FG Resource Report

Release 0.4

Hyungro Lee Gregor von Laszewski Fugang Wang Geoffrey C. Fox

CONTENTS

1	Summary Report (All)	3
	1.1 Wall Hours by Clusters (Total, monthly)	4
	1.2 VM Count by Clusters (Total, monthly)	6
	1.3 Users Count by Clusters (Total, monthly)	8
2	Usage Report india	11
	2.1 Histogram	12
	2.2 Distribution	16
	2.3 System information	22
3	Usage Report sierra	25
	3.1 Histogram	26
	3.2 Distribution	30
	3.3 System information	37
4	Usage Report alamo	39
	4.1 Histogram	40
	4.2 Distribution	44
	4.3 System information	50
5		53
	ϵ	54
		58
	5.3 System information	62
6		65
	ϵ	66
		70
	6.3 System information	76
7	User table (Cloud)	79
8	User table (HPC)	81

Date Created: Fri, 03 Jan 2014

CONTENTS 1

2 CONTENTS

SUMMARY REPORT (ALL)

- Period: July 01 September 30, 2013
- Cloud(india.futuregrid.org): eucalyptus, openstack
- Cloud(sierra.futuregrid.org): eucalyptus, nimbus
- Cloud(hotel.futuregrid.org): nimbus
- Cloud(alamo.futuregrid.org): nimbus
- Cloud(foxtrot.futuregrid.org): nimbus
- Metrics: VMs count, Users count, Wall hours, Distribution by Wall Hours, Project, Project Leader, and Institution, and Systems

1.1 Wall Hours by Clusters (Total, monthly)

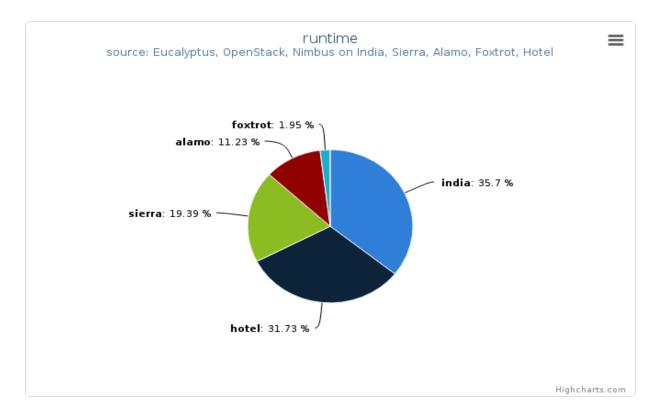


Figure 1. Wall time (hours) by Clusters This chart represents overall usage of wall time (hours).

• Period: July 01 – September 30, 2013

• Cloud:

- india: Eucalyptus, Openstack

- sierra: Eucalyptus, Nimbus

- hotel: Nimbus

- alamo: Nimbus

- foxtrot: Nimbus

Table 1.1: Wall time (hours) by Clusters

Total	Value
india	256720.0
hotel	228158.0
sierra	139398.0
alamo	80740.0
foxtrot	14054.0

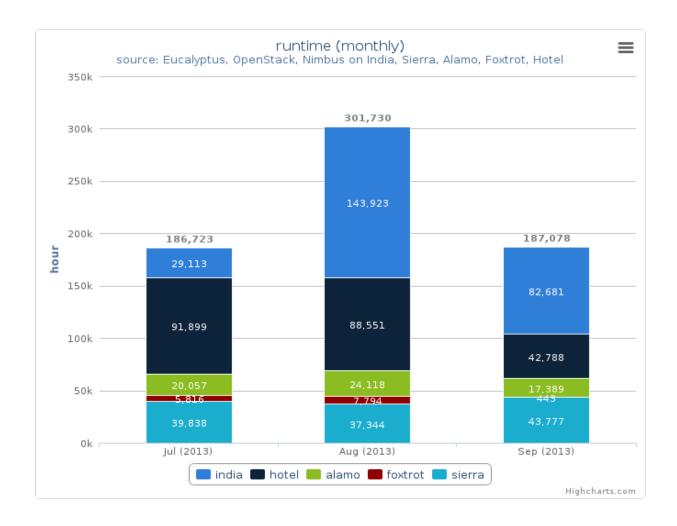


Figure 2. Wall time (hours) by Clusters (monthly)

This stacked column chart represents average monthly usage of wall time (hours).

• Period: July 01 – September 30, 2013

• Cloud:

- india: Eucalyptus, Openstack

- sierra: Eucalyptus, Nimbus

hotel: Nimbusalamo: Nimbus

- foxtrot: Nimbus

1.2 VM Count by Clusters (Total, monthly)

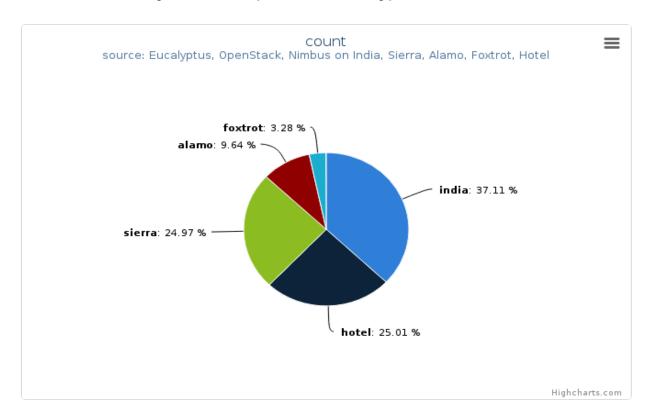


Figure 3. VMs count by Clusters

This chart represents overall VM instances count during the period.

• Period: July 01 – September 30, 2013

• Cloud:

- india: Eucalyptus, Openstack

- sierra: Eucalyptus, Nimbus

- hotel: Nimbus

- alamo: Nimbus

- foxtrot: Nimbus

Table 1.2: VM instance count by Clusters

Total	Value
india	7262
hotel	4894
sierra	4886
alamo	1887
foxtrot	642

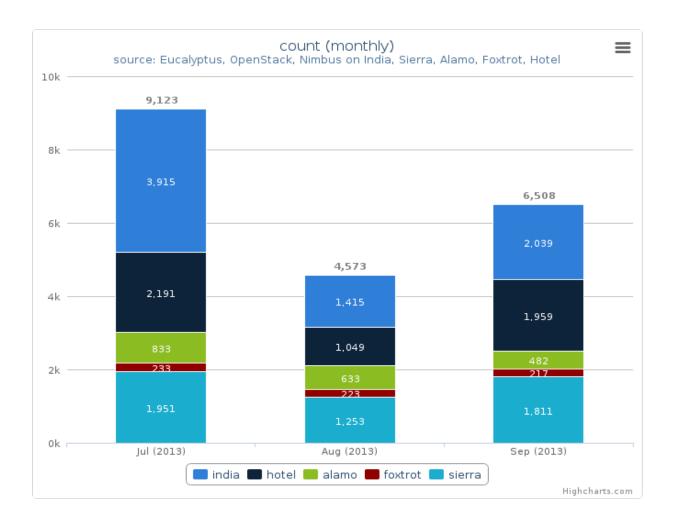


Figure 4. VMs count by Clusters (monthly)

This stacked column chart represents average VM instances count per month.

- Period: July 01 September 30, 2013
- Cloud:
 - india: Eucalyptus, Openstack
 - sierra: Eucalyptus, Nimbus
 - hotel: Nimbus
 - alamo: Nimbus
 - foxtrot: Nimbus

1.3 Users Count by Clusters (Total, monthly)

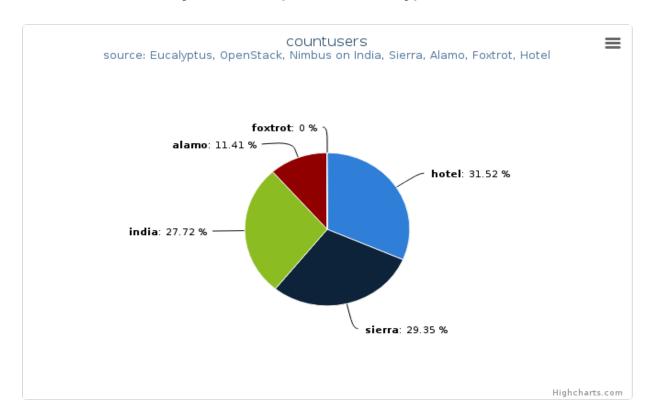


Figure 5. Unique User count by Clusters This chart represents total number of unique active users.

• Period: July 01 – September 30, 2013

• Cloud:

- india: Eucalyptus, Openstack

- sierra: Eucalyptus, Nimbus

hotel: Nimbusalamo: Nimbusfoxtrot: Nimbus

Table 1.3: Unique User count by Clusters

Total	Value
hotel	58
sierra	54
india	51
alamo	21
foxtrot	0

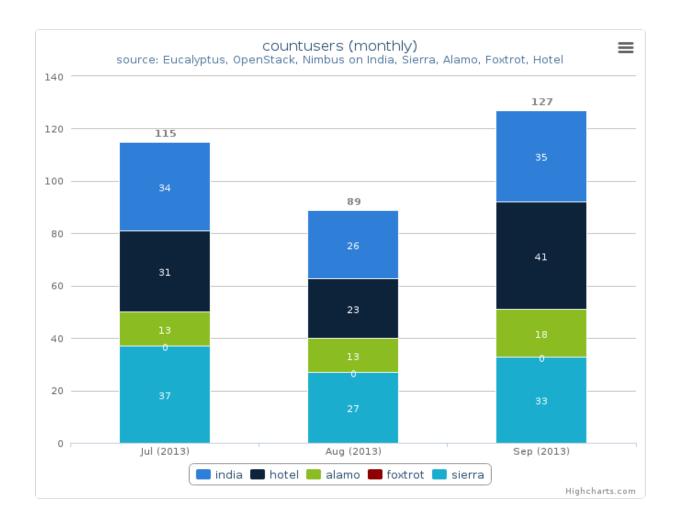


Figure 6. Users count by Clusters (Monthly)

This stacked column chart represents average count of active users per month.

• Period: July 01 – September 30, 2013

• Cloud:

- india: Eucalyptus, Openstack

- sierra: Eucalyptus, Nimbus

hotel: Nimbusalamo: Nimbusfoxtrot: Nimbus

USAGE REPORT INDIA

- Period: July 01 September 30, 2013
- Hostname: india.futuregrid.org
- Services: openstack, eucalyptus
- Metrics: VMs count, Users count, Wall time (hours), Distribution by wall time, project, project leader, and institution, and systems

2.1 Histogram

2.1.1 Summary (Monthly)

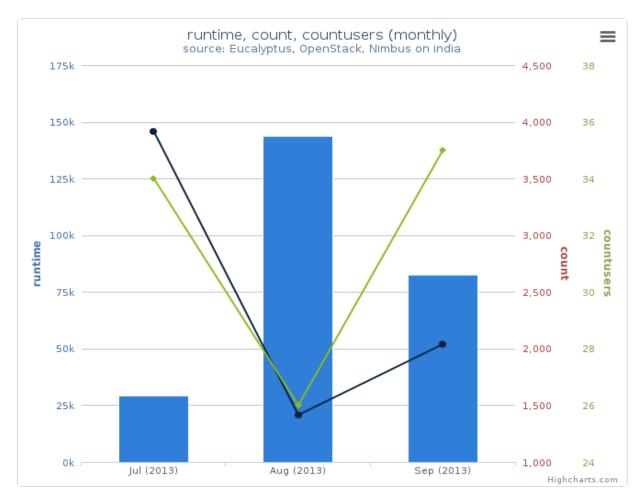


Figure 1: Average monthly usage data (wall time (hour), launched VMs, users)
This mixed chart represents average monthly usage as to wall time (hour), the number of VM instances and active users.

