groups or modules8,10,11–13; they have no
widely accepted, unique definition. In spite of this ambiguity,
the presence of communities in networks is a signature of the
hierarchical nature of complex systems5,14. The existing methods
for finding communities in large networks are useful if the commu-
nity structure is such that it can be interpreted in terms of separated
sets of communities (see Fig. 1b and refs 10, 15, 16–18). However,
most real networks are characterized by well-defined statistics of
overlapping and nested communities. This can be illustrated by the
numerous communities that each of us belongs to, including those
related to our scientific activities or personal life (school, hobby,
family) and so on, as shown in Fig. 1a. Furthermore, members of our
communities have their own communities, resulting in an extremely
complicated web of the communities themselves. This has long been
understood by sociologists19 but has never been studied system-
atically for large networks. Another, biological, example is that a
large fraction of proteins belong to several protein complexes
simultaneously20.
In general, each node i of a network can be characterized by a

membership number mi, which is the number of communities that
the node belongs to. In turn, any two communities a and b can share
sova;b nodes, which we define as the overlap size between these
communities. Naturally, the communities also constitute a network,

with the overlaps being their links. The number of such links of
community a can be called its community degree, dcoma : Finally, the
size scoma of any community a can most naturally be defined as the
number of its nodes. To characterize the community structure of a
large network we introduce the distributions of these four basic
quantities. In particular we focus on their cumulative distribution

LETTERS

Figure 1 | Illustration of the concept of overlapping communities. a, The
black dot in the middle represents either of the authors of this paper, with
several of his communities around. Zooming in on the scientific community
demonstrates the nested and overlapping structure of the communities, and
depicting the cascades of communities starting from some members
exemplifies the interwoven structure of the network of communities.
b, Divisive and agglomerative methods grossly fail to identify the
communities when overlaps are significant. c, An example of overlapping
k-clique communities at k ¼ 4. The yellow community overlaps the blue one
in a single node, whereas it shares two nodes and a link with the green one.
These overlapping regions are emphasized in red. Notice that any k-clique
(complete subgraph of size k) can be reached only from the k-cliques of the
same community through a series of adjacent k-cliques. Two k-cliques are
adjacent if they share k 2 1 nodes.

1Biological Physics Research Group of the Hungarian Academy of Sciences, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Department of Biological Physics, Eötvös University,
Pázmány P. stny. 1A, H-1117 Budapest, Hungary.
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Figure 1: Overlapping communities lead to dense networks and prevent the discovery of a sin-
gle node hierarchy. (A) Locally, structure in social networks is simple: an individual node sees
the communities it belongs to. (B) Complex global structure emerges when every node is in the
situation displayed in (A). (C) Strong overlap hinders the discovery of hierarchical organization
since nodes exist simultaneously in many leaves throughout the dendrogram, preventing a sin-
gle tree from encoding the full hierarchy. Bottom Panel, Hierarchical Link Clustering (HLC):
shown is an example network with (D) node communities and (E) link communities. (F) The
link similarity matrix (darker matrix elements show more similar pairs of links) and resulting
dendrogram. See SOM for additional examples.
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since nodes exist simultaneously in many leaves throughout the dendrogram, preventing a sin-
gle tree from encoding the full hierarchy. Bottom Panel, Hierarchical Link Clustering (HLC):
shown is an example network with (D) node communities and (E) link communities. (F) The
link similarity matrix (darker matrix elements show more similar pairs of links) and resulting
dendrogram. See SOM for additional examples.
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since nodes exist simultaneously in many leaves throughout the dendrogram, preventing a sin-
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shown is an example network with (D) node communities and (E) link communities. (F) The
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functions denoted by P(m), P(sov), P(d com) and P(s com). For the
overlap size, for example, P(sov) means the proportion of those
overlaps that are larger than sov. Further relevant statistical features
will be introduced later.
The basic observation onwhich our community definition relies is

