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by
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The Grid Event Service (GES) is a distributed event service designed to run on a very large network of
server nodes. Clients interested in using this service can attach themselves to one of the server nodes.
Clients specify an interest in the type of events that they are interested in and the service routes
events, which satisfy the constraints specified by the clients. Clients can have prolonged disconnects
from the server network and can also roam the network (in response to failure suspicions or for
better response times) and attach themselves to any other node in the server node network. Events
published during the intervening period, of prolonged disconnects and roams, must still be delivered
to clients that originally had an interest in these events. The delivery constraints must be satisfied
even in the presence of server failures. Server nodes can fail and remain failed forever. Clients need
not wait for the failed server nodes to recover. Affected clients can then roam to a new location and
thus not experience any denial of service.

GES provides a hierarchical dissemination scheme for the delivery of events to relevant clients.
The system provides for an efficient calculation of routes to reach relevant destinations. GES also
provides for merging streams of related events and delivering these merged streams to relevant
clients. The events in these related streams could have spatial and chronological relationships to
events within other streams. GES provides for the resolution of these constraints and the subsequent
delivery of these dependency resolved event streams to interested clients.
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Chapter 1

Introduction

Events are an indication of an interesting occurrence. Events point to nuggets of information
which are related to the event itself, and help us understand the event completely. When we refer
to an event we refer to the occurrence and the information it points to. The information contained
in the event comprises of

• The occurrence which snapshots the context, priority and the application.

• Attribute information which is used to describe the event uniquely and completely.

• Control information.

• Destination Lists (explicit or implicit via the topics that a client is interested in).

The attribute information consists of tags, which specify the attributes associated with the event
type while the control information specifies the constraints associated with that event viz. ordering,
stability. Thus, as an example, say a person needs to sell stock A – the sale is the event, the general
information is his/her account profile while the control information could be an indication that
he/she wants guaranteed delivery of the event. Events trigger actions, through the state transitions
induced in a delivering entity, which in turn can trigger events. The event and the associated actions
taken by any part of the system share the cause–effect relationship. Actions are taken based on
the event type and the information contained in the event. The action taken at any node could be
influenced not only by different causes but also by subsequent effects too. Events define objects,
and also define changes in the state of objects. Events can either be time stamped messages or
messages with a null timestamp. We think of all communication in the system as happening through
events. The spectrum of relationships between events in traditional systems span from unrelated to
where events are related. These events are related through different ordering permutations based
on the local order imposed by the issuee, total order imposed by a deterministic algorithm hosted
on multiple nodes and a system determined causal order. Events form the basis of our design and
are the most fundamental units that entities need to communicate with each other. These events
encapsulate expressiveness at various levels of abstractions - content, dependencies and routing.
Where, when and how these events reveal their expressive power is what constitutes information
flow within our system. The events that we consider exist within event streams and can specify
and dictate resolution of complex spatial and chronological dependencies with other events in the
system. Related events can be considered to be part of a unique abstract merged stream. Clients
can express an interest in receiving a merged stream or bundles within a stream. It should be noted
however that a bundle or the complete merged stream being delivered at a client can have multiple
stream sources.

The clients we are considering for our system design try to address the enormous changes taking
place in the area of pervasive computing and associated transport protocols. We make no assump-
tions regarding a client’s computing power or the reliability of the transport layer over which it
communicates. Clients have profiles that indicate the kinds of events, stream bundles and streams

1



CHAPTER 1. INTRODUCTION 2

that they are interested in. The goal is to deliver the events reliably after satisfying any dependencies
that may exist between the events, stream bundles and merged streams. We provide any required
guarantees regarding the delivery of these events at the client.

One of the reasons why we use a distributed model is high availability. Having a centralized
model would imply a single server hosting multiple clients. While this is a simple model, the inherent
simplicity is more than offset by the fact that it constitutes a single point of failure. Thus all the
clients present in the system would be unable to use any of the services provided by the system till
a recovery mechanism kicks in. A highly available distributed solution would have data replication
at various server nodes in the network. Solving issues of consistency while executing operations, in
the presence of replication, leads to a model where other server nodes can service a client despite
certain server node failures. The underlying network that we consider for our problem is one made
up of the nodes that are hooked onto the Internet or Intranets. We assume that the nodes which
participate in the event delivery can crash or be slow. Similarly the links connecting these node
may fail or get overloaded. These assumptions are drawn based on real life experiences. One of the
immediate implications of our delivery guarantees and the system behavior is that profiles are what
become persistent, not the client connection or its active presence in the digital world at all times.

Distributed messaging systems broadly fall into three different categories. Namely queuing sys-
tems, remote procedure call based systems and publish subscribe systems. Message queuing systems
with their store-and-forward mechanisms come into play where the sender of the message expects
someone to handle the message while imposing asynchronous communication and guaranteed deliv-
ery constraints. The two popular products in this area include IBM’s MQSeries [44] and Microsoft’s
MSMQ [43]. MQSeries operates over a host of platforms and covers a much wider gamut of transport
protocols (TCP, NETBIOS, SNA among others) while MSMQ is optimized for the Windows plat-
form and operates over TCP and IPX. A widely used standard in messaging is the Message Passing
Interface Standard (MPI) [31]. MPI is designed for high performance on both massively parallel
machines and workstation clusters. Messaging systems based on the classical remote procedure calls
include CORBA [55], Java RMI [47] and DCOM [29]. Publish subscribe systems form the third axis
of messaging systems and allow for decoupled communication between clients issuing notifications
and clients interested in these notifications.

The decoupling relaxes the constraint that publishers and subscribers be present at the same time,
and also the constraint that they be aware of each other. The publisher is also unaware of the number
of subscribers that are interested in receiving a message. The publish subscribe model does not
require synchronization between publishers and subscribers. By decoupling this relationship between
publishers and consumers, security is enhanced considerably. The routing of messages from the
publisher to the subscriber is within the purview of the message oriented middleware (MOM) which
is responsible for routing the right content to the right consumers. The publish subscribe paradigm
can support both pull and push paradigms. In the case of pull, the subscribers retrieve messages
from the MOM by periodic polling. The push model allows for asynchronous operations where
there are no periodic pollings. Industrial strength products in the publish subscribe domain include
solutions like TIB/Rendezvous [25] from TIBCO and SmartSockets [24] from Talarian. Variants of
publish subscribe include systems based on content based publish subscribe. Content based systems
allow subscribers to specify the kind of content that they are interested in. These content based
publish subscribe systems include Gryphon [7, 3], Elvin [64] and Sienna [18]. The system we are
looking at, the grid event service, is also in the realm of content based publish/subscribe systems
with the additional feature of location transparency for clients.

The shift towards pub/sub systems and its advantages can be gauged by the fact that message
queuing products like MQSeries have increased the publish subscribe features within them. This
intersection of mature messaging products with pub/sub features serves its purpose for a large
number of clients. Similarly OMG introduced services that are relevant to the publish subscribe
paradigm. These include the Event services [54] and the Notification service [53]. The push by Java
to include publish subscribe features into its messaging middleware include efforts like JMS [41] and
JINI [5]. One of the goals of JMS is to offer a unified API across publish subscribe implementations.
Various JMS implementations include solutions like SonicMQ [23] from Progress, JMQ [46] from
iPlanet, iBus [45] from Softwired and FioranoMQ [22] from Fiorano.
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In the systems we are studying, unlike traditional group multicast systems, groups cannot be
pre-allocated. Each message is sent to the system as a whole and then delivered to a subset of
recipients. The problem of reliable delivery and ordering1 in traditional group based systems with
process crashes has been extensively studied [40, 13, 11]. These approaches normally have employed
the primary partition model [61], which allows the system to partition under the assumption that
there would be a unique partition which could make decisions on behalf of the system as a whole,
without risk of contradictions arising in the other partitions and also during partition mergers.
However the delivery requirements are met only within the primary partition [39]. Recipients that
are slow or temporarily disconnected may be treated as if they had left the group. This model
works well for problems such as propagating updates to replicated sites. This approach doesn’t
work well in situations where the client connectivity is intermittent, and where the clients can roam
around the network. The main differences between the systems being discussed here and traditional
group-based systems are:

1. We envision relatively large, widely distributed systems. A typical system would comprise of
hundreds of thousands of server nodes, with tens of millions of clients.

2. Events are routed to clients based on their profiles, employing the group approach to routing
the interesting events to the appropriate clients would entail an enormous number of groups -
potentially 2n groups for n clients. This number would be larger since a client profile comprises
of interests in varying event foot prints.

The approach adopted by the OMG [54, 53] is one of establishing channels and registering
suppliers and consumers to those event channels. The event service [54] approach has a drawback
in that it entails a large number of event channels which clients (consumers) need to be aware
of. Also since all events sent to a specific event channel need to be routed to all consumers, a
single client could register interest with multiple event channels. The aforementioned feature also
forces a supplier to supply events to multiple event channels based on the routing needs of a certain
event. On the fault tolerance aspect, there is a lack of transparency since channels could fail and
issuing clients would receive exceptions. The most serious drawback in the event service is the lack
of filtering mechanisms. These are sought to be addressed in the Notification Service [53] design.
However the Notification service attempts to preserve all the semantics specified in the OMG event
service, allowing for interoperability between Event service clients and Notification service clients.
Thus even in this case the client needs to subscribe to more than one event channel.

1.1 Motivation

Most services allow clients to access the service through a server. The client is then forced to remain
on this server throughout the entire duration of the time that it is using the service. If the server
fails, the client has to wait till the server comes back up. In the event that this service is running
on a set of servers the client, since it knows about this set of servers, could then connect to one of
these servers and continue using the service. Whether the client missed any servicing and whether
the service would notify the client of this missed servicing depends on the implementation of the
service. In all these implementations the identity of the server that the client connects to is just as
important as the service itself.

Clients are not always online, and when they are, they are not using the same computer. Different
clients utilize or communicate with the service using communication channels that have very different
bandwidths and associated latencies. Clients access services from different geographic locations, a
client may use the service from his home, or from his office or while he is commuting to work
or from his hotel room. Access to services should not be tied to specific server locations or be
location sensitive. Client should be able to connect from anywhere to any of the servers within the
system. Concentration of clients from a specific location accessing a remote server, leads to very
poor bandwidth utilization and affects latencies associated with other services too.

1The ordering issues addressed in these systems include FIFO, Total Order and Causal Order
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A truly distributed service, would allow a client to use the service by connecting to a server
nearest to his geographical location. By having such local server, a client does not have to re-
connect all the way back to the server that it was last attached to. Also, if the client is not satisfied
with the response times that it experiences it could very well choose to connect to some other local
server. This it could also do in the event that the server, it was attached to, has failed. Also it
should not be assumed that a failed server node, providing this service, would recover within a
finite amount of time. Stalling operations for certain sections of the network, and denying service to
clients while waiting for failed processes to recover could result in prolonged, probably interminable
waits. Also this model potentially forces every server to be up and running throughout the duration
that this service is being provided. Models that require servers to recover within a finite amount
of time generally imply that each server has some state. Recovery for servers that maintain state
involves state reconstruction. The state reconstruction normally involves reconstructing server state
from neighboring servers. This model runs into problems when there are multiple neighboring server
failures. Invariably servers get overloaded, and act as black holes where messages are received but
no processing is performed. By ensuring that the individual servers are stateless (as far as the
servicing is concerned), we can allow these servers to fail and not recover. A failure model that does
not require a failed node to recover within a finite amount of time, allows us to purge such slow
processes and still provide the service while eliminating a bottleneck.

Systems where clients continuously access a fixed set of servers, results in a situation where a
whole bunch of clients are accessing a certain known server over and over again. Problems are
compounded if the number of clients accessing this server is large and if these clients are accessing
the server from different geographic locations. Balancing the client load using server-farms, would
still have the same bandwidth constraints caused by concentration of clients at different geographic
location. What is indispensable is the service that is being provided and not the servers which are
cooperating to provide the service. Servers can be continuously added or fail and the server network
can undulate with these additions and failures of servers. The service should still be available for
clients to use. Servers thus do not have an identity - any one server should be just as good as the
other. Clients however have an identity, and their service needs are very specific and vary from client
to client. Any of these servers should be able to service the needs of every one of these millions
and millions of clients. It’s the system as a whole, which should be able to reconstruct the service
nuggets that a client missed during the time that it was inactive.

Clients just specify the type of events that they are interested in, and the content that the event
should at least contain. Clients do not need to maintain an active presence during the time these
interesting events are taking place. Once it registers an interest it should be able to recover the missed
event from any of the server nodes in the system. Removing the restriction of clients reconnecting
back to the same server that it was last attached to, also opens up a host of possibilities where
servers could be dynamically instantiated based on the concentration of clients at certain geographic
locations. Clients could then be induced to roam to such dynamically created servers for optimizing
bandwidth utilization. Clients which connect to a local server, instead of the remote server, after
they have moved to a new geographic location (say New York to London) could have some of its
interests being serviced by the local service. Resource discovery services (such as search for hotels,
printers to print a document etc) should be based on local proximity.

1.2 Thesis Outline

In this thesis we propose the Grid Event Service (GES) where we have taken a system model that
encompasses Internet/Grid messages. The grid event service is designed to include JMS as a special
case. However, GES provides a far richer set of interactions and selectivity between clients than the
JMS model. GES is not restricted to Java of course, this is our initial implementation. We envision
a system with thousands of server nodes providing a distributed event service in a federated fashion.
In GES a subscribing client can attach itself to any of the server nodes comprising the system. This
client specifies the type of events it is interested in through its profile. A client such as this could
then fail, leave or roam (in response to failure suspicions, system induced roams etc.) the system.
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When such a client reconnects back into the system, this client should receive all the events that it
was supposed to receive between the time it left the system and the time it reconnects back into the
system.

We have employed a distributed network of server nodes primarily for reasons of scaling and
resiliency. A large number of server nodes can support a large number of clients while at the same
time eliminating the single point of failure in single server systems. These server nodes are organized
as a set of strongly connected server nodes comprising a cluster; clusters in turn are connected to
other such clusters by long links. This scheme provides for small world networks, which in the
spectrum of strongly connected graphs falls in between regular graphs and random graphs. The
advantage of such small world networks [66] is that the average pathlength of any server node to any
other server node increases logarithmically with the geometric increases in the size of the network.

We employ schemes, which ensure that each server node maintains abbreviated views of system
inter-connectivities. This abbreviated system view is maintained in the connectivity graph. The
connectivity graph has imposed directional constraints on graph traversal and also dynamic costs
associated with the same based on link type and links connecting two system units (servers, clusters,
cluster of clusters etc). This is then used to provide us with the fastest hops to employ to reach any
given destination. It is ensured that this graph maintains the true state of the system, so that only
active nodes and fast links are employed for the routing at every server node where such decisions
are made. To ensure that a client misses no interesting event and also to ensure that uninteresting
events are not routed to parts of the system not interested in receiving the events, we employ an
intelligent dissemination scheme. This dissemination scheme is hierarchical, as is the calculation of
destinations and the propagation of profiles. The profile changes are routed to relevant nodes in the
system. A client would thus route profile changes to the server it is attached to, while the server
propagates its profile changes to its cluster controllers (there could be more than one for a cluster)
and so on. The hierarchical destinations computed for an event ensure that only the relevant parts
of the sub-system receive the event. This scheme is capable of handling dense and sparse interests in
different parts of the system equally well. The logarithmic pathlengths achieved by the organization
scheme for the server nodes, combined with the calculation of fastest routes to reach destinations at
every server node hop and the exact sub-systems to route an event provides a near optimal routing
scheme for the events.

We also provide for the resolution of spatial and chronological dependencies between events in
multiple related streams. This scheme employs protocols in place for the routing of events and
resolves dependencies at different locations in the system based on the context graph (snapshots of
dependencies between multiple related streams).

To account for failure scenarios, recovery from such failures and the reliable delivery of events
to clients in the presence of such failures we need a storage scheme. The replication scheme that
we have designed allows different replication strategies to exist in different parts of the system. We
employ a scheme that allows us to detect partitions in response to unit (servers, clusters, cluster of
clusters etc.) failures or link failures and take appropriate actions to initiate recovery. The GES
failure model allows a unit to fail and remain failed forever. Clients attached to affected units can
roam the network, attach themselves to a different server node and still receive all the events that
they were supposed to receive. The GES model allows a stable storage to fail, the only constraint
imposed is that these stable storages do not remain failed forever and recover within a finite amount
of time. During stable storage failures only certain sections of the subsystem are affected. Similarly
a stable storage could be added at different parts of the system and be configured as a finer or coarser
grained stable storage at the subsystem that it was added to. Clients need not be notified about the
addition of stable storages, the system manages reliable delivery of events to clients transparently.
The addition of stable storage is disseminated only within certain parts of the system. The GES
publish/subscribe model allows for various flavors in the delivery of events to clients.

The GES system lends itself very well to dynamic topologies. Servers could be dynamically cre-
ated to improve bandwidth usage and better servicing of clients. Once these servers are dynamically
created, relevant clients can be induced to roam to the newly created server, and system routing
could be updated to include the newly added server. This same scheme could be used to reconfig-
ure the server network by identifying slow server nodes (which serve as black holes for events) and
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reconfiguring the network to eliminate the bottlenecks. The GES system could be easily extended
to provide services based on the interpretation capabilities of a client. Such a system, e.g. the Grid
Event Service Micro Edition (GESME) being developed at Florida State University (FSU), would
be a very useful addition. Discovery of services and message transformation switches would provide
for very rich content interpretation capabilities for such clients. Other application domains where
GES would be extended into are collaboration and peer-to-peer (P2P) systems [2]. GES is intended
to be part of the Grid Collaborative Portal (GCP) for distance learning currently being developed
at FSU. GES could also be used as an engine providing peer to peer interaction between clients, this
interaction being done via the grid.

This thesis is organized as follows. We begin by presenting a formal specification for the Grid
Event Service and provide extensions to this problem by accounting for the presence of event streams
in the system. We then provide a discussion on the design of events, a client’s connection semantics
and also on the server topology that we use to solve the problem. Chapter 4 describes our solution to
the event delivery problem and provides detailed explanations of the various protocols that comprise
the final solution. In chapter 5 we look at the problem of delivering merged streams and the resolution
of spatial and chronological dependencies prior to the delivery of merged streams. We then proceed
to describe the approach for guaranteed delivery of events and the detection of network partitions.
The guaranteed delivery of events is in the presence of failures (server nodes can fail and remain
failed forever). Finally we include a discussion of results for various scenarios and future directions
and conclusions.



Chapter 2

Specifications

In this chapter we specify the event service problem. In section 2.2 we present our model of the
system in which we intend to solve the problem. In section 2.3 we formally specify our problem.
Sections 2.4 and 2.5 deal with the assumptions that we make in our formalisms and the properties
that the system and it components must conform to during execution. Section 2.6 provides an
introduction to event streams, and how events in a stream can depend on and be related to event in
other streams. Section 2.7 formalizes the representation of streams and also the dependencies that
exist between events from multiple streams.

2.1 Events

An event is the most fundamental unit that entities use to communicate with each other. An event
consists of a set of properties and has one source and one or more destinations where it would be
routed to. The properties could be boolean, or could take specific values within the range specified by
the property. A subset of this set of properties is what constitutes the type of the event. Events allow
separate entities to probe different sets of properties, through accessor functions. Any given event
is fixed except for the added data to reflect its use and routing within the system. This information
contained in an event can cause or record mutation of properties of objects within the system. If
the information contained in an event needs to be changed a new event would be generated.

Events also possess a set of destinations that comprise the clients which are targeted by the
event. This destination list could be explicitly contained within the event itself, or could be com-
puted dynamically as a function of the properties list contained within the event. Events induce
state transitions in the entities that receive the event. The state transition is followed by a set of
actions. The event and the associated actions taken by any part of the system share the cause–effect
relationship. These induced state transitions and associated actions are based on the values the
properties can take.

Events can also exist within the context of an earlier event, we refer to such events as chasing
events. Chasing events contain both spatial and chronological constraints pertaining to delivery
at a node, subsequent to the delivery of the chased event. Events encapsulate information at three
different levels - application specific, dependency in relation to chased events and routing information.
The information encapsulated within an event defines the scope of its expressive power. Where, when
and how these events reveal their expressive power is what constitutes information flow.

2.2 System Model

The system comprises of a finite (possibly very large) set of server nodes, which are strongly con-
nected (via some inter-connection network) and special nodes called client nodes which can be
attached to any of the server nodes in the network. Client nodes can never be attached to each
other, thus they never communicate directly with each other. Let C denote the set of client nodes

7
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present in the system. The nodes, servers and clients, communicate by sending events through the
network. This communication is asynchronous i.e. there is no bound on communication delays.
Also, the message carrying an event can be lost or delayed. A server node execution comprises of a
sequence of actions, each action corresponding to the execution of a step as defined by the automa-
ton associated with the server node. We denote the action of a client node sending an event e as
send(e). At the client node the action of consuming an event e is receive(e).

Server nodes are responsible for routing/queuing events to the destination lists contained within
the event. Each server node instantiates a service which is responsible for interacting with service
instances on other server nodes to facilitate the calculation of destination lists for the events and
the routing/queuing of these events to the relevant clients. Client and server nodes can be on the
same physical machine. For increased availability and reduced latency, some of the server nodes have
access to a persistent store where they partially or fully replicate events and states of the nodes.

The failures we are presently looking into are node failures (client and server nodes) and link
failures. The server node failures have crash-failure semantics. As a result of these failures the
communication network may partition. Similarly virtual partitions may stem from an inability to
distinguish slow nodes or links from failed ones. Crashed nodes may rejoin the system after recovery
and partitions (real and virtual) may heal after repairs.

2.3 The event service problem

Client nodes can issue and receive events. Client nodes specify the type of events that they are
interested in. This information is contained in the client’s profile. An event could be addressed
to a specific client node or a set of client nodes, we refer to the destinations contained in such
events – explicit destinations. For events that are not explicitly addressed to a client node or set
of client nodes, the system is responsible for computing the destinations associated with the event.
These system computed destinations are the implicit destinations associated with the event, and
are computed based on the profile of each and every client in the system. Any arbitrary event e
contains implicit or explicit information regarding the client nodes which should receive the event.

We denote by Le ⊆ C this destination list of client nodes associated with an event e. The
dissemination of events can be one-to-one or one-to-many. Client nodes have intermittent connection
semantics. Clients are allowed to leave the system for prolonged durations and can still expect to
receive all the events that they missed, in the interim, along with real time events that occur while
they have rejoined. Consistency checks need to be performed before the delivery of real time events
to eliminate problems arising from out of order delivery of certain events.

The system places no restriction on the server node that a client node can attach to, at any time,
during an execution trace σ of the system. We term this behavior of the client as roam. A client
could also initiate a roam if it suspects, irrespective of whether the suspicion is correct or not, a
failure of the server node it is attached to. The choice of the server node to attach to, during a roam
or a join, is a function of

• Preferences - Clients can specify which node they wish to connect to.

• Response Times - This is determined by the system based on geographical proximity and
related issues of latency and bandwidth.

Associated with every client node is a profile which specifies the type of events the client node
is interested in receiving. For events issued by any arbitrary client node, the system is responsible
for calculating all the valid destinations associated with the event. This destination list is computed
on the basis of the profiles for each and every client node in the system. Considering the volume
of events that would be present in the system, it should be ensured that the only events that are
routed to a client node are those that it has expressed an interest in. In the event that a client node
roams and attaches itself to any other server node in the system, the service instances on the server
nodes are responsible for relaying/queuing events to the new location of the client node.
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For an execution σ of the system, we denote by Eσ the set of all events that were issued by
the client nodes. Let Ei

σ ⊆ Eσ be the set of events eiσ that should be relayed by the network and
received by client node ci in the execution σ. During an execution trace σ client node ci can join
and leave the system. Node ci could recover from failures which were listed in Section 2.2. Besides
this, as mentioned earlier client nodes can roam (a combination of leave from an existing location
and join at another location) over the network. Each of the combinations join-leave, join-crash,
recover-leave and recover-crash, is an incarnation of ci within execution trace σ. We refer to these
different incarnations, x ∈ X = 1, 2, 3..., of ci in execution trace σ as ci(x, σ).

The problem pertains to ensuring the delivery of all the events in Ei
σ during σ irrespective of

node failures and location transience of the client node ci across ci(x, σ). In more formal terms if
node ci has n incarnations in execution σ then

n∑
k=1

ci(k, σ).receivedEvents = Ei
σ.

All received events eiσ ∈ Ei
σ must of course satisfy the causal constraints that exist between them

prior to reception at the client node.

2.4 Assumptions

(a) Every event e is unique.

(b) The links connecting the nodes do not create messages.

(c) A client node has to accept every message, event and control information routed to it.

(d) Not all events can be such that there are no clients are interested in them.

(e) Not all messages issued by a client can be lost all the time.

Items (d) and (e) constitute the liveness property, eliminating trivial implementations in which
messages carrying the event are always lost or all events have zero targeted clients.

2.5 Properties

(a) A client node can receive an event e, only if e was previously issued.

(b) A client node receives an event e only if that event satisfies the constraints specified in its
control information.

(c) If any client node in the destination list Le of an event e receives e, then all client nodes in Le
receive the event e.

(d) For events issued by any client node in the system, the event generation order is preserved by
all the client nodes receiving those events.

2.6 Event Streams and events

An event stream denoted E is a stream of events {e0, e1, · · · , en} that are logically related to each
other. Events within an event stream, E .ei are related to each other. This relationship is usually
the precedence relationship ❀ shared by events within a event stream i.e. e0 ❀ e1 ❀ · · · en. The
precedence relationship ❀ is transitive, if ei ❀ ej and ej ❀ ek then ei ❀ ek. Besides this individual
events with an event stream could contain dependencies to one or more events in one or more other
event streams. This dependency could be a direct association with events in other streams viz. one
to one mapping. This dependency could also be a logical mapping, thus resulting in a mapping
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which is not exactly a one-to-one correspondence between the events in the event streams. It is
conceivable that the information contained in events from multiple event streams are necessary to
describe an event. In such cases the event in question, E .ei , could be a container for the information
contained within events in other event streams.

Streams merging in a
hypothetical sense

A C

B
D

Figure 2.1: Existence of multiple event streams.