- Period: July 01 September 30, 2013
- Cloud(IaaS): openstack, eucalyptus
- Hostname: india
- Metric:
 - Runtime (Wall time hours): Sum of time elapsed from launch to termination of VM instances
 - Count (VM count): The number of launched VM instances
 - User count (Active): The number of users who launched VMs

2.1.2 Summary (Daily)

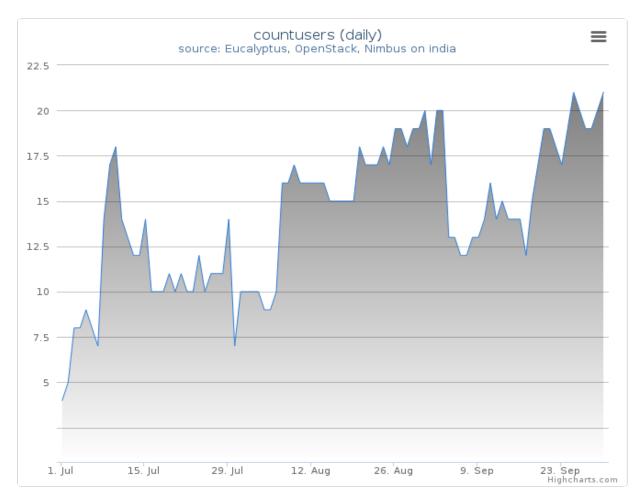


Figure 2: Users count

This time series chart represents daily active user count for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

2.1. Histogram

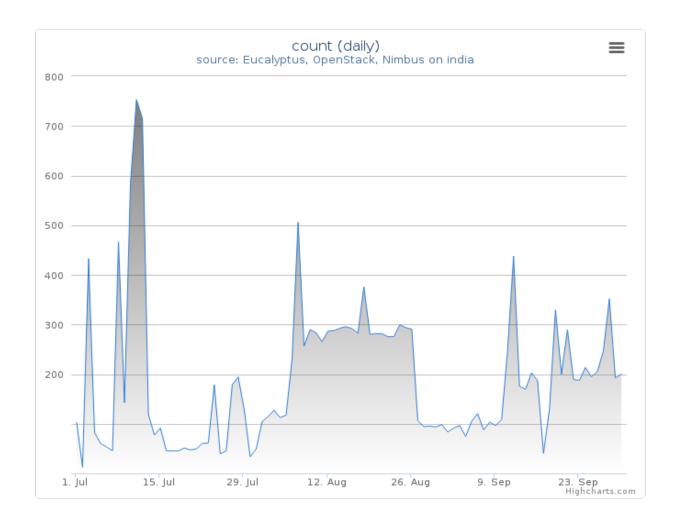


Figure 3: VMs count

This time series chart represents the number of daily launched VM instances for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

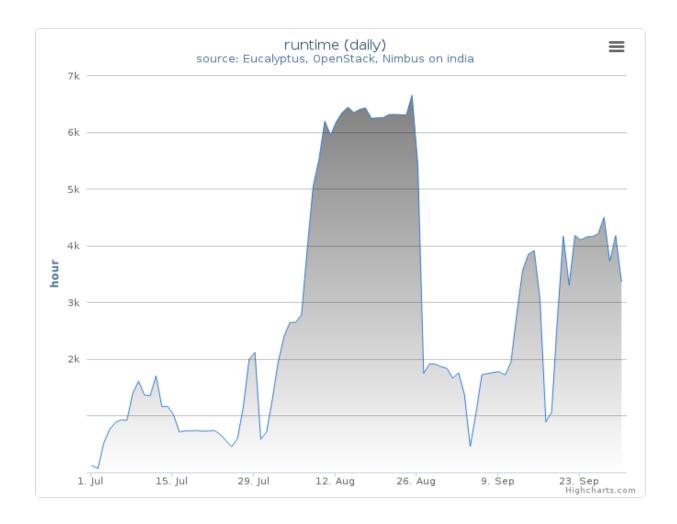


Figure 4: Wall time (hours)

This time series chart represents daily wall time (hours) for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

2.1. Histogram 15

2.2 Distribution

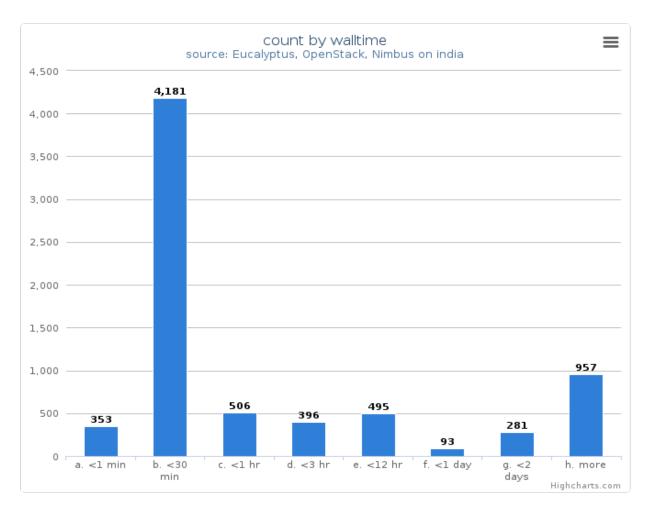


Figure 5: VM count by wall time

This chart illustrates usage patterns of VM instances in terms of running wall time.

- Period: July 01 September 30, 2013
- Cloud(IaaS): openstack, eucalyptus
- Hostname: india

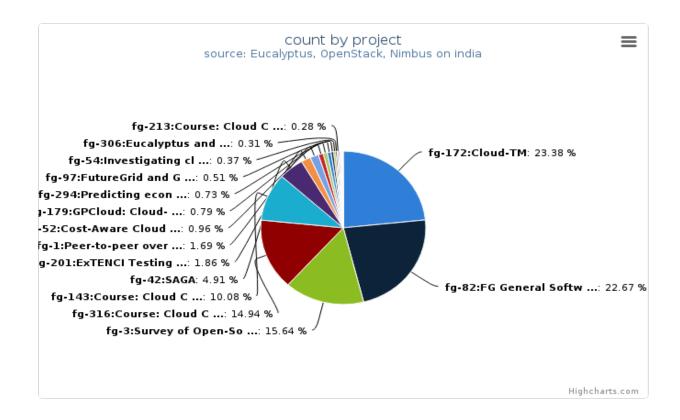


Figure 6: VMs count by project

This chart illustrates the proportion of launched VM instances by project groups. The same data in tabular form follows.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

2.2. Distribution 17

Table 2.1: VMs count by project

Project	Value
fg-172:Cloud-TM	828
fg-82:FG General Software Development	803
fg-3:Survey of Open-Source Cloud Infrastructure using FutureGrid Testbed	554
fg-316:Course: Cloud Computing Class - third edition	529
fg-143:Course: Cloud Computing for Data Intensive Science Class	357
fg-42:SAGA	174
fg-201:ExTENCI Testing, Validation, and Performance	66
fg-1:Peer-to-peer overlay networks and applications in virtual networks and virtual clusters	60
fg-52:Cost-Aware Cloud Computing	34
fg-179:GPCloud: Cloud-based Automatic Repair of Real-World Software Bugs	28
fg-294:Predicting economic activities using social media	26
fg-97:FutureGrid and Grid 5000 Collaboration	18
fg-54:Investigating cloud computing as a solution for analyzing particle physics data	13
fg-306:Eucalyptus and Openstack	11
fg-213:Course: Cloud Computing class - second edition	10
Others	8
fg-253:Characterizing Performance of Infrastructure Clouds	8
fg-136:JGC-DataCloud-2012 paper experiments	6
fg-20:Development of an information service for FutureGrid	3
fg-60:Wide area distributed file system for MapReduce applications on FutureGrid platform	2
fg-241:Course: Science Cloud Summer School 2012	2
fg-249:Large Scale Computing Infrastructure 2012 Master class	1
fg-132:Large scale data analytics	1

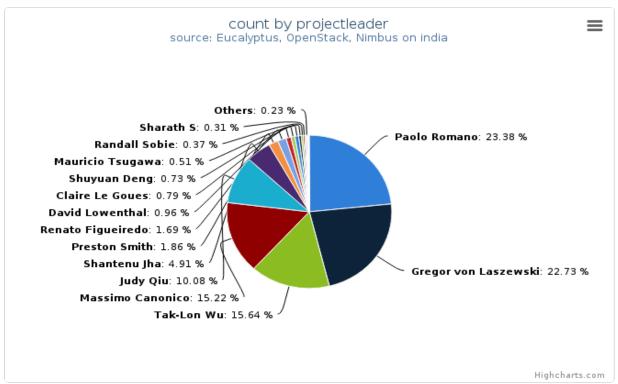


Figure 7: VMs count by project leader

This chart also illustrates the proportion of launched VM instances by project Leader. The same data in tabular form follows.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

Table 2.2: VMs count by project leader

Projectleader	Value
Paolo Romano	828
Gregor von Laszewski	805
Tak-Lon Wu	554
Massimo Canonico	539
Judy Qiu	357
Shantenu Jha	174
Preston Smith	66
Renato Figueiredo	60
David Lowenthal	34
Claire Le Goues	28
Shuyuan Deng	26
Mauricio Tsugawa	18
Randall Sobie	13
Sharath S	11
Paul Marshall	8
Others	8
Mats Rynge	6
Hyungro Lee	3
Lizhe Wang	2
Yogesh Simmhan	1
Sergio Maffioletti	1

2.2. Distribution 19

Figure 8: VMs count by institution

This chart illustrates the proportion of launched VM instances by Institution. The same data in tabular form follows.

- Period: July 01 September 30, 2013
- Cloud(IaaS): openstack, eucalyptus
- Hostname: india

Table 2.3: VMs count by institution

Institution	Value
Indiana University	1721
INESC ID	828
University of Piemonte Orientale, Computer Science Department	529
Louisiana State University	174
University of Florida	78
Purdue University	66
University of Arizona	34
University of Virginia	28
University of Wisconsin -Milwaukee	26
University of Victoria	13
Visvesvaraya Technological University, Computer science organiza	11
University of Piemonte Orientale	10
Others	8
University of Colorado at Boulder	8
USC	6
University of Southern California	1
University of Zurich	1

2.2. Distribution 21

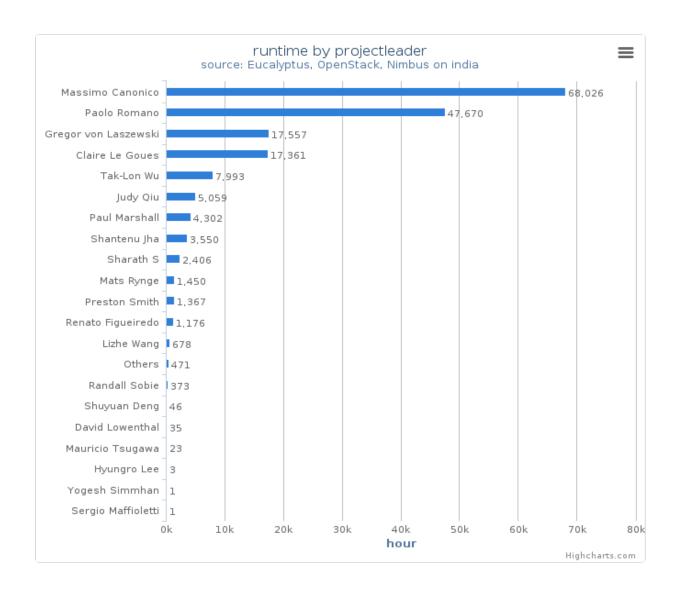


Figure 9: Wall time (hours) by project leader
This chart illustrates proportionate total run times by project leader.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

2.3 System information

System information shows utilization distribution as to VMs count and wall time. Each cluster represents a compute node.

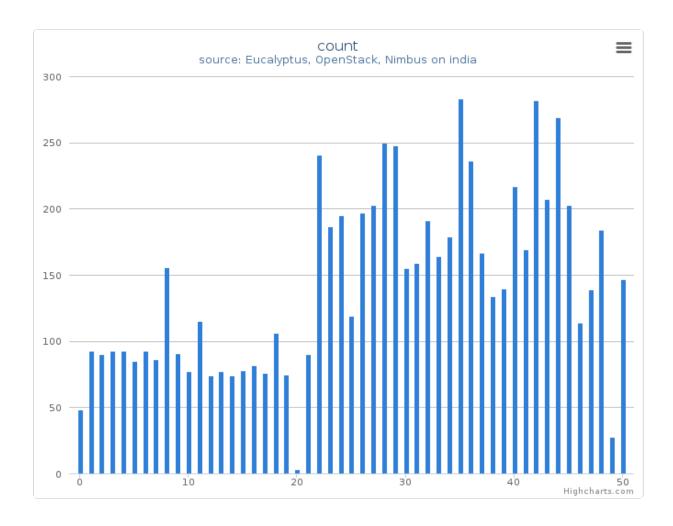


Figure 10: VMs count by systems (compute nodes) in Cluster (india) This column chart represents VMs count among systems.