that a typical community consists of several complete (fully con-
nected) subgraphs that tend to share many of their nodes. Thus, we
define a community, or more precisely a k-clique community, as a
union of all k-cliques (complete subgraphs of size k) that can be
reached from each other through a series of adjacent k-cliques (where
adjacency means sharing k 2 1 nodes)21–23. This definition seeks to
represent the fact that it is an essential feature of a community that its
members can be reached through well-connected subsets of nodes.
There are other parts of the whole network that are not reachable
from a particular k-clique, but they potentially contain further
k-clique communities. In turn, a single node can belong to several
communities. All these can be explored systematically and can result
in many overlapping communities (illustrated in Fig. 1c). In most
cases, relaxing this definition (for example, by allowing incomplete
k-cliques) is practically equivalent to decreasing k. For finding
meaningful communities, the way in which they are identified is
expected to satisfy several basic requirements: it cannot be too
restrictive, it should be based on the density of links, it is required
to be local, it should not yield any cut-node or cut-link (whose
removal would disjoin the community) and, of course, it should
allow overlaps. We employ the community definition specified
above, because none of the others in the literature satisfy all these
requirements simultaneously21,24.

Although the numerical determination of the full set of k-clique
communities is a polynomial problem, we use an algorithm (which
can be downloaded from http://angel.elte.hu/clustering/) that is
exponential, because it is significantly more efficient for the graphs
corresponding to real data. This method is based on first locating all
cliques (maximal complete subgraphs) of the network and then
identifying the communities by carrying out a standard component
analysis of the clique–clique overlap matrix21. More details about the
method and its speed are given in Supplementary Information.
We use our method for binary networks (that is, with undirected

and unweighted links). An arbitrary network can always be trans-
formed into a binary one by ignoring any directionality in the links
and keeping only those that are stronger than a threshold weight w*.
Changing the threshold is like changing the resolution (as in a
microscope) with which the community structure is investigated:
by increasing w* the communities start to shrink and fall apart. A
similar effect can be observed by changing the value of k as well:
increasing kmakes the communities smaller and more disintegrated
but also at the same time more cohesive.
When we are interested in the community structure around a

particular node, it is advisable to scan through some ranges of k and
w* and monitor how its communities change. As an illustration, in
Fig. 2 we show diagrams of the communities of three selected nodes
of three large networks: the social network of scientific collabo-
rators25 (Fig. 2a), the network of word associations26 related to
cognitive sciences (Fig. 2b) and the molecular-biological network
of protein–protein interactions27 (Fig. 2c). These pictures can serve as
tests or validations of the efficiency of our algorithm. In particular,

Figure 2 | The community structure around a particular node in three
different networks. The communities are colour coded, the overlapping
nodes and links between them are emphasized in red, and the volume of the
balls and the width of the links are proportional to the total number of
communities they belong to. For each network the value of k has been set to
4. a, The communities of G. Parisi in the co-authorship network of the
Los Alamos CondensedMatter archive (for threshold weightw* ¼ 0.75) can

be associated with his fields of interest. b, The communities of the word
‘bright’ in the South Florida Free Association norms list (for w* ¼ 0.025)
represent the different meanings of this word. c, The communities of the
protein Zds1 in the DIP core list of the protein–protein interactions of S.
cerevisiae can be associated with either protein complexes or certain
functions.
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Figure S4: Overlapping links. In the link community framework, a link may be assigned to only one community. By deriving
node communities, however, the problem of effectively discovering multiple relationships between nodes is effectively solved.
Two nodes can belong to many communities together regardless of the membership of the link between them. Left: illustration
of the situation. Right: real examples from word association network. In the upper example, Blend and blender belong to both
‘fruit juice’ community and ‘mix’ community. In the bottom example, the link between appear and reappear does not even
belong to any of the other communities, but they belong to several communities together.

link can simultaneously belong to multiple communities even though the link itself belongs to only one
community. Here, we let the examples in Fig. S4 provide further illumination of this point.

The simplistic cases in Fig. S4, however, do not address the complex community structure that arises
in real life, where the multiple relationships may include more groups of many nodes and more than one
link. Consider a high school with classes of about 30 students. These classes form clusters/communities
and are likely to be located by the link community method. Now, students from these classes typically
form a number of further communities: Some go to the same class to learn a foreign language, others
play on the school’s basketball team, etc. Thus, there will be further overlapping communities in such
a way that the members in these new communities are in touch with each other in two distinct ways:
through going to the same regular class and through playing basketball together. Figure S5 show that
the link communities do, in fact, extract these subtle relationships.