Events within an event stream could depend1 on events from multiple event streams. Thus hy-
pothetically we can assume that these related event streams merge. Consider three event streams
EA, EB , EC which merge to form an event stream ED as depicted in figure 2.1. This information
could point to events contained in other event streams, in which case we say that the event encapsu-
lates events from other event streams. Thus if EA.ei encapsulates EB .ej ,EC .ek besides containing
information pertaining to EA.ei we say that EA is a container for streams EA, EB and EC . Clients
need not be aware of the existence of streams EB ,EC or ED . The information contained within
EA.ei determines the streams that need to be merged. Besides this there should also be a precise
indication of the events within other streams (the streams need to be identified unambiguously first
of course) that are needed to describe an event completely. This indication could be a –

(a) A one-to-one mapping among events in all the streams. In our example this would be EA.ei
encapsulating EB .ei , EC .ei . The corresponding event in the merged event stream being ED .ei .

(b) Based on the information contained in individual events of the streams, this could be dependent
on the tags contained in the events and the values that these tags could take.

(c) The dependency specification could take complex forms in which the information pointed to
need not be a unique one and there could be several such events in the co-event streams which
match the specification. In this case the dependency could take forms like

(c.1) The first event which matches the constraint.

(c.2) If there is an event which matches the constraint.

(c.3) All the events that match this constraint.
1The scenario I am looking at is where a lecture is in progress, and the main stream is the lecture stream which

contain the foils in text, however the events within this stream could point to information contained in the audio
stream, video stream, images stream. These streams could be issued by streaming servers hosted at different locations.
The video feed could be from Houston, audio feeds from Boston, Foils from Syracuse. The streams could have an
independent stream created, which could be questions, questions may or may not arise for certain foils (thus correlation
between events in different streams could get arbitrarily complex). The chat stream could originate from Jackson state
while the responses could originate from Tallahassee. This scheme could then be converted into a 24x7x365 education
portal, where chat streams and responses could be used to build a FAQ stream.
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(d) In addition to this, the dependency specification could also include timing constraints on the
reception of dependent events. This timing constraint specifies the time after the reception of
an event, that the dependent event should be received.

2.7 Event Stream Specifications

In this section we formally specify the streams, and the dependencies that exist between the events
in one stream and the events within other streams. The dependencies are specified by the stream
interaction rules within the event streams and controlled by the occurrence vector which dictates
the number of events from a specific stream that an event can have a dependency on. We also
formulate the resolution of these dependencies and how this subsequently leads to the creation of
merged event streams. The event streaming problem is one of routing these merged event streams
to clients. To help clarify some of the situations that we are trying to formulate we will refer to the
simple example depicted in figure 2.2. The scenario is one where an on-line interactive lecture is
in progress. The lecture consists of foil streams of individual foils, mouse streams of mouse events
instantiated by the lecturer on different foils and request/response streams where queries are posed
by the students and responses are posted by the lecturer.

Streams merging in a
hypothetical sense

Foil Stream Query/Response
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Figure 2.2: Merged Streams - Example Scenario

In the foil stream each foil is spatially related to the other foils. Each foil has a specific place
in the sequence of foils comprising the foil stream. Mouse streams on the other hand have an
additional dependency. Mouse events besides occurring in the sequence that they occurred in,
must also maintain the timing delays between any two successive mouse events. Equation (Eq. 2.1)
specifies the relationships that exist within the events of an event stream. These relationships exist
within the context of space and time. In the spatial domain the events within an event stream could
be precedence related (❀) or could have a simple logical relationship with each other. In the former
case the event stream is an ordered set of events, while in the second case the stream is an unordered
set which could be logically ordered based on the relationship that events would share with each
other. In addition to the logical or precedence relationship existing between events within an event
stream, events could be constrained by time’s arrow. This arrow is a relative notion of time and
always points in the same direction.

The timing constraint could be specified in terms of the time following the issue of the first event
e0 or the timing between successive events ei, ei+1. In either case the constraint we choose should be
consistent throughout the event stream. Successive events within the stream can be spatially related
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in an arbitrary fashion, however the timing constraints follow the additional constraint imposed by
the time’s arrow i.e. they should be monotonically increasing. The t

❀ operator completes the spatial
precedence relationship in the time domain.

E =

Ordered Set︷ ︸︸ ︷
{e0 t

❀ e1
t

❀ · · ·} |
Unordered Set︷ ︸︸ ︷
{e0, e1, e2 · · ·} (Eq. 2.1)

In equation (Eq. 2.2), ↪→ is the dependency operator, if E ↪→ E j we say that E has a dependency
on E j . The dependency, ↪→ of a stream E on multiple streams is determined by the dependency of
every event e within the stream. The set Π contains all the streams that events in E could possibly
be interested in. As an aside, E would be the stream that clients would express their interest in
and not E j ∈ Π . Thus in our example, the stream that the clients specify an interest in is the foil
stream, and the stream that is routed to the clients is the merged stream consisting of foils, mouse
events and queries/responses with the dependencies resolved.

E ↪→ Π = {E1 ,E2 ,E3 , · · · ,EN } (Eq. 2.2)

The dependency relation ↪→ is the product of the spatial dependency relation
s
↪→ and the associ-

ated chronological dependency
t
↪→ that exists within the events in streams. Even though there may

be no timing constraints imposed on successive events, they are still time constrained, in that they
would be released only after

s
↪→ is resolved. In the example scenario, two successive foil stream events

fi,fi+1 would still be time constrained since fi needs to be received before fi+1 can be received. The
passage of time in the direction of time’s arrow is marked by a succession of significant events which

have been
s
↪→ and

t
↪→ resolved.

↪→ =
s
↪→ × t

↪→ (Eq. 2.3)

The occurrence vector O is used to determine the number of events within other individual
streams in Π that an event e in E is interested in. In equation (Eq. 2.4) we define the values which
elements in the occurrence vector can take. This value specified could be one of ? (once or not at
all), + (at least once), ∗( zero or more ) and � (one and only one). In our example for every foil
there could be zero or more queries that could be posted in that foils context.

Occurence Vector O = {?,+, ∗, �} (Eq. 2.4)

Events within an event stream could have a simple mapping which snapshots their dependencies
on events within other streams. This mapping ↔ could be a simple one to one mapping, or a
predefined mapping which is consistent for all events within an event stream. Equation (Eq. 2.5) is
one of the forms that stream interaction rules could take. The

s
↪→ specifies the spatial dependency

that exist between events in streams.

E ↔ E j ⇒ E .ei
s
↪→ Ej .e

j
i | E .ei s

↪→ E j .eji±N where ↔ specifies the mapping rule (Eq. 2.5)

Equation (Eq. 2.6) specifies one of the more complex forms that stream interaction rules can
take. The function efunc could specify either a constraint or a more complex rule which needs to
be satisfied by the events within other event streams. The equation (Eq. 2.6) snapshots the second
half of the stream interaction rules that could exist between different streams and is used as the
basis for the resolution of dependencies that exist within streams.

E j (efunc) =
∑
ej ∈ E j � ej satisfies efunc

i (Eq. 2.6)

Equation (Eq. 2.7) specifies the resolution of an event’s dependency in the spatial domain. A
specific event within an event stream E has a dependency to events within streams in Π or a subset
of the streams contained in Π, denoted Π′. The # operator is the cardinality of a set. The operator
� is the refinement of the stream interaction rules with an element of the occurrence vector O. This
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refinement pinpoints the precise event/events in E j ∈ Π that an event in E is dependent on. As
is clear, the result of this dependency resolution is either a Null (if ei ↪→ Π′ and #Π′ = 0) or an
event (array of events) as determined by #Π′ and the occurrence vector. The array of events could
comprise of zero, single or multiple events from each of the event streams in Π.

∀ei ∈ E , ei s
↪→ Π ′ ≡

Implied︷ ︸︸ ︷
ei(data)∪

#Π′∑
j=1

Stream Interaction Rules︷ ︸︸ ︷
{E ↔ E j | E j (erulei ) | E j (etagsi )}�

Occurrance︷ ︸︸ ︷
oi ∈ O

≡ Null | e | e[ ] (Eq. 2.7)

In addition to this, the dependency specification also includes timing constraints on the delivery
of dependent events. This timing constraint specifies the time after the delivery of an event, that the
dependent events should be delivered. This timing constraint between events in E and Π, is in addi-
tion to the timing constraints that exist between the events of a stream. Equation (Eq. 2.8) follows
from equation (Eq. 2.3) where the product of the spatial resolution and the imposed chronological
dependency between events of related streams,specifies the complete dependency resolution.

∀ei ∈ E , ei ↪→ Π ′ ⊆ Π ≡
(
ei

s
↪→ Π ′ ⊆ Π

)
×
Timing Constraints︷ ︸︸ ︷

0 | ti | ti[ ] . (Eq. 2.8)

Equation (Eq. 2.9) details the creation of a merged event stream after the resolution of depen-
dencies within Π, of every event ei within an event stream E , as specified by the event dependency
resolution in equation (Eq. 2.8). The event dependency resolution of every event within E results
in the creation of the merged event stream.

#E∑
i=0

ei ↪→ Π′ ⊆ Π = EMergedStream (Eq. 2.9)

2.8 Stream Properties

(a) For an event stream E = {e0 ❀ e1 ❀ · · ·} and ei, ej ∈ E , if ei ❀ ej then no client can receive
ej before ei. Also clients cannot receive ej unless the dependencies of ei are resolved.

(b) If E ↪→ E j and E .ei ↪→ E j .ej , then based on the stream interaction rules and the occurrence
vector no client receives ej before ei.

(c) For a client interested in an event stream E and E ↪→ Π then every such client eventually
receives the merged event stream

∑#E
i=0(ei ↪→ Π′ ⊆ Π).

2.9 Summary

In this chapter we presented a formal specification of the event service problem, and how, for a
given client in an execution trace spanning multiple incarnations, every event that was meant to
be received at a client should be received. We also presented a formal representation of a merged
stream that would be composed from multiple streams. We formalized a notation for describing the
dependencies that events in one stream can have to events in other streams. Finally we outlined the
properties that need to be satisfied by the solutions.



Chapter 3

Events, Clients and the Server
Topology

In this chapter, we present the anatomy of an event based on our discussions in Chapter 2. We pro-
ceed to outline the connection semantics for a client, and also present our rationale for a distributed
model in implementing the solution. We then present our scheme for the organization of the server
network, and the nomenclature that we would be referring to in the remainder of this thesis.

3.1 The Anatomy of an Event

When we refer to an event we refer to the occurrence and the information it points to. The infor-
mation contained in the event comprises of

• The occurrence which snapshots the context, priority and the application.

• Attribute information which is used to describe the event uniquely and completely.

• Control information.

• Destination Lists (explicit or implicit via the topics that a client is interested in).

The attribute information comprises of tags which specify the attributes associated with the event
type while the control information specifies the constraints associated with that event viz. ordering,
stability.

3.1.1 The Occurrence

The occurrence relates to the cause which evinces an action or a series of actions. Thus for a person
Bob, who would like to check mail, the occurrence is

‘‘Bob wants to check his mail’’

The event context

The event context pertains to whether the event is a normal, playback or recovery event. Also events
could be a response to some other event and associated actions.

Application Type

This pertains to the application which has issued a particular event. This information could be used
by message transformation switches to render it useful/readable by other applications.

14
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Priority

Events can be prioritized, the information regarding the priority can be encoded within the event
itself. The service model for prioritized events differs from events with a normal priority. Some of
the prioritized events can be preemptive i.e. the processing of a normal event could be suspended
to service the priority event.

3.1.2 Attribute Information

The attribute information comprises of information which describe the event uniquely and completely
(tagged information).

Tagged Information & the event type

The tagged information contains values for the tags which describe the event and also for the tags
which would be needed to process the event. The tags also allow for various extraction operations
to be performed on an event. The tags specify the type of the event. Events with identical tags but
different values for one or more of these tags are all events of the same event type.

Unique Events - Generation of unique identifiers

Associated with every event e sent by client nodes in the system is an event-ID, denoted e.id, which
uniquely determines the event e, from any other event e′ in the system. These ID’s thus have the
requirement that they be unique in both space and time. Clients in the system are assigned Ids,
ClientID, based on the type of information issued and other factors such as location, application
domain etc. To sum it up clients use pre-assigned Ids while sending events. This reduces the
uniqueness problem, alluded earlier to a point in space. The discussion further down implies that
the problem has been reduced to this point in space.

Associating a timestamp, e.timeStamp, with every event e issued restricts the rate (for uniquely
identifiable1 events) of events sent by the client to one event per granularity of the clock of the
underlying system. Resorting to sending events without a timestamp, but with increasing sequence
numbers, e.sequenceNumber, being assigned to every sent event results in the ability to send events
at a rate independent of the underlying clock. However, such an approach results in the following
drawbacks

a) If the client node issues an infinite number of events, and also since the sequence numbers are
monotonically increasing, the sequence number assigned to events could get arbitrarily large
i.e. e.sequenceNumber → ∞.

b) Also, if the client node were to recover from a crash failure it would need to issue events
starting from the sequence number of the last event prior to the failure, since the event would
be deemed a duplicate otherwise.

A combination of timestamp and sequence numbers solves these problems. The timestamp is
calculated the first time a client node starts up, and is also calculated after sending a certain
number of events sequenceNumber.MAX. In this case the maximum sending rate is related to
both sequenceNumber.MAX and the granularity of the clock of the underlying system. Thus the
event ID comprises of a tuple of the following named data fields : e.PubID, e.timeStamp and
e.sequenceNumber. Events issued with different times t1 and t2 indicate which event was issued
earlier, for events with the same timestamp the greater the timestamp the later the event was issued.

Systems such as Gnutella [1] propagate events through the network without duplication, using
the IETF UUID [51] which gives a unique 128-bit identifier on demand. The authors guarantee the
uniqueness until 3040 A.D. for the ID’s generated using their algorithm. Such a scheme of unique

1When events are published at a rate higher than the granularity of the underlying system clock, its possible for
events e and e′ to be published with the same timestamp. Thus, one of these events e or e’ would be garbage collected
as a duplicate message.
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ID’s could also be very conveniently incorporated into the Grid Event Service for a unique identifier
for every event.

3.1.3 Control Information

The control information specifies the delivery constraints that the system should impose on the
event. This control information is specified either implicitly or explicitly by the client. Each of
these specifiers have a default value which would be over-ridden by any value specified by the client.
Control Information is an agreement between the issuer, the system and the intended recipients on
the constraints that should be met prior to delivery at any client.

Time-To-Live (TTL)

The TTL identifier specifies the maximum number of server hops that are allowed before the event
is discarded by the system.

Correlation Identifiers

Correlation identifiers help impose causal delivery constraints on (request, reply) events.

Qualities of Service Specifiers

QoS specifiers pertains to the ordering and delivery constraints that events should satisfy prior to
delivery by clients.

3.1.4 Destination Lists

Clients in the system specify an interest in the type of events that they are interested in receiving.
Some examples of interests specified by clients could be sports events or events sent to a certain
discussion group. It is the system which computes the clients that should receive a certain event. A
particular event may thus be consumed by zero or more clients registered with the system. Events
have explicit or implicit information pertaining to the clients which are interested in the event. In
the former case we say that the destination list is internal to the event, while in the latter case the
destination list is external to the event.

An example of an internal destination list is “Mail” where the recipients are clearly stated.
Examples of external destination lists include sports score, stock quotes etc. where there is no way
for the issuing client to be aware of the destination lists. External destination lists are a function of
the system and the types of events that the clients, of the system, have registered their interest in.

3.1.5 Derived events

The notion of derived events exists to provide means to express hierarchical relationships. These
derived events add more attributes to the base event attribute information discussed in Section 3.1.2.
Derived events can be processed as base events and not vice versa.

3.1.6 The constraint relation

In addition to derived events, clients could specify matching constraints on some of the event at-
tribute information. A constraint specifies the values which some of the attributes, within an event
type, can take to be considered an interesting event. Constraints on the same event type t can
vary, depending on the different values each attribute can take and also depending on the attributes
included within the constraint. A constraint g(t) on an event type t could be stronger, denoted >
than another constraint f(t) on the same event type i.e. g(t) > f(t). The constraint relation >∗

denotes the transitive closure of >.
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Consider an event type with attributes a, b, c, d. Consider a constraint g which specifies values
for attributes a, b and a constraint f which specifies values for attributes a, b, c then f > g. However
no relation exists between two constraints f and g if

• They specify constraints on different event types i.e. f(t), g(t′)

• They specify constraints on identical attributes

• They specify constraints on attributes within the same event type which do not share a sub-
set/superset relationship.
Formally f(t).attributes ⊃ g(t).attributes⋂ f(t).attributes ⊂ g(t).attributes

3.1.7 Specifying the anatomy of an event

These sets of equations follow from our discussions in section 3.1 and section 2.7. Equation (Eq. 3.1)
follows from our discussions in section 3.1.2 regarding the generation of unique identifiers. This tuple
is created by the issuing clients.

eventId =< clientId , timeStamp, seqNumber , incarnation > (Eq. 3.1)

The tuple in equation (Eq. 3.2) discriminates between live events and recovery events (which
occur due to failures or prolong disconnects).

liveness =< live|recovery > (Eq. 3.2)

The type of an event is dictated by the event’s signature. These signatures could change. To
accommodate these changes we include the concept of versioning in our event signatures. This along
with liveness describes the event type completely.

eventType =< signature, versionNum, liveness > (Eq. 3.3)

Destination lists within an event could be internal to the event, in which case it would be explicitly
provided, or it could be external to the event, in which case the destination lists would be computed
by the system.

destinationLists =<

External︷ ︸︸ ︷
Implied |

Internal︷ ︸︸ ︷
Explicit > (Eq. 3.4)

The dependency indicator follows from our discussions in section 2.7 and equations (Eq. 2.4)
through (Eq. 2.8).

spatialDependency =<? | ∗ | + | � > � < mapping | rules | constraints > (Eq. 3.5)

The data within the event is contained within the values which different attributes in the at-
tributesList can take.

event = < eventId , eventType, attributesList
spatialDependency , timingDependency
stream, applicationType, destinationLists > (Eq. 3.6)

3.2 The Rationale for a Distributed Model

One of the reasons why one would use a distributed model is high availability. Having a centralized
model would imply a single server hosting multiple clients. While, this is a simple model, the inherent
simplicity is more than offset by the fact that it constitutes a single point of failure. Thus all the
clients present in the system would be unable to use any of the services provided by the system till
a recovery mechanism kicks in.

A highly available distributed solution would have data replication at various server nodes in
the network. Solving issues of consistency while executing operations, in the presence of replication,
leads to a model where other server nodes can service a client despite certain server node failures.
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3.2.1 Scalability

We envision the system to be comprised of hundereds of millions of clients. Having all these clients
being serviced by one central server raises a lot of issues in scalability and associated problems like
average response times and latencies.

3.2.2 Dissemination Issues

Clients of the system could be scattered across wide geographical locations. Having a distributed
model enables the client to connect to server nodes with better response times and lower communi-
cation latencies.

3.2.3 Redundancy Models

To ensure guaranteed services for clients, a distributed model lends itself very easily for the con-
struction of redundancy levels. This redundancy can be achieved through replication, multiple levels
of connectivity and ensuring consistency.

3.3 Client

The system is the sum of clients. Clients can generate and consume events in the system. The three
issues which describe a client are

• Connection Semantics

• Client Profile

• Logical Addressing

3.3.1 Connection Semantics

Events in the system are continuously generated and consumed within the system. Clients on the
other hand have inherently discrete connection semantics. Clients can be present in the system
for a certain duration of time and can be disconnected later on. Clients reconnect at a later time
and receive events, which they were supposed to receive as well as events that they were supposed
to receive during their respective present incarnation. Clients can issue/create events while in
disconnected mode, which would be held in a local queue to be released to the system during a
reconnect.

3.3.2 Client Profile

A client profile keeps track of information pertinent to the client. This includes

(a) The application type.

(b) The events the client is interested in.

(c) The server node it was attached to in its previous incarnation, and its logical address (discussed
in Section 3.3.3) in that incarnation.

(d) Its current IP address and its IP address in its previous incarnation.
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3.3.3 Logical Addressing

Given its connection semantics (Section 3.3.1), a client at the epoch of its present incarnation needs
to –

• Receive events intended for it from earlier incarnations.

• Issue events which it created while in disconnected mode

• Receive any event currently being issued within the system

The dissemination of this information needs to be done in a timely (real time for events currently
being published) and efficient (minimum number of hops or some function of bandwidth, speed and
hops) manner. The issue of logical addressing pertains to this problem of event delivery. At the
epoch of the new incarnation there should be a logical address associated with the client which would
help specify the fastest routing of events to the client.

3.4 The Server Node Topology

The smallest unit of the system is a server node and constitutes a unit at level-0 of the system.
Server nodes grouped together form a cluster, the level-1 unit of the system. Clusters could be
clusters in the traditional sense, groups of server nodes connected together by high speed links. A
single server node could also decide to be part of such traditional clusters, or along with other such
server nodes form a cluster connected together by geographical proximity but not necessarily high
speed links.

Cluster-A

Cluster-D Cluster-C

Cluster-B

dc

a b

lk

i j

po

m n

hg

e f

Figure 3.1: A Super Cluster - Cluster Connections

Several such clusters grouped together as an entity comprises a level-2 unit of our network and
is referred to as a super-cluster, shown in figure 3.1. Clusters within a super-cluster have one or
more links with at least one of the other clusters within that super-cluster. When we refer to the
links between two clusters, we are referring to the links connecting the nodes in those individual
clusters. Referring to figure 3.1 Cluster-A has links to Clusters B, C and D while Cluster-B has
links to Clusters A and C. For two clusters with at least one link between them, any node in either
of the clusters can communicate with any other node of the other cluster. In general there would be
multiple links connecting a single cluster to several other clusters. This approach provides us with
a greater degree of fault-tolerance, by providing us with multiple routes to reach nodes within other
clusters.
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SuperCluster-I

SuperCluster-II

SuperCluster-III

SuperCluster-IVSuperCluster-V

Figure 3.2: A Super-Super-Cluster - Super Cluster Connections

This topology could be extended in a similar fashion to constitute a super-super-cluster (level-
3 unit) as shown in figure 3.2, super-super-super-cluster (level-4 units) and so on. A client thus
connects to a server node, which is part of a cluster, which in turn is part of a super-cluster and
so on and so forth. We limit the number of super-clusters within a super-super-cluster, the number
of clusters within a super cluster and the number of nodes within a cluster viz. the block-limit to
64. In an N -level system this scheme allows for 26

N × 26
N−1 × · · · 26

0 i.e 26∗(N+1) server nodes to be
present in the system.

What we essentially have here is a set of strongly connected server nodes comprising a cluster
and a set of links connecting a cluster to other clusters. We are interested in the delays that would
be involved in connecting from one node in the network to another node in the network. This is
proportional to the server node hops that need to be taken en route to the final destination.

We now delve into the small world graphs introduced in [66] and employed for the analysis of
real world peer-to-peer systems in [56, pages 207 – 241]. In a graph comprising several nodes,
pathlength signifies the average number of hops that need to be taken to reach from one node to the
other. Clustering coefficient is the ratio of the number of connections that exist between neighbors
of node and the number of connections that are actually possible between these nodes. For a regular
graph consisting of n nodes, each of which is connected to its nearest k neighbors – for cases where
n � k � 1, the pathlength is approximately n/2k. As the number of vertices increases to a large
value the clustering coefficient in this case approaches a constant value of 0.75.

At the other end of the spectrum of graphs is the random graph, which is the opposite of a regular
graph. In the random graph case the pathlength is approximately logn/ log k, with a clustering
coefficient of k/n. The authors in [66] explore graphs where the clustering coefficient is high, and
with long connections (inter-cluster links in our case). They go on to describe how these graphs have
pathlengths approaching that of the random graph, though the clustering coefficient looks essentially
like a regular graph. The authors refer to such graphs as small world graphs. This result is consistent
with our conjecture that for our server node network, the pathlengths will be logarithmic too. Thus
in the topology that we have the cluster controllers provide control to local classrooms etc, while
the links provide us with logarithmic pathlengths and the multiple links, connecting clusters and
the nodes within the clusters, provide us with robustness.



CHAPTER 3. EVENTS, CLIENTS AND THE SERVER TOPOLOGY 21

3.4.1 GES Contexts

Every unit within the system, has a unique Grid Event Service (GES) context associated with it.
In an N -level system, a server exists within the GES context C1

i of a cluster, which in turn exists
within the GES context C2

j of a super-cluster and so on. In general a GES context C�
i at level *

exists within the GES context C�+1
j of a level (*+ 1). In an N -level system the following hold —

C0
i = (C1

j , i) (Eq. 3.7)

C1
j = (C2

k , j) (Eq. 3.8)
...

CN−2
p = (CN−1, p) (Eq. 3.9)

CN−1
q = q (Eq. 3.10)

In anN -level system, a unit at level * can be uniquely identified by (N−*) GES context identifiers
of each of the higher levels. Of course, the units at any level * within a GES context C�+1

i should
be able to reach any other unit within that same level. If this condition is not satisfied we have a
network partition.

3.4.2 Gatekeepers

Within the GES context C2
i of a super-cluster, clusters have server nodes at least one of which

is connected to at least one of the nodes existing within some other cluster. In some cases there
would be multiple links from a cluster to some other cluster within the same super-cluster C2

i . This
architecture provides a greater degree of fault tolerance by providing multiple routes to reach the
same cluster. Some of the nodes in the cluster thus maintain connections to the nodes in other
clusters. Similarly, some nodes in a cluster could be connected to nodes in some other super-cluster.
We refer to such nodes as gatekeepers. Nodes, which maintain connections to other nodes in the
system, have different GES contexts. Depending on the highest level at which there is a difference
in the GES contexts of these node, the nodes that maintain this active connection are referred to
as the gatekeeper at that level. Nodes, which are part of a given cluster, have GES contexts that
differ at level-0. Every node in a cluster is connected to at least one other node within that cluster.
Thus, every node in a cluster is a gatekeeper at level-0.

Let us consider a connection, which exists between nodes in a different cluster, but within the
same super-cluster. In this case the nodes that maintain this connection have different GES cluster
contexts i.e. their contexts at level-1 are different. These nodes are thus referred to as gatekeepers
at level-1. Similarly, we would have connections existing between different super-clusters within a
super-super-cluster GES context C3

i . In an N -level system gatekeepers would exist at every level
within a higher GES context. The link connecting two gatekeepers is referred to as the gateway,
which the gatekeepers provide, to the unit that the other gatekeeper is a part of. A gatekeeper at
level * within a higher GES context C�+1

j , denoted g�i (C
�+1
j ), comprises of –

• The higher level GES Context C�+1
j

• The gatekeeper identifier i

• The list of gatekeepers at level * that it is connected to, within the GES context C�+1
j .