- Period: July 01 September 30, 2013
- Cloud(IaaS): openstack, eucalyptus
- Hostname: india

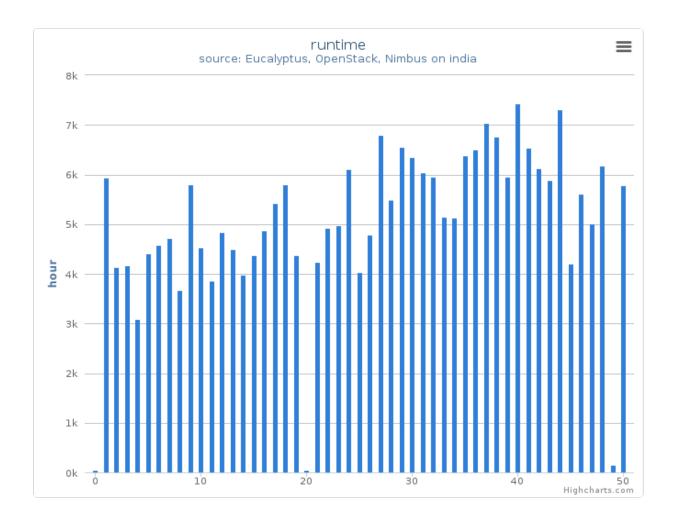


Figure 11: Wall time (hours) by systems (compute nodes) in Cluster (india) This column chart represents wall time among systems.

- Period: July 01 September 30, 2013
- Cloud(IaaS): openstack, eucalyptus
- Hostname: india

USAGE REPORT SIERRA

- Period: July 01 September 30, 2013
- Hostname: sierra.futuregrid.org
- Services: nimbus, openstack, eucalyptus
- Metrics: VMs count, Users count, Wall time (hours), Distribution by wall time, project, project leader, and institution, and systems

3.1 Histogram

3.1.1 Summary (Monthly)

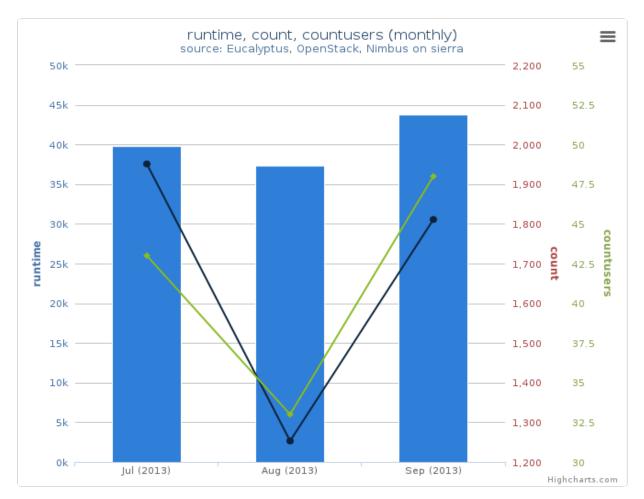


Figure 1: Average monthly usage data (wall time (hour), launched VMs, users)
This mixed chart represents average monthly usage as to wall time (hour), the number of VM instances and active users.

- Period: July 01 September 30, 2013
- Cloud(IaaS): nimbus, openstack, eucalyptus
- · Hostname: sierra
- Metric:
 - Runtime (Wall time hours): Sum of time elapsed from launch to termination of VM instances
 - Count (VM count): The number of launched VM instances
 - User count (Active): The number of users who launched VMs

3.1.2 Summary (Daily)

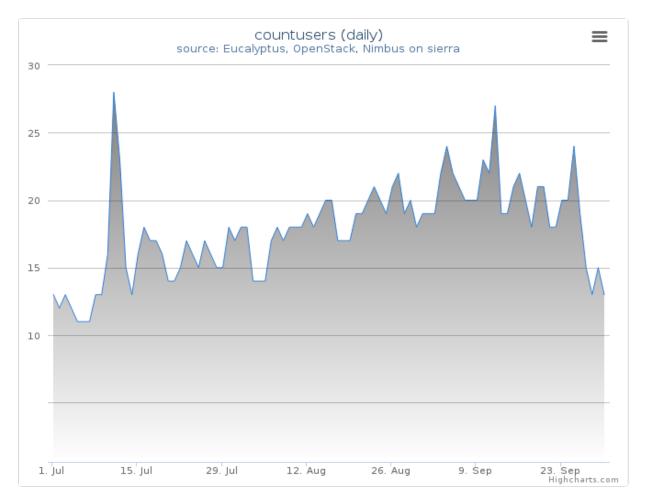


Figure 2: Users count

This time series chart represents daily active user count for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

 $\bullet \ \ Cloud(IaaS): nimbus, open stack, eucalyptus$

· Hostname: sierra

3.1. Histogram 27

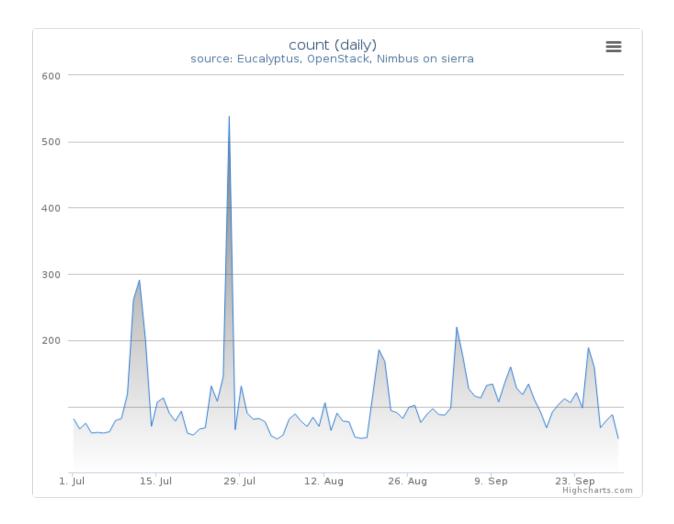


Figure 3: VMs count

This time series chart represents the number of daily launched VM instances for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus, openstack, eucalyptus

• Hostname: sierra

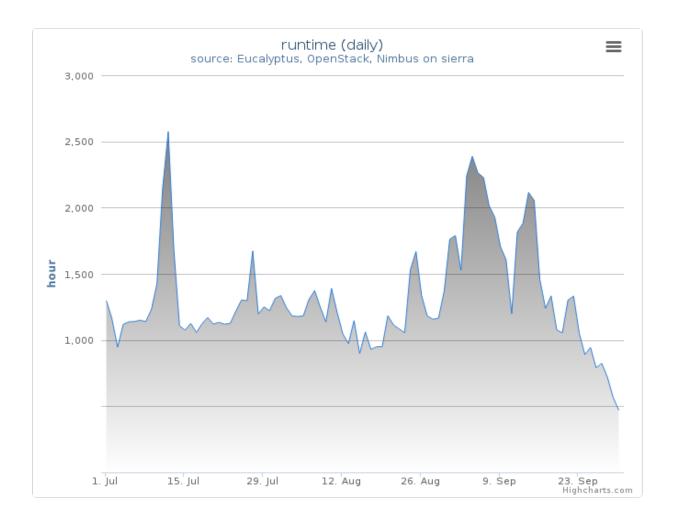


Figure 4: Wall time (hours)

This time series chart represents daily wall time (hours) for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus, openstack, eucalyptus

• Hostname: sierra

3.1. Histogram 29

3.2 Distribution

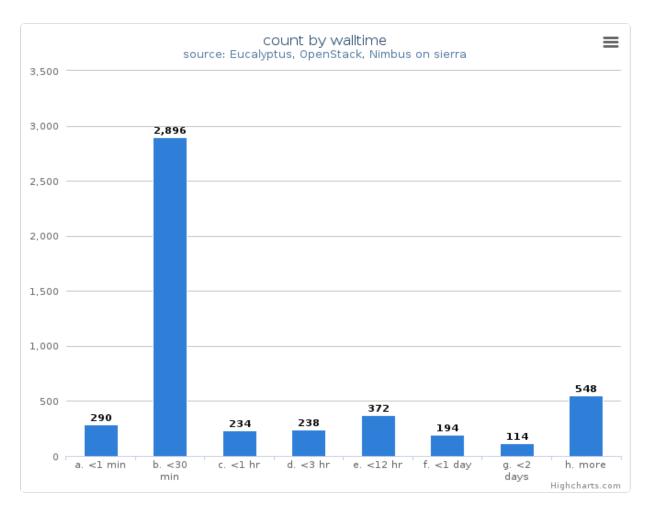


Figure 5: VM count by wall time

This chart illustrates usage patterns of VM instances in terms of running wall time.

- Period: July 01 September 30, 2013
- Cloud(IaaS): nimbus, openstack, eucalyptus
- Hostname: sierra

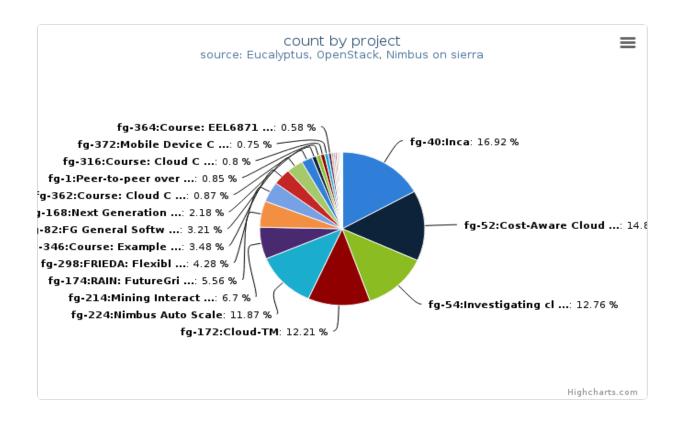


Figure 6: VMs count by project

This chart illustrates the proportion of launched VM instances by project groups. The same data in tabular form follows.

- Period: July 01 September 30, 2013
- Cloud(IaaS): nimbus, openstack, eucalyptus
- Hostname: sierra

Table 3.1: VMs count by project

Project	Value
fg-40:Inca	700
fg-52:Cost-Aware Cloud Computing	615
fg-54:Investigating cloud computing as a solution for analyzing particle physics data	528
fg-172:Cloud-TM	505
fg-224:Nimbus Auto Scale	491
fg-214:Mining Interactions between Network Community Structure and Information Diffusion	277
fg-174:RAIN: FutureGrid Dynamic provisioning Framework	230
fg-298:FRIEDA: Flexible Robust Intelligent Elastic Data Management	177
fg-346:Course: Example Course On Advanced Cloud Computing	144
fg-82:FG General Software Development	133
fg-168:Next Generation Sequencing in the Cloud	90
Continued on n	ext page

3.2. Distribution 31

Table 3.1 – continued from previous page

Project	Value
fg-362:Course: Cloud Computing and Storage (UF)	36
fg-1:Peer-to-peer overlay networks and applications in virtual networks and virtual clusters	35
fg-316:Course: Cloud Computing Class - third edition	33
fg-372:Mobile Device Computation Offloading over SocialVPNs	31
fg-364:Course: EEL6871 Autonomic Computing	24
fg-315:Biome representational in silico karyotyping	17
fg-97:FutureGrid and Grid 5000 Collaboration	15
fg-264:Course: 1st Workshop on bioKepler Tools and Its Applications	13
fg-367:Optimize rapid deployment and updating of VM images at the remote compute cluster	12
fg-132:Large scale data analytics	10
fg-175:GridProphet, A workflow execution time prediction system for the Grid	5
fg-374:Course: Cloud and Distributed Computing	4
fg-356:IPython pipelines for training life sciences researchers on NGS data analysis	3
fg-251:Course: Fall 2012 B534 Distributed Systems Graduate Course	3
fg-244:Course: Data Center Scale Computing	2
fg-314:User-friendly tools to play with cloud platforms	1
fg-180:STAMPEDE	1
fg-355:Course: Data Center Scale Computing Class	1
fg-69:Investigate provenance collection for MapReduce	1

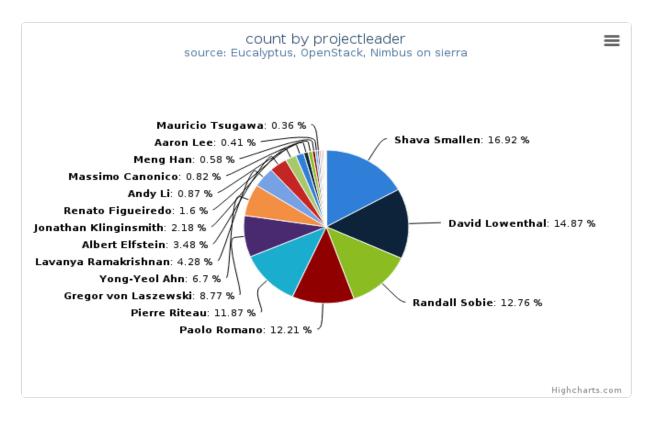


Figure 7: VMs count by project leader

This chart also illustrates the proportion of launched VM instances by project Leader. The same data in tabular form

follows.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus, openstack, eucalyptus

