Principal Investigator/Program Director (Last, First, Middle): Glazier, James, Alexander

Research Plan – CHECK BIOSPICE LICENCE
Development and Improvement of Tissue Simulation Environment

A. Specific Aims
Objective and Scope: We propose an open-source modeling environment for the cell-level
 modeling of the structure and behavior of tissues and organs containing up to one million cells, during development, wound healing and cancer. The Tissue-Simulation Environment (TSE)
will build upon our current Cellular Potts Model-based (CPM) modeling environment, CompuCell3D (http://sourceforgenet/projects/compucell). The CPM, developed by PI, Dr. Glazier, was the first simulation method to allow modeling of the entire life history of an organism (Dictyostelium discoideum) at the cell level. Groups worldwide have used the CPM to model developmental phenomena including chondrogensis, vascular development, tumor growth, evolution, convergent extension, gastrulation and wound healing
. Such simulations can play an important role in experimental studies of development, helping with the interpretation of experimental results, suggesting experiments, predicting experimental outcomes and leading to deeper understanding of development. However, so far, most users of the CPM have chosen to implement their own simulation code. These programs are generally not open-source, are not designed for easy extensibility or usability by non-experts, do not separate specific biological models from the CPM modeling environment, do not have standard interfaces to connect to supercellular
 or subcellular models and implement different features and extensions, all of which results in duplication of effort (e.g. modules written by one group cannot be used directly by another, but must be recoded) and restricts use of the CPM methodology to researchers with a high level of mathematical and sophistication. Dr. Glazier, Dr. Alber, and their collaborators developed the CompuCell3D modeling environment to addresses many of these issues. However, it lacks certain features necessary to attract a larger audience of users. Our development of CompuCell3D has also taught us much about the design of improved modeling environments. Our Specific Aim is an implementation of the Tissue-Simulation Environment, which subsumes the key features of various CPM implementations, is extensible, interfaces in a standard fashion with other modeling techniques and is simple, powerful and intuitive enough to be usable by the broad biomedical and biological research communities. As an open-source program, the TSM can accumulate user-developed elements, generating significant positive network effects.
This aim breaks down into five subsidiary specific aims:

Specific Aim 1) Providing modeling capability comparable to or better than other CPM simulations. Current CompuCell3D code will be redesigned and cleaned up