It should be noted that a gatekeeper at level * can be a gatekeeper at any other level. In fact, every
node within the system is a gatekeeper at level-0. Figure 3.3 shows a system comprising of 78 nodes
organized into a system of 4 super-super-clusters, 11 super-clusters and 26 clusters. When a node
establishes a link to another node in some other cluster, it provides a gateway for the dissemination
of events. If the node it connects to is in a different cluster within the same super-cluster GES
context C2

i both the nodes are designated as cluster gatekeepers. In general, if a node connects
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Figure 3.3: Gatekeepers and the organization of the system

to another node, and the nodes are such that they share the same GES context C�+1
i but have

differing GES contexts C�
j , C

�
k, the nodes are designated as gatekeepers at level − * i.e. g�(C�+1).

Thus, in figure 3.3 we have 12 super-super-cluster gatekeepers, 18 super-cluster gatekeepers (6 each
in SSC-A and SSC-C, 4 in SSC-B and 2 in SSC-D) and 4 cluster-gatekeepers in super-cluster
SC-1.

3.4.3 The addressing scheme

The addressing scheme provides us with a way to uniquely identify each server node within the
system. This scheme plays a crucial role in the delivery and dissemination of events to nodes in
the system(discussed in Section 6.2.6). As discussed earlier, units at each level are defined within
the GES context of a unit at the next higher level. In an N -level system the GES context C�

j

is C�
i =

N−l︷ ︸︸ ︷
CN
j (CN−1

k (· · · (C�+1
m (C�

i )) · · ·)). Thus in a 4-level system, to identify a server node, the
addressing scheme specifies the super-super-cluster C3

i , super-cluster C
2
j and cluster C1

k that the
node is a part of, along with the node-identifier within C1

k . Thus for server node a, within cluster B,
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within super-cluster C and super-super-cluster D the logical address within the system is D.C.B.a.
This addressing scheme is very similar to the IP addressing scheme.

3.5 Summary

In this chapter we dicussed the design of an event, based on the discussions in chapter 2. We also
discussed the rationale for a distributed network of servers, with issues such as scaling, resiliency to
failures and load balancing being the most important factors influencing the choice of the distributed
model. The chapter also discussed the client connection semantics, which include prolonged discon-
nects and roam, and the parameters that a client needs to keep track of in its various incarnations
within the system. Finally we established a topology for our server nodes, which would be used
in building the event service. We also defined the notion of gatekeepers, GES contexts and logical
addressing within the system and the nomenclature that would be referred to in the remainder of
the thesis.



Chapter 4

The problem of event delivery

The problem of event delivery pertains to the efficient delivery of events to the destinations which
could be internal or external to the event. In the latter case the system needs to compute the
destination lists pertaining to the event. The system merely acts as a conduit to efficiently route
the events from the issuing client to the interested clients. A simple approach would be to route all
events to all clients, and have the clients discard the events that they are not interested in. This
approach would however place a strain on network resources. Under conditions of high load and
increasing selectivity by the clients, the number of events that a client discards would far exceed the
number of events it is actually interested in. This scheme also affects the latency associated with
the reception of real time events at the client. The increase in latency is due to the cumulation
of queuing delays associated with the uninteresting/flooded events. The system thus needs to be
very selective of the kinds of events that it routes to a client. In this chapter we describe a suite of
protocols that are used to aid the process of efficient dissemination of events in the system.

In section 4.1 we describe the Node Addition Protocol (NAP), which provides for adding a server
node or a complete unit to an existing system. The Gateway Propagation Protocol (GPP) discussed
in Section 4.2 is responsible for the dissemination of connection information within relevant parts of
the sub system to facilitate creation of abbreviated system interconnection graphs. Providing precise
information for the routing of events, and the updating of this information in response to the addition,
recovery and failure of gateways is in the purview of the GPP. To snapshot the event constraints that
need to be satisfied by an event prior to dissemination within a unit and subsequent reception at a
client we use the Profile Propagation Protocol (PPP) discussed in Section 4.3.5. PPP is responsible
for the propagation of profile information to relevant nodes within the system to facilitate hierarchical
dissemination of events. Section 4.4 describes the Event Routing Protocol (ERP) which uses the
information provided by PPP to compute hierarchical destinations. Information provided by GPP,
such as system inter-connections and shortest paths, are then employed to efficiently disseminate
events within the units and to clients subsequently. The problem of routing events is a two pronged
problem, which needs to address the basic routing scheme and the routing of real-time events (section
4.5). To ensure the fastest dissemination of events within the system the following are the desirable
objectives –

(a) We need to route the event to the highest order gateway first or as soon as possible. In the
case of an N − level system we are of course referring to the gN . What this provides us, is the
optimum amount of concurrency in the dissemination of events.

(b) It is possible that we may encounter lower-level gateways en route. The dissemination of events
can proceed once the event has been routed on its way to the highest order gateway.

(c) The nodes must be fairly smart enough to decide which is the next best node to route this
event to. Of course we will be using gateways to get across to nodes within a different GES
context.

Different systems address the problem of event delivery to relevant clients in different ways.

24
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In [37] each subscription is converted into a deterministic finite state automaton. This conversion
and the matching solutions nevertheless can lead to an explosion in the number of states. In [64]
network traffic reduction is accomplished through the use of quench expressions. Quenching prevents
clients from sending notifications for which there are no consumers. Approaches to content based
routing in Elvin are discussed in [65]. In [18, 19] optimization strategies include assembling patterns
of notifications as close as possible to the publishers, while multicasting notifications as close as
possible to the subscribers. In [7] each server (broker) maintains a list of all subscriptions within
the system in a parallel search tree (PST). The PST is annotated with a trit vector encoding link
routing information. These annotations are then used at matching time by a server to determine
which of its neighbors should receive that event. [6] describes approaches for exploiting group based
multicast for event delivery. These approaches exploit universally available multicast techniques.

The approach adopted by the OMG [55] is one of establishing channels and registering suppliers
and consumers to those event channels. The channel approach in the event service [54] approach
could entail clients (consumers) to be aware of a large number of event channels. The two serious
limitations of event channels are the lack of event filtering capability and the inability to configure
support for different qualities of service. These are sought to be addressed in the Notification Service
[53] design. However the Notification service attempts to preserve all the semantics specified in the
OMG event service, allowing for interoperability between Event service clients and Notification
service clients. Thus even in this case a client needs to subscribe to more than one event channel.
In TAO [42], a real-time event service that extends the CORBA event service is available. This
provides for rate-based event processing, and efficient filtering and correlation. However even in this
case the drawback is the number of channels that a client needs to keep track of.

In some commercial JMS implementations, events that conform to a certain topic are routed
to the interested clients. Refinement in subtopics is made at the receiving client. For a topic with
several subtopics, a client interested in a specific subtopic could continuously discard uninteresting
events addressed to a different subtopic. This approach could thus expend network cycles for routing
events to clients where it would ultimately be discarded. Under conditions where the number of
subtopics is far greater than the number of topics, the situation of client discards could approach
the flooding case.

In the case of servers that route static content to clients such as Web pages, software downloads
etc. some of these servers have their content mirrored on servers at different geographic locations.
Clients then access one of these mirrored sites and retrieve information. This can lead to problems
pertaining to bandwidth utilization and servicing of requests, if large concentrations of clients access
the wrong mirrored-site. In an approach sometimes referred to as active mirroring, websites powered
by EdgeSuite [21] from Akamai, redirect their users to specialized Akamized URLs. EdgeSuite then
accurately identifies the geographic location from which the clients have accessed the website. This
identification is done based on the IP addresses associated with the clients. Each client is then
directed to the server farm that is closest to the client’s network point of origin. As the network
load and server loads change clients could be redirected to other servers.

4.1 The node organization protocol

Each node within a cluster has set of connection properties. These pertain to the rules of adding
new nodes to the cluster, specifically some node may employ an IP-based discrimination scheme to
add or accept new nodes within the cluster. In addition to this, nodes also maintain a connection
threshold vector, which pertains to the number of gateways at each level that the node can maintain
concurrent connections to at any given time.

Nodes wishing to join the network do so by issuing a connection set up request to one of the
nodes in the existing network. The organization and logical addresses assigned are relative to the
existing logical address of the node to which this request was sent to. Nodes issuing such a set up
request could be a single stand-alone node or part of an existing unit. New addresses are assigned
based on whether the node is either part of the existing system or is part of a new unit being merged
into the system. In the former case no new logical address are assigned, while in the latter case new
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logical addresses need to be assigned. Clients of the merged system need to renegotiate their new
logical address using an address renegotiation protocol.

4.1.1 Adding a new node to the system

Nodes which issue a connection setup request need to indicate the kind of gatekeeper that it seeks
to be within the existing system. An indication of whether it seeks to be a level-0 system or not
dictates the GES context, the requesting node seeks to share with the node, to which it has issued
the request. If the node wishes to be a level-0 gatekeeper with the node in question, the two nodes
would end up sharing a similar GES context C1

i . The level-0 indication establishes the to and from
relationship between the requester and the addressee. The GES context varies depending on this
relationship. In the event that the requester seeks to be a level-0 gatekeeper, the GES contextual
information varies at the lowest level C0

i . In the event that the requester seeks a to relationship
with the addressee, the GES contextual information of the requester varies starting from the highest
level-* gatekeeper that it seeks to be. Thus if the requester seeks to be a level-3, level-2 gatekeeper
the GES contextual information vis-a-vis the addressee varies from level-3 and above.

A node requests the connection setup in a bit vector specifying the kind of gatekeeper it seeks
to be. The position of 0’s and 1’s dictates the kind of gatekeeper that a node seeks to be. The
first position specifies the to/from characteristics of the node seeking to be a part of the system.
A 0 signifies the to relationship while the 1 specifies the from relationship. A connection request
< 00000011 > from node s indicates that it wishes to be configured as a cluster gatekeeper in cluster
n to one of the clusters within super-cluster SC-6. Similarly a connection request < 00000110 >
from node s signifies that it wishes to be configured as a level-2 gateway to supercluster SC-6 and
as a level-1 (cluster) gateway within the super-cluster (SC-4/SC-5) that it would be a part of.
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Figure 4.1: Adding nodes and units to an existing system
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Figure 4.1 depicts a node s requesting a connection setup request. If s requests to be a level-0
node, then it needs to be part of the cluster n. Now, if node n.21 has not exceeded the connection
threshold limit for level-0 connections and also if the node s satisfies the IP-discrimination scheme
for accepting nodes within the cluster then node s is configured as a level-0 node with a connection
to node n.21. If however, node n.21 has reached its connection threshold for level-0 connections,
but node s has satisfied the IP-discrimination requirements for cluster n, then n.21 forwards the
request to other nodes within the cluster n. If there is a node within the cluster n, which has not
reached the connection threshold limit, then node s is configured as a level-0 gateway to that node in
cluster n. If however, all the nodes have reached their connection threshold limit, the node responds
by providing a list of level-1 gatekeepers that are connected to cluster n. Node s then proceeds with
the same process discussed earlier.

If node s doesn’t seek to be a level-0 gatekeeper within cluster n but seeks to be a level-* (
* > 0), gateway to cluster n the procedures for setting up connections are different. Depending on
the kind of gatekeeper that node s seeks to be, the location of suitable nodes, which could satisfy the
request, varies. If the node seeks to be a level-1 gatekeeper to cluster n, then node n.21 confirms
the connection threshold vector. If all the nodes have reached their connection threshold for level-1
gateways the cluster returns a failed response. If however there is such a node in cluster n which has
not reached its threshold for level-1 connections node n.21 provides the address for such a node, and
also the addresses of level-1 gatekeepers within supercluster SC-6 to which it is connected. Node s
then tries to be a level-0 gateway within cluster m which is also a level-1 gateway to the nodes in
cluster n. If there are no clusters within super-cluster SC-6 other than cluster n which can accept
s as a level-0 gatekeeper, then the request fails.

4.1.2 Adding a new unit to the system

A unit that can be added to the system could be a cluster, a super-cluster and so on. The process
of adding a new unit to the system must follow rules which are consistent with the organization of
the system. These rules are simple, a node can be a level-0 gatekeeper of only one cluster. Thus a
node in an existing cluster cannot seek to be part of another cluster in the system. In general for a
unit at level-* which is being added to the system, any node in the unit being added cannot seek to
be a level-(*− i) (where i = 1, 2, · · · , *) gatekeeper to any sub-system of the existing system.

The process of adding a unit to the system, results in the update of the GES contextual informa-
tion pertaining to every node within the added unit. This update is only for the highest level of the
system, lower level GES contextual information remains the same. Nodes within a cluster have a
context with respect to the GES cluster context C1

i . When this cluster is added to the system, what
changes is the GES context C1

i while the individual GES contexts C0 of the nodes with respect to
newly assigned GES cluster context C1

j remains the same.
Figure 4.1 depicts the addition of a super cluster SC-10 to the system. Only one node within

the unit that needs to be added can issue the connection setup request. The node which issues this
request in figure 4.1 is the node SC-10.v.23. Since this is a level-2 system that is unit-added, node
23 or any other node within SC-10 can not be a level-1 (cluster) gateway to the other nodes within
the super-super-cluster SSC-B. Node 23 thus issues a request specifying that it seeks to be a level-3
gateway within super-super-cluster SSC-B. Upon a successful connection set up, a new address is
assigned for SC-10 (say SC-8), the identifiers for clusters within SC-10 remain the same. However,
the complete address of these clusters change to SSC-B.SC-8.w and so on.

4.2 The gateway propagation protocol - GPP

The gateway propagation protocol (GPP) accounts for the process of adding gateways and is re-
sponsible for the dissemination of connection information within relevant parts of the sub system
to facilitate creation of abbreviated system interconnection graphs. However, GPP should also ac-
count for failure suspicions/confirmations of nodes and links, and provide information for alternative
routing schemes.
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4.2.1 Organization of gateways

The organization of gateways reflects the connectivities, which exist between various units within
the system. Using this information, a node should be able to communicate with any other node
within the system. Any given node within the system is connected to one or more other nodes
within the system. We refer to these direct links from a given node to any other node as hops. The
routing information associated with an event specifies the units, which should receive the event. At
each g�+1(C�+1

i ) finer grained disseminations targeted for units u� within C�+1
i are computed. When

presented with such a list of destinations, based on the gateway information the best hops to take
to reach the destinations needs to be computed. A node is required to route the event in such a way
that it can service both the coarser grained disseminations and the finer grained ones. Thus, a node
should be able to compute the hops that need to be taken to reach units at different levels. A node
is a level-0 unit, however it computes the hops to take to reach level-* units within its GES context
C�+1 (where * = 0, 1, · · · , N – N being the system level).
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Figure 4.2: Connectivities between units

What is required is an abstract notion of the connectivities that exist between various units
(sub-units and super-units alike) within the system. This constitutes the connectivity graph of the
system. At each node the connectivity graph is different while providing a consistent overall view
of the system. The view that is provided by the connectivity graph at a node should be of the
connectivities that are relevant to the node in question. Figure 4.2 depicts the connections that
exist between various units of the 4 level system which we would use as an example in further
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discussions.

4.2.2 Constructing the connectivity graph

The organization of gateways should be one which provides an abstract notion of the connectivity
between units u� within the GES context C�+1 of the node. This interconnection can span multiple
levels, where, if the gateway level is *, a unit uxi (x < *) within the GES context Cx+1 is connected
to u�j within C

�+1. Units uxi and u�j share the same C
�+1 GES context. For any given node within

the system, the connectivity graph captures the connections that exist between units u�’s within the
GES context C�+1

i that it is a part of. Thus every node is aware of all the connections that exist
between the nodes within a cluster, and also of the connections that exist between clusters within a
super cluster and so on. The connectivity graph is constructed based on the information routed by
the system in response to the addition or removal of gateways within the system. This information
is contained within the connection.

Not all gateway additions or removals/failures affect the connectivity graph at a given node. This
is dictated by the restrictions imposed on the dissemination of connection information to specific
sub-systems within the system. The connectivity graph should also provide us with information
regarding the best hop to take to reach any unit within the system. The link cost matrix maintains
the cost associated with traversal over any edge of the connectivity graph. The connectivity graph
depicts the connections that exist between units at different levels. Depending on the node that
serves as a level-* gatekeeper, the cluster that the node is a part of is depicted as a level-1 unit
having a level-* connection to a level-* unit, by all the other clusters within the super cluster that
the gatekeeper node is a part of.

4.2.3 The connection

A connection depicts the interconnection between units of the system, and defines an edge in the
connectivity graph. Interconnections between the units snapshot the kind of gatekeepers that exist
within that unit. A connection exists between two gatekeepers. A level-* node denoted n�i in the
connectivity graph, is the level-* GES context of the gatekeeper in question and is the tuple < u�i , * >.

A level−* connection is the tuple < nxi , n
y
j , * > where x | y = * and x, y ≤ *. Units uxi and

uyj share the same level-(* + 1) GES context C�+1
k . For any given node n�i in the connectivity

graph we are interested only in the level *, * + 1, · · · , N connections that exist within the unit and
not the * − 1, * − 2, · · · , 0 connections that exist within that unit. Thus, if a level-* connection is
established, the connection information is disseminated only within the higher level GES context
C�+1
i of the sub-system that the gatekeepers are a part of. This is ensured by never sending a

level-* gateway addition information across any gateway g�+1. Thus, in figure 4.2 for a super-cluster
gateway established within SSC-A, the connection information is disseminated only within the
super-clusters SC-1, SC-2 and SC-3, and subsequently the nodes in super-super-cluster SSC-A.

When a level-* connection is established between two units, the gatekeepers at each end create
the connection information in the following manner —

(a) For the gatekeeper at the far end of the connection, the node information in the connection is
constructed using its level-* GES context.

(b) The other node of the connection is constructed as level-0 node using its level-0 GES context.

(c) The last element of the connection tuple, is the connection level *c.

When the connection information is being disseminated throughout the GES context C�+1
i , it arrives

at gatekeepers at various levels. Depending on the kind of link this information is being sent over,
the information contained in the connection is modified. Every gatekeeper gp � p ≤ *c, at which
the connection information is received, checks to see if any of the node information depicts a node
nx where x < *c. If this is the case the next check is to see if p > x. If p > x the node information
is updated to reflect the node as level-p node by including the level-p GES contextual information
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of gp. If p �> x the connection information is disseminated as is. Thus, in figure 4.2 the connection
between SC-2 and SC-1 in SSC-A, is disseminated as one between node 5 and SC-2. When
this information is received at 4, it is sent over as a connection between the cluster c and SC-2.
When the connection between cluster c and SC-2 is sent over the cluster gateway to cluster b, the
information is not updated. As was previously mentioned, the super cluster connection (SC-1,SC-
2) information is disseminated only within the super-super-cluster SSC-A and is not sent over the
super-super-cluster gateway available within the cluster a in SC-1 and cluster g in SC-3.

4.2.4 Link count

For every connection that is created there is a unique identifier associated with that connection.
All connections relevant for a node are maintained in a connection table. This scheme allows us
to detect if the connection table already contains a certain connection. There could be multiple
connections between two specific units, this feature provides for greater fault tolerance. However,
what is maintained in the connectivity graph is simply the connection, which exists between the two
units. The edge thus created also has a link count associated with it, which is incremented by one
every time a new connection is established between two units that were already connected. This
scheme also plays an important role in determining if a connection loss would lead to partitions, this
is described in section 6.1.5.

4.2.5 The link cost matrix

The link cost matrix specifies the cost associated with traversing a link. The cost associated with
traversing a level-* link from a unit ux increases with increasing values of both x and *. Thus the
cost of communication between nodes within a cluster is the cheapest, and progressively increases
as the level of the unit that it is connected to increases. The cost associated with communication
between units at different levels increases as the levels of the units increases. One of the reasons
why we have this cost scheme is that the dissemination scheme employed by the system is selective
about the links employed for finer grained dissemination. In general a higher level gateway is more
overloaded than a lower level gateway. Table 4.1 depicts the cost associated with communication
between units at different levels.

level 0 1 2 3 *i *j

0 0 1 2 3 *i *j

1 1 2 3 4 *i + 1 *j + 1

2 2 3 4 5 *i + 2 *j + 2

3 3 4 5 6 *i + 3 *j + 3

*i *i *i + 1 *i + 2 *i + 3 2× *i *i + *j
*j *j *j + 1 *j + 2 *j + 3 *j + *i 2× *j

Table 4.1: The Link Cost Matrix

The link cost matrix can be dynamically updated to reflect changes in link behavior. Thus, if a
certain link is overloaded, we could increase the cost associated with traversal along that link. This
check for updating the link cost matrix could be done every few seconds.

4.2.6 Organizing the nodes

The connectivity graph is different at every node, while providing a consistent view of the connections
that exist within the system. This section describes the organization of the information contained
in connections (section 4.2.3) and super-imposing costs as specified by the link cost matrix (section
4.2.5) resulting in the creation of a weighted graph. The connectivity graph constructed at the node
imposes directional constraints on certain edges in the graph.
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The first node in the connectivity graph is the vertex node, which is the level-0 server node hosting
the connectivity graph. The nodes within the connectivity graph are organized as nodes at various
levels. Associated with every level-* node in the graph are two sets of links, the set LUL, which
comprises of connections to nodes nai � a ≤ * and LD with connections to nodes nbi � b > *. When
a connection is received at a node, the node checks to see if either of the graph nodes (representing
the corresponding units at different levels) is present in the connectivity graph. If any of the units
within the connection is not present in the connectivity graph, the corresponding graph node is
added to the connectivity graph. For every connection, < nxi , n

y
j , * > where x | y = * and x, y ≤ *,

that is received; if y ≤ x then –

• Graph node nyj is added to the set LUL associated with node nxi

• Graph node nxi is added to the set LD associated with node nyj .

The process is reversed if x ≤ y. For the edge created between nodes nxi and nyj , the weight is given
by the element (x, y) in the link cost matrix.
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Figure 4.3: The connectivity graph at node 6.

Figure 4.3 depicts the connectivity graph that is constructed at the node SSC-A.SC-1.c.6 in
figure 4.2. The set LUL at the node SC-3 in the figure comprises of node SC-2 at level-2 and node
b at level-1. The set LD at SC-3 comprises of the node SSC-B at level-3. The cost associated with
traversal over a level-3 gateway between a level-2 unit b and a level-3 unit SC-3 as computed from
the linkcost matrix is 3, and is the weight of the connection edge. There are two connections between
the super-super-cluster units SSC-B and SSC-D, this is reflected in the link count associated with
the edge connecting the corresponding graph nodes. The directional issues associated with certain
edges are imposed by the algorithm for computing the shortest path to reach a node.

4.2.7 Computing the shortest path

To reach the vertex from any given node, a set of links need to be traversed. This set of links
constitutes a path to the vertex node. In the connectivity graph, the best hop to take to reach a
certain unit is computed based on the shortest path that exists between the unit and the vertex.
This process of calculating the shortest path, from the node to the vertex, starts at the node in
question. The directional arrows indicate the links, which comprise a valid path from the node in
question to the vertex node. Edges with no imposed directional constraints are bi-directional. For
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any given node, the only links that come into the picture for computing the shortest path are those
that are in the set LUL associated with any of the nodes in a valid path.

The algorithm proceeds by recursively computing the shortest paths to reach the vertex node,
along every valid link (LUL) originating at every node that falls within the valid path. Each fork of
the recursion keeps track of the nodes that were visited and the total cost associated with the path
traversed. This has two useful features -

(a) It allows us to determine if a recursive fork needs to be sent along a certain edge. If we do not
keep track of the nodes that were visited, we could end up in an infinite recursion where we
revisit the same node over and over again.

(b) It helps us decide on the best edge that could have been taken at the end of every recursive
fork.

For example in the connectivity graph of figure 4.3 we are interested in computing the shortest path
to SSC-B from the vertex. This process would start at the node SSC-B. The set of valid links
from SSC-B include edges to reach nodes a, SC-3 and SSC-D. At each of these three recursions
the paths are reflected to indicate the node traversed (SSC-B) and the cost so far i.e 4,5 and 6
to reach a, SC-3 and SSC-B respectively. Each recursion at every node returns with the shortest
path to the vertex. Thus the recursions from a, SC-3 and SSC-D return with the shortest paths
to the vertex. This along with the shortest path to reach those nodes, provides us with the means
to decide on the shortest path to reach the vertex.

4.2.8 Building and updating the routing cache

The best hop to take to reach a certain unit is the last node that was reached prior to reaching the
vertex, when traversing the shortest path from the corresponding unit graph node to the vertex.
This information is collected within the routing cache, so that messages can be disseminated faster
throughout the system. The routing cache should be used in tandem with the routing information
contained within a routed message to decide on the next best hop to take to ensure efficient dissem-
ination. Certain portions of the cache can be invalidated in response to the addition or failures of
certain edges in the connectivity graph.

In general when a level-* node is added to the connectivity graph, connectivities pertaining
to units at level *, * + 1, · · · , N are effected. For a level-N system if a gateway g� within u�+1

i is
established, the information contained in the routing cache to reach units at level *, *+1, · · ·N needs
to be updated for all the units within u�+1

i . The cases of gateway failures, node failures, detection
of partitions and the updating of the routing cache in response to these failures are dealt with in a
later section.

4.2.9 Exchanging information between super-units

When a subsystem u�i is added to an existing system u
�+j+1; information regarding g�+j , g�+j−1, · · · , g�

connections are exchanged between the system and the newly added sub system. Thus when a super
cluster is added to an existing system comprising of super-super-clusters, the existing system routes
information regarding super-cluster and super-super-cluster connections to the newly added super-
cluster. The way the set of connections, comprising the connectivity graph, is sent over the newly
established link is consistent with the rules, which we had set up for sending a connection informa-
tion over a gateway as discussed in section 4.2.3. Thus, if a new super cluster SC-4 is added to the
SSC-A sub-system and a super cluster gateway is established between SC-4 and node SC-1.c.6,
then, the connectivity graphs at node 6 would be as depicted in figure 4.4.(a) while the connectivity
graph at the gatekeeper in SC-4 would comprise of the connections that were sent over the newly
established gateway by node 6.

Figure 4.4.(b) depicts only the connections which describe the connections involving level-2 gate-
ways and upwards at node 99 in SC-4. There would be clusters comprising of strongly connected
server nodes in SC-4, we however do not need to depict these, in figure 4.4.(b), for the present
discussion regarding connection information exchange.
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4.3 Organization of Profiles and the calculation of destina-
tions

Every event conforms to a signature which comprises of an ordered set of attributes {a1, a2, · · · , an}.
The values these attributes can take are dictated and constrained by the type of the attribute.
Clients within the system that issues these events, assign values to these attributes. The values
these attributes take comprise the content of the event. All clients are not interested in all the
content, and are allowed to specify a filter on the content that is being disseminated within the
system. Thus a filter allows a client to register its interest in a certain type of content. Of course
one can employ multiple filters to signify interest in different types of content. These filters specified
by the client constitutes its profile. The organization of these profiles, dictates the efficiency of
matching content. A level-* gatekeeper snapshots the profiles of all the level-(*-1) units that share
the same GES context C�

i with it.