• Hostname: sierra

Table 3.2: VMs count by project leader

Shava Smallen 700 David Lowenthal 615 Randall Sobie 528 Paolo Romano 505 Pierre Riteau 491 Gregor von Laszewski 363 Yong-Yeol Ahn 277 Lavanya Ramakrishnan 177 Albert Elfstein 144 Jonathan Klinginsmith 90 Renato Figueiredo 66 Andy Li 36 Massimo Canonico 34 Meng Han 24 Aaron Lee 17 Mauricio Tsugawa 15 Ilkay Altintas 13 Jan Balewski 12 Yogesh Simmhan 10 Thomas Fahringer 5 Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1 Dan Gunter 1	Dusingtlandon	Volue
David Lowenthal Randall Sobie Randall Sobie Paolo Romano Fierre Riteau Gregor von Laszewski Yong-Yeol Ahn Lavanya Ramakrishnan Albert Elfstein Jonathan Klinginsmith Grenato Figueiredo Andy Li Massimo Canonico Andy Li Mang Han Aaron Lee I7 Mauricio Tsugawa I5 Ilkay Altintas Jan Balewski Yogesh Simmhan Thomas Fahringer Philip Rhodes Todd Blevins Dirk Grunwald Juay Qiu Jiaan Zeng Joseph Simman Josephan Josephan Josephan Josephan Josephan Judy Qiu Jiaan Zeng	Projectleader	Value
Randall Sobie Paolo Romano 505 Pierre Riteau 491 Gregor von Laszewski 363 Yong-Yeol Ahn 277 Lavanya Ramakrishnan 177 Albert Elfstein 144 Jonathan Klinginsmith 90 Renato Figueiredo 66 Andy Li 36 Massimo Canonico 34 Meng Han 24 Aaron Lee 17 Mauricio Tsugawa 15 Ilkay Altintas 13 Jan Balewski 12 Yogesh Simmhan 10 Thomas Fahringer Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1		
Paolo Romano Pierre Riteau Pierre Riteau Gregor von Laszewski 363 Yong-Yeol Ahn Lavanya Ramakrishnan 177 Albert Elfstein Jonathan Klinginsmith 90 Renato Figueiredo 66 Andy Li 36 Massimo Canonico 34 Meng Han 24 Aaron Lee 17 Mauricio Tsugawa 15 Ilkay Altintas 13 Jan Balewski 12 Yogesh Simmhan 10 Thomas Fahringer Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 16		
Pierre Riteau 491 Gregor von Laszewski 363 Yong-Yeol Ahn 277 Lavanya Ramakrishnan 177 Albert Elfstein 144 Jonathan Klinginsmith 90 Renato Figueiredo 66 Andy Li 36 Massimo Canonico 34 Meng Han 24 Aaron Lee 17 Mauricio Tsugawa 15 Ilkay Altintas 13 Jan Balewski 12 Yogesh Simmhan 10 Thomas Fahringer 5 Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1	Randall Sobie	528
Gregor von Laszewski 363 Yong-Yeol Ahn 277 Lavanya Ramakrishnan 177 Albert Elfstein 144 Jonathan Klinginsmith 90 Renato Figueiredo 66 Andy Li 36 Massimo Canonico 34 Meng Han 24 Aaron Lee 17 Mauricio Tsugawa 15 Ilkay Altintas 13 Jan Balewski 12 Yogesh Simmhan 10 Thomas Fahringer 5 Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1	Paolo Romano	505
Yong-Yeol Ahn 277 Lavanya Ramakrishnan 177 Albert Elfstein 144 Jonathan Klinginsmith 90 Renato Figueiredo 66 Andy Li 36 Massimo Canonico 34 Meng Han 24 Aaron Lee 17 Mauricio Tsugawa 15 Ilkay Altintas 13 Jan Balewski 12 Yogesh Simmhan 10 Thomas Fahringer 5 Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1	Pierre Riteau	
Lavanya Ramakrishnan 177 Albert Elfstein 144 Jonathan Klinginsmith 90 Renato Figueiredo 66 Andy Li 36 Massimo Canonico 34 Meng Han 24 Aaron Lee 17 Mauricio Tsugawa 15 Ilkay Altintas 13 Jan Balewski 12 Yogesh Simmhan 10 Thomas Fahringer 5 Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1		363
Albert Elfstein 144 Jonathan Klinginsmith 90 Renato Figueiredo 66 Andy Li 36 Massimo Canonico 34 Meng Han 24 Aaron Lee 17 Mauricio Tsugawa 15 Ilkay Altintas 13 Jan Balewski 12 Yogesh Simmhan 10 Thomas Fahringer 5 Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1		277
Jonathan Klinginsmith 90 Renato Figueiredo 66 Andy Li 36 Massimo Canonico 34 Meng Han 24 Aaron Lee 17 Mauricio Tsugawa 15 Ilkay Altintas 13 Jan Balewski 12 Yogesh Simmhan 10 Thomas Fahringer 5 Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1		177
Renato Figueiredo Andy Li 36 Massimo Canonico 34 Meng Han 24 Aaron Lee 17 Mauricio Tsugawa 15 Ilkay Altintas 13 Jan Balewski 12 Yogesh Simmhan 10 Thomas Fahringer Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1	Albert Elfstein	144
Andy Li Massimo Canonico Meng Han 24 Aaron Lee 17 Mauricio Tsugawa Ilkay Altintas Jan Balewski Yogesh Simmhan Thomas Fahringer Philip Rhodes 4 Todd Blevins Dirk Grunwald Judy Qiu Jiaan Zeng 13 34 34 34 35 36 36 37 38 38 39 30 30 31 31 31 32 33 34 34 35 36 36 36 37 38 38 38 38 38 38 38 38 38	Jonathan Klinginsmith	90
Massimo Canonico34Meng Han24Aaron Lee17Mauricio Tsugawa15Ilkay Altintas13Jan Balewski12Yogesh Simmhan10Thomas Fahringer5Philip Rhodes4Todd Blevins3Dirk Grunwald3Judy Qiu3Jiaan Zeng1	Renato Figueiredo	66
Meng Han24Aaron Lee17Mauricio Tsugawa15Ilkay Altintas13Jan Balewski12Yogesh Simmhan10Thomas Fahringer5Philip Rhodes4Todd Blevins3Dirk Grunwald3Judy Qiu3Jiaan Zeng1	Andy Li	36
Aaron Lee 17 Mauricio Tsugawa 15 Ilkay Altintas 13 Jan Balewski 12 Yogesh Simmhan 10 Thomas Fahringer 5 Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1	Massimo Canonico	34
Mauricio Tsugawa15Ilkay Altintas13Jan Balewski12Yogesh Simmhan10Thomas Fahringer5Philip Rhodes4Todd Blevins3Dirk Grunwald3Judy Qiu3Jiaan Zeng1		24
Ilkay Altintas13Jan Balewski12Yogesh Simmhan10Thomas Fahringer5Philip Rhodes4Todd Blevins3Dirk Grunwald3Judy Qiu3Jiaan Zeng1	Aaron Lee	17
Jan Balewski12Yogesh Simmhan10Thomas Fahringer5Philip Rhodes4Todd Blevins3Dirk Grunwald3Judy Qiu3Jiaan Zeng1	Mauricio Tsugawa	15
Yogesh Simmhan 10 Thomas Fahringer 5 Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1	Ilkay Altintas	13
Thomas Fahringer 5 Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1	Jan Balewski	12
Philip Rhodes 4 Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1	Yogesh Simmhan	10
Todd Blevins 3 Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1	Thomas Fahringer	5
Dirk Grunwald 3 Judy Qiu 3 Jiaan Zeng 1	Philip Rhodes	4
Judy Qiu3Jiaan Zeng1	Todd Blevins	3
Jiaan Zeng 1	Dirk Grunwald	3
Jiaan Zeng 1	Judy Qiu	
Dan Gunter 1		1
	Dan Gunter	1

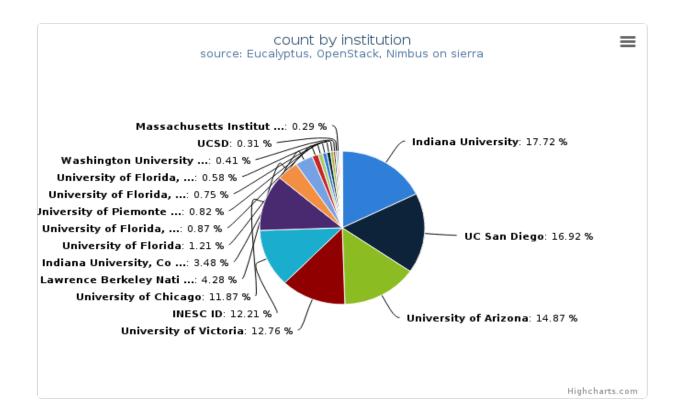


Figure 8: VMs count by institution

This chart illustrates the proportion of launched VM instances by Institution. The same data in tabular form follows.

- Period: July 01 September 30, 2013
- Cloud(IaaS): nimbus, openstack, eucalyptus
- Hostname: sierra

Table 3.3: VMs count by institution

Institution	Value
Indiana University	733
UC San Diego	700
University of Arizona	615
University of Victoria	528
INESC ID	505
University of Chicago	491
Lawrence Berkeley National Lab	177
Indiana University, Computer Science Department	144
University of Florida	50
University of Florida, Department of Electrical and Computer Eng	36
University of Piemonte Orientale, Computer Science Department	34
University of Florida, Electrical and Computer Engineering	31
University of Florida, ACIS	24
Washington University at St Louis, School of Medicine, Departmen	17
UCSD	13
Massachusetts Institute of Technology, Laboratory for Nuclear Sc	12
University of Southern California	10
University of Innsbruck	5
University of Mississippi, Department of Computer Science	4
Indiana University, Depts of Biology and Molecular and Cellular	3
Univ. of Colorado	2
Computer Science	1
Univ. of Colorado, Boulder, Computer Science	1
LBNL	1

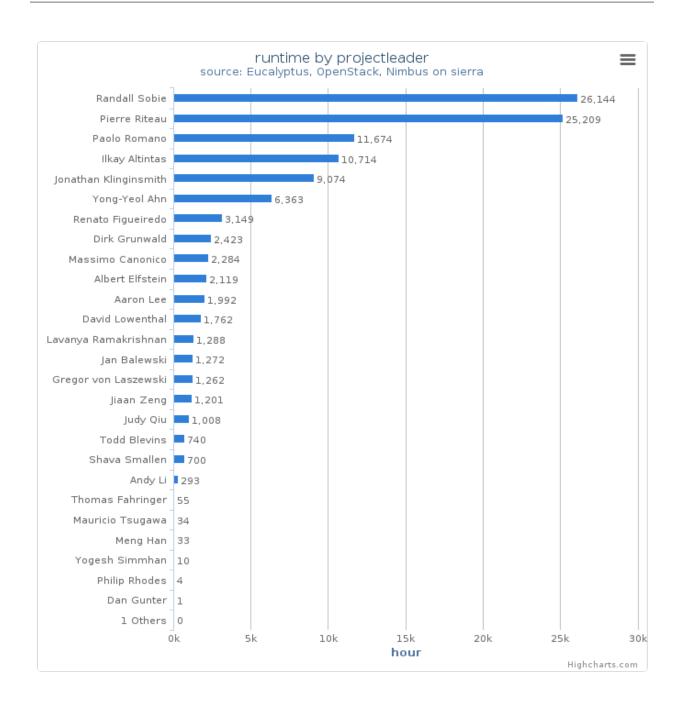


Figure 9: Wall time (hours) by project leader
This chart illustrates proportionate total run times by project leader.

• Cloud(IaaS): nimbus, openstack, eucalyptus

• Hostname: sierra

3.3 System information

System information shows utilization distribution as to VMs count and wall time. Each cluster represents a compute node.