It is true that if a group is completely subsumed inside another group, and there are no structural
differences distinguishing this group, such as different connectivity patterns, then link communities
will not find the internal group. No method will find it, because it’s completely invisible (Fig. S5a).
However, if the school’s social network is weighted based on the time students spend together, or if
basketball players are slightly more likely to become friends with other basketball players than with
students not on the team, or if the team has slightly different external connectivity, these will be identified
(Fig. S5b). Notice that the link communities shown in Fig. S5b only separate the player-coach links. This
is sufficient to completely identify the basketball team. Figure S5c shows a further example. We also
identify these sub-communities in practice; note the ‘clever/wit’ community inside the ‘smart/intelligent’
community in main text Fig. 1f.

What about in practice? Are multiple relationships between nodes rare or abundant in link commu-
nities? To answer this, we study the network of communities, where each node is now a community
in the original network, and the weights on each link are the number of shared members. The distribu-
tion of link weights sov in this network, studied by Palla et al. [11] (we use their notation), explicitly
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a way that the members in these new communities are in touch with each other in two distinct ways:
through going to the same regular class and through playing basketball together. Figure S5 show that
the link communities do, in fact, extract these subtle relationships.

It is true that if a group is completely subsumed inside another group, and there are no structural
differences distinguishing this group, such as different connectivity patterns, then link communities
will not find the internal group. No method will find it, because it’s completely invisible (Fig. S5a).
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(Fig. S5b). Notice that the link communities shown in Fig. S5b only separate the player-coach links. This
is sufficient to completely identify the basketball team. Figure S5c shows a further example. We also
identify these sub-communities in practice; note the ‘clever/wit’ community inside the ‘smart/intelligent’
community in main text Fig. 1f.

What about in practice? Are multiple relationships between nodes rare or abundant in link commu-
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in the original network, and the weights on each link are the number of shared members. The distribu-
tion of link weights sov in this network, studied by Palla et al. [11] (we use their notation), explicitly
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Figure S16: Overlapping community structure around Acetyl-CoA in the E. coli metabolic network. Acetyl-CoA plays several
different and important roles in metabolism. Shown are only communities with homogeneity score equal to 1 (all compounds
inside each community share at least one pathway annotation); all other links, including those that contribute to community
structure, are omitted. Pathway annotations shared by all community members are displayed with corresponding colors. The
two communities to the right of Acetyl-CoA are grouped since they share the same exact pathway annotations.
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various meanings of the word BRUSH. Bottom: Link communities captures diverse associations of the word pair SUNRISE-
SUNSET. The translated node communities are listed.
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Hierarchical structure and the prediction of missing links in networks∗

Aaron Clauset,1, 2 Cristopher Moore,1, 2, 3 and M. E. J. Newman2, 4
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Networks have in recent years emerged as an invalu-

able tool for describing and quantifying complex systems

in many branches of science [1, 2, 3]. Recent studies sug-

gest that networks often exhibit hierarchical organization,

where vertices divide into groups that further subdivide

into groups of groups, and so forth over multiple scales.

In many cases these groups are found to correspond to

known functional units, such as ecological niches in food

webs, modules in biochemical networks (protein interac-

tion networks, metabolic networks, or genetic regulatory

networks), or communities in social networks [4, 5, 6, 7].

Here we present a general technique for inferring hierar-

chical structure from network data and demonstrate that

the existence of hierarchy can simultaneously explain and

quantitatively reproduce many commonly observed topo-

logical properties of networks, such as right-skewed de-

gree distributions, high clustering coefficients, and short

path lengths. We further show that knowledge of hier-

archical structure can be used to predict missing connec-

tions in partially known networks with high accuracy, and

for more general network structures than competing tech-

niques [8]. Taken together, our results suggest that hierar-

chy is a central organizing principle of complex networks,

capable of offering insight into many network phenom-

ena.