4.3.1 The problem of computing destinations

Clients express interest in certain types of content, and events which conform to that content need
to be routed to the client. A simple approach would be to route all events to all clients, and have
the clients discard the content that they are not interested in. This approach would however place a
strain on network resources. Under conditions of high load and increasing selectivity by the clients,
the number of events a client discards would far exceed the number of events it is actually interested
in. This scheme also affects the latency associated with the reception of real time events at the
client. The system thus needs to be very selective of the kinds of events that it routes to a client.
In other words the system should be able to efficiently compute destination lists associated with the
event. Depending on the event this destination list could be internal to the event or external to the
event. In the case of events with external destination lists, the system relies on information contained
within the client’s profile and also the content of the event to arrive at the set of destinations that
need to receive the event.

These destinations should be computed in such a way that it exploits the network topology in
place, as also the routing algorithms that make use of abbreviated views of inter-connections existing
within the system. Profiles need to be organized so that they lend themselves to very efficient
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calculation of destinations upon receiving a relevant event. In our approach a level-* gatekeeper
maintains the profiles of all the level-(*-1) units that share the same GES context C�

i with it. This
scheme fits very well with our routing algorithms, since the destinations contained within the event
are those that are consistent with the node’s abbreviated view of the system. To allow for a node
to maintain profiles contained at different units (clusters, servers, clients etc.) we need to be able
to be able to propagate profile additions and changes to nodes responsible for the generation of
destination lists.

The problem of computing destinations for a certain event comprises of the following –

(a) Organization of profiles in a profile graph

(b) Propagation of profiles to the nodes that are responsible for the calculation of hierarchical
destination lists.

(c) Navigation of the profile graph to compute the destinations associated with the content.

A given node can compute destinations only at certain level. Thus the computation of destinations
is itself a distributed process in our model.

4.3.2 Constructing a profile graph

As mentioned earlier, events encapsulate content in an ordered set of < attribute, value > tuples.
The constraints specified in the profiles should maintain this order contained within the event’s
signature. Thus to specify a constraint on the second attribute (a2) a constraint should have been
specified on the first attribute (a1). What we mean by constraints, is the specification of the value
that a particular attribute can take. We however also allow for the weakest constraint, denoted ∗,
on any of the attributes. The ∗ signifies that the filtered events can take any of the valid values
within the range permitted by the attribute’s type. By successively specifying constraints on the
event’s attributes, a client narrows the content type that it is interested in. It is not necessary
that a constraint be specified on all the attributes {a1, a2, · · · , an}. What is necessary is that if a
constraint is imposed on an attribute ai constraints for attributes a1, a2, · · · , ai−1 must be in place,
even if some or all of these constraints is the weakest constraint ∗. Thus if a constraint is specified
till attribute ai and no constraints are imposed on some of the attributes a1, a2, · · · , ai−1, the system
assigns these attributes the weakest constraint ∗. It makes more sense imposing the constraint ∗ on
higher order attributes ai+1 · · · an than on the lower order attributes a1, a2, · · · ai−1. Such a scheme
has the effect of narrowing content down to the ones which are very closely related to each other.
For every event type we maintain a profile chain. Different profile chains when added up constitute
the profile graph.

We use the general matching algorithm, presented in [3], of the Gryphon system to organize
profiles and compute the destinations associated with the events. Constraints from multiple profiles
are organized in the profile graph. Every attribute on which a constraint is specified constitutes
a node in the profile graph. When a constraint is specified on an attribute ai, the attributes
a1, a2, · · · , ai−1 appear in the profile graph. A profile comprises of constraints on successive attributes
in an event’s signature. The nodes in the profile graph are linked in the order that the constraints
have been specified. Any two successive constraints in a profile result in an edge connecting the
nodes in the profile graph. Depending on the kinds of profiles that have been specified by clients,
there could be multiple edges, originating from a node. Following the scheme in [3] we do not allow
multiple edges terminating at a node since it results in a situation where the event matching results
in an invalid destination, due to that event having satisfied partial constraints of different profiles
from within the same unit.

Figure 4.5 depicts the profile graph constructed from three different profiles. The example depicts
how some of the profiles share partial constraints between them, some of which result in profiles
sharing edges in the profile graph. A certain edge is marked as traversed by an event if the two
successive constraints that created the edge, have been satisfied by that event. The presence of an
edge signifies the existence of at least one client, which is interested in the content satisfying at least
two of the constraints contained in that edge. An event’s traversal along an edge simply indicates
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Figure 4.5: The profile graph - An example.

that the event’s content has satisfied some partial constraint imposed by one or more of the clients.
As we traverse further down the profile chain, the events we are looking for get more fine grained.
The final constraint on an attribute leads to the creation of a destination edge. The edges arising
out of node C in figure 4.5 are destination edges.

4.3.3 Information along the edges

To support hierarchical disseminations and also to keep track of the addition and removal of edges,
besides the basic organization of constraints, the graph needs to maintain additional information
along its edges. This additional information also plays a very important role in the reliable delivery
of events to clients (we discuss this in a later section). Along every edge we maintain information
regarding the units that are interested in its traversal. For each of these units we also maintain the
number of predicates δω within that unit that are interested in the traversal of that edge. The first
time an edge is created between two constraints as a result of the profile specified by a unit, we add
the unit to the route information maintained along the edge. For a new profile ωnew added by a
unit, if two of its successive constraints already exist in the profile graph, we simply add the unit to
the existing routing information associated with the edge. If the unit already exists in the routing
information, we increment the predicate count associated with that destination.

The information regarding the number of predicates δω per unit that are interested in two
successive constraints allows us to remove certain edges and nodes from the profile graph, when
no clients are interested in the constraints any more. Figure 4.6 provides a simple example of the
information maintained along the edges. We discuss how the profiles are propagated, where they
are propagated and how this information along the edges is modified and updated in section 4.3.5.

4.3.4 Computing destinations from the profile graph

Once the profile graph has been constructed, we can compute the destinations that are associated
with an event. Traversal along an edge is said to be complete if two successive constraints at end
points of the edge have been satisfied by the content in question. When an event comes in we first
check to see if the profile graph contains the first attribute contained in the event. If that is the case
we can proceed with the matching process. When an event’s content is being matched, the traversal
is allowed to proceed only if -
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(a) There exists a wildcard (∗) edge connecting the two successive attributes in the event.

(b) The event satisfies the constraint on the first attribute in the edge, and the node that this edge
leads into is based on the next attribute contained in the event.

As an event traverses the profile graph, for each destination edge that is encountered if the event
satisfies the destination edge constraint, that destination is added to the destination list associated
with the event.

4.3.5 The profile propagation protocol - Propagation of ±δω changes

In the hierarchical dissemination scheme that we have, gatekeepers g�+1 compute destination lists
for the u� units that it serves as a g�+1 for. A gatekeeper g�+1 should thus maintain information
regarding the profile graphs at each of the u� units. Profile graph P�+1

i maintains information
contained in profiles P� at all the u� units within u�+1

i . This should be done so that when an event
arrives over a g�+1 in u�+1

i –

(a) The events that are routed to destination u�’s, are those with content such that at least one
destination exists for those events within the sub-units that comprise the profile for u�.

(b) There are no events, that were not routed to u�i , with content such that u�i would have had a
destination within the sub-units whose profile it maintains.

Properties (a) and (b) ensure that the events routed to a unit, are those that have at least one client
interested in the content contained in the event. When an event is received over a cluster gateway,
there would be at least one client attached to one of the nodes in the cluster which is interested in
that event.

When we send the profile graph information over to the higher level gatekeeper g�, the information
contained along the edges in the graph needs to be updated to reflect the nodes logical address at
that level. Thus when a node propagates the clients profile to the cluster gatekeeper, it propagates
the edges created/removed with the server as the destination associated with the profile predicate.
Similarly, when this is being propagated to a super-cluster gatekeeper the profile change is sent across
as a profile change in the cluster. Any change in the client’s profile is propagated to gatekeepers
at higher levels, that the server node in its abbreviated view of the system is aware of. What we
are trying to do is to maintain information in the profile graph, in a manner which is consistent
with the dissemination constraints imposed by properties (a) and (b). The reason we maintain
destination information the way we do is that this model ties in very well with our topology and the
routing algorithms that are in place. The connectivity graph provides us with an overall view of the
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interconnections between units at different levels. The organization and calculation of destinations
from the profiles comprising the profile graph, feeds right into our routing algorithms that compute
the shortest path to reach the units (destinations) where an event needs to be routed. In general
for a level-N system, if there is a subscribing client with GES context CN

j and the issuing client
has GES context CN

i the destinations are computed (N+1) times. Thus, in a system comprising of
super-super-clusters, the destinations are computed four times prior to reception at the client.

For profile changes that result in a profile change of the unit, the changes need to be propagated
to relevant nodes, that maintain profiles for different levels. A cluster gateway snapshots the profile
of all clients attached to any of the server nodes that are a part of that cluster. Thus a change in
the profile of a client needs to be propagated to its server node. The change in profile of the server
node should in turn be propagated to the cluster gateway(s) within the cluster that the node is a
part of. Similarly a super-cluster gateway snapshots the profiles of all the clusters contained in the
super-cluster. When a profile change occurs at any level, the updates need to be routed to relevant
destinations. The connectivity graph provides us with this information. From the connectivity
graph, it can be seen that node 4 is the cluster gateway. Thus, changes in profiles at level-0 (i.e.
δω0) at any of the nodes in cluster SSC-A.SC-1.c are routed to node 4. δω1 changes need to be
routed to level-2 gateways within SSC-A. In general the gatekeepers to which the profile changes
need to be propagated are computed as follows —

(a) Locate the level-(*) node in the connectivity graph.

(b) The uplink from this node of the connectivity graph to any other node in the graph, indicates
the presence of a level-* gateway at the unit corresponding to the graph node.

This scheme provides us with information regarding the level-* gateway, within the part of the
system that we are interested in. We are not interested in the lateral links since they provide us
with information regarding all the level-* gateways within the next higher level GES context C�+1.
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Figure 4.7: The connectivity graph at node 6.

In the figure 4.7, any δω0 changes at any of the nodes within cluster c, are need to be routed
to node 4. Any δω1 changes at node 4 need to be routed to node 5, and also to a node in cluster
b. Similarly δω2 changes at node 5 needs to be routed to the level-3 gatekeeper in cluster a
and superclusters SC-3, SC-2. When such propagations reach any unit/super-unit the process is
repeated till such time that the gateway that the node seeks to reach is reached. Every profile change
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has a unique-id associated it, which aids in ensuring that the reference count scheme does not fail
due to delivery of the same profile change multiple times within the same unit.

Summarizing the discussion so far, the profile graph snapshots the profiles of units at a certain
level, and as such can compute destinations only for this set of units. The profile snapshot that is
created ensures that there is at least one sub-unit attached to one of the units within the super unit
under consideration which should receive the event. Thus the profile matching scheme ensures that
there is at least one client which will receive the event when it is received within a unit. If we do
not have a scheme which snapshots profiles in the following manner, we could end up in a scenario
where none of the events received in a unit have any clients which are interested in that event.

Unit additions and the propagation of profiles

When a unit (with publishing and subscribing clients) is being added to a larger existing server
network, besides the sequence of actions pertaining to the generation/update of logical addresses
and the exchange of system inter connectivities, profiles would need to be propagated in exactly
the same way that we described. Thus when a cluster is added to the system, the server nodes
within the cluster route their profiles to the newly created cluster gatekeeper. This gatekeeper is in
turn responsible for the propagation of profiles to the super-cluster gatekeepers in the newly merged
system.

4.3.6 Active profiles

The profile propagation protocol aids in the creation of destination lists at units within different
levels. These destination lists are then employed at each level for finer grained disseminations. Since
the profile add/change propagates through the system to higher level gateways, it is possible that
a gateway at a higher level has not yet been notified about the profile add/change. Thus though
it may receive an event which would match the profile change, the destination list may not include
the lower level unit. It is possible that a client may receive events issued by clients within a certain
unit, though it may not receive similar events from clients published by units within a different GES
context.

What interests us is the precise instant of time from which point on we can say that all events
that satisfy the client’s profile will be delivered to the client. To address this issue we introduce
the concept of active profiles, which provides guarantees in the routing of events within a unit. The
active profile approach provides us with a unit-based incremental approach towards achieving system
guarantees during a profile add/change. If a profile is super-cluster active all events issued by clients
attached to any of the server nodes within a super-cluster C2

i will be routed to the interested client.
Thus the first event that is received by the client is an indication that all subsequent events routed
to that unit, matching the same profile would also be received by the client. When we say that a
profile is unit-active1 what we mean is that for every event that is being routed within that unit
the destination lists calculated would include information to facilitate routing to the client. Since a
client profile is unit active, all events, issued within the unit, will be routed to the client if it satisfies
the client profile.

Events contain routing information in them, which indicate the units where these events were
disseminated. The routing information contained in an event thus includes the unit in which the
event was issued. Since the dissemination is hierarchical, an event will not be routed to a client
till such time that the client’s profile change has been propagated to higher level gatekeepers. If
a profile change issued by a client cA is routed to a super-cluster gatekeeper, all events issued by
clients attached to any of the nodes within this super-cluster, will be routed to the client cA if these
events match the corresponding profile change. The routing information, for events issued by clients
in this super-cluster, indicate the dissemination within the units in that super-cluster. If this event
matches the profile change initiated by one of the attached clients, and if this event is routed to

1The unit we are referring to in this case are the clusters, super-clusters, super-super-clusters etc. Of course these
units are assumed to be within some higher level GES context of the server node to which the interested client is
attached to or was last attached to
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such a client then the profile change associated with that client is said to be super-cluster active. In
an N -level system if the routing information depicts the dissemination of the event within another
level-N unit within the system, the profile change issued by the client is said to be system active.
When a profile change initiated by a client is system active, events issued by any other clients within
the system will be routed to this client, if those events match the system active profile change that
was initiated by this client.

4.4 The event routing protocol - ERP

Event routing is the process of disseminating events to relevant clients. This includes matching the
content, computing the destinations and routing the content along to its relevant destinations by
determining the next node that the event must be relayed to. Every event has routing information
associated with it, which could be used by the system to determine the route the event would take
next. This routing information is not added by the client issuing this event but by the system to
ensure faster dissemination and recovery from failures. When an event is first issued by the client,
the server node that the client is attached to adds the routing information to the event. This routing
information is the GES contextual information (see Section 3.4.1) pertaining to this particular node
in the system. As the event flows through the system, via gateways the routing information is
modified to snapshot its dissemination within the system. This information is then used to avoid
routing the event to the same unit twice. What a node also needs to decide is when it would be futile
to try and find a higher order gateway, and also when all the higher level units that could possibly
be covered have been covered. Of course it should also know if there is a higher order gateway that
needs to be reached. This decision is based on the event routing information and the information
pertaining to gateways that’s available at a node. If there are no such units that need to be reached,
the event routing would proceed with lower order disseminations. However if there is a unit that
needs to be reached, gateways would have to be employed to reach this unit as fast as possible. The
event routing information contained with an event simply indicates the units, which were present
en route to reception at the node.

A gateway g�+1 in u�+1
i is responsible for the dissemination of events throughout the relevant

u� units within u�+1
i . This is a recursive process and the gateway g�+1 delegates this dissemination

process to the lower level gateways g�, g�−1, · · · , g1 to aid in finer grained disseminations. Thus a
super-super-cluster gateway is responsible for disseminating the event to all the super-clusters which
comprise the super-super-cluster that it is a part of. A gateway g� is concerned with the routing
information from level-* to level-N . When an event has been routed to a gatekeeper g� the routing
information associated with the event is modified to reflect the fact that the event was received at
that particular unit. It is the gatekeeper g�’s responsibility to ensure that the event is routed to all
the relevant nodes within the level-* unit, using the delegation mechanism described earlier. Prior
to routing an event across the gateway a level-* gatekeeper takes the following sequence of actions –

• Check the level-* routing information for the event to determine if the event has already been
consumed by the unit at level-*. If this is the case the event will not be sent over the gateway
to that unit.

There could be multiple links connecting a unit to some other unit. This scheme provides us
with a greater degree of fault-tolerance. This also leads to the situation2 where the event could
be routed to the same unit over multiple links. In this case the duplicate detection algorithm
detects this duplicate event and halts any further routing for this event.

• In case the gateway decides to send the event over the gateway, all routing information per-
taining to lower level disseminations are stripped from the event routing information.

This is because the routing information pertaining to the lower level disseminations is within
the GES context of a specific level-* unit and will not be valid within other level-* units.

2One of the reasons that this situation arises is a fork in the event’s routing which send it to two gateways within
the same unit
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Figure 4.8: Routing events

Also, in general a higher order gateway would be more overloaded3 compared to a lower
order gateway. Reducing the amount of information being transferred over the gateway helps
conserve bandwidth.

Figure 4.8 depicts the routing scheme which we have discussed so far. The routings depicted in the
figure outline how routing information is updated to reflect the traversal at units in different levels.

In addition to the information regarding where the event has been delivered already, events also
need to contain information regarding the units which an event should be routed to. Gatekeepers
g�(C�+1) decide the level-(* − 1) units which are supposed to the receive the event. This decision
is based on the profiles available at the gatekeeper as outlined in the profile propagation protocol.
This calculation of the targeted units is a recursive process with the lower order disseminations being
handled by the corresponding lower order gatekeepers. Thus two levels of routing information are
contained within an event —

(a) Units where an event should be routed within a unit.

(b) Units which have already received the event.
3This is because a lower order gateway is primarily employed for finer grained dissemination of events, and only

rarely if at all would be used to get to a higher order gateway. Besides this a higher order gateway g�
i (C

�+1
i ) is the

one responsible for deciding if the event needs to be routed to any of the lower units comprising the level-�.
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This routing scheme plays a crucial role in determining which events need to be stored to a stable
storage during failures and partitions.

When a gatekeeper g� with GES context C�
i is presented with an event it computes the u�−1’s

within C�
i that the event must be routed to. At every node the best hops to reach the destinations are

computed. Thus, at every node the best decision is taken. Nodes and links that have not been failure
suspected are the only entities that can be part of the shortest path. The event routing protocol,
along with the profile propagation protocol and the gateway information ensure the optimal routing
scheme for the dissemination of events in the existing topology.

4.5 Routing real-time events

Real time events can have destination lists (see section 3.1.4) which are internal or external to the
event. In each case the routing differs, in the case of internal lists the destination’s location needs
to be precisely located by the system. Routing events with external destination lists involves the
system calculating the destinations for delivery.

4.5.1 Events with External Destination lists

When an event arrives at a gatekeeper g�, the gatekeeper checks to see if the event satisfies its
profile. The profile maintained at g� snapshots the profile of the level-* unit that the gatekeeper
belongs to. This check is necessary to confirm if the event needs to be disseminated within the level-*
unit. Routing events based on the gatekeeper profile is the process which calculates the destination
lists. This is a recursive process in which each higher order gatekeeper performs this check before
disseminating the event to lower order gatekeepers.

When an event doesn’t match the gatekeeper g�’s profile, g� decides upon the next route that
event would take based on the routing information encoded into the event by the event routing
protocol.

• The gatekeeper g�j(C
�+1
i ) checks the routing information provided by ERP to see if it needs to

relay the event to other gatekeepers g� within the GES context C�+1
i .

• The gatekeeper also uses the information provided by ERP to check if it could route the event
to a higher order gateway which has not received the event.

In the event that these steps lead to no actions on part of the gatekeeper g� the gatekeeper takes
no further actions to route this event. If the gatekeeper decides to route this event to other level-*
and higher order gatekeepers, the system can employ lower order gateways within the GES context
C�+1
i to relay this event.

4.5.2 Events with Internal Destination lists

These are events which require the system to be able to route the event to a specific client in the
system. Clients which are interested in receiving point-to-point events thus need to include their
identifier in their profile. The sequence of steps that are needed to route the event are similar to the
steps we take to route events with external destination lists as discussed in section 4.5.1.

4.6 Duplicate detection of events

Multiple copies of an event can exist in the system. This occurs due to multiple gateways existing
between units and also due to events taking multiple routes to the reach destinations in response to
failure suspicions. Events need to be duplicate detected because for any event e that is a duplicate
event, the path taken by the event as dictated by ERP is exactly the same as that taken by the event
e which was previously received. In section 3.1.2 we discussed the generation of unique identifiers for
events. This scheme of unique ID generation provides us with information pertaining to unrelated
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events (events issued by different clients) and in the case of related events (events issued by the same
client) the order of their occurrence. In our scheme of duplicate event detection we use this unique
ID generation as the basis for our duplicate event detection scheme.
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Figure 4.9: Duplicate detection of events

Our unique ID generation scheme allows us to determine which of the two related events e and
e′ was issued earlier. If the last event received at a node is e and if the node receives a related event
e′, then our duplicate detection scheme works as follows –

• If e′ > e then e′ was not received earlier, else it was and it is duplicate detected. The >
relation between two related events is based on the timestamp and the sequence number that
is associated with the two events.

Consider the case in figure 4.9.(a), at nodes A and B events e1, e2, e3, e4 and e5 are all events
issued by the same client. Node C maintains the last event that was received. The links we assume
in the system are unreliable and unordered. Since these links allow the events to overtake each other,
if node C receives e3 first node C could errantly conclude that it had received e1 and e2. To resolve
this we impose the requirement that the events be received in order (this is more so in the case
of events issued by the same client), i.e. we do not let events overtake each other in the reception
sequence at any node within the system.

Now even though the events arrive at different times, since they arrive in order, the event e
(either from A or B) that arrives first is not duplicate detected while the event e that arrives later
is duplicate detected.

from-A e1 e2 e3 e4 e5

from-B e1 e2 e3 e4 e5

at-C eA1 eB2 eB3 eA4 eA5

t→ 1 2 3 4 5 6 7 8 9

Table 4.2: Reception of events at C

Consider the case in figure 4.9.(b), node A has sent events e1, e2 and e3 over link lAC at time t.
At time t + δ node A suspects a node C failure which could either be due to an overcrowded link
lAC or a slow process at C. Now if A were to compute the alternate route to C that goes via B; if
it doesn’t send e1, e2, e3 prior to sending e4 and e5, the events e1, e2, e3 would be duplicate detected
if e4 arrives before e1. Once we make this minor change of resending unacknowledged events across
the alternate route in response to suspicions it simply reduces to the case depicted in figure 4.9.(a).
As an optimization feature we could also send anti-events down the failed/slow link whenever we
resort to computing an alternate route.

Figure 4.10 depicts the scenario where a client roam could lead to duplicate detection of events
which are not truly duplicate events. The case in which our duplicate detection scheme breaks
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Figure 4.10: Duplicate detection of events during a client roam

down, is detailed in table 4.3. To account for such a scenario we include the incarnation number
in our duplicate detection scheme. Incarnation numbers would be incremented for every roam and
reconnection of the issuing client. The events would then be treated as events with a different
clientID thus preventing the duplicate detection of events which should not have been duplicate
detected in the first place.

t→ t+∆ t+ 2∆ t+ 3∆ t+ 4∆ t+ 5∆

at 2 e1, e2, e3

at 1 ACK(e1, e2, e3) roam+ send(e4, e5)

at 4 e4, e5 e1, e2, e3

Table 4.3: Reception of events at 4: Client roam

4.7 Interaction between the protocols and performance gains

In our system the node organization protocol could be used in the creation of small world [66,
56] networks. This organization, which comprises of strongly connected server nodes in clusters
connected by long links ensures that the pathlength increases logarithmically for geometric increases
in the size of the server node network. The feature of having multiple links between two units/super-
units ensures a greater degree of fault tolerance. Links could fail, and the routing to those units
could still be performed using the alternate links. The organization of connection information ensures
that connection losses (or additions) are incorporated into the connectivity graph hosted at relevant
nodes. Certain sections of the routing cache are invalidated in response to this addition (or loss) of
connections. This invalidation and subsequent calculation of best hops to reach units (at different
levels) ensure that the paths computed are consistent with the state of the network, and include
only valid/active links. The ability to compute routes to reach destinations at different levels lends
the scheme very useful for hierarchical disseminations.

In our scheme for the organization of profiles we employ an approach where profiles of sub-units
are maintained at the unit gatekeeper. Events almost always arrive at the unit gatekeepers first,
since they provide a gateway to the unit. The only exception is in the cluster where a client issues
an event. Having this unit gatekeeper intelligently decide on the sub-units, which should receive
an event helps eliminate redundant routing of events. By maintaining sub-unit profiles at the unit
gatekeeper we ensure that the only events that are routed to a unit are those for which there is
at least one client, attached to one of the server nodes in that unit, which is interested in the
specific event. We obtain information regarding the nodes/units to route profile changes based on
the information contained in the connectivity graph. We then employ hops (at every server node en
route) obtained from the routing cache to ensure that this profile dissemination is the fastest. The
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information maintained in the profile graph is consistent with the dissemination scheme and can be
used to compute destinations at different levels. In an N-level system, an event is matched (N+1)
times prior to routing the event to a client.

The event routing protocol uses the profile information available at the unit gatekeepers to
compute the sub-units that the event should be routed to. To reach these destinations every node,
at which this event is received, employs the best hops to reach the destinations. This best hop is
computed based on the cost of traversal as also the number of links connecting the different units.
Thus in our system, based on the organization of profiles and subsequent matching of events, the
only units to which an event is routed are those that have clients interested in that event. Further,
based on the connectivity graph and the associated routing cache we compute the fastest/reliable
hops to take to reach the relevant destinations. The routing information encoded into the event along
with the duplicate detection scheme ensures that we eliminate continuous event echoing, where the
event is routed to the same unit over and over again.

These approaches result in only the relevant links and functioning nodes being employed for
disseminations. The small world behavior that would exist in server network, when appropriately
organized, ensures that the pathlengths for these disseminations would only increase logarithmically
with the number of server nodes.

4.8 The need for dynamic topologies

This pertains to the scheme for the dynamic creation of servers, to optimize the routing character-
istics for events. The routing characteristics pertain to the bandwidth usage, response times and
also on the protocols that would be employed for the dissemination of events. Consider the scenario
where there are server nodes at Syracuse and Rochester. A large number of client nodes attached
to one of these servers reside in Boston, Houston and Albany. For a set of clients at either of the
aforementioned locations this scheme has the obvious disadvantage that messages routed to each of
the clients utilizes the same bandwidth between the server and client’s location. For 10 clients (at
the same geographic location) attached to the same server node, for a certain event, the bandwidth
could be utilized 10 times for the same event.