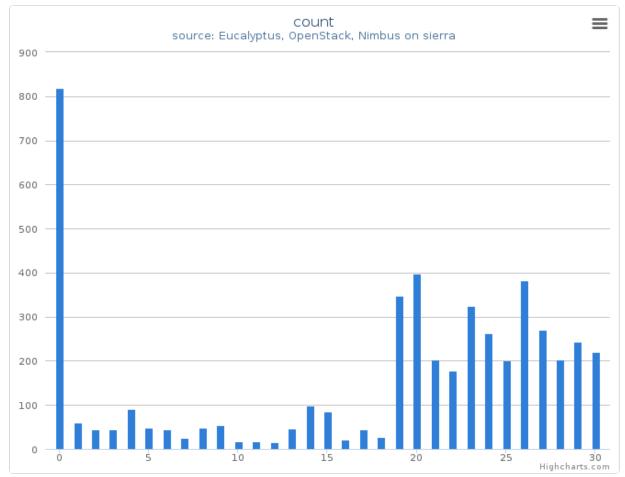


Figure 10: VMs count by systems (compute nodes) in Cluster (sierra) This column chart represents VMs count among systems.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus, openstack, eucalyptus

• Hostname: sierra

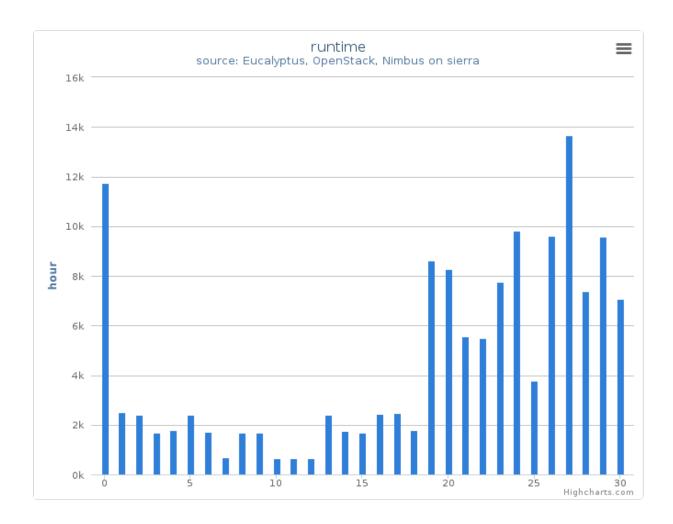


Figure 11: Wall time (hours) by systems (compute nodes) in Cluster (sierra) This column chart represents wall time among systems.

- Period: July 01 September 30, 2013
- Cloud(IaaS): nimbus, openstack, eucalyptus
- Hostname: sierra

USAGE REPORT ALAMO

• Period: July 01 – September 30, 2013

• Hostname: alamo.futuregrid.org

• Services: nimbus, openstack

• Metrics: VMs count, Users count, Wall time (hours), Distribution by wall time, project, project leader, and institution, and systems

4.1 Histogram

4.1.1 Summary (Monthly)

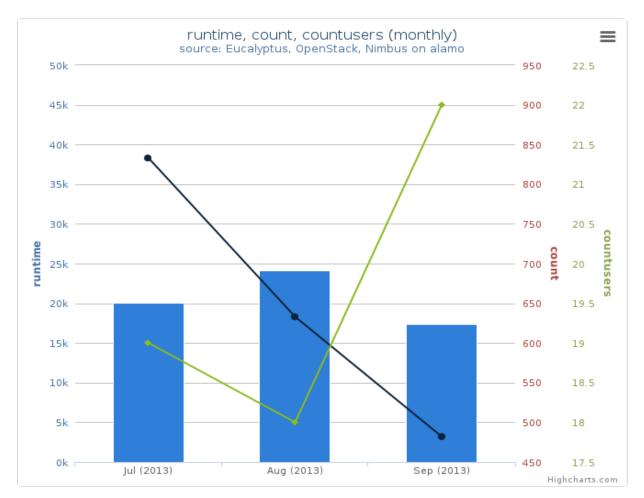


Figure 1: Average monthly usage data (wall time (hour), launched VMs, users)
This mixed chart represents average monthly usage as to wall time (hour), the number of VM instances and active users.

- Period: July 01 September 30, 2013
- Cloud(IaaS): nimbus, openstack
- · Hostname: alamo
- Metric:
 - Runtime (Wall time hours): Sum of time elapsed from launch to termination of VM instances
 - Count (VM count): The number of launched VM instances
 - User count (Active): The number of users who launched VMs

4.1.2 Summary (Daily)

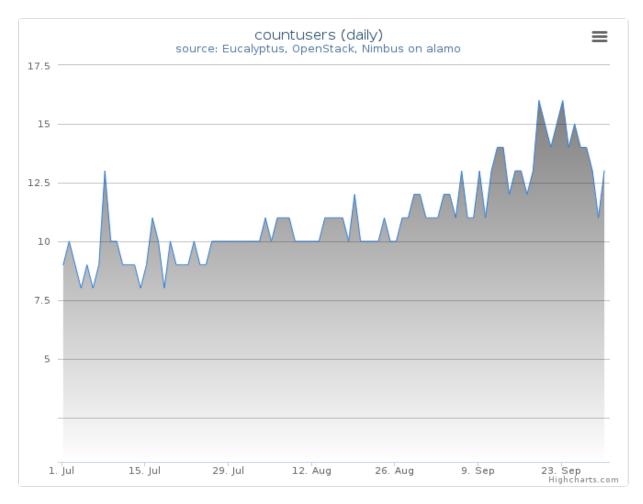


Figure 2: Users count

This time series chart represents daily active user count for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus, openstack

· Hostname: alamo

4.1. Histogram 41

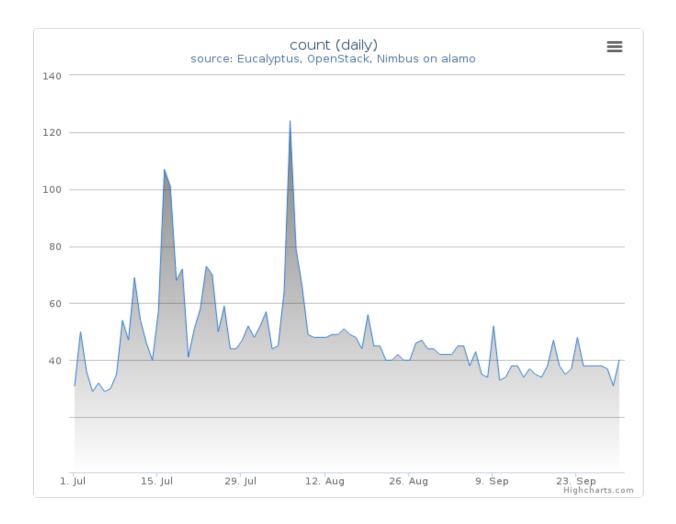


Figure 3: VMs count

This time series chart represents the number of daily launched VM instances for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus, openstack

• Hostname: alamo

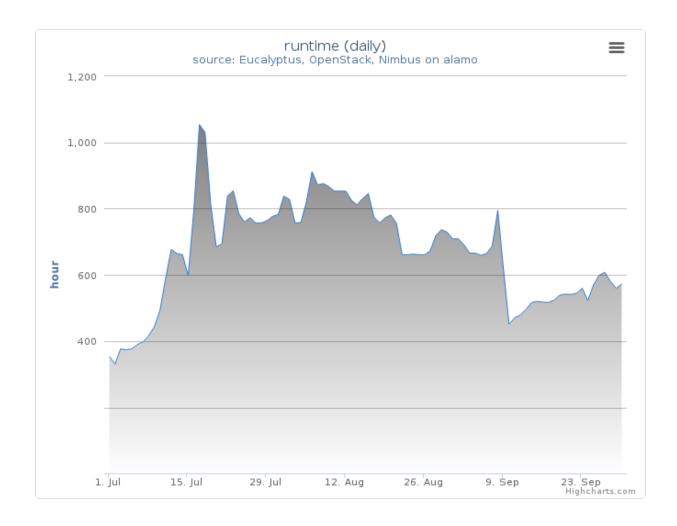


Figure 4: Wall time (hours)

This time series chart represents daily wall time (hours) for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus, openstack

• Hostname: alamo

4.1. Histogram 43

4.2 Distribution

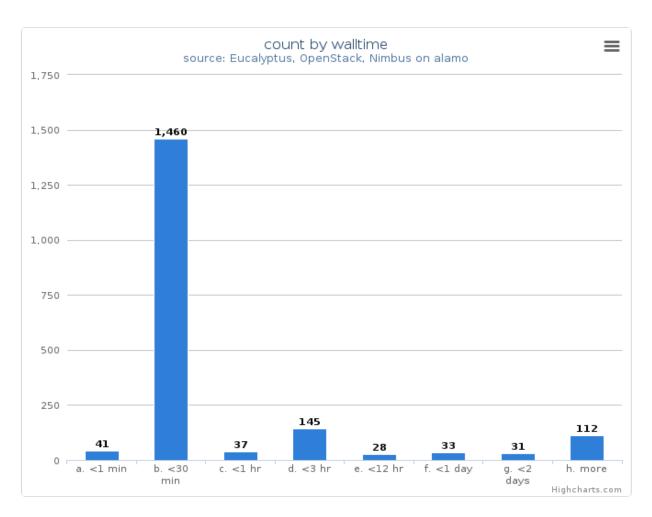


Figure 5: VM count by wall time

This chart illustrates usage patterns of VM instances in terms of running wall time.

- Period: July 01 September 30, 2013
- Cloud(IaaS): nimbus, openstack
- · Hostname: alamo

44

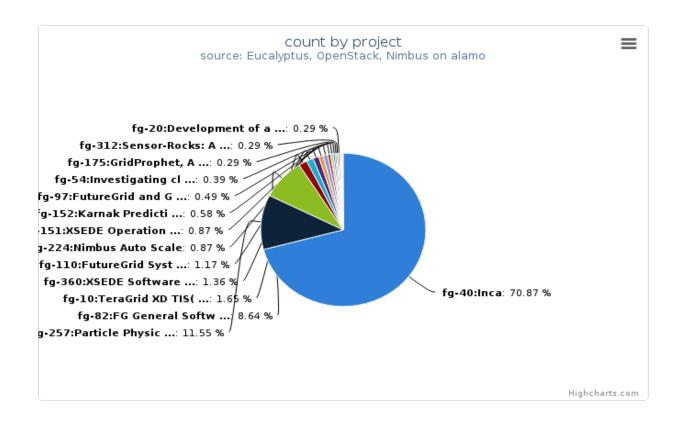


Figure 6: VMs count by project

This chart illustrates the proportion of launched VM instances by project groups. The same data in tabular form follows.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus, openstack

• Hostname: alamo

Table 4.1: VMs count by project

Project	Value
fg-40:Inca	730
fg-257:Particle Physics Data analysis cluster for ATLAS LHC experiment	119
fg-82:FG General Software Development	89
fg-10:TeraGrid XD TIS(Technology Insertion Service) Technology Evaluation Laboratory	17
fg-360:XSEDE Software Development and Integration Testing	14
fg-110:FutureGrid Systems Development	12
fg-224:Nimbus Auto Scale	9
fg-151:XSEDE Operations Group	9
fg-152:Karnak Prediction Service	6
fg-97:FutureGrid and Grid 5000 Collaboration	5
fg-54:Investigating cloud computing as a solution for analyzing particle physics data	4
fg-175:GridProphet, A workflow execution time prediction system for the Grid	3
fg-312:Sensor-Rocks: A novel integrated framework to improve software Operations and Management	3
(O&M) and power management in environmental observing systems	
fg-20:Development of an information service for FutureGrid	3
fg-367:Optimize rapid deployment and updating of VM images at the remote compute cluster	2
fg-1:Peer-to-peer overlay networks and applications in virtual networks and virtual clusters	2
fg-172:Cloud-TM	1
fg-90:Unicore and Genesis Experimentation	1
fg-136:JGC-DataCloud-2012 paper experiments	1

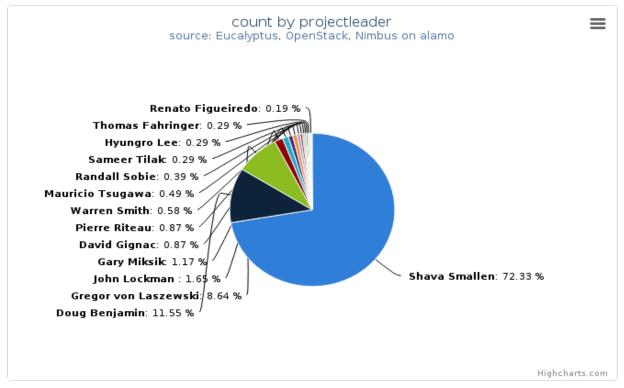


Figure 7: VMs count by project leader

This chart also illustrates the proportion of launched VM instances by project Leader. The same data in tabular form follows.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus, openstack

• Hostname: alamo

Table 4.2: VMs count by project leader

Projectleader	Value
Shava Smallen	745
Doug Benjamin	119
Gregor von Laszewski	89
John Lockman	17
Gary Miksik	12
David Gignac	9
Pierre Riteau	9
Warren Smith	6
Mauricio Tsugawa	5
Randall Sobie	4
Sameer Tilak	3
Hyungro Lee	3
Thomas Fahringer	3
Jan Balewski	2
Renato Figueiredo	2
Mats Rynge	1
Paolo Romano	1

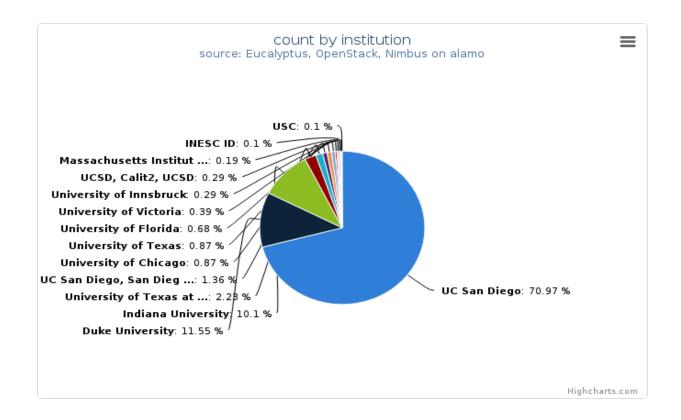


Figure 8: VMs count by institution

This chart illustrates the proportion of launched VM instances by Institution. The same data in tabular form follows.