A great deal of recent work has been devoted to the study

of clustering and community structure in networks [5, 6, 9,

10, 11]. Hierarchical structure goes beyond simple clustering,

however, by explicitly including organization at all scales in

a network simultaneously. Conventionally, hierarchical struc-

ture is represented by a tree or dendrogram in which closely

related pairs of vertices have lowest common ancestors that

are lower in the tree than those of more distantly related

pairs—see Fig. 1. We expect the probability of a connec-

tion between two vertices to depend on their degree of relat-

edness. Structure of this type can be modelled mathematically

using a probabilistic approach in which we endow each inter-

nal node r of the dendrogram with a probability pr and then

connect each pair of vertices for whom r is the lowest com-

mon ancestor independently with probability pr (Fig. 1).

This model, which we call a hierarchical random graph, is

similar in spirit (although different in realization) to the tree-

based models used in some studies of network search and nav-

igation [12, 13]. Like most work on community structure, it

∗This paper was published as Nature 453, 98 – 101 (2008);

doi:10.1038/nature06830.

assumes that communities at each level of organization are

disjoint. Overlapping communities have occasionally been

studied (see, for example [14]) and could be represented using

a more elaborate probabilistic model, but as we discuss below

the present model already captures many of the structural fea-

tures of interest.

Given a dendrogram and a set of probabilities pr, the hi-

erarchical random graph model allows us to generate artifi-

cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-

lyze the hierarchical structure, if any, of networks in the real

world. We accomplish this by fitting the hierarchical model

to observed network data using the tools of statistical infer-

ence, combining a maximum likelihood approach [15] with

a Monte Carlo sampling algorithm [16] on the space of all

 

FIG. 1: A hierarchical network with structure on many scales and

the corresponding hierarchical random graph. Each internal node r
of the dendrogram is associated with a probability pr that a pair of

vertices in the left and right subtrees of that node are connected. (The

shades of the internal nodes in the figure represent the probabilities.)
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Networks have in recent years emerged as an invalu-

able tool for describing and quantifying complex systems

in many branches of science [1, 2, 3]. Recent studies sug-

gest that networks often exhibit hierarchical organization,

where vertices divide into groups that further subdivide

into groups of groups, and so forth over multiple scales.

In many cases these groups are found to correspond to

known functional units, such as ecological niches in food

webs, modules in biochemical networks (protein interac-

tion networks, metabolic networks, or genetic regulatory

networks), or communities in social networks [4, 5, 6, 7].

Here we present a general technique for inferring hierar-

chical structure from network data and demonstrate that

the existence of hierarchy can simultaneously explain and

quantitatively reproduce many commonly observed topo-

logical properties of networks, such as right-skewed de-

gree distributions, high clustering coefficients, and short

path lengths. We further show that knowledge of hier-

archical structure can be used to predict missing connec-

tions in partially known networks with high accuracy, and

for more general network structures than competing tech-

niques [8]. Taken together, our results suggest that hierar-

chy is a central organizing principle of complex networks,

capable of offering insight into many network phenom-

ena.

A great deal of recent work has been devoted to the study

of clustering and community structure in networks [5, 6, 9,

10, 11]. Hierarchical structure goes beyond simple clustering,

however, by explicitly including organization at all scales in

a network simultaneously. Conventionally, hierarchical struc-

ture is represented by a tree or dendrogram in which closely

related pairs of vertices have lowest common ancestors that

are lower in the tree than those of more distantly related

pairs—see Fig. 1. We expect the probability of a connec-

tion between two vertices to depend on their degree of relat-

edness. Structure of this type can be modelled mathematically

using a probabilistic approach in which we endow each inter-

nal node r of the dendrogram with a probability pr and then

connect each pair of vertices for whom r is the lowest com-

mon ancestor independently with probability pr (Fig. 1).

This model, which we call a hierarchical random graph, is

similar in spirit (although different in realization) to the tree-

based models used in some studies of network search and nav-

igation [12, 13]. Like most work on community structure, it

∗This paper was published as Nature 453, 98 – 101 (2008);

doi:10.1038/nature06830.

assumes that communities at each level of organization are

disjoint. Overlapping communities have occasionally been

studied (see, for example [14]) and could be represented using

a more elaborate probabilistic model, but as we discuss below

the present model already captures many of the structural fea-

tures of interest.