The system in response to such a scenario should proceed with the instantiation of server nodes
at the client locations. In the present discussion we are referring to locations where a large number
of clients reside. Inducing a roam in clients based on their geographic location would then follow this
dynamic instantiation of a server node at one of the clients. The induced roam should be towards
the newly created server node. Thus in the scheme for routing messages the bandwidth between two
locations is utilized only once per message. The long links created between the original server node
and the newly created one would normally employ TCP for communication. The newly created
server nodes could employ a different approach, e.g. IP Multicast, for disseminating the received
events to relevant clients. This when employed with the routing schemes in place would greatly
improve system performance, and response times at the clients. Similarly publishing clients could
be induced to roam to a location where there is a high concentration of clients interested in receiving
the published events.

Other schemes that could be employed include dynamically creating connections between nodes in
different units, to create small world networks. Further use of schemes to identify slow links, removal
of these links and the creation of new fast links would also greatly improve system performance.
Interesting variances of parallel computing algorithms could be employed for this purpose. An
analogy resides in hyper cubes where links are created/removed from the 3D mesh of nodes to
achieve logarithmic pathlengths.

In our failure model a unit can fail and remain failed forever. The server nodes involved in
disseminations compute paths based on the active nodes and traversal times within the system. The
routing scheme is thus based on the state of the network at any given time. Thus servers could be
dynamically created, connections established or removed, and the events would still be routed to
the relevant clients. Any given node in the system, would thus see the server network undulate as
the servers are being added and removed.
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4.9 Summary

In this chapter we described a suite of protocols used in the design of the event service. This included
the node addition protocol which is used to organize server nodes within the topology scheme that
we introduced in Chapter 3. With the ability to add nodes/units to an existing sub-system, we
proceeded to discuss the creation and organization of abbreviated system views at each server node
in the system. We update this system inter-connection graph at each node with a link cost and link
count for every edge within the graph reflecting the cost for link traversal and the number of links
connecting two units respectively. We use this graph to compute shortest paths with graph traversal
rules, which restrict the paths that can be taken to reach a certain node. We proceeded to outline the
organization of profile predicates and the calculation of destinations using the matching algorithm
discussed in [3]. Further we modified this algorithm to include information along the edges to
account for the number of predicates interested in a given edge and also the destinations associated
with each edge to account for the hierarchical propagation of profiles. The profile propagation
protocol discussed the propagation of profile predicates, to relevant nodes within the system, to
support hierarchical dissemination of events within the system. This calculation of nodes, to route a
profile update to, is done based on the information encapsulated within the connectivity graph. To
effectively disseminate messages within the system, we formulated the event routing protocol. We
also presented our approach to routing events with internal/external destination lists. Finally, we
presented our scheme for the duplicate detection of messages.



Chapter 5

The problem of delivering merged
streams

For an event stream E ↪→ Π , the problem of delivering each event within the stream E , is one
of determining the spatial dependencies ∀e ∈ E s

↪→ Π ′ = e | e[ ] | null and the chronological

dependencies
t
↪→ (within the constraints of time’s arrow). Once these dependencies are determined

we proceed with dependency resolution and subsequent delivery of the events in E and one or more
events within the other streams in Π, which events in E are dependent on. Delivering all events
within E , ultimately results in the creation of merged streams. Discovery of dependencies in E
involves determining the location of streams E j ∈ Π where E ↪→ Π and the timing constraints
that exist within these dependencies. The other factor which plays an important role is that not all
stream sources issue events starting at the same time.

The client issuing dependent event streams needs to be aware of Π’s event stream sources. Stream
sources should be able to issue event streams specifying the dependencies and expect the system to
resolve these dependencies. The system then provides a coherent representation of the information
in both E and Π , where E ↪→ Π , which would ultimately result in the delivery of the merged event
stream to the interested clients. Streams E and E j ∈ Π need not be aware of the exact and precise
location of each other, nor should these stream sources expect a synchronization scheme for issuing
events within certain timing constraints. E knows about E j in an abstract sense, this knowledge
needs to be utilized by the system to determine the exact locations of the streams. The issue of
discovering dependent streams does not arise once the event streams are merged; recovery for clients
interested in E proceeds with the merged event streams.

5.1 Resolution of spatial dependencies

Event streams need to be merged based on the dependencies that exist between different events
within a set of related event streams. These event streams, as we discussed earlier, need not be aware
of the precise location or the timing issues pertaining to other event streams. Event streams need
to be aware of other event streams in an abstract fashion. We discuss what this abstraction should
be. The system besides acting as a dependency resolver should aid in the process of dependency
resolution before these dependencies are discovered in the first place. To put it simply, it is possible
that the related event streams could be issued by sources which exist in different GES contexts.
Dependency resolution involves two distinct steps –

(a) Determination of these dependencies – This involves being able to pin point the dependencies
for each event in the stream E .

(b) Being able to resolve these dependencies – This involves ensuring that events being fetched
by the system are merged into a new stream at the location that these dependencies were

46
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discovered. Speeding up the resolution of dependencies enables us to optimize the creation of
merged event streams. We thus need the system to be able to route events from streams in a
manner which is conducive to the fastest merger.

5.1.1 Profile signatures & the process of stream mergers

The values that an event’s attributes can take comprises the event’s profile signature. For an event
e the profile signature is denoted as ωe . All the events within an event stream have identical
profile signatures ω. Profile signatures dictate the routing characteristics of the event. Events with
identical profile signatures could encapsulate different data within them. When a client is interested
in a stream, the client is implicitly interested in every event within that stream. This follows from
the fact that, if the client’s profile ω matches an event e ∈ E then it matches every event in E since
all events have the same profile signature ω.

Aiding the process of event stream merger is something that should happen prior to and indepen-
dent of the resolution of dependencies by the system. This issue pertains to the profile signatures,
which events in dependent event streams possess. Events within event streams are routed in exactly
the same manner as individual events are – based on the profiles and the event routing protocol.
profile signature ω as the events in E . In addition, all stream sources are also clients interested in
their own events and the stream E . This ensures that events are routed to locations where their
dependencies would be resolved, and subsequently, lead to a merged stream. This would happen
even if there were no true clients that are interested in that event stream during that precise instant
of time. The merger would not happen if profiles were not propagated throughout the system. Hav-
ing the sources express an interest in themselves, and not issuing garbage collect notifications also
ensures that the streams survive across system snapshots during which there are no clients interested
in those event streams. Thus in most cases during the resolution of dependencies, no more network
cycles need to be expended to resolve the dependencies, since the related streams E j ∈ Π have
already been routed to the GES units with clients interested in events from E .

5.1.2 The spatial dependency
s

↪→ resolution

The distributed messaging mechanism is responsible for resolving the spatial constraints that exist
between events. The stream source for E ↪→ Π is aware of the valid inter-dependencies that could
exist between events in multiple related streams. This stream source constructs the stream context
chain, similar to the profile chain within a profile graph. The stream context chain snapshots the
spatial dependencies that exist between these related streams. Figure 5.1 shows a sample stream
context graph between four related streams. The dotted edges originating from a node in the graph
and terminating in another attribute node comprises the spatial dependency that exists between two
related streams. You can have knowledge only about past events – there is however a limit to this
knowledge that can be stored at each node. So, what is stored is something that allows a conjecture
about the events that have been received so far. This is provided by numbered stream contexts. Also,
if such a conjecture is not possible what is stored is the constraint that future events should satisfy.
This is provided by logical stream contexts.

5.1.3 Propagating the dependency graph

The stream source for E ↪→ Π propagates the dependency graph to the relevant nodes in the system.
To start with, in an N -level system, this information is propagated to all the g� (* = 0, 1, · · · , N)
that exist within the server node that the stream source is attached to. In other words the server
node propagates this information to its cluster gateways, super-cluster gateways and so on. This
process of calculation of the nodes to route the graph to, is identical to the process outlined in the
profile propagation protocol.

Next, we need to push the dependency graph to the client nodes, which have an interest in
receiving the merged stream. Whenever a new stream context graph is propagated, we first check
to see if any valid destinations exists for the newly added elements to the context graph. What
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Figure 5.1: The stream context graph for 4 related streams.

this implies is that we locate destinations that are interested in the stream E ↪→ Π. In case such
destinations exist we need to push the dependencies to these locations. When the stream context
graph is pushed to a super cluster gatekeeper, a check is made to see if there are any clusters, which
are interested in the receiving the merged stream. If there are such clusters the graph is pushed to
the corresponding cluster controllers. At the cluster gatekeeper, a similar set of actions is performed
to route the graph to the relevant nodes. Similarly when a client has a disinterest in the merged
stream, the reverse process of removing the stream context graph is performed, if the destination
list is reduced to zero. Thus, if within a certain super-cluster there was only one client interested
in a certain merged stream, if this client is no longer interested in that merged stream, the stream
context graph is removed from the corresponding cluster and super-cluster gatekeepers.

5.1.4 Resolution of dependencies

As events are processed and dependencies resolved, the stream context information associated with
the attribute nodes in the context graph are updated. When there is a sinking edge at an attribute
node, we maintain contextual information pertaining to the last value of that attribute. This con-
textual information is maintained for every destination that is interested in receiving these events.
These destinations that we refer to are hierarchical in much the same way that the profile graph’s
destinations are. When an event arrives a check is performed to see the constraints that the event
satisfies. Depending on the results that this operation returns, events are either released for deliv-
ery to certain units or are garbage collected. This garbage collection scheme allows us to prevent
unnecessary routing of events in the system.

Consider the stream context graph example outlined in figure 5.1. In this example a bundle of
mouse events mi

1,m
i
2, · · · ,mi

n in the mouse stream can occur only within the context of the foil fi
within the foil stream. These mouse events would be invalid within any other foil. Let us denote the
stream context for a mouse event m as m.c and that for the foil event f as f.c. In this case the foil
stream context is a numbered context, and is advanced with the passage of time and the reception
of successive foil events. For any given unit interested in receiving the merged stream, the following
scenarios are possible

• f.c = m.c — Route the events in mouse stream, with context m.c, to the available destination
list.

• f.c > m.c — Discard the events in the mouse stream.

• f.c < m.c — Queue these events in the mouse stream.
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In the case of logical constraints, we are waiting for future constraints to be satisfied. In this case
events are queued, pending notifications regarding the receipt of appropriate events leading to the
creation of queues of dependent events. As successive events arrive, some of the constraints would be
satisfied and some of the queued events would be released for dissemination within the system. Each
of these queues could have system imposed garbage collection constraints associated with individual
queue elements to ensure that system resources are not overloaded.

5.1.5 Routing stream events

Clients in the system would specify an interest in E ↪→ Π and the system delivers the merged
stream Π. The propagation of this interest δω is identical to the profile propagation scheme we
discussed earlier. Thus in the example depicted in figure 5.1 there could be a client specifying an
interest Course=CPS, Topic=Java, Stream=FoilStream. When an event arrives, the destinations
are computed hierarchically from the profile graphs at g�’s for * = N,N − 1, · · · , 0; as discussed in
the earlier chapter. These destinations form the preliminary destination list for the event. Further,
a check is made to see if the event is spatially constrained by an event from a related stream. If
this event is constrained by events in other streams, a check is made to see if that constraint has
been satisfied. If the constraint is satisfied the event is routed to those destinations for which the
constraint has been satisfied. If the constraint is not satisfied, the event is either discarded or queued
for subsequent delivery. The arrival of an event which signifies that a future stream context or a
certain numbered stream context is not likely to occur, will cause the garbage collection of events
which were queued pending the receipt of such a releasing event.

5.1.6 When to proceed with resolving spatial dependency of the next
event

The occurrence vector O specifies the number of events within other event streams that are needed
to satisfy an event’s dependency. Elements within the occurrence vector themselves contain two
constraints1. For delivering an event e we require only the weakest constraint of the occurrence
vector element to be satisfied. Ensuring that constraints are fully satisfied prior to delivery is not
practical in a live setting. It is, for example, impossible to know how many events would satisfy the
constraint between two related streams.

5.2 Resolution of chronological dependencies

Merging of event streams requires resolving both the spatial
s
↪→ and the time dependency

t
↪→. Timing

dependencies
t
↪→ are either imposed at stream E ’s source or are predefined along with the spatial

dependencies
s
↪→, that exist between streams. In the former case, events in streams E j ∈ Π await

their timing constraints from the source stream E prior to reception at a client. Newly generated
events which add to streams in Π could either be request or response events. Request events do not
have a context associated with them. The spatial dependencies may be self contained within the
event itself, the timing dependencies are however dictated by the timing considerations at the source
of the merged stream i.e. the source for E . It is this timing dependency which dictates the order
for these events within the merged stream. Response events are events added to a stream E j in
response to the newly generated event which adds to the stream E j ∈ Π . The timing dependencies
for response events are implicitly specified by the system, the constraint imposed by the system is
that the response event cannot be received at a client till such time that the associated request event
has been received.

The rule is simple — request events can exist alone, however the response events exist only within
the context of the <request, response> tuple. The merged stream at the stream E ’s source is what
comprises the playback stream. The spatial and timing dependencies thus dictate the ordering of

1zero or more, one or more, zero or none etc
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events within the merged stream. There could be a number of request events that are generated by
clients throughout the system, and they would seem to occur in a different order at each interested
client. However, the total ordering of these requests is determined by the order in which these events
were received at the stream E ’s source.

5.3 Resolution of dependencies for newly added events

When we say e ↪→ ej it implies that e has a spatial dependency
s
↪→ on ej for its completeness and

also that e and ej are chronologically related (
t
↪→) i.e. ej occurs later than e in the direction of

time’s arrow. For an event e the notion of time’s arrow is asymmetric, an event ei doesn’t know
when exactly the next event ei+1 follows, but it is aware of the occurrence of an earlier event ei−1.

For an event ei
t
↪→ ej , the

t
↪→ is either δt or some chronological constraint ti,j . The δt constraint

is determined by the granularity of the clock in the underlying system and is the minimum
t
↪→

constraint that can exist between two events that are
s
↪→ related. The notion of time that events

have is one of relative times. Figure 5.2 depicts the timing dependencies, which exist between a set
of events. The figure also outlines how timing dependencies could be explicitly specified and how
they could be implicitly conjectured by the system. Constraints are specified based on the intervals

between the occurrence of successive events. The
t
↪→ dependency operates within the context of the

spatial dependency
s
↪→. For e

s
↪→ ej and e

s
↪→ ek there are no ordering constraints imposed on the

delivery of events ei, ej with respect to each other. Thus events ei and ej have neither a spatial nor
a chronological dependency between them though they are events within a merged stream.

t e1 e2

e3
e4 e5

Implicit time
t1 +

Time constraints
 +t4 n

Figure 5.2: Dependencies and chronological ordering.

In the case of E j ∈ Π new dependencies could also be generated due to live streams. These are
due to the events generated, which add to one or more of the streams in Π. Each of these events

have a
s
↪→ and a

t
↪→ dependency that is either implicitly conjectured by the system, or explicitly

specified within the event. In the case of spatial dependencies, the implicit dependency is defined by

the context in which the event occurred. The corresponding chronological dependency
t
↪→ is either

implicitly or explicitly specified. In the case of chronological dependencies the implicit constraint
is specified by δt, which specifies the minimum time between two spatially related events. If the
existing live event at a client is e (where e is an event in one of the streams in Π), the e is being

s
↪→

resolved. When the event was added to one of the streams in Π then eN
s
↪→ e. The relation s

↪→ is a
transitive relationship.

Figure 5.3 depicts one of the possible scenarios for resolving dependencies. Client A in the figure
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Figure 5.3: Resolving dependencies.

is the source for streams E and E j ∈ Π . Of course all the streams in Π could have been hosted at
A, which is where ultimately the merged stream characteristics are specified. The session is a live
session where all the streams have events that would be issued as time progresses in the system.
There could be zero2 or more clients interested in a merged stream, we consider one such client B.
Clients interested in a merged stream can add one or more events to zero or more streams which
constitute the merged stream.

Let us first consider the case for client A. If the spatial context at A is E .e and an event ej is

added to E j then ej
t
↪→ e. This spatial dependency must be consistent with the dependencies that

exist between events in E j and E . The timing constraint is specified by the difference between the
time when event e was received and the event ej was added to the event stream E j .

Now consider an event ek being added to one of the streams in Π by the client B. For a sequence
of dependency resolved events e1, e2, e3 this event was added within the context e3. However at A
the spatial context is now e5 where e5 ↪→ e3, i.e the event e3 has already be received. The spatial

context thus needs to be resolved (a process that would take place during playbacks). The
t
↪→ is

assigned based on the receipt of the events at E . Clients, other than B and A, need to await the
chronological context (from A) associated with events added by B to streams ∈ Π, prior to the
event’s reception at the client.

For playbacks the context is assigned by A in the following manner. For a dependency chain
e5 ↪→ e4 ↪→ e3 ↪→ e2 at A. Event ek was received at A when e5 was the active context, but ek when
it was issued, had a spatial context in e3. Now e4 ↪→ ez ↪→ · · · ex ↪→ e3 is the complete dependency
chain between e3 and e4 in the merged stream existing at A during the receipt of ek. In this case ek
is attached just prior to e4 in a manner which is consistent with e3’s dependency chain. Thus the
dependency chain between e3 and e4 now is – e4 ↪→ ek ↪→ ez ↪→ · · · ex ↪→ e3.

5.4 Playback of event streams

All the interested clients may not have registered their interest during the live stream. Playbacks
ensure the delivery of these missed streams at a subsequent time. Playbacks are initiated by a
profile change δω or a subsequent join into the system after a prolonged disconnect during which
the clients had missed several events. In the case of the profile change δω all the events in the event
streams are routed to it while in the case of a client re-entering after a disconnect only the relevant
events are played back. During playbacks what a client gets is the merged event stream, with all
the dependencies resolved, in response to the interest in event stream E .

2We are excluding stream sources which express an interest in their own events in order to avoid garbage collection
of events in their streams. This is an artifact of the PPP and ERP which would automatically garbage collect those
events which were issued when no clients had registered an interest in the stream sources.
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In addition, during playbacks a client interested in E ↪→ Π could add one or more new events to
one or more streams in Π. Subsequent playbacks for other clients include the updated streams with
the requests and <request, response> tuples added during a prior playback. Merged streams should
be able to reside on different stable storages of the system, reconstruction would need to determine
the locations of storages for E ↪→ Π .

5.5 Streams & interpretation capabilities

Different clients have different interpretation characteristics. This interpretation capability is a
function of the underlying system at the client. The streams that actually need to be routed3 to a
client are a function of the interpretation capabilities that are available at the client i.e Πclient ⊆ Π,
this of course needs to be taken care by PPP4. The interpretation capabilities are dependent also on
the event transformation switches that are available within the system. The switches are responsible
for transforming the streams into something that can be deciphered by the client. Also if E j /∈ ΠClient

replace E j .e < data > with some value signifying the inability to represent content on the specific
client device.

5.6 Summary

In this chapter we presented a solution to the creation of merged streams. We discussed the resolution
of spatial and chronological dependencies that exist between multiple streams, and how the merged
streams can be created even in the absence of clients interested in the streams.

3We are of course referring to the fact that though it is a merged stream that is routed, we only route those events
within the streams that can be interpreted by the client

4Profiles would also need to contain information about the devices that are present within the unit that it is
snap-shot’ing.



Chapter 6

The Reliable Delivery Of Events

The problem of reliable delivery [40, 11] and ordering1 [13, 12] in traditional group based systems
with process crashes has been extensively studied. The approaches normally have employed the
primary partition model [61], which allows the system to partition under the assumption that there
would be a unique partition which could make decisions on behalf of the system as a whole, without
risk of contradictions arising in the other partitions and also during partition mergers. However the
delivery requirements are met only within the primary partition [39]. Recipients that are slow or
temporarily disconnected may be treated as if they had left the group. This model, adopted in Isis
[10], works well for problems such as propagating updates to replicated sites. This approach does not
work well in situations where the client connectivity is intermittent, and where the clients can roam
around the network. Systems such as Horus [60] and Transis [28] manageminority partitions, and can
handle concurrent views in different partitions. The overheads to guarantee consistency are however
too strong for our case. DACE [14] introduces a failure model, for the strongly decoupled nature of
pub/sub systems. This model tolerates crash failures and partitioning, while not relying on consistent
views being shared by the members. DACE achieves its goal through a self-stabilizing exchange of
views through the Topic Membership protocol. In [8], the effect of link failures on the solvability of
problems (which are solved with reliable links) in asynchronous systems, has been rigorously studied.
[63] describes approaches to building fault-tolerant services using the state machine approach.

Systems such as Sienna [19, 18] and Elvin [65, 37, 64] focus on efficiently disseminating events,
and do not sufficiently address the reliable delivery problem in the presence of failures. In Gryphon
the approach to dealing with broker failures is one of reconstructing the broker state from its neigh-
boring brokers. This approach requires a failed broker to recover within a finite amount of time,
and recover its state from the brokers that it was attached to prior to its failure. SmartSockets
[24] provides high availability/reliability through the use of software redundancies. Mirror processes
receiving the same data and performing the same sequence of actions as the primary process, allows
for the mirror process to take over in the case of process failures. The mirror process approach
runs into scaling problems as the number of processes increase, since each process needs to have a
mirror process. Since there is an entire server network that would be mirrored in this approach the
network cycles expended for dissemination also increases as the number of server nodes increases.
SmartSockets also allows for routing tables to be updated in real time in response to link failures
and process failures. What is not clear though, is how the system is affected if both the process
and its mirror counterpart fail. TIB/Rendezvous [25] integrates fault tolerance through delegation
to another software TIB/Hawk which provides it with immediate recovery from unexpected failures
or application outages. This is achieved through the distributed TIB/Hawk micro-agents, which
support autonomous network behavior, while continuing to perform local tasks even in the event of
network failures.

Message queuing products are statically pre-configured to forward messages from one queue to
another. This leads to the situation where they generally do not handle changes to the network
(node/link failures) very well. They also require these queues to recover within a finite amount of

1The ordering issues addressed in these systems include FIFO, Total Order and Causal Order
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time to resume operations. To achieve guaranteed delivery, JMS provides two modes: persistent for
sender and durable for subscriber. When messages are marked persistent, it is the responsibility
of the JMS provider [23, 46, 45, 22] to utilize a store-and-forward mechanism to fulfill its contract
with the sender (producer). A durable subscription is one that outlasts a client’s connection with a
message server.

6.1 Issues in Reliability & Fault Tolerance

The system we are considering could have the failures listed in section 2. Each of these failures could
lead to network partitions. In a distributed asynchronous system, it is impossible to distinguish a
crashed process from a failed one, and a failed link from an overloaded one. In addition to the
failures that we are considering, incorrect suspicions may result due to overloaded links and slow
processes. These failure suspicions, both correct and incorrect, can also lead to network partitions.
We need to ensure that partitions make safe progress during the network partitions in concurrent
views of the network and also that there are no contradictions during the partition mergers after
the partition has been repaired.

Failures could also manifest themselves in the form of node failures, consecutive node failures,
cluster failures and so on. The objective that we are trying to meet is to ensure safe progress of
operations and meeting system guarantees in the presence of failures. In the remainder of these
sections we address each issue separately and then come up with solutions that solve this problem.

6.1.1 Message losses and error correction

With respect to mechanisms for error correction, protocols can be broadly separated into two cate-
gories: sender-initiated and receiver-initiated. A sender-initiated protocol is one in which the sender
gets positive acknowledgments (ACKs) from all the receivers periodically and releases messages from
its buffer only after an indication that the message has been received at all the intended destinations.
A receiver-initiated protocol is one in which the receivers send negative acknowledgments (NAKs)
when they detect message losses. In receiver initiated protocols the assumption at the sender is that
the message has been received at the receiver unless indicated otherwise by the NAKs. The NAKs
indicate the holes in message sequences. Also, the receivers never send any ACKs to the sender. We
employ a combination of ACK’s and NAK’s to address the problem of message losses and garbage
collection. In short, error correction on the link is handled using NAKs while garbage collection is
performed using the ACKs.

Message losses due to consecutive node failures

In figure 6.1.(a) we have a situation where the two nodes ensure reliable delivery using a series
of positive acknowledgements (ACKs). Node A will not garbage collect a message m until it has
received an ACK(m) from B. However it is possible that node B experiences a crash-failure imme-
diately after issuing an ACK(m) to A. Message m would thus never be received by C. We could try
and rectify this situation as in figure 6.1.(b) by requiring that a receiving node issue an ACK only
after it has forwarded the message. This would solve our earlier problem, but this approach simply
pushes the problem further in space, since the scheme would breakdown in case of successive broker
failures after an ACK(m) has been issued by the soon to fail node B (the other one being C). Nodes
B and C fail after B issued an ACK(m) and before C could forward m to D. The message m is lost
since A has already garbage collected it and D does not know if it should have received m (for that
matter it would not even know about the existence of m to even detect its loss) in the first place.

Augmenting the client nodes with reissue behavior till such time that the event has been stored
onto a stable storage circumvents this problem. Once an event is stored onto a stable storage, the
guarantee is that the event can be recovered even in the presence of failures that could take place.
There is a timer associated with every event e that is issued by a client and held in the client’s local
queue. Unless the client receives a storage notification before the timer’s expiry the event would be
reissued and the timer reset. The timers associated with events in the local queue are updated every
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Figure 6.1: Message losses due to successive node failures

∆t. The timer associated with the event is reduced by ∆t after every failure to receive a storage
notification within the ∆t prior to the timer’s expiry. If a storage notification is received prior to
this timer’s expiry the corresponding event is garbage collected from the clients local queue. If such
a notification is not received, the event is reissued.

Depending on the client’s processing power, this reissue behavior could be delegated to the server
node that the client is attached to. The server node then is responsible for ensuring that the event
is written to stable storage. The ∆t associated with the event on the client side could be increased
and checks only need to be made to ensure that the server node, which the client is attached to is
functioning correctly.

6.1.2 Gateway Failures

There could be multiple gateways connecting different units. Gateways could also suffer transient
failures, which could be a result of overloaded links etc. It could also suffer a permanent failure due
to a failure of the link or the gatekeeper at the other end, which comprises the gateway.

Transient gateway failures

In this case the events are stored at the gatekeeper experiencing problems. The gatekeeper node
regularly tries to resend these events over the gateway. In addition some of the events could be
garbage collected based on the gatekeeper’s awareness of the interconnection scheme existing within
the system and also based on the information provided by the gatekeepers, which provide gateways
to the same unit.