- Period: July 01 September 30, 2013
- Cloud(IaaS): nimbus, openstack
- Hostname: alamo

Table 4.3: VMs count by institution

Institution	Value
UC San Diego	731
Duke University	119
Indiana University	104
University of Texas at Austin	23
UC San Diego, San Diego Supercomputer Center	14
University of Chicago	9
University of Texas	9
University of Florida	7
University of Victoria	4
University of Innsbruck	3
UCSD, Calit2, UCSD	3
Massachusetts Institute of Technology, Laboratory for Nuclear Sc	2
INESC ID	1
USC	1

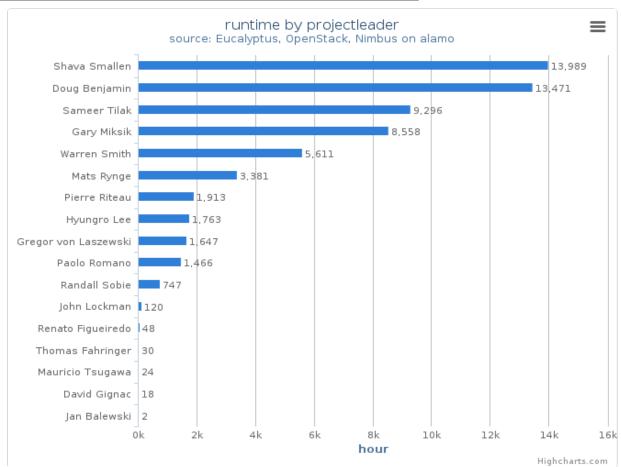


Figure 9: Wall time (hours) by project leader This chart illustrates proportionate total run times by project leader.

• Cloud(IaaS): nimbus, openstack

• Hostname: alamo

4.3 System information

System information shows utilization distribution as to VMs count and wall time. Each cluster represents a compute node.

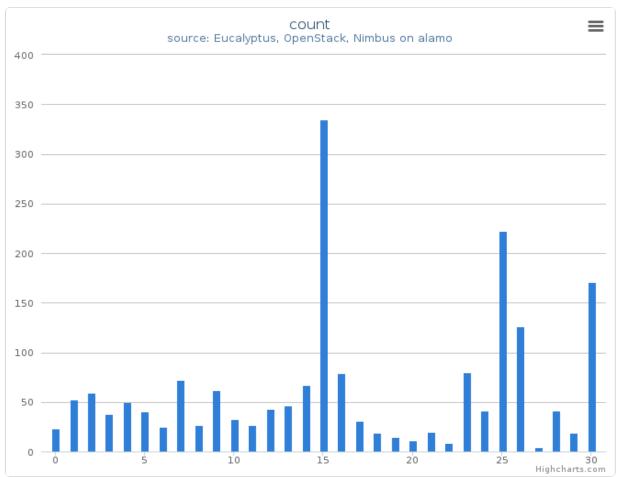


Figure 10: VMs count by systems (compute nodes) in Cluster (alamo) This column chart represents VMs count among systems.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus, openstack

· Hostname: alamo

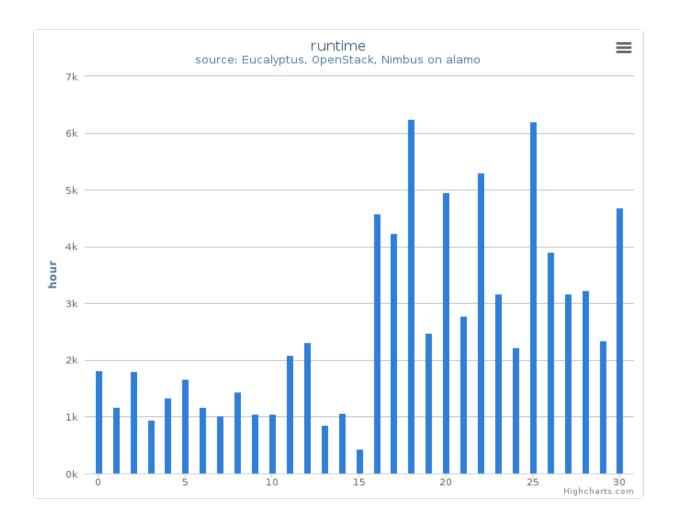


Figure 11: Wall time (hours) by systems (compute nodes) in Cluster (alamo) This column chart represents wall time among systems.

• Cloud(IaaS): nimbus, openstack

• Hostname: alamo

USAGE REPORT FOXTROT

- Period: July 01 September 30, 2013
- Hostname: foxtrot.futuregrid.org
- Services: nimbus
- Metrics: VMs count, Users count, Wall time (hours), Distribution by wall time, project, project leader, and institution, and systems

5.1 Histogram

5.1.1 Summary (Monthly)

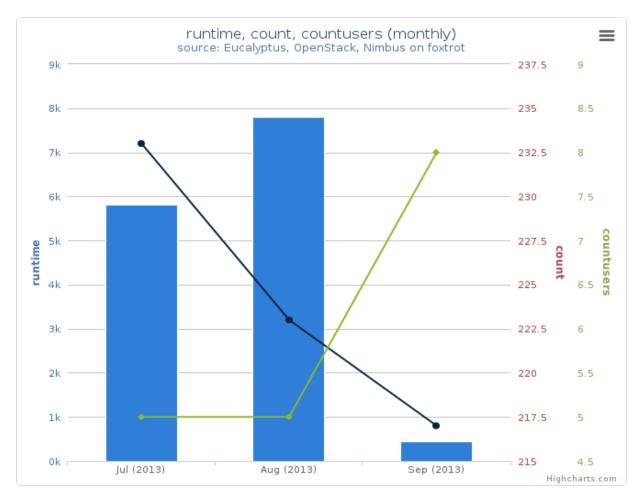


Figure 1: Average monthly usage data (wall time (hour), launched VMs, users)

This mixed chart represents average monthly usage as to wall time (hour), the number of VM instances and active users.

- Period: July 01 September 30, 2013
- Cloud(IaaS): nimbus
- Hostname: foxtrot
- Metric:
 - Runtime (Wall time hours): Sum of time elapsed from launch to termination of VM instances
 - Count (VM count): The number of launched VM instances
 - User count (Active): The number of users who launched VMs

5.1.2 Summary (Daily)

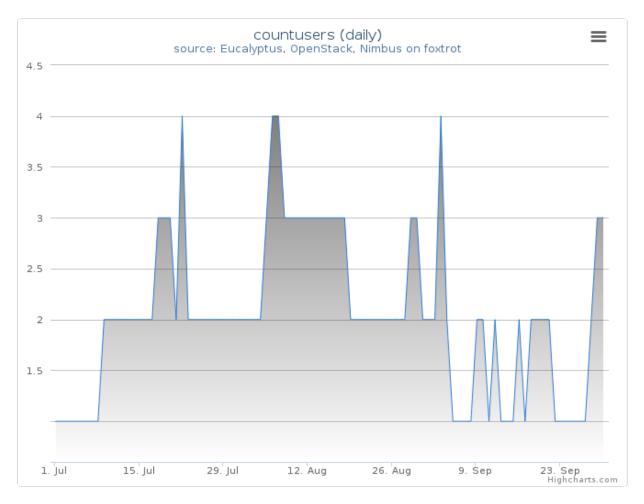


Figure 2: Users count

This time series chart represents daily active user count for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus

· Hostname: foxtrot

5.1. Histogram 55

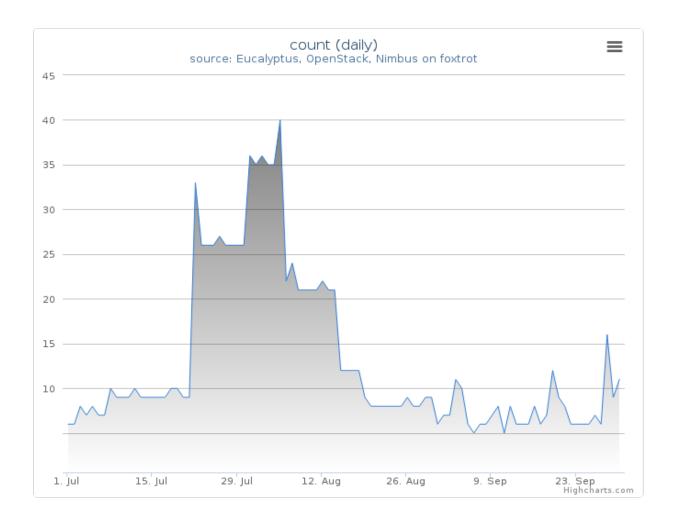


Figure 3: VMs count

This time series chart represents the number of daily launched VM instances for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus

• Hostname: foxtrot

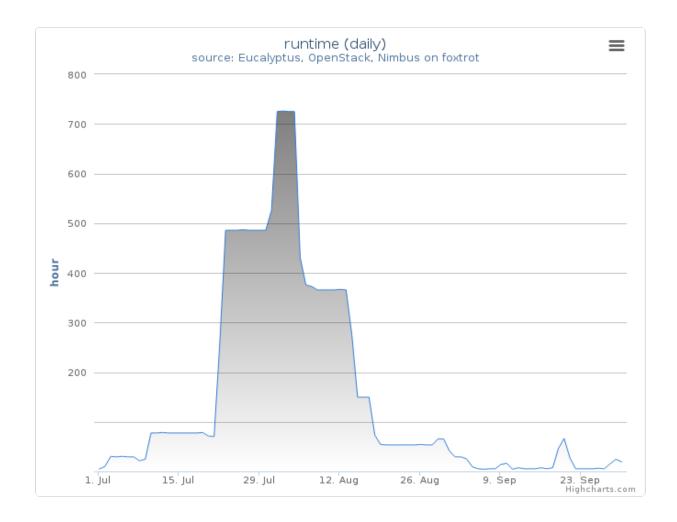


Figure 4: Wall time (hours)

This time series chart represents daily wall time (hours) for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus

• Hostname: foxtrot

5.1. Histogram 57

5.2 Distribution

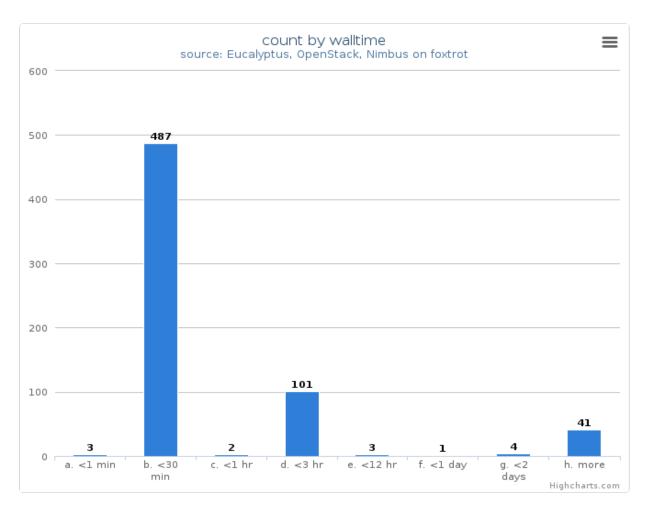


Figure 5: VM count by wall time

This chart illustrates usage patterns of VM instances in terms of running wall time.