Given a dendrogram and a set of probabilities pr, the hi-

erarchical random graph model allows us to generate artifi-

cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-

lyze the hierarchical structure, if any, of networks in the real

world. We accomplish this by fitting the hierarchical model

to observed network data using the tools of statistical infer-

ence, combining a maximum likelihood approach [15] with

a Monte Carlo sampling algorithm [16] on the space of all

 

FIG. 1: A hierarchical network with structure on many scales and

the corresponding hierarchical random graph. Each internal node r
of the dendrogram is associated with a probability pr that a pair of

vertices in the left and right subtrees of that node are connected. (The

shades of the internal nodes in the figure represent the probabilities.)
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So, How?
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Similarity between links

Hierarchical Clustering
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S(eac, ebc) =
1
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S(eac, ebc) = 1

Figure S1: (A) The similarity measure S(eik, ejk) between edges eik and ejk sharing node k.
For this example, |n+(i) ⇤ n+(j)| = 12 and |n+(i) ⌅ n+(j)| = 4, giving S = 1/3. Two simple
cases: (B) an isolated (ka = kb = 1), connected triple (a,c,b) has S = 1/3, while (C) an isolated
triangle has S = 1.

structure can become radically different.) Thus, we neglect the neighbors of the keystone. We

first define the inclusive neighbors of a node i as:

n+(i) � {x | d(i, x) ⇥ 1} (S1)

where d(i, x) is the length of the shortest path between nodes i and x. The set simply contains

the node itself and its neighbors. From this, the similarity S between links can be given by, e.g.,

the Jaccard index (1):

S(eik, ejk) =
|n+(i) ⌅ n+(j)|
|n+(i) ⇤ n+(j)| (S2)

An example illustration of this similarity measure is shown in Fig. S1 (See Sec. S2.1 for gener-

alizations of the similarity).

With this similarity, we use single-linkage hierarchical clustering to find hierarchical com-

munity structures. We use single-linkage mainly due to simplicity and efficiency, which enables

us to apply HLC to large-scale networks. However, it is also possible to use other options such

as complete-linkage or average-linkage clustering. Each link is initially assigned to its own

community; then, at each time step, the pair of links with the largest similarity are chosen and

3
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alizations of the similarity).

With this similarity, we use single-linkage hierarchical clustering to find hierarchical com-

munity structures. We use single-linkage mainly due to simplicity and efficiency, which enables

us to apply HLC to large-scale networks. However, it is also possible to use other options such

as complete-linkage or average-linkage clustering. Each link is initially assigned to its own

community; then, at each time step, the pair of links with the largest similarity are chosen and
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Does it really work?
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Figure S12: Overlapping community structure around Acetyl-CoA in the E. coli metabolic network. Acetyl-CoA plays several
different and important roles in metabolism. Shown are only communities with homogeneity score equal to 1 (all compounds
inside each community share at least one pathway annotation); all other links, including those that contribute to community
structure, are omitted. Pathway annotations shared by all community members are displayed with corresponding colors. The
two communities to the right of Acetyl-CoA are grouped since they share the same exact pathway annotations.
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Figure S13: More link community examples in the word-association network. Top: link communities successfully captures
various meanings of the word BRUSH. Bottom: Link communities captures diverse associations of a word pair SUNRISE-
SUNSET The translated node communities are listed.
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Link communities around NEWTON from the Word Association networkc
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~600k nodes
~3M edges
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Figure 2: Spatial and nested structures found at many levels in a mobile phone network. (A)
Total population density. (B) The three largest communities at the optimum threshold cluster
around a single city. (C) At a lower threshold, the largest communities become spatially ex-
tended, but still show correlation. (D) High thresholds yield smaller, intra-city communities.
(E) The largest community in (C) with largest sub-community highlighted. (F) The highlighted
sub-community in (E), along with the link dendrogram and Partition Density as a function of
clustering threshold.
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Summary

• Networks matter. 

• Particularly in the age of big data and 
social networks.

• Many interesting problems waiting for you!
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Resources

• http://yongyeol.com/courses/2012S-I590/

• http://yongyeol.com/w/index.php?
title=Network_science

• http://en.wikipedia.org/wiki/Network_science

• http://yongyeol.com

• yyahn@indiana.edu

• @yy  
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