We use multiple gateways to provide us with a greater degree of fault tolerance. We also need
to use this information to also determine whether certain events need to be stored at a gatekeeper
when the gateway, which the gatekeeper provides experiences either transient or permanent failures.

Permanent gateway failures

This would call for an update of the connection information by the gateway propagation protocol.
This information would be used by the nodes in tandem with the routing information contained in
the event to decide the next hop that the event would take en route to its destinations.

6.1.3 Unit Failures

When we refer to unit failures, we are referring to the failure of all the nodes and associated gateways
within that unit. In the case of unit failures, all the nodes within this unit would eventually be
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deemed failed by the attached client nodes. This failure confirmation would result in a roam of all
the attached client nodes. The system would already have treated all the client nodes within that
unit as disconnected clients, and would have proceeded to store events for eventual routing. The
rerouting of events to the client, which roamed to a new location, is based on the replication scheme
that presently exists in the part of the system, which the node it was last attached to is a part of.
The unit which has stored the events that should have been routed to the client needs to intercept
the request for a reroute and then proceed with applying the filter operation for the recovery of
events.

Cluster-A

1 2

dc

a b
Failed Node

Client initiating
a roam

Figure 6.2: Client roam in response to a node failure.

In sections 6.2.5 we discuss the process of handling events for a disconnected client, while in
section 6.2.6 we discuss the process of handling events for a newly reconnected client.

6.1.4 Network Partitions

Network partitions can be caused both by link failures and node2 failures. The issues to deal with in
the case of network partitions differ considerably from the unit failure cases. Unlike the unit failure
cases where the clients can initiate a roam, it is possible that a client is attached to a node within
a partition which is fully functional. Thus, we need mechanisms to –

• Detect partitions.

• Ensure safe progress in concurrent partitions.

• Merge partitions while maintaining consistency.

6.1.5 Detection of partitions

Partitions arise due to node failures or link failures. There are two different kinds of partitions that
can arise in our system due to a connection failure – unit partitions and system partitions. The way
the system deals with each case is different. Dealing with partitions is through delegation where
each super-unit of the system deals with the partitions that arise within its units. Detection of
partitions is an extremely desirable feature since, in our system, a client can roam in response to the
partition. Thus, clients hosted within partitioned units can roam to nodes that are in the majority
partition. This calculation of the nodes to roam to during partitions could also be based on some
system defined rule. Healing of the partitions could result in the affected units being able to deal
with clients in a consistent manner and share the client load of the system.

Figure 6.3 depicts the connections that exist between various units of the 3 level system which we
would use as an example in our discussions. The nodes within the connectivity graph are organized

2In this case the node could be a gatekeeper, or is on the route to a gatekeeper. If this is the only node which
leads to a specific gatekeeper, a failure in this node leads to a network partition
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Figure 6.3: Connectivities between units and the detection of partitions

as nodes at various levels. Associated with every level-* node in the graph are two sets of links – the
set LUL that comprises of connections to nodes nai � a ≤ * and the set LD comprising of connections
to nodes nbi � b > *.

Figure 6.4 depicts the connectivity graph that is constructed at the node SSC-A.SC-1.c.6 in
Figure 6.3. The set LUL at the node SC-3 in the figure comprises of node SC-2 at level-2 and
node b at level-1. The set LD at SC-3 comprises of the node SSC-B at level-3. The information
contained in the loss of connections is identical to that contained in the addition of a new connection.
Also the dissemination of this loss of connection is dealt with in exactly the same way as additions
are as described in section 4.2.3.

When a connection is lost we remove the connection from the connection table maintained at
every node. This is based on the unique identifier associated with every connection. Next we check
to see if there are other connections that exist between the corresponding nodes in the connectivity
graph. If the link count associated with the connection edge is greater than one, then we decrement
the link count associated with the connection and conclude that the connection loss is compensated
by other existing connections between the two corresponding units. A situation where the link count
is reduced to zero results in the removal of link information from the sets LUL and LD associated
with the node. If the connection that was lost is the connection < nxi , n

y
j , * > (where x | y = *

and x, y ≤ *), then if y ≤ x node nyj is removed from the set LUL associated with node nxi and nxi
is removed from the set LD associated with the node nyj . The process is reversed if x ≤ y. The
detection of partitions is very simple. At the node whose LUL is updated to reflect the connection
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Figure 6.4: The connectivity graph at node 6 and the detection of partitions.

loss. If #LUL = 0
⋂
#LD = 0 (where # is the cardinality of the individual sets), then the unit

corresponding to the node is system partitioned. If #LUL = 0, then the unit corresponding to the
node is unit partitioned.

Referring to the connectivity graphs in Figure 6.4, in the case of node 6, the loss of the connection
between clusters a and b, results in the cluster b being unit partitioned within SC-1 though it is
connected to SC-3. If however the only link that failed is the one connecting SC-1 and SC-3, no
units are partitioned. In the last case, if the link connecting clusters a and b fails and the link
connecting cluster b and super-cluster SC-3 also fails, node 6 in Figure 6.4 concludes that cluster
b has been system partitioned.

For nodes with #LUL = 0 the cost associated with reaching the vertex node approaches ∞. All
units which have their shortest path to the vertex resulting in a cost, which approaches ∞ are unit
partitioned.

Ensuring progress in concurrent partitions

Concurrent partitions may contain clients which issue events and also other clients which are inter-
ested in those events. The interested clients should thus be able to receive events which are currently
being issued within that partition. All these events would, of course, need to be stored onto a stable
storage, for rerouting during partition mergers.

Partition Mergers

Each partition keeps track of the last events that were received by the gatekeepers in individual
partitions. Based on this information appropriate events are routed. Of course prior to this we
need to also account for the profile reconstruction since there could be clients which have initiated a
roam. Similarly, events issued by clients, either during disconnected mode operations or server node
failures, and subsequently held in the client’s local queue would be fed back in to the system.

6.2 Stable Storage Issues

Storages exist en route to destinations but decisions need to be made regarding when and where
to store an event and also on the number of replications that we intend to have for any given
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event. Events can be forwarded to clients only after they have been written to stable storage. The
greater the number of stable storage hops en route to delivery to a client, the greater the latency in
delivering the event to that client. We also need to address the issues pertaining to the control of
the replication scheme. In section 6.2.1 we discuss the replication scheme for our system, and the
process of adding stable storages within a sub-system. Section 6.2.3 describes the need for epochs,
the assigning of epochs and the storage scheme for events. Section 6.2.4 describes the guaranteed
delivery of events to all units within the subsystem. Finally in section 6.2.6 we describe the recovery
scheme for roaming clients or clients connecting back after a prolonged disconnect.

6.2.1 Replication Granularity

In our storage scheme, data can be replicated a few times, the exact number being proportional to
the number of units within a super unit and also on the replication granularity that exists within a
specific unit. For a level-* system, if there is a stable storage set up for servicing all the server nodes
within that unit, then we denote the replication granularity for nodes within that part of the sub
system as r�. Thus if the replication strategy is one of replicating within every cluster in case of a
3-level system with M units at each level, a certain event that would be received by all the clients
within the system would be replicated M ×M ×M times. Of course what we are considering here
is the extreme case, but nevertheless, it is an exemple of how the replication strategy is a crucial
element within the system. We also need a garbage collection scheme, which ensures that the storage
space does not increase exponentially.

Stable storages exist within the context of a certain unit, with the possibility of multiple stable
storages at different levels within the same unit. We do not impose a homogeneous replication
granularity throughout the system. Instead, we impose a constraint on the minimum replication
scheme for the system. In an N -level system, comprising of level-N units, we require that every node
have a replication granularity of at least rN . Thus in a system comprising of super-super-clusters
we require that every server node within every super-super-cluster have a replication granularity
of at least r3. This is, of course, the coarsest grained replication scheme. There could be units
present within the system that have a replication strategy, which is more finely grained. The other
constraint, which we impose is that within a level-* unit u�i there can be only one stable storage at
level *.

The interaction between the stable storages of a unit and the stable storages within the sub units
needs to address both the redundancy and garbage collection issues. Stable storages store events
that the unit it is servicing, is interested in. This is ensured by the ERP, which would ensure the
routing of only the interesting events. The node which best serves this purpose is the gatekeeper
node. As discussed earlier (section 4.3.5) PPP ensures that a gatekeeper g�i (C

�+1
j ) snapshots the

profile of every level-* − 1 unit within its level-* GES context Ci. Thus, if we fix the replication
granularity at *, one of the gatekeepers g�(C�+1

j ) within the GES context C�+1
j is responsible for the

event storage. One of the advantages of this scheme is that we store only those events that we are
interested in; since a unit gatekeeper is aware of the unit’s profile.

Figure 6.5 depicts the different replication strategies that can exist within different parts of a sub
system. As can be seen super-super-cluster SSC-B has a replication granularity r3, while super-
cluster SC-4 within SSC-B has a replication granularity r2. Cluster l has a replication granularity
of r1. Also, in the depicted replication scheme there could be no other node in SSC-B that serves
as a stable storage to provide the nodes in SSC-B with a replication granularity of r3. Similarly,
there could be no other stable storages, which try to service units SC-4 and SC-6 with a replication
granularity of r2. Table 6.1 lists the replication granularities available at different nodes within the
sub system depicted in figure 6.5.

Requirements (6.2.1), (6.2.2) and (6.2.3) snapshot the various constraints that we impose on our
replication strategy.

Requirement 6.2.1 In an N -level system, the replication granularity at each and every node in
the system must be at least rN .
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Figure 6.5: The replication scheme

Requirement 6.2.2 A level-* stable storage can only be set up at a node, which serves as a level-*
gatekeeper.

Requirement 6.2.3 For a level-* unit u�i only one of the gatekeepers g
� can be configured as a

level-* stable store.

Adding stable storages and updates of replication granularity

When a stable storage is configured as a level-* storage, we try to update the replication granularities
associated with the nodes within the level-* unit u�i that the stable storage is a part of. For a node
x if the node’s replication granularity is rxm, there are two possible outcomes. If m > * the node’s
replication granularity is updated to * i.e. rx� . On the other hand if m < * the replication granularity
for the node is left unchanged. Thus for example if the unit had a granularity of rx3 and r2 has been
added, the granularity is changed to rx2 . A condition where m = * is an error condition since it
depicts the presence of multiple stable storages at the same level, a situation which should not
arise because of the constraint that we have imposed. Every node also keeps track of r�(min) and
r�(next), which refer to the minimum replication granularity and the next highest one respectively.
This comes into the picture during the guaranteed delivery of events, and is used to retrieve data
from other stable storages when a finer grained store is added (discussed in section 6.2.3).

To sum up our discussions so far, let us consider the topology in figure 6.5. We then proceed
to set up a stable storage at node SSC-B.SC-6.m.18. Further, we configure this stable store as
a cluster storage with a replication granularity of 1. The replication granularities at nodes 16,17
and 18 are then updated to r1 from r2. If however, we were to set up a level-2 stable storage at
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Nodes Granularity r� Servicing Storage

10,11,12 r3 1

1,2,3,4,5,6,7,8,9 r2 9

16,17,18,19,20,21 r2 19

13,14,15 r1 14

Table 6.1: Replication granularity at different nodes within a sub system

node 10, the replication granularities at nodes 10,11 and 12 would be updated from r3 to r2. The
replication granularity for every server node in the cluster SC-5.l remains unchanged at r1.

6.2.2 Stability

For an N -level system with a minimum replication granularity of rN , the responsibility for ensuring
stability of messages is delegated to the finer grained stable storages for those sub systems where
the replication granularity is less than N. In the case of multiple stable storages, at different levels
within a single super-unit, the stability requirements for individual nodes are delegated to the finest
grained store servicing the node. Thus, in figure 6.5 stability for nodes 13,14 and 15 is handled by
the cluster storage at node 14 while that for nodes 10,11 and 12 is handled by the level-3 stable
storage at node 1. Every event in the system should be stable since we should be able to retrieve it
in case of failures or roams initiated by clients. Stable storages need to wait for notifications prior
to the garbage collection of events. To aid in this process of garbage collection of events from stable
storages, we make a small change to the way an event’s destinations are computed at a storage
node. When a node is hosting a stable storage with r�, this node is responsible for computing
destinations, comprising of units at level-(*-1), within the level-* unit that the node belongs to.
Along with these destinations the node also computes the number of predicates per destination that
are interested in receiving the event. The predicate count per destination allows us to garbage collect
events upon receiving acknowledgements from the destinations associated with a given event. The
acknowledgements include the number of predicates that were serviced at the destinations. The
destination associated with the acknowledgement is updated depending on the gateway that the
destination is being transmitted over. For acknowledgements issued by a server node that has a
replication granularity of r� the acknowledgement is never sent over a level-* gateway g�. Thus,
acknowledgements to decrement the predicate count for a cluster storage should never be allowed to
leave the cluster.

If finer grained stable storages are present within the subsystem with r�, the receipt notification
is slightly different. As soon as the event is stored to the finer grained stable storage, this stable
storage sends a notification to the coarser grained storage indicating the receipt of the event and also
the predicate count that can be decremented for the sub-unit that this storage is servicing. Thus, in
figure 6.5, when an event stored at node 1 is received at node 19, we can assume that all nodes in
unit SC-6 can be serviced and decrement the reference counts at the level-3 stable storage at node
1 accordingly.

6.2.3 The need for Epochs

We digress here to discuss the need for epochs. When a node is hosting a stable storage with r�,
the node is responsible for computing destinations at level-(* − 1) within the level-* unit that the
node belongs to. Along with these destinations the node also computes the number of predicates per
destination that are interested in receiving the event. The predicate count per destination allows us
to garbage collect an event upon receiving acknowledgements from the event’s destinations. Consider
the following scenario where the predicate count equals the client count for the destination associated
with an event. Unit sA has a total of 156 clients attached to it and unit sA fails. Clients which
detect this failure would initiate a roam. Local queues could be constructed for each client that has
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initiated a roam in response to this failure. For each queue constructed and sent across the system
to its new hosting unit, the reference count associated with every event contained within the queue
is decremented by one. However, it is conceivable that a client could have been attached to sA and
that this client had joined the system for the first time prior to the unit’s failure. This client is thus
not the intended recipient of any of the local queues that would be constructed in response to the
servicing of roaming clients. If this client is one of the first clients to initiate a roam, local queues
would be constructed for it and the reference counts of the events contained within this local queue
would be decremented by one. This operation would lead to the starvation of at least one client, if
any of the 156 clients contained a profile which partially matched that of the new client.

The second scenario is for a client cA, which has received events e0 · · · e25 in its incarnations
(past and present) prior to a disconnect in its present incarnation. During the time that cA was
disconnected the only event targeted to it was e26. When cA reconnects back the only event that
should be routed to it should be e26 and not the events that it has already received in its previous
incarnations.

The two scenarios dictate that we need epochs. The two primary issues that we seek to address
are –

(a) We should not construct recovery queues for clients that would comprise of events that a client
was not originally interested in. This as we discussed earlier could lead to starvation of some
of the clients.

(b) We need a precise indication of the time from which point on a client should receive events.
This besides leading to client starvations would also cause the system to expend precious
network cycles in routing these events.

Epochs are used to aid the reconnected clients and also to recover from failures. The reason why
we can not delegate the event queue generation scheme to the individual units is that a unit can
fail and remain failed forever. It is best that the event queue generation is handled by the system
as there could be stable storages that could be added within the system and the storage could be
delegated to the stable storages that exist at different levels within the same GES context.

Epoch generation

Epochs, denoted ξ, are truly determined by the replication granularities that exist in different parts
of the system. In the case of a client, it is the GES context of the server node that the client is
attached to, which determines the epoch. A client could be operating in disconnected mode. Such
a client is nevertheless still serviced based on its profile, the destination for delivery being the node
or unit (in case the node fails) at which the client was last present. This profile along with its last
logical address serves as a proxy for the client in its absence. Some of the details pertaining to epoch
generation are listed below –

(a) Epochs should monotonically increase.

(b) Epochs for clients exist within the context of the finest grained stable storage that the server
node (that it is attached to) is a part of. Thus, if the server node has a replication granularity
of r2, valid epochs for events received by the client, would be those that have been assigned
by the corresponding level-2 storage.

(c) For every client with a profile ω there is a epoch ξω associated with it.

The fact that there is only one epoch associated with every ω, follows from property (b)
and also from the constraint that there can be only one stable storage configured for servicing
a unit u�i with a granularity of r�.

Requirement 6.2.4 A persistent client will not receive an event e unless there is an epoch, ξe,
associated with the event. Also, this epoch should be assigned by the stable storage servicing the
server node that this client is attached to.
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For a profile ω associated with a client, we denote the smallest individual profile unit as δω. Events
are routed to a client based on the δω that exist within a profile ω. However, every event received
at a client needs to have an epoch associated with it to aid in the recovery from failures and also
to service events that have not been received by the client. The arrival of such an event results in
an update of the corresponding epoch associated with the client’s profile. Profile changes initiated
by a client also have an epoch associated with it. This is discussed in a later section. The reason
why we do not need an epoch for every δω is that the epochs are assigned to a client by the stable
store, and irrespective of the addition of stable stores at different levels these epochs monotonically
advance, and the reception of an epoch easily allows us to conjecture about the events that should
be (or have been) received.

The replication granularity within the system could be different in different sub systems. Within
a subsystem having a replication granularity r�, it is possible that there are subsystems with repli-
cation granularity r�−1, r�−2, · · · , r0. In such cases the epochs assigning process is delegated to the
corresponding replicators. If a node within u�i has a granularity of r�, it needs to await the receipt
of an epoch assigned by the level-* storage at u�i , before forwarding this event to the relevant clients
attached to this node. Thus the epoch associated with the same event could be different at different
clients in the system. In figure 6.5 it is possible that by the time an event arrives at node 15 there
will be two different epochs associated with it, only one of which is valid for clients attached to node
15. Also epochs associated with the same event could be the same at different parts in the system.
Thus clients attached to any of the nodes in SC-6, in figure 6.5, have the same epochs (assigned by
the store at node 19) for events that they would all receive.

The storage format

When an event is written to a stable storage, there are epoch numbers associated with it. Since
all events are not routed to all destinations we maintain the destinations associated with the event.
Besides the destinations associated with the event, the matching operation at the stable storage
nodes also return the predicate count associated with the event. This information is used to service
roaming clients or clients rejoining after a prolonged disconnect. Using this information these recon-
necting clients are still able to ensure that the events they consume can be scheduled for garbage
collection from the stable storages, once the reference count for these consumed events reduces to
zero. We also maintain information pertaining to the type of the event and the length of the serialized
representation of the event. Finally we maintain the serialized representation of the event. Thus,
the storage format is the tuple – < ξe, (de0, d

e
1, · · · , den), (pe0, pe1, · · · , pen), e.type, e.length, e.serialize >.

Epochs and profile changes

Whenever a profile change is made, there needs to be an epoch associated with the profile change.
The epoch, assigned by a replicator, depending on the subsystems granularity is an indicator of
the time from which point on, that change would be serviced by the system. If an epoch is not
associated with profile changes, it is conceivable that starvation of some client would occur. Consider
the following scenario, a client receives a sequence of events e1, e2, · · · , en. For an extended duration
this client does not receive any events. The last epoch that it received was ξn. This client then
proceeds to make a profile change, and leaves the system. When the client rejoins the system at
a later time, this client would expect to receive all the events that it missed. This set of missed
events would include events, which satisfy the profile change the client last made, starting with its
last known epoch ξn.

We thus have an epoch associated with every profile change and require that the client to waits
till it receives the epoch notification, before it can disconnect from the system.

Epochs and the addition of stable storages

In this section we describe the process of adding stable storages. Consider a scenario where a new
store is being added within a unit uni . The present replication granularity of this unit is rm and the
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new storage for this unit is at level-n. The addition of a stable storage at level n is disseminated
only within the unit uni that the hosting node belongs to.

If n < m the new stable storage should access the storage with rm and retrieve the events
which were meant to be disseminated within the unit uni . The predicate count associated with
the destinations for each individual event needs to be updated accordingly to reflect the predicate
counts associated with the sub-units in uni . The epochs associated with these retrieved events should
however remain unchanged. This is especially crucial since there are clients, attached to nodes in
the unit uni , which have epoch numbers associated with their profiles based on the ones assigned by
storage hosting rm. The epochs associated with the client profiles should remain consistent even if
a new stable storage is added. Once this event retrieval process is complete, the newly added stable
storage is ready to assign epoch numbers to the events. The first event that this newly added storage
is ready to store, after the retrieval process is complete, is the epoch number from which point on
the epoch numbers assigned by the old store rm and the new store rn can deviate. If n > m at
any of the sub-units within uni the replication granularity for nodes in those sub-units will not be
updated.
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Figure 6.6: Adding stable stores

Figure 6.6 depicts the replication scheme that exists in different parts of the system and also the
addition of a new super-cluster storage at node 10. Prior to the addition of the stable storage at
node 10, the replication granularity at the server nodes in cluster k is r3 while that in cluster l is
r1. When the new level-2 storage is added, this information is disseminated only within the super-
cluster SC-5. After the dissemination of the storage information, node 10 needs to communicate
with the r3 storage at node 1 and retrieve the events that have SC-5 in the destination lists. These
retrieved events when they are stored at node 10 have their epoch numbers unchanged. This is
because clients attached to the nodes in cluster k have their profile epochs updated by the events
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with epochs assigned by the r3 storage at 1. These epochs thus need to be consistent across the
addition of stable storages. Let us say that the epoch associated with the last such retrieved event
by node 10 is ξnode(1)250 , the next time an event arrives at node 10 the epoch assigned to that event
would be ξnode(10)251 . Thus clients which were attached to cluster SC-5.k in an earlier incarnation,
when they reconnect back, can use their epoch to recover completely. For the stable storage at node
10 the destination list and the corresponding predicate counts associated with the retrieved and new
events should be with respect to the clusters k and l.

The addition of the level-2 stable storage at node 10 has no effect on the replication granularity
of server nodes in cluster SC-5.l since for the server nodes in this cluster, the storage that is added
is a coarser grained stable storage.

6.2.4 Ensuring the guaranteed delivery of events

For a level-N system, the stable storages servicing the individual level-N units are also designated as
system storages. Figure 6.7 depicts a system comprising of 4 super-super-clusters and the replication
schemes that exist in different parts of the system. For events issued by clients attached to nodes
within these uN units, these system storage nodes have the additional responsibility that they
maintain events in stable storage till such time that they are sure that all the other uN units within
the system have received that event. When an event is issued within a super unit uNi , the destinations
are computed as described in the event routing protocol. However, before the event is allowed to
leave unit uNi , it must be stored onto the stable storage that provides nodes in u

N
i with the minimum

replication granularity of rN . Thus, in figure 6.7, for an event issued by a client attached to a node
in SSC-B, that event must be stored to the system storage in SSC-B.SC-4.h before it can be
routed to units SSC-A,SSC-C and SSC-D.

The system storage node maintains the list of all known uN destinations within the system.
This destination list is associated with every event that is stored by the system storage. Associated
with these events is a sequence number, which is different from the epoch number associated with
the events that clients receive. Further, sequence numbers associated with events are used only by
the system storages to conjecture the events that they should have received from any other system
storage within the system. These sequence numbers are not used by the clients or the server nodes
within the system to detect missing events. Once the event is stored to such a system storage, it
is ready to be sent across to the other uN destinations within the system. Also, for an event that
is issued by a client within uNi , the event is stored to stable storage (to ensure routing to other uN

units within the system) within uNi and not at any other system storages at the other uN units
within the system. When the events are being sent across gateway gN for dissemination to other uN

units, every event has a sequence number associated with it and also the unit uNi in which this event
was issued. This is useful since the rN replicators (which serve as system storages) in other units
can know which unit to send the acknowledgements (either positive or negative) to. Thus for an
event e issued by a client in SSC-B what we store is – <seqNumber, e, (SSC-A, SSC-C,SSC-D)>.

Every system storage also keeps track of the last sequence number that was received from a
certain unit uNi . Thus the system storage in SSC-B would keep track of the last received sequence
numbers for events published by clients in SSC-A,SSC-C and SSC-D. Each system storage can
now keep track of the events that it should receive from a certain unit uNi . Consider the case where
the system store node at SSC-A has received events with sequence numbers sB1 , s

B
2 , · · · , sB100 from

unit SSC-B. When this system store receives an event with sequence number sB103 from SSC-B,
based on the last sequence number that it received, sB100, it knows that it has missed events with
sequence numbers sB101, s

B
102. This system storage node then issues a NAK to retrieve those events.

When the system storage at SSC-B receives this NAK(sB101, s
B
102), it reissues those events to the

requesting system store. The system storage at SSC-A does not assign an epoch (the system storage
can assign an epoch because it is also a level-N storage) or route the event with sequence number
sB103 till such time that it receives events with sB101, s

B
102 from SSC-B. If an event with sequence

number sB98 (assigned by SSC-B) is received, the system storage at SSC-A discards this event
since it knows that it has already processed this event just as it has processed events with sequence
numbers sB97, s

B
96, · · · sB0 .
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Figure 6.7: Systems storages and the guaranteed delivery of events

Upon receipt of an event with an associated sequence number, other system storages issue an
ACK(seqNum) to facilitate garbage collection. The fact that sequence numbers assigned by any
system storage increase monotonically allows us to sustain the loss of acknowledgement messages.
This is because the receipt of an acknowledgement for an event e (stored with sequence number n)
ACK(n) implies the receipt of events with sequence numbers n, n− 1, n− 2, · · · issued by the system
store. The receipt of an ACK from a certain unit (issued by the unit’s system storage) results in
that unit being removed from the destination lists associated with events with sequence numbers
n, n − 1, n − 2, · · ·. When the destinations associated with an event is reduced to zero the event is
garbage collected. Thus, in our example, for events e1, e2, · · · , en issued by clients in SSC-B and
stored to the system store at SSC-B.SC-4.h with sequence numbers sB1 , s

B
2 , · · · , sBn the destination

list associated with every event stored by the system storage comprises of SSC-A,SSC-C and SSC-
D. The receipt of an ACK(n) from SSC-A results in the removal of SSC-A from the destination
lists associated with the stored events with sequence numbers sB1 , s

B
2 , · · · , sBn . When the destination

list associated with any of these stored events is reduced to zero that event is garbage collected.
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The upward propagation of events

When an event is issued by a client attached to a server node, other clients interested in that event
do not receive the event till such time that there is an epoch associated with the event. This epoch
is dependent on the replication granularity that exists at the corresponding server nodes. The epoch
that is associated with an event should be the epoch that is assigned by the servicing storage for the
server node in question. Events with epochs assigned by replicators r� are valid only within the unit
u�i that the node belongs to. When an event is issued by a client, the reissue behavior ensures that
the event is stored onto a stable storage. If this stable storage is not the system storage (responsible
for rN ), the stable storage node is responsible for storing this event and not scheduling it for garbage
collection, till such time that it receives a notification from the system storage regarding the receipt
of that event. Besides this, for an N -level system, the event is not allowed to leave the unit uN till
such time that there is a sequence number (assigned by the system storage) associated with it. We
use figure 6.8 to explain the routing of events to persistent clients.
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Figure 6.8: The propagation of events in the system

For an event e, issued by a client attached to node SSC-B.SC-5.l.15, the client reissue behavior
ensures that the event is stored to the cluster storage at node 14. Even if the reference count
associated with this event is reduced to zero, the cluster storage cannot garbage collect this event
till such time that the event is stored to the system storage at node 1. It is now the responsibility of
node 14, to ensure the storage of the event e to the system storage and also to initiate corresponding
reissues to ensure the same. This event is not allowed to leave SSC-B, though a gateway does exist
at the super-cluster SSC-B.SC-5. Once the event is stored to the system storage at node 1, it
is allowed to leave the super-super-cluster. This indication is stored in the event via the sequence
number assigned by the system storage. An given event will be stored only at one system storage.
The system storage at node 1 should also send a notification to node 14 indicating that the event was
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stored to the system storage. The event e is then replicated at node 9 and 19, if there are any clients
attached to super-clusters SC-4 and SC-6 respectively. This event which is being disseminated in
say SC-6, would have 2 epochs associated with it — one assigned by the level-3 store at node 1
and the other assigned by the level-2 store at node 19, besides the sequence number assigned by the
system storage at node 1.