- Period: July 01 September 30, 2013
- Cloud(IaaS): nimbus
- Hostname: foxtrot

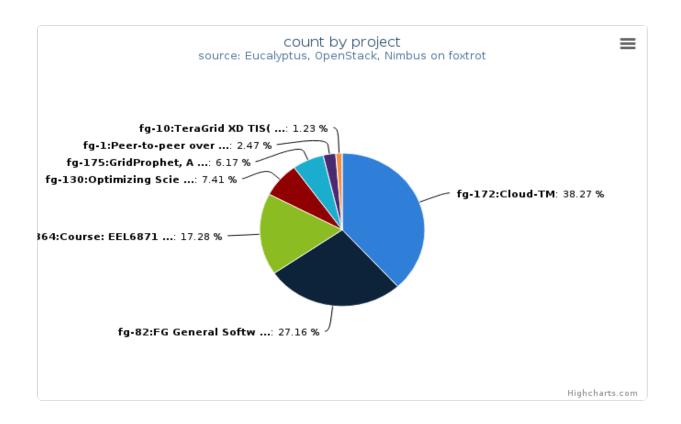


Figure 6: VMs count by project

This chart illustrates the proportion of launched VM instances by project groups. The same data in tabular form follows.

• Period: July 01 – September 30, 2013

Cloud(IaaS): nimbus Hostname: foxtrot

Table 5.1: VMs count by project

Project	Value
fg-172:Cloud-TM	31
fg-82:FG General Software Development	22
fg-364:Course: EEL6871 Autonomic Computing	14
fg-130:Optimizing Scientific Workflows on Clouds	6
fg-175:GridProphet, A workflow execution time prediction system for the Grid	5
fg-1:Peer-to-peer overlay networks and applications in virtual networks and virtual clusters	2
fg-10:TeraGrid XD TIS(Technology Insertion Service) Technology Evaluation Laboratory	1

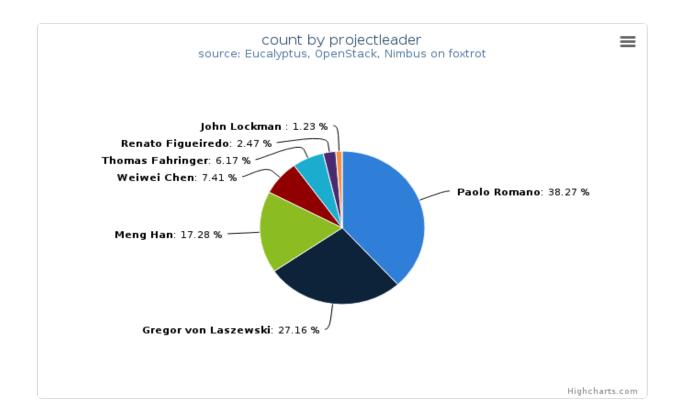


Figure 7: VMs count by project leader

This chart also illustrates the proportion of launched VM instances by project Leader. The same data in tabular form follows.

• Period: July 01 – September 30, 2013

Cloud(IaaS): nimbus Hostname: foxtrot

Table 5.2: VMs count by project leader

Projectleader	Value
Paolo Romano	31
Gregor von Laszewski	22
Meng Han	14
Weiwei Chen	6
Thomas Fahringer	5
Renato Figueiredo	2
John Lockman	1

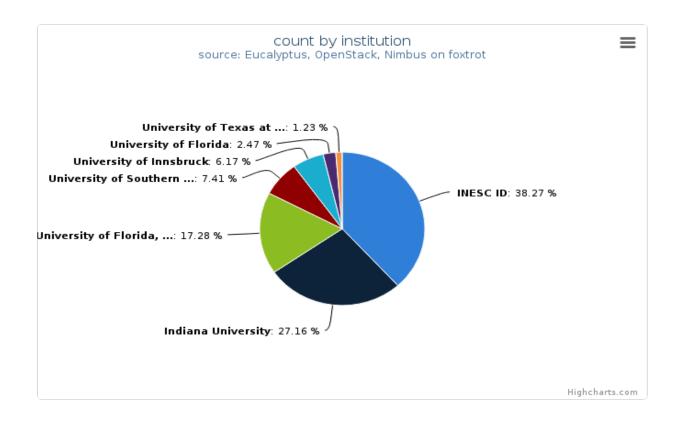


Figure 8: VMs count by institution

This chart illustrates the proportion of launched VM instances by Institution. The same data in tabular form follows.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus

• Hostname: foxtrot

Table 5.3: VMs count by institution

Institution	Value
INESC ID	31
Indiana University	22
University of Florida, ACIS	14
University of Southern California	6
University of Innsbruck	5
University of Florida	2
University of Texas at Austin	1

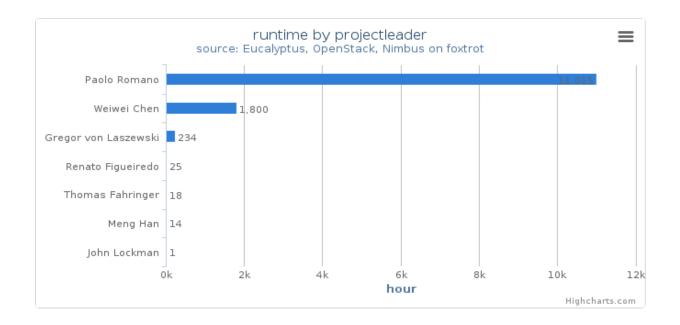


Figure 9: Wall time (hours) by project leader This chart illustrates proportionate total run times by project leader.

• Cloud(IaaS): nimbus

• Hostname: foxtrot

5.3 System information

System information shows utilization distribution as to VMs count and wall time. Each cluster represents a compute node.

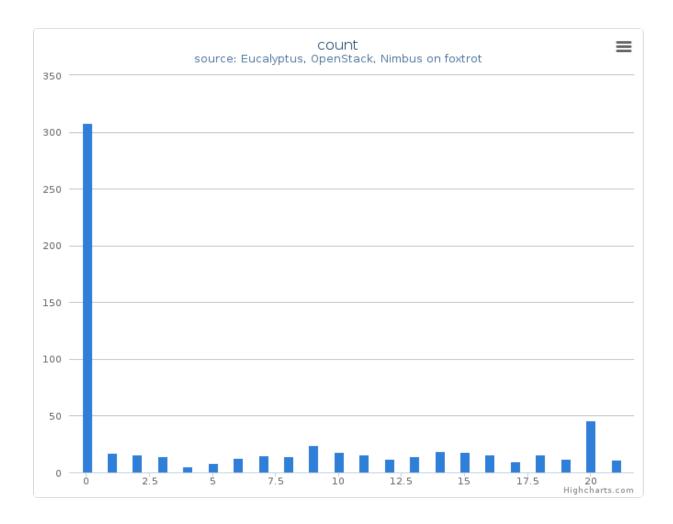


Figure 10: VMs count by systems (compute nodes) in Cluster (foxtrot) This column chart represents VMs count among systems.

• Cloud(IaaS): nimbus

• Hostname: foxtrot

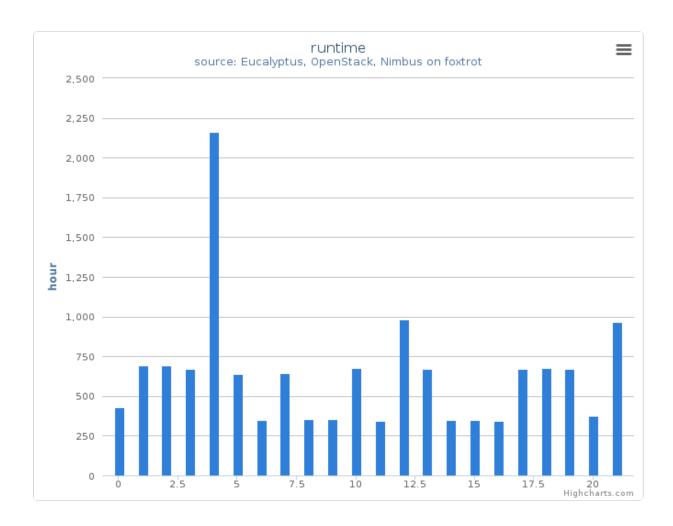


Figure 11: Wall time (hours) by systems (compute nodes) in Cluster (foxtrot) This column chart represents wall time among systems.

• Cloud(IaaS): nimbus

• Hostname: foxtrot

USAGE REPORT HOTEL

• Period: July 01 – September 30, 2013

• Hostname: hotel.futuregrid.org

• Services: nimbus

• Metrics: VMs count, Users count, Wall time (hours), Distribution by wall time, project, project leader, and institution, and systems

6.1 Histogram

6.1.1 Summary (Monthly)

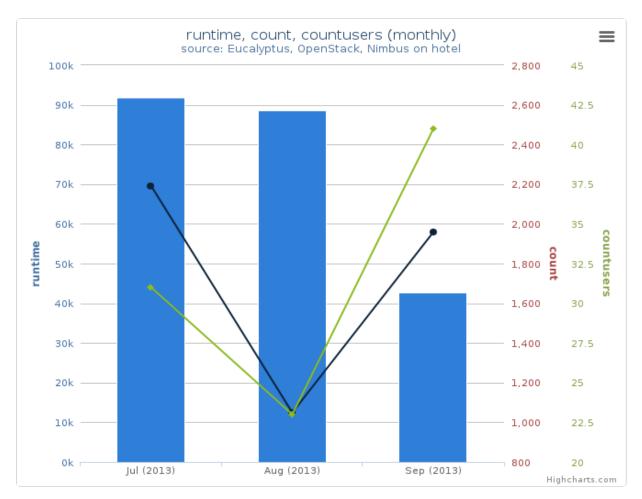


Figure 1: Average monthly usage data (wall time (hour), launched VMs, users)
This mixed chart represents average monthly usage as to wall time (hour), the number of VM instances and active users.

- Period: July 01 September 30, 2013
- Cloud(IaaS): nimbus
- · Hostname: hotel
- Metric:
 - Runtime (Wall time hours): Sum of time elapsed from launch to termination of VM instances
 - Count (VM count): The number of launched VM instances
 - User count (Active): The number of users who launched VMs

6.1.2 Summary (Daily)

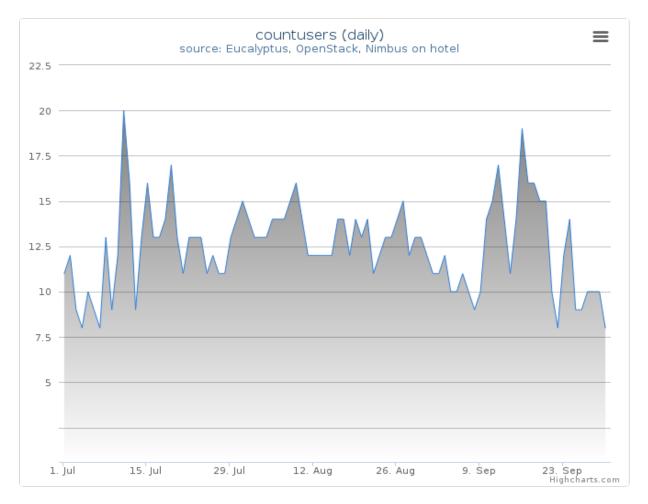


Figure 2: Users count

This time series chart represents daily active user count for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

 $\bullet \ \ Cloud(IaaS): nimbus$

· Hostname: hotel

6.1. Histogram 67

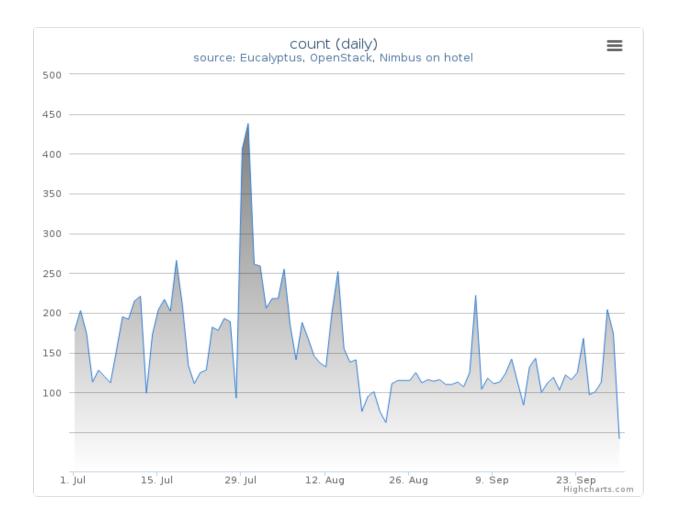


Figure 3: VMs count

This time series chart represents the number of daily launched VM instances for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus

• Hostname: hotel

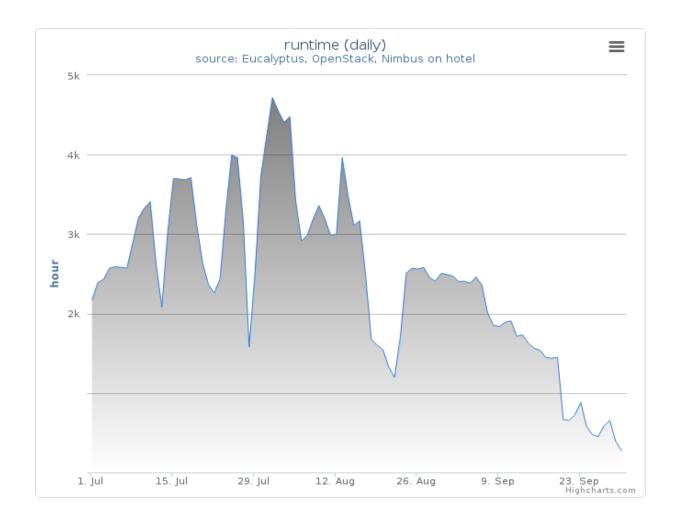


Figure 4: Wall time (hours)

This time series chart represents daily wall time (hours) for cloud services and shows historical changes during the period.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus

· Hostname: hotel

6.1. Histogram 69

6.2 Distribution

Figure 5: VM count by wall time

This chart illustrates usage patterns of VM instances in terms of running wall time.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus

• Hostname: hotel

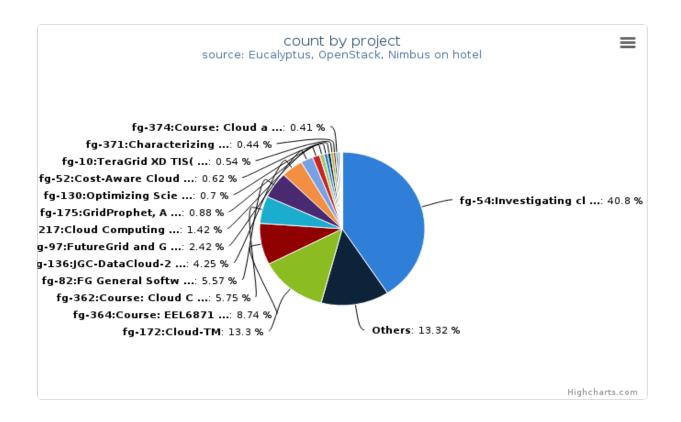
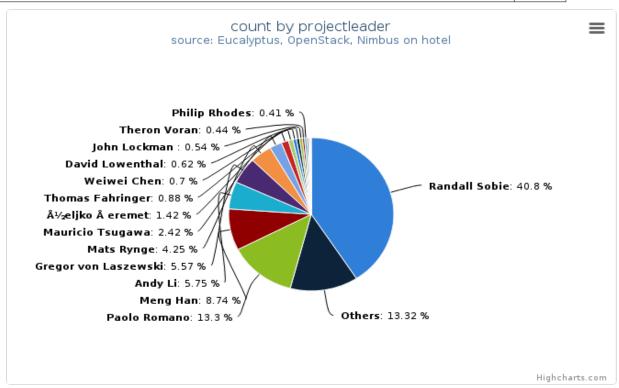


Figure 6: VMs count by project

This chart illustrates the proportion of launched VM instances by project groups. The same data in tabular form follows.

• Period: July 01 – September 30, 2013


• Cloud(IaaS): nimbus

• Hostname: hotel

6.2. Distribution 71

Table 6.1: VMs count by project

Project	Value
fg-54:Investigating cloud computing as a solution for analyzing particle physics data	1583
Others	517
fg-172:Cloud-TM	516
fg-364:Course: EEL6871 Autonomic Computing	339
fg-362:Course: Cloud Computing and Storage (UF)	223
fg-82:FG General Software Development	216
fg-136:JGC-DataCloud-2012 paper experiments	165
fg-97:FutureGrid and Grid 5000 Collaboration	94
fg-217:Cloud Computing In Education	55
fg-175:GridProphet, A workflow execution time prediction system for the Grid	34
fg-130:Optimizing Scientific Workflows on Clouds	27
fg-52:Cost-Aware Cloud Computing	24
fg-10:TeraGrid XD TIS(Technology Insertion Service) Technology Evaluation Laboratory	21
fg-371:Characterizing Infrastructure Cloud Performance for Scientific Computing	17
fg-374:Course: Cloud and Distributed Computing	16
fg-213:Course: Cloud Computing class - second edition	13
fg-367:Optimize rapid deployment and updating of VM images at the remote compute cluster	10
fg-201:ExTENCI Testing, Validation, and Performance	3
fg-150:SC11: Using and Building Infrastructure Clouds for Science	3
fg-1:Peer-to-peer overlay networks and applications in virtual networks and virtual clusters	2
fg-60:Wide area distributed file system for MapReduce applications on FutureGrid platform	1
fg-355:Course: Data Center Scale Computing Class	1

Figure 7: VMs count by project leader

This chart also illustrates the proportion of launched VM instances by project Leader. The same data in tabular form follows.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus

• Hostname: hotel

Table 6.2: VMs count by project leader

Projectleader	Value
Randall Sobie	1583
Others	517
Paolo Romano	516
Meng Han	339
Andy Li	223
Gregor von Laszewski	216
Mats Rynge	165
Mauricio Tsugawa	94
Željko Šeremet	55
Thomas Fahringer	34
Weiwei Chen	27
David Lowenthal	24
John Lockman	21
Theron Voran	17
Philip Rhodes	16
Massimo Canonico	13
Jan Balewski	10
John Bresnahan	3
Preston Smith	3
Renato Figueiredo	2
Dirk Grunwald	1
Lizhe Wang	1

6.2. Distribution 73

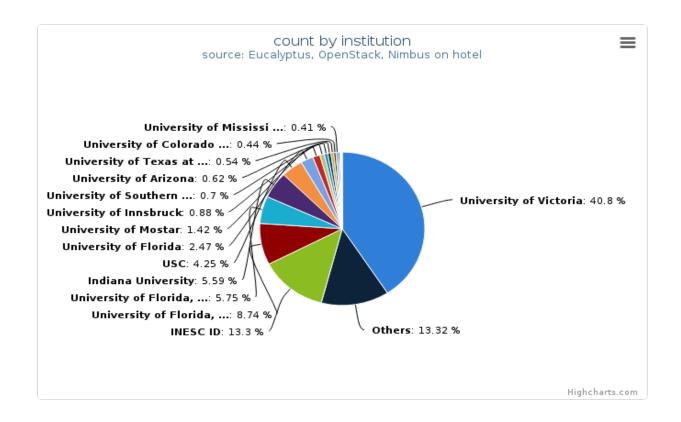


Figure 8: VMs count by institution

This chart illustrates the proportion of launched VM instances by Institution. The same data in tabular form follows.

- Period: July 01 September 30, 2013
- Cloud(IaaS): nimbus
- Hostname: hotel

Table 6.3: VMs count by institution

Institution	Value
University of Victoria	1583
Others	517
INESC ID	516
University of Florida, ACIS	339
University of Florida, Department of Electrical and Computer Eng	223
Indiana University	217
USC	165
University of Florida	96
University of Mostar	55
University of Innsbruck	34
University of Southern California	27
University of Arizona	24
University of Texas at Austin	21
University of Colorado at Boulder, Computer Science Department	17
University of Mississippi, Department of Computer Science	16
University of Piemonte Orientale	13
Massachusetts Institute of Technology, Laboratory for Nuclear Sc	10
Purdue University	3
Nimbus	3
Univ. of Colorado, Boulder, Computer Science	1

6.2. Distribution 75

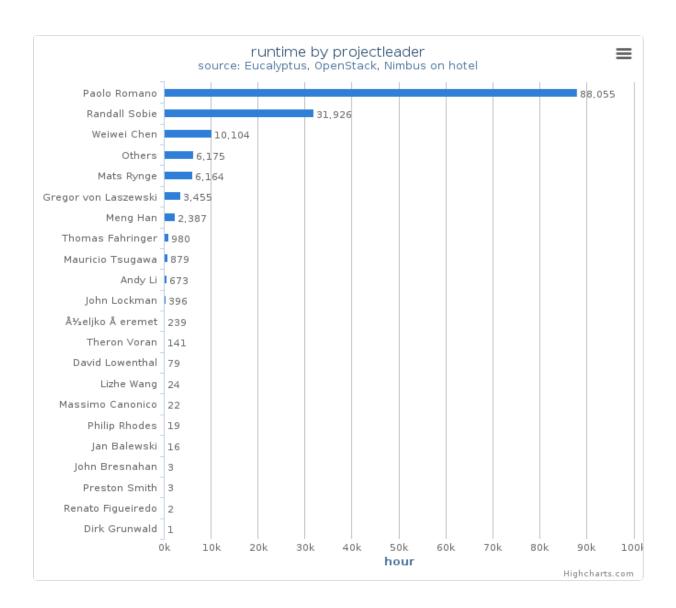


Figure 9: Wall time (hours) by project leader
This chart illustrates proportionate total run times by project leader.

• Period: July 01 – September 30, 2013

Cloud(IaaS): nimbusHostname: hotel

6.3 System information

System information shows utilization distribution as to VMs count and wall time. Each cluster represents a compute node.

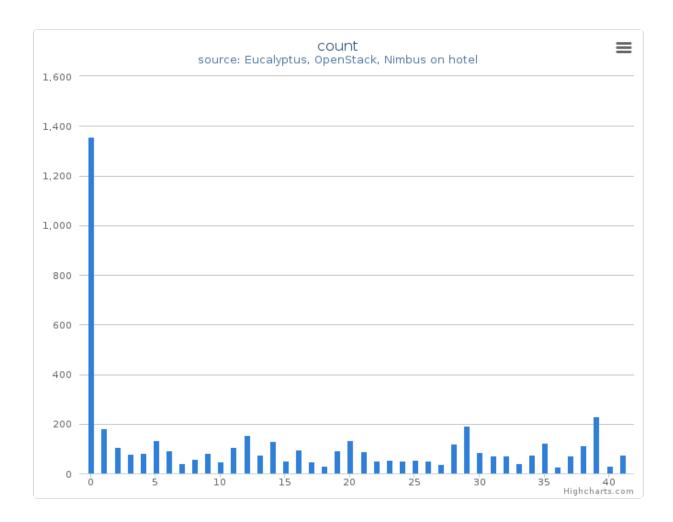


Figure 10: VMs count by systems (compute nodes) in Cluster (hotel) This column chart represents VMs count among systems.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus

• Hostname: hotel

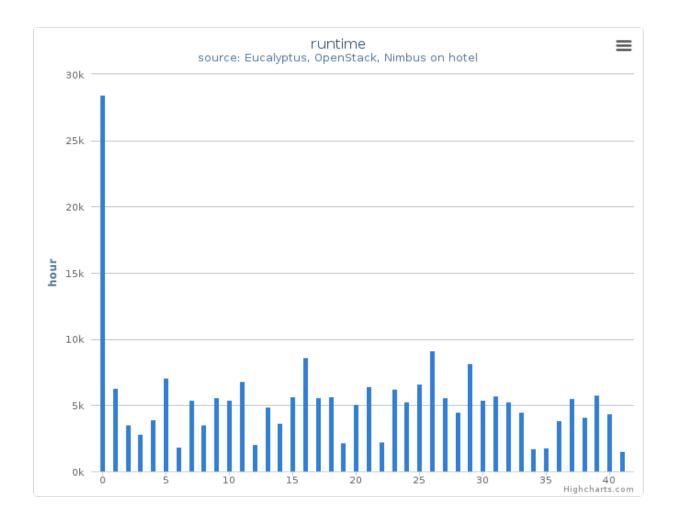


Figure 11: Wall time (hours) by systems (compute nodes) in Cluster (hotel) This column chart represents wall time among systems.

• Period: July 01 – September 30, 2013

• Cloud(IaaS): nimbus

• Hostname: hotel

USER TABLE (CLOUD)

This table provides wall time usage of cloud users with the project id (first appearance). - Cloud:

- india.futuregrid.org: openstack, eucalyptus
- sierra.futuregrid.org: nimbus, (openstack expected soon)
- hotel.futuregrid.org: nimbus
- alamo.futuregrid.org: nimbus, (openstack expected soon)
- foxtrot.futuregrid.org: nimbus

CHAPTER

EIGHT

USER TABLE (HPC)

This table provides detailed information on users, including average job size, average wait time, and average run time. - HPC: alamo, bravo, hotel, india xray, sierra - Data obtained from ubmod.futuregrid.org **** Missing user name is represented as a hidden userid under asterisks.