Stable storage failures

When a stable storage node fails, the events that it stored would not be available to the system. A
new client trying to retrieve its events is prevented from doing so. The stable storage also misses
any garbage collect notifications that were intended for it. We require this stable storage to recover
within a finite amount of time.

Requirement 6.2.5 A stable storage cannot remain failed forever, and must recover within a finite
amount of time.

6.2.5 Handling events for a disconnected client

This problem pertains to one of the most important issues that needs to be addressed by our system.
A client node has intermittent connection semantics, and is allowed to leave the system for prolonged
durations and still expect to receive all the events that it missed in the interim, along with real time
events. Events are routed based on a clients persistent profile and the persistent profile is what would
be stored at the last server node that it was connected to. The server node also has a persistent
profile which is the sum of the profiles of all the client nodes that are attached to it and all the
disconnected clients which were last attached to it. The persistent profile of the server node is itself
stored at the cluster gatekeeper. Consistency issues pertaining to out of order delivery of real time
events and recovery events aside, our solution to this problem is to delegate this responsibility to
the server node that the client was attached to prior to a disconnect/leave.

When a client is not present in the system, the event is not acknowledged and thus can not
be garbage collected by the replicator that this client was being serviced by. The events are thus
available for the construction of recovery queues when the client connects back into the system.

6.2.6 Routing events to a reconnected client

The client in question could be both a roaming client or a client which has reconnected after a
prolonged disconnect. Associated with every client is the epoch number associated with the last
event that it received or the last profile change initiated by the client. The routing for the client is
based on the node that the client was last attached to. It is this node that serves as a proxy for the
client. If this node fails it is the cluster gateway, of the cluster that the node belonged to, which
serves as a proxy for the client. As mentioned earlier, in our system a node/unit can fail and remain
failed forever.

One of the disadvantages of having a client keep track of the servicing stable storages is that
when the client is operating in the disconnected mode, there could be other stable storages which
are servicing the unit to which the client was last connected. However, the client is not aware of
this new stable storage and could possibly lose events which it was supposed to receive.

Stable storages at a higher level (minimum replication granularity) are aware of the finer grained
replication schemes that exist within its unit. If a higher level unit is managing the lower level GES
context of the client’s logical address, the system would use the higher level stable storage to retrieve
the client’s interim events. Otherwise the system would delegate this retrieval process to the stable
storage which services the client’s lower level GES context. A client’s logical address provides the
system with the stable storage that should be used for the construction of queues containing events
that were missed by the client.

It is possible that this stable storage is unavailable during a subsequent client reconnect and
construction of event queues. From Requirement 6.2.5 it is clear that these storages would recover
within some finite amount of time. During such a recovery the system should be able to reconstruct
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the event queues which it failed to create and route these event queues to the client. This requires
that –

(a) The unit keeps track of all the requests for event queue construction that it failed to service.

(b) Unserviced clients notify the unit about its location, every time it issues a roam.

For a profile ω associated with a client, when a disconnected client joins the system it presents
the node the it connects to in its present incarnation the following –

(a) The logical address of the server node that this client was attached to in its previous incarna-
tion.

(b) The last epoch ξ received from the replicator within the replication granularity r� of the sub
system that it was formerly attached to.

The replication granularity of the sub-system that the client was formerly attached to
would have changed. The client however need not deal with this. The process of adding
finer/coarse grained stable storages ensures that the epoch associated with the client is suffi-
cient to complete a full recovery.

(c) A list of the profile ID’s associated with client’s profile ω.

Item (a) provides us with the stable storage that has stored events for the client. Item (b)
provides us with the precise instant of time from which point on, event queues of events needs to be
constructed and routed to the client’s new location.

Locating the stable store

When the client reconnects back into the system, based on the logical address of the server node that
this client was last connected to, the stable storage responsible for assigning epochs to clients attached
to that particular server node is located. This works as follows, the request is first forwarded to the
server node that the client was last attached to. Based on the replication granularity r� currently
available at the node, the recovery request is forwarded to level-* servicing storage. The replication
granularity of the sub-system that the client was formerly attached could have been greater than
r�. However the process of adding stable storages accounts for the fact that the epochs would be
consistent for recovery. In the event that the server node is down, the information could be retrieved
from the cluster gateway for the cluster that the node is a part of. Since unlike a server node
without a stable store, a storage node is not allowed to remain failed forever – the servicing storage
will always be retrieved.

The epochs used in the recovery process

Let ξn be the last epoch contained in the event routed to a client in its last incarnation. As
discussed in section 6.2.3 an event e is stored in the following format – < ξe, (de0, d

e
1, · · · , den), (pe0, pe1,

· · · , pen), e.type, e.length, e.serialize >. For any recovering client we first locate the client’s servicing
storage, based on the logical address of the server node that this client was attached to in its previous
incarnation. Among the events that have been stored at this stable storage, what we are interested
in, are those events, which have an epoch greater than ξn. We then compute the second epoch
ξm associated with the recovery request. This is the epoch at the located stable storage when the
recovery request was received. This epoch indicates the point from which point on queues need not
be constructed, since the real time events would be routed to the client by the sub-system that it is
presently attached to. The set of events at the located stable storage, which form the preliminary
set of events to be considered for recovery, are events with epochs greater than ξn and less than or
equal to ξm. The number of events in this preliminary set would be less than or equal to (m − n)
since some of these intermediate events could have been garbage collected.

Within this set of events, the events that could potentially be routed to the client are those for
which the unit that the server node (the client was attached to in its previous incarnation) is a part
of, is one of the destinations. This operation of computing potential recovery events based on the
epochs and the destination list can be performed by a simple filter at the located stable storage.



CHAPTER 6. THE RELIABLE DELIVERY OF EVENTS 70

Profile ID’s and the recovery events

The individual profile predicates δω corresponding to the profile ID’s are marked for removal from
the profile graph, at the subsystem the client was attached to in its previous incarnation. Using
the profile-ID’s we can compute the events that need to be received by the client; within the set of
recovery events computed in the earlier section. This is very important since with the set computed
in the previous section, in general, the number of events that should not be received at the recovering
client far exceeds the number of events that should be received by the client. The stable store then
proceeds to propagate this removal of the profile ID’s both to higher level gatekeepers just as in the
profile propagation protocol and also to the lower level gatekeepers down to the server node which
last hosted this client.

When the client issues an event recovery process, the logical address of the client is changed
to its present address. The recovery events each have a destination list which is internal to the
event. This destination list comprises of a single entry – the logical address of the server node
that the client is now attached to. These recovery events are now managed by the stable storage
servicing the server node that the client is now attached to. This stable storage is responsible
for issuing acknowledgements in response to the receipt of the recovery events. Upon receipt of
acknowledgements from the new storage, the corresponding predicate count associated with the
event at the old storage is decremented by one. If this count is reduced to zero, the destination is
removed from the destination list. When this destination list is reduced to zero, the event is garbage
collected at the old stable storage. Upon receiving every such recovery event, the epoch associated
with the client’s profile is advanced to the epoch contained in the latest recovery event that the client
received. The epoch in this case would be assigned by the stable store that is presently servicing
the client. The profile predicates associated with the client’s profile is propagated using the profile
propagation protocol.

The client could once again roam while these events are being routed to its present logical address.
In this case the server node that the client was attached to prior to the roam, is now responsible for
ensuring that the client does not loose any events that it is interested in. In case of client roam or
storage failures during reconnection there is another epoch that is associated with the client. This
pertains to the time from which point on events need not be routed. Of course every recovery of
a failed stable storage is a new epoch, and for clients which could not be serviced during the time
the storage had failed, this is the epoch from which no events should be used in the construction of
local queues.

6.2.7 Advantages of this scheme

This scheme ensures that any given event is received by all the persistent clients that had expressed
an interest in it. The scheme withstands the failure of nodes/units, with all nodes within these units
remaining failed forever. The only constraint that is imposed is that the stable storage not remain
failed for ever and that it recover within a finite amount of time. In the case of stable storage failures,
the higher level stable storage would have stored events destined for the unit that was being serviced
by the now failed stable storage. This higher level stable storage then release these stored events
to the recovering lower level stable storage when it recovers after the failure. The scheme allows
us to respond to node failures (associated link failures), gateway failures and network partitions.
When partitions heal the units exchange data destined for each half of the partition. This scheme
supports the roaming of clients and also accounts for the garbage collection of events stored onto
stable storage in response to clients initiating roam and constructing local queues to receive missed
events.

6.3 The GES publish subscribe Model

In the GES publish/subscribe model, clients can attach themselves to any of the nodes comprising
the server network. Clients express an interest in the kind of events that they are interested in
through their profiles. A client’s profile comprises of a number of subscription predicates, each of



CHAPTER 6. THE RELIABLE DELIVERY OF EVENTS 71

which specifies a different content that the client is interested in. We place no limit on the number
of subscription predicates that a client can specify in its profile. A subscribing client could also be
a publishing client, and there are no limit on the different topics that a client can publish.

To specify the precise instant of time from which point on a client’s profile change is active, we
have the notion of active profiles and epochs associated with profile changes. Essentially a client is
notified about the system’s awareness of the client’s profile change. When a profile change is system
active, events issued by any of the publishers in the system, from that point, will be received at the
client, if it matches the client’s profile.

Events can either be persistent or transient events. Transient events exist only within a real-time
context. Delivery of these events beyond its self-imposed real time context is not allowed. Transient
events could have variations where the system consumes the event after a certain number of server
node hops. We refer to such events as hop-constrained transient events. At each of the server node
hops, the hop associated with the event is incremented by one. When these transient events are
received at a server node, if the hop-limit is reached, the server node simply discards the event
thus preventing any further routing for that event. The routing characteristics associated with such
events can be considered as ripples in a pond, which occur in concentric circles for some distance
from the origin of these ripples. Similarly, there are level-constrained transient events, which have
all the properties of transient events but are constrained by the unit within which they can be
disseminated. These events are constrained such that they are not allowed to be routed outside
the unit/super-unit that they were issued in. Persistent events need to be stored to stable storage,
to account for the system reliability guarantees associated with them. Persistent events also have
another flavor, the time-constrained persistent events. These events are identical to persistent events
except that as soon as these events are stored onto a stable storage, the garbage collection timer,
associated with every such time-constrained persistent event, starts ticking. Upon the expiry of
the timer, these time-constrained persistent events announce themselves as being ready for garbage
collection.

Clients can either be durable (persistent) or non-durable, the difference being in the reliability of
events that are delivered to them. Durable clients can leave the system, fail or roam in response to
failure suspicions or need for better response times. The system guarantees that all persistent events
issued during this time will be delivered to the client across its various incarnations at different parts
of the system. This guarantee holds true even in the presence of failures. In our failure model a unit
can fail and remain failed forever. The time-constrained persistent events that are routed to a client
are those for which the timer has not expired. The timer’s associated with these time-constrained
events can vary from a few minutes to up to a few days. All subscribing clients (durable or non-
durable) receive transient events, the system can compute alternate routes in response to link or
node failures. The system does not guarantee the delivery of these events during failures. All clients
receive hop-constrained transient events if they are within the line-of-sight for the publisher of these
events. Table 6.2 outlines our discussion regarding the different kinds of events and clients.

6.4 Summary

In this chapter we presented our replication scheme, and outlined how different nodes within a given
super-unit could be served by different stable storages. We laid down the restrictions imposed on
the number/location of stable storages within the system. We outlined some of the common failure
scenarios involved, and presented a scheme for the detection of partitions that these failure scenarios
lead to. We then introduced the concept of epochs and discussed issues which demonstrate its
usefulness. Combining the replication scheme and the concept of epochs, and adding the notion of
system storages we arrived at our scheme for guaranteed delivery. We then describe our scheme for
handling messages for disconnected clients and also for clients reconnecting back into the system.
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Published Non-Durable Client Durable Client

Event

Transient at-most-once at-most-once

(missed if inactive) (missed if inactive)

Transient at-most-once at-most-once

(hop or level

constrained)

(if within the publisher’s line

of sight, missed if inactive)

(if within the publisher’s line of sight,

missed if inactive)

Persistent at-most-once once-and-only-once

(missed if inactive)

Persistent at-most-once once-and-only-once

(time

constrained)

(missed if inactive) (missed if the duration of discon-

nect, for the inactive durable client, is

greater than the event’s garbage col-

lect timer)

Table 6.2: The GES publish/subscribe model



Chapter 7

Results

In this chapter we present results pertaining to the performance of our protocols. We first proceed
with outlining our experimental setups. We use two different topologies with different clustering
coefficients. The factors that we measure include latencies in the delivery of events, variance in the
latencies and system throughputs among others. We measure these factors under varying publish
rates, event sizes, event disseminations and system connectivity. We intend to highlight the benefits
of our routing protocols and how these protocols perform under the varying system conditions, which
were listed earlier.

7.1 Experimental Setup

The system comprises of 22 server node processes organized into the topology shown in the Figure
7.1. This set up is used so that the effects of queuing delays at higher publish rates, event sizes and
matching rates are magnified.

Each server node process is hosted on 1 physical Sun SPARC Ultra-5 machine (128 MB RAM,
333 MHz), with no SPARC Ultra-5 machine hosting two or more server node processes. For the
purpose of gathering performance numbers we have one publisher in the system and one measuring
subscriber (the client where we do our measurements). The publisher and the measuring subscriber
reside on the same SPARC Ultra-5 machine and are attached to nodes 22 and 10 respectively in the
topology outlined in figure 7.1. In addition to this there are 100 subscribing client processes, with 5
client processes attached to every other server node (nodes 22 and 10 do not have any other clients
besides the publisher and measuring subscriber respectively) within the system. The 100 client node
processes all reside on a SPARC Ultra-60 (512 MB RAM, 360 MHz) machine. The publisher is
responsible for issuing events, while the subscribers are responsible for registering their interest in
receiving events. The run-time environment for all the server node and client processes is Solaris
JVM (JDK 1.2.1, native threads, JIT).

7.2 Factors to be measured

Once the publisher starts issuing events the factor that we are most interested in is the latency
in the reception of events. This latency corresponds to the response times experienced at each of
the clients. We measure the latencies at the client under varying conditions of publish rates, event
sizes and matching rates. Publish rate corresponds to the rate at which events are being issued
by the publisher. Event size corresponds to the size of the individual events being published by
the publisher. Matching rate is the percentage of events that are actually supposed to be receieved
at a client. In most publish subscribe systems, at any given time for a certain number of events
being present in the system, any given client is generally interested in a very small subset of these
events. Varying the matching rates allows us to simulate such a scenario, and perform measurements
under conditions of varying selectivity. For a sample of events received at a client we calculate the
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mean latency for the sample of received events, the variance in the sample of these events and the
system throughput measured in terms of the number of events received per second at the measuring
subscriber. We also measure the highest and lowest event latencies within the sample of events
that have been received. Another very important factor that needs to be measured is the change in
latencies as the connectivity between the nodes in a server network is increased. This increase in
connectivity has the effect of reducing the number of server hops that an event has to take prior to
being received at a client. The effects of change in latencies with decreasing server hops is discussed
in section 7.3.5.

7.2.1 Measuring the factors

For events published by the publisher the number of tag-value pairs contained in every event is 6,
with the matching being determined by varying the value contained in the fourth tag. The profile
for all the clients in the system, thus have their first 3 <tag=value> pairs identical to the first 3
pairs contained in every published event. This scheme also ensures that for every event for which
destinations are being computed there is some amount of processing being done. Clients attached
to different server nodes specify an interest in the type of events that they are interested in. This
matching rate is controlled by the publisher, which publishes events with different footprints. Since
we are aware of the footprints for the events published by the publisher, we can accordingly specify
profiles, which will allow us to control the dissemination within the system. When we vary the
matching rate we are varying the percentage of events published by the publisher that are actually
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being received by clients within the system. Thus, when we say that the matching rate is set at
50%, any given subscribing client within the system will receive only 50% of the events published
by the publisher. To vary the publish rates, we control the sleep time associated with the publisher
thread, and also the number of events that it publishes at a time, once the publisher thread wakes
up. This requires some preliminary tuning. Once the values for the sleep time and the number of
events that are published at a time have been fixed (for the publisher and the server node that it is
attached to), we proceed to compute the real publish rates for the sample of events that we send.
This is the publish rate that we report in our results.

For each matching rate we vary the size of the events from 30 to 500 bytes, and vary the publish
rates at the publisher from 1 Event/Sec to around 1000 Events/second. For each of these cases we
measure the latencies in the reception of events. To compute latencies we have the publishing client
and the measuring subscriber residing on the same machine. Events issued by the publisher are
timestamped and when they are received at the subscribing client the difference between the present
time and the timestamp contained in the received event constitutes the latency in the dissemination
of the event at the subscriber via the server network. In case the publisher and the subscriber
are on two different machines, with access to different underlying system clocks, we would need to
synchronize the clocks and also account for the drift in clock rates prior to computing the latencies in
event reception. Having the publisher and one of the subscribers on the same physical machine with
access to the same underlying clock, obviates this need for clock synchronization and also accounts
for clock drifts. It should be noted that though the publisher and the measuring subscriber are
on the same machine, they are connected to two different server nodes within the server network,
as depicted in figure 7.1. In fact it takes 9 server hops for an event issued by the publisher to be
received at the measuring subscriber.

7.3 Discussion of Results

In this section we discuss the latencies gathered for varying values of publish rates, event sizes
and matching rates. We then proceed to include a small discussion on system throughputs at the
clients. We also discuss the trends in the variance of the latencies, associated with the sample of
events received at a client. The results also discuss the latencies involved in the delivery of events
to persistent clients in units with different replication schemes.

7.3.1 Latencies for the routing of events to clients

At high publish rates and increasing event sizes, the effects of queuing delays come into the picture.
This queuing delay is a result of the events being added to the queue faster than they can be
processed. In general, the mean latency associated with the delivery of events to a client is directly
proportional to the size of the events and the rate at which these events were published. The latencies
are the lowest for smaller events issued at low publish rates. The mean latency is further influenced
by the matching rates for events issued by the publisher. The results clearly demonstrate the effects
of flooding/queuing that take place at high publish rates and high event sizes and high matching
rates at a client. It is clear that as the matching rate reduces the latencies involved also reduce, this
effect is more pronounced for cases involving events of a larger size at higher publish rates.

Figures 7.2 through 7.5, depict the pattern of decreasing latencies with decreasing matching
rates. The latencies vary from 391.85 mSecs to 52.0 mSecs, with the <publish rate, event size>
varying from <952 events/Sec , 450 Bytes> for a matching rate of 100% to <952 events/Sec, 400
Bytes> for a matching rate of 10%. This reduction in the latencies for decreasing matching rates,
is a result of the routing algorithms that we have in place. These routing algorithms ensure that
events are routed only to those parts of the system where there are clients, which are interested
in the receipt of those events. The routing algorithms are very selective about the links that are
employed for event dissemination. Thus, events are queued only at those server nodes which –

• Have attached clients interested in those events
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• Are en route to server nodes which are interested in these events. These server nodes generally
fall in the shortest path to reach the destination node.

In the flooding approach, all events would still have been routed to all clients irrespective of the
matching rates.

22 Servers 102 Clients with Matching rate for events being 100%
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Figure 7.2: Match Rates of 100

Figure 7.2 depicts the case for matching rates of 100%. In this case the mean latency for the
sample of events varies from 15.54 mSec for <1 event/Sec, 50 Bytes> at a throughput of 1 event/Sec
to 391.85 mSec for <952 events/Sec, 450 Bytes> with a throughput of 78 events/Sec at the client.
The variance in the sample of events varies from 2.3684 mSec2 to 69,713.93 mSec2 for the 2 cases
respectively. The maximum throughput achieved was 480.76 events/Sec at publish rates of 492
events/Sec with events of size 75 bytes.

Figure 7.3 depicts the case for matching rates of 50%. In this case the mean latency for the
sample of events varies from 13.02 mSec for <20 events/Sec, 50 Bytes> to 178.66 mSec for <952
events/Sec, 350 Bytes>. The variance in the sample of events varies from 56.8196 mSec2 to 14,634
mSec2 for the 2 cases respectively.

Figure 7.4 depicts the case for matching rates of 25%. In this case the mean latency for the
sample of events varies from 14.40 mSec for <20 events/Sec, 50 Bytes> to 66.6 mSec for <961
events/Sec, 400 Bytes>. The variance in the sample of events varies from 0.24 mSec2 to 587.04
mSec2 for the 2 cases respectively.

Figure 7.5 depicts the case for matching rates of 10%. In this case the mean latency for the
sample of events varies from 14.40 mSec for <20 events/Sec, 50 Bytes> to 52.0 mSec for <952
events/Sec, 400 Bytes>. The variance in the sample of events varies from 0.44 mSec2 to 103 mSec2

for the 2 cases respectively.

7.3.2 System Throughput

We also depict the system throughputs at the client under conditions of varying event sizes and
publish rates. We choose to depict the system throughputs at a matching rate of 100%. At matching
rates other than 100% only the relevant events are being routed to the clients. The events received
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Figure 7.3: Match Rates of 50
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Figure 7.4: Match Rates of 25
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22 Servers 102 Clients with Matching rate for events being 10%
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Figure 7.5: Match Rates of 10

do not reveal the true throughputs that can be achieved at a client. Figure 7.6 depicts the system
throughputs achieved at a client under conditions of different publish rates and event sizes. The
maximum throughput achieved was 480.76 events/Sec at a publish rate of 492 events/Sec with the
sample of events being of size 75 bytes.

7.3.3 Variance

Variance for the sample of received events at a client, demonstrate how queueing delays can add up to
increase the mean latency. Variance also snapshots how this mean latency has high deviations from
the highest and lowest latencies contained in the sample of latencies, associated with the events
that are received at a client. The variance in the sample of events varies from 69713 mSec2 to
133.76 mSec2 for <952 events/Sec , 450 Bytes> at matching rates of 100% to <877 events/Sec, 450
Bytes> at matching rates of 5%. Thus variance in the sample of events for higher event sizes at
higher publish rates also reduces with decreasing matching rates for the published events.

7.3.4 Persistent Clients

In figure 7.1 we have also outlined the replication scheme that exists in the system. When an event
arrives at node 1, the event is first stored to the level-3 stable store so that it has an epoch associated
with it. The event is then forwarded for dissemination within the unit. Clients attached to any of
the nodes in super-cluster SC-6 have a replication granularity of r2. When the events issued by the
publisher in the test topology of figure 7.1 are being disseminated, when clients attached to nodes
in SC-6 receive the event, that event would have been replicated twice (once at node 1 and once
at node 8). For testing purposes we set up another measuring subscriber at node 7 in addition
to the subscriber that we would set up at node 10. When an event is received by the subscriber
attached to node 7 the event would have been replicated only once, at node 1. These measuring
subscribers allow us to measure the response times involved for singular and double replications
experienced at clients attached to nodes 7 and 10 respectively. Every node (with the exception of
nodes 7 and 10) in the system has 5 persistent subscribing clients attached to it, for a total of 102
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22 Servers 102 Clients - System Throughput 
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Figure 7.6: System Throughput

persistent subscribing clients. The publisher and the 2 measuring subscribers are all hosted on the
same machine for reasons discussed earlier. Figures 7.7 and 7.8 depict the latencies in delivery of
events at persistent clients, with singular and double replications for a matching rate of 50%.

7.3.5 Pathlengths and Latencies

The topology in figure 7.1 allows us to magnify the latencies, which occur by having the queuing
delays at individual server hops add up. In that topology the number of server hops taken by
an event prior to delivery at the measuring subscriber is 9. We now proceed with testing for the
topology outlined in figure 7.9. The layout of the server nodes is essentially identical to the earlier
one, with the addition of links between nodes resulting in a strongly connected network. We have 5
subscribing clients at each of the server nodes. The mapping of server nodes and subscribing client
nodes to the physical machines is also identical to the earlier topology. As can be seen the addition
of super-cluster link between super-clusters SC-5 and SC-6, and level-0 links between nodes 8 and
10 in cluster SC-6.n reduces the number of server hops, for the shortest path from the publisher to
the measuring subscriber at node 10, from 9 to 4.

In this setting we are interested in the changes in latencies as the number of server hops vary. We
measure the latencies at three different locations, the measuring subscriber at node 10 has a server
hop of 4 while the measuring subscribers at nodes 1 and 22 have server hops of 2 and 1 respectively
for events published by the publisher at node 22.

In general, as the number of server hops reduce the latencies also reduce. The patterns for
changes in latency as the event size and publish rates increase is however similar to our earlier cases.
We depict our results, gathered at the three measuring subscribers for matching rates of 50% and
10%. The pattern of decreasing latencies with a decrease in the number of server hops is clear by
looking at figures 7.10 through 7.15. We had also made measurements for a matching rate of 25%,
and the pattern is the same in those results too. However, we have not included the figures for that
case.
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22 Servers 103 Clients - Singular replication 
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Figure 7.7: Match Rates of 50% - Persistent Client (singular replication)

22 Servers 103 Clients - Double Replication 

0 100 200 300 400 500 600 700 800 9001000
Publish Rate (Events/Sec) 0

50
100

150
200

250
300

350
400

450
500

Event Size (Bytes)

0
20
40
60
80

100
120
140
160
180
200
220

Latencies  (MilliSeconds)

Figure 7.8: Match Rates of 50% - Persistent Client (double replication)
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Figure 7.9: Testing Topology - Latencies versus server hops

7.4 Summary

In this chapter we have seen how the latencies vary with event sizes, matching rates, publish rates
and connectivities. In general latencies decrease with increase in system connectivity, this being
a result of the decrease in average pathlengths as the connectivity increases. On the other hand,
increase in event sizes and publish rates result in an increase in the latency associated with event
delivery. With decreasing matching rates, the latencies in event delivery decreases.



CHAPTER 7. RESULTS 82
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Figure 7.10: Match Rates of 50% - Server Hop of 4

Subscriber 2 server hops from publisher - Matching 50%
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Figure 7.11: Match Rates of 50% - Server Hop of 2
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Subscriber 1 server hop from publisher - Matching 50%
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Figure 7.12: Match Rates of 50% - Server Hop of 1

Subscriber 4 server hops from publisher - Matching 10%
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Figure 7.13: Match Rates of 10% - Server Hop of 4
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Subscriber 2 server hops from publisher - Matching 10%
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Figure 7.14: Match Rates of 10% - Server Hop of 2

Subscriber 1 server hop from publisher - Matching 10%
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Figure 7.15: Match Rates of 10% - Server Hop of 1



Chapter 8

Future Directions

In this chapter we present extensions to GES. Some of these extensions are already being imple-
mented or in the process of being implemented. We also include a brief discussion of the application
domains that GES could be extended into.

8.1 Dynamic reshuffling

As mentioned in section 4.8, based on the system’s load the dynamic instantiation of servers at clients
can be very useful in the utilization of bandwidth, and generally would lead to better response times
at the clients. Dynamic reshuffling of the system could be done based on the addition of powerful
server nodes into the system. Such a node could be configured as a gatekeeper at a much higher
level. Other nodes in the subsystem where the new node was added could also have their addresses
reassigned based on how the system is being reorganized. It is conceivable that server nodes would
have connections added or removed based on the addition of this node. Identification of slow nodes
could enable us to then induce a failure in such slow server nodes, and subsequent reconfiguration
of the connections.

8.2 Automatic configuration of nodes/units

In this case when a new node is being added that server node is simply slingshot into the GES server
network. The system is then responsible for configuring it as a gatekeeper based on the hosting
machine’s processing power, IP address and the number of concurrent connections allowed. The
system should also be able to initiate connections between other server nodes in the system, in a
manner, which would maintain the small world properties for the server network.

8.3 GMS software architecture

Grid Message Service (GMS) is being developed at Florida State University (FSU) as the message
service to support a collaborative portal to be used in education and computing. GMS uses a
publish/subscribe infrastructure identical to GES with some additions. A client’s profile comprises
of a set of predicates which the client mandates that a certain event satisfy prior to the client being
targeted as one of the destinations for the event. In addition to this, associated with the client are
a set of properties, which could be used to further refine the destinations associated with an event.
The refinement process is carried out by a server side agent responsible for further refining the events
targeted for a client. This scheme is depicted in figure 8.1.

85
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Figure 8.1: An agent based approach

8.3.1 Object-based Matching

Traditionally matching of events and calculation of destinations have been based on text properties
with SQL like selections or on a static set of tag-value pairs contained in the client’s profile. JMS
employs the earlier approach while most content based pub/sub systems employ the latter approach.
We seek to augment this matching process by allowing for topics to be matched to clients based not
only on the profiles but also on the properties associated with the client. In addition to the match-
ing based on string properties or tag-value matching, the advantage of this scheme is that it allows
for matching to be based on more dynamic features like the state of the system (bandwidth con-
straints etc.), a client’s content handling capabilities and other similar constraints . This operation
is performed by a server side agent which is responsible for the more powerful matching. Published
topics, subscriber profiles and device properties are defined in an XML syntax GXOS (General XML
Object Specification), developed by Geoffrey Fox, which is then interpreted by the matching agent.
As summarized in next section, GXOS also can be used to describe GMS messages and application
meta-data. The decision to route an event is based not only on the properties contained in the event
but also on the constraints specified/detected within the user property set. As an example, an event
would be routed based on, not just the headers describing the event but also on the clients content
handling capabilities. Thus we would use the publish/subscribe matching engine for routing, but
we will narrow the destination lists associated with the event based on the client’s content handling
capabilities.

8.3.2 The execution Model - GXOS, MyXoS & RDF

All objects in the GMS system are self defining. The objects and meta-data describing them are
separately managed. This allows the use of powerful technologies for managing the meta-objects
while using classic high performance computing approaches for the raw objects. This provides a
combination of high performance with high functionality. The object model GXOS specifies three
types of meta-objects –

(a) The events in GMS.

(b) The resources (users, computers, programs, educational curricula etc.)

(c) The user view or portalML including object rendering, portal layout and subscription profiles.
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The environment, My eXtensible Web Operating System (MyXoS) , that manages these objects and
meta-objects is driven by XML commands - initially in an RDF (Resource Description Framework)
syntax. Information regarding RDF schema and syntax could be found in [50, 16]. GMS is used for
both synchronous and asynchronous collaboration – it handles asynchronous information channels,
the updates for shared display or shared event collaborations and the Jabber [62] instant messenger
built into our collaborative framework.

Research is currently underway into the different ways of reading into memory the XML meta-
objects as needed by programs running under MyXoS. SAX and DOM XML parsers are not efficient
for tens of millions of XML instances at a time. Converting XML schema into Java data structures
is possible [30] but efficiency requires that this be combined with lazy parsing so that we expand
GXOS trees only as needed to refine our access. This is particularly challenging and has important
programming style implications as we look at models where data structures are defined in XML and
not directly as C++ or Java classes.

8.4 The XML DTD for the event

Events conform to XML DTDs. Not all fields within the DTDs need to be present, some fields
are however mandatory. At every server node hop, the DTD definition for the event needs to be
referenced. There are two ways for this information to be included within the XML event

(a) Include the DTD definition within the event itself. This is ruled out as the information
contained within the XML event would increase.

(b) Include a pointer to the DTD definition. This would entail a lot of network traffic with every
arrived event resulting in a network operation to fetch the document definition.

To work around items (a) and (b) we employ the following approach. The first time that an
event type is encountered at a server node, the DTD definition is fetched1 and cached at the server
node. Thus we circumvent the network operation.

An event exists within the context of a stream, thus the specification of an event includes
the stream that this event is a part of; this is specified by the StreamId. Every event needs to
have an Id, Mspaces:EventId, that is unique in space and time. Events also should be able to
specify the linkages that exist between them and events within other streams, this constitutes the
Mspaces:EventLinkage. Resolution of the event linkage is a precursor to the creation of merged
streams. We also need an indication of the type of event that this event is, i.e. live or recovery and
the security constraints contained within the event. This is included in Mspaces:EventType. Events
could also possibly specify zero or more applications that it is a part of. The event summary, which
could occur once or not at all, provides a synopsis of the event itself. Thus an Event definition could
be the following.

<!ELEMENT Mspaces:Event (Mspaces:StreamId, Mspaces:EventId,
Mspaces:EventType, Mspaces:EventLinkage,
Mspaces:ApplicationType*, Mspaces:Summary?)>

This specification dictates that the various elements should appear in the order Mspaces:StreamId
first, then Mspaces:EventId and so on. The StreamId representation is a simple (#PCDATA) repre-
sentation.

<!ELEMENT Mspaces:StreamId (#PCDATA)>

The ID associated with every event, Mspaces:EventId, needs to be unique in space and time.
Having a unique Client Id, Mspaces:ClientId reduces the uniqueness problem to a point in space.
Mspaces:TimeStamp provides the uniqueness in the time domain, while the sequence number (con-
tained in Mspaces:SequenceNumber) scheme ensures issue rates which are higher than that dictated

1This DTD definition could be fetched either from the pointer contained within the event or from the node which
routed the event to this node in the first place.
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by the constraint imposed on uniquely identifiable events by the granularity of the underlying clock.
Mspaces:IncarnationNumber’s are essential to avoid conflicts when an issuing client initiates a
roam. The duplicate detection loop hole exists since no process has access to a global clock and also
since the clocks on individual machines are never synchronized. Even if the clocks were synchronized,
the rates at which these individual clocks tick are different. The following definition for the eventId
specifies a an ID unique in space and time.

<!ELEMENT Mspaces:EventId (Mspaces:ClientId, Mspaces:TimeStamp,
Mspaces:SequenceNumber,
Mspaces:Incarnation)>

<!ELEMENT Mspaces:ClientId (#PCDATA)>
<!ELEMENT Mspaces:TimeStamp (#PCDATA)>
<!ELEMENT Mspaces:SequenceNumber (#PCDATA)>
<!ELEMENT Mspaces:Incarnation (#PCDATA)>

Earlier we discussed our approach to circumventing network operations while parsing the XML
events. DTD’s could however change, and the cache rendered useless, to account for this scenario we
need to include the concept of version Number within the DTD fields. When the event is parsed a
look at the Mspaces:versionNumber field could tell us if the cache needs to be updated. If the DTD
definition for the event is changed the clients interested in the events conforming to the old DTD
definition need to be notified about this change. These clients could then decide if their profiles need
to be updated to reflect this change. This notification of the change in the DTD of the event that
a client is interested in is included in the field Mspaces:LatestVersionNumber. Also nodes need to
maintain the DTD definitions for different versions of the same DTD. It is conceivable that there
are events being published within the system or there are recovery events which would conform to
the old versions of the DTD. Information regarding these version numbers along with the security
constraints and liveness indicator constitute Mspaces:EventType.

<!ELEMENT Mspaces:EventType (Mspaces:VersionNum,
Mspaces:LatestVersionNum?)

<!ATTLIST Mspaces:EventType
Securitylevel (low | med | high) ‘‘med’’
Liveness (live|recovery) ‘‘live’’>

<!ELEMENT Mspaces:VersionNum (#PCDATA)>
<!ELEMENT Mspaces:LatestVersionNum (#PCDATA)>

If an Mspaces:EventType created does not specify values for the SecurityLevel and Liveness
attributes, the EventType is assumed to be a “live” event of “med” security. Recovery events are
the events which clients have missed either during a roam operation or during a prolonged disconnect.

The Mspaces:EventLinkage specifies the dependencies that exist between events in multiple
streams. The linkage should provide for resolution of the spatial and timing dependencies in an
implicitly or explicitly specified order. Besides these we also need the ability to create bundles
of events within a given stream. The bundles that we create need an identifier, this is provided
by Mspaces:BundleId. However, there could be situations where the bundle we consider is the
stream itself. Bundles need to also indicate the methodology that needs to be in place to decide
upon the merging schemes. This is provided by the enumeration of Mspaces:TimeConstraint and
Mspaces:MergeScheme. Some bundles however, may not impose any scheme on the merging of
bundles. We account for such a scenario by including “None” in the enumeration for the linkage
schemes which we mentioned earlier. Events within a bundle also have monotonically increasing
sequence numbers assigned to events within the bundle. This is in addition to the sequence numbers
that events possess to determine a uniqueID. The Mspaces:BundleNumber however, comes into play
only in the presence of a Mspaces:BundleId within the event stream. The Mspaces:BundleOrder
specifies the ordering scheme that should be in place for events which are “concurrent” based on the
merging methodology that is specified by Mspaces:BundleLinkage.

<!ELEMENT Mspaces:EventLinkage ((Mspaces:BundleId,
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Mspaces:BundleNumber)? ,
Mspaces:BundleLinkage,
Mspaces:BundleOrder)

<!ELEMENT Mspaces:BundleId (#PCDATA)>
<!ELEMENT Mspaces:BundleNumber (#PCDATA)>
<!ELEMENT Mspaces:BundleLinkage NONE | (Mspaces:TimeConstraint?,

Mspaces:MergeScheme?)>
<!ELEMENT Mspaces:TimeConstraint (#PCDATA)>
<!ELEMENT Mspaces:MergeScheme (#PCDATA)>
<!ELEMENT Mspaces:BundleOrder (Mspaces:StreamId+ |

Mspaces:BundleId+)>

A brief note about the Mspaces:EventLinkage is in order. If an event is allowed to be part of
multiple bundles within the same stream with multiple BundleNumber’s the ? should be * in the
Mspaces:BundleId, Mspaces:BundleNumber grouping. The listing of the DTD in section 8.4.1 and
element analysis in table 8.1 assumes the ? occurrence operator.

8.4.1 The complete DTD

The event routing information as specified by the event routing protocol (ERP) and the information
contained within the event during recoveries are not included within the definition for the DTDs.
The event itself is encapsulated within an XML document, however the routing is not. Below we
include the complete definition of the event, which follows from our discussions so far.

<!ELEMENT Mspaces:Event (Mspaces:StreamId, Mspaces:EventId,
Mspaces:EventType, Mspaces:EventLinkage,
Mspaces:ApplicationType*, Mspaces:Summary?)>

<!ELEMENT Mspaces:StreamId (#PCDATA)>

<!ELEMENT Mspaces:EventId (Mspaces:ClientId, Mspaces:TimeStamp,
Mspaces:SequenceNumber,
Mspaces:Incarnation)>

<!ELEMENT Mspaces:ClientId (#PCDATA)>
<!ELEMENT Mspaces:TimeStamp (#PCDATA)>
<!ELEMENT Mspaces:SequenceNumber (#PCDATA)>
<!ELEMENT Mspaces:Incarnation (#PCDATA)>

<!ELEMENT Mspaces:EventType (Mspaces:VersionNum,
Mspaces:LatestVersionNum?)

<!ATTLIST Mspaces:EventType
Securitylevel (low | med | high) ‘‘low’’
Liveness (live|recovery) ‘‘live’’>

<!ELEMENT Mspaces:VersionNum (#PCDATA)>
<!ELEMENT Mspaces:LatestVersionNum (#PCDATA)>

<!ELEMENT Mspaces:EventLinkage ((Mspaces:BundleId,
Mspaces:BundleNumber)? ,
Mspaces:BundleLinkage,
Mspaces:BundleOrder)

<!ELEMENT Mspaces:BundleId (#PCDATA)>
<!ELEMENT Mspaces:BundleNumber (#PCDATA)>
<!ELEMENT Mspaces:BundleLinkage NONE | (Mspaces:TimeConstraint?,

Mspaces:MergeScheme?)>
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<!ELEMENT Mspaces:TimeConstraint (#PCDATA)>
<!ELEMENT Mspaces:MergeScheme (#PCDATA)>
<!ELEMENT Mspaces:BundleOrder (Mspaces:StreamId+ |

Mspaces:BundleId+)>

<!ELEMENT Mspaces:ApplicationType (#PCDATA)>
<!ELEMENT Mspaces:Summary (#PCDATA)>

Tables 8.1 and 8.2 depicts the various elements, the nested elements and occurrence bounds for
the nested elements within a specific element. The table also snapshots our discussions so far with
brief descriptions of the purpose of each element within the event element hierarchy.

Element Allowed Nested Num Purpose of the

Elements Element

Mspaces:Event Mspaces:StreamId 1 Overall root

Mspaces:EventId 1 element of the

Mspaces:EventType 1 Event

Mspaces:EventLinkage 1

Mspaces:ApplicationType 0· · ·N
Mspaces:Summary 0/1

Mspaces:StreamId None 0 Stream the event be-

longs to

Mspaces:EventId Mspaces:ClientID 1 Unique event ID.

Mspaces:TimeStamp 1

Mspaces:SequenceNum 1

Mspaces:Incarnation 1

Mspaces:EventType Mspaces:VersionNum 1 Indicates the

Mspaces:LatestVersion 0/1 version/liveness of

events.

Mspaces:EventLinkage Mspaces:BundleId 0/1 Specifies linkage

Mspaces:BundleNumber 0/1 of events in

Mspaces:BundleLinkage 1 multiple streams.

Mspaces:BundleOrder 1

Mspaces:BundleLinkage Mspaces:TimeConstraint 0/1 Specifies methods

(Enumeration) Mspaces:MergeScheme 0/1 for the merger of

streams/bundles.

Mspaces:BundleOrder Mspaces:StreamId 1· · ·N Ordering for

(Enumeration) Mspaces:Bundle 1· · ·N concurrent events

Table 8.1: Mspaces:Event Hierarchy – (I)

8.5 Application Domains For GES

In this section we discuss the possible application domains for the Grid Event Service (GES). In
section 8.5.1 we discuss employing GES for developing collaboratory applications. Section 8.5.2
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Element Nested Num Purpose of the

Elements Element

Mspaces:ClientID None 0 The issuing Client ID.

Mspaces:TimeStamp None 0 Time Stamp in mSecs

Mspaces:SequenceNum None 0 Issue events at higher rates.

Mspaces:Incarnation None 0 Allows for DD during a issu-

ing client roam.

Mspaces:Version None 0 The version number of the

DTD.

Mspaces:LatestVersion None 0 Inform clients about the

version change to DTD.

Mspaces:BundleId None 0 Identifies a specific bundle

within the stream.

Mspaces:BundleNumber None 0 Specifies the

numbering within the bundle

of a stream.

Mspaces:TimeConstraint None 0 Specifies merging based on

time.

Mspaces:MergeScheme None 0 Specifies the scheme for

mergers.

Table 8.2: Mspaces:Event Hierarchy – (II)
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describes how GES could be used to provide an illusion of devices at the edge of the internet
communicating with each other. Finally in section 8.5.3 we describe a possible extension to the GES
the Grid Event Service Micro Edition (GESME) which handles messages and events for hand held
devices.

8.5.1 Collaboration

Collaboration systems based on the client server model tend to suffer from performance drawbacks
due to factors such as scaling and response times. Also the inherent simplicity in these systems, is
offset by the fact that they constitute a single point of failure. Distributed collaboration systems
such as JSDT [17], ISAAC [49] and TANGO [33] have always relied on the notion of a Session
object which is responsible for the taking decisions for a given collaboration session. The Pragmatic
Object Web [34, 36] concept offers a combination of object/component reusability with the global
access, while setting up a multiple-standards based framework in which the best assets of various
approaches complement each other. JDCE [58] employed this concept for collaborative systems
with an RMI and CORBA based collaboratory system. However, this too required the concept
of a Session object and also in case of the CORBA implementation relied on the establishment of
a CORBA Event Channel like Session Object. The TANGO collaboratory system was limited by
its support for synchronous communications. Systems such as JSDT and ISAAC provides support
for both synchronous and asynchronous style of communications. Approaches to building scalable
systems using JSDA (the precursor to JSDT) and JDCE have been described in [35, 27]. However
these systems though distributed all maintain the notion of a Session object, which could serve as a
single point of failure for clients that are part of that Session. In this section we proceed to make a
case for collaboration systems designed using the Grid Event Service.

In the Grid Event Service, the notion of a Session would be an interest in receiving a certain
type of an event. This notion does not reside on a single node. In traditional collaboration systems
the Session is aware of the precise location and number of clients that are registered to a session.
In GES the calculation of destination lists is itself a distributed process. GES could be used to
provide both the synchronous and asynchronous style of communication. The roam features and
the delivery guarantees in the presence of server node failures provides for a greater resiliency in
collaborative applications. In case of a set of roam-join, the client operates in asynchronous mode
for missed events and synchronous mode for real time events.

Also typical collaboration applications include clients being part of multiple collaboration ses-
sions. When the number of sessions increase exponentially the dissemination of content should be
a judicious process being able to handle sparse interest in sessions at certain locations and dense
interest in others. The dissemination scheme, comprising of the routing based on the profiles should
ensure that the dense and sparse interest cases are handled equally effectively.

8.5.2 P2P Systems

Another important trend is peer-to-peer computing (P2P) [2] with recent work typified by the JXTA
[48] initiative by Bill Joy at Sun Microsystems. P2P systems provide a linkage of computers at the
edge of the Internet. Collaborative systems create P2P networks although in our approach (and most
other systems), this is an illusion as the P2P environment is created by the routing of messages
through a network of servers.

8.5.3 Grid Event Service Micro Edition

One extension of importance GESME (GES Micro Edition) would handle messages and events on
hand held and other small devices. This assumes an auxiliary (personal) server or adaptor handling
the interface between GES and GESME and offloading computationally intense chores from the
handheld device. This would be a very important extension to GES.
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8.6 Summary

In this chapter we outlined the future directions for GES. This included a discussion on the dynamic
reshuffling of the system and reconfiguration of the nodes within the system. We also outlined an
extension to GES, which would be based on object based matching to account for the content han-
dling capabilities that are available at clients. We presented a discussion for the XML encapsulation
of content. Finally, we presented the application domains into which GES can be extended, namely
collaboration systems, P2P systems and GESME.
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Conclusion

In this thesis, we have presented the Grid Event Service (GES), a distributed event service designed
to run on a very large network of server nodes. We outlined a formal specification for the reliable
delivery of events to clients with intermittent connection semantics. The delivery guarantee needs to
be met across client roams and also in the presence of server failures. We also outlined a specification
for the delivery of merged streams to interested clients. GES comprises of a suite of protocols, which
are responsible for the organization of nodes, creation of abbreviated system views, management of
profiles and the hierarchical dissemination of content based on these profiles. Creating small world
networks, using the node organization protocol ensures that the pathlengths would only increase
logarithmically with geometric increases in the size of the server network. The feature of having
multiple links between two units/super-units ensures a greater degree of fault tolerance. Links could
fail, and the routing to the affected units is performed using the alternate links. The protocols in
the GES protocol suite exchange information collected and processed by the other protocols. Thus
when a new connection is added the information is used to update the connectivity graph, which is
used to identify the relevant nodes for the propagation of profiles to. This information contained in
the profile graphs is then used for the hierarchical dissemination of content. All these protocols can
run concurrently, adding a lot of flexibility to the overall system.

The system views at each of the server nodes respond to changes in system inter-connections,
aiding in the detection of partitions and the calculation of new routes to reach units within the
system. The organization of connection information ensures that connection losses (or additions)
are incorporated into the connectivity graph hosted at the server nodes. Certain sections of the
routing cache are invalidated in response to this addition (or loss) of connections. This invalidation
and subsequent calculation of best hops to reach units (at different levels) ensure that the paths
computed are consistent with the state of the network, and include only valid/active links. The
event routing protocol uses the profile information available at the unit gatekeepers to compute the
sub-units that the event should be routed to. To reach these destinations every node, at which this
event is received, employs the best hops to reach those destinations. This best hop is computed based
on the cost of traversal and also the number of links connecting the different units. Thus, in our
system, based on the organization of profiles and subsequent matching of events, the only units to
which an event is routed to are those that have clients interested in that event. The protocols in
GES ensure that the routing is intelligent and can handle sparse/dense interest in certain sections
of the system. GES’s ability to handle the complete spectrum of interests equally well, lends itself
as a very scalable solution under conditions of varying publish rates, matching rates and message
sizes.

We have also provided a scheme for the creation of merged streams from a set of related streams.
This delivery of merged streams is done by the system after the resolution of spatial and chronological
constraints that exist between events in multiple related streams. We outlined an approach to
merging streams issued by sources at different parts of the sub-system and the routing of these
merged streams to the interested clients.

The thesis outlined a scheme for the delivery of events in the presence of server node failures. In
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our scheme a unit could fail and remain failed forever. The only requirement that we impose is that
if a stable storage fails, it should recover within a finite amount of time. The replication strategy,
that we adopted allows us to add stable storages and also to withstand stable storage failures.
The replication strategy, epochs associated with received events and profile ID’s associated with
client profiles allowed us to account for a very precise recovery of events for clients with prolonged
disconnects or those which have roamed the network.

GES could be extended very easily to support dynamic topologies. Based on the concentration
of clients at specific locations, bandwidth utilization can be optimized with the creation of dynamic
servers at some of the clients. This scheme fits very well with our failure model for system units,
where they can remain failed forever. Detection schemes can be employed to detect slow nodes,
which serve as performance bottlenecks. Forcing these affected nodes to fail then reconfigures the
system. GES immediately employs newly added units in the routing of events and responds to unit
failures equally well. Similarly links can be added and removed in a similar fashion to optimize the
routing for events. The routing decisions at each server node are based on the current state of the
system. GES thus provides the base infrastructures for dynamic topologies.

GES is intended to be a part of the Grid Collaborative Portal (GCP). The features of location
transparency, intelligent routing, replication and persistent delivery of events lends itself very easily
to aid in the development of the GCP. The application domains into which GES can be easily
extended include collaborative systems, peer-to-peer (P2P) systems and messaging for hand-held
devices such as the Grid Event Server Micro Edition (GESME). GESME, which would account for
the conversion of GCP messages to be handled by the hand-held devices could add considerable
value to GES.

The location transparency feature contained within GES where a client can roam the network in
response to failure suspicions (correct or incorrect) or re-join the system after a prolonged disconnect,
and attach itself to any of the nodes within the system and still receive all the events it was supposed
to receive is a significant contribution. Clients can connect to local servers instead of reconnecting all
the way back to the remote server that it was last connected to. This scheme optimizes bandwidth
utilization. This optimization is very pronounced when there is a high concentration of clients
accessing the remote server. The failure model of the system, which allows a server node or a
unit/super-unit of server nodes to fail and remain failed forever and still satisfy delivery guarantees
is another significant contribution, which also allows the system to be easily extensible. This model
ensures that clients need not wait for a server to recover after this server has failed. During failures
clients do not experience a denial of service in this model. The service, as mentioned earlier, extends
very naturally into dynamic topologies allowing for the dynamic instantiation and purging of servers
and connections. Changes in network fabric are incorporated by the routing algorithms, which
ensure that the routing decisions made at a node are based on the current state of the system.
The replication strategy presented in this thesis, could be augmented to include mirror storages,
which maintain information identical to that of the stable storages, and take over in the event of
stable storage failures. This feature would add additional robustness and reduce the time required
to recover from stable storage failures.

The results in Chapter 7 demonstrated the efficiency of the routing algorithms and confirmed
the advantages of our dissemination scheme, which intelligently routes messages. Industrial strength
JMS solutions, which support the publish subscribe paradigm generally are optimized for a small
network of servers. The seamless integration of multiple server nodes in our framework and the
failure model that we impose on server nodes provides for very easy maintenance of the server
network.

The explosive developments in the area of pervasive computing have resulted in the need for
building distributed network centric services. However these network services should also be easily
extensible, scalable and have a reasonable failure model, which causes a denial of service only under
the most extreme of failure scenarios. Another important feature is the ability to access another part
of this distributed service for better response times or convenience. This thesis makes significant
contributions towards providing solutions to these issue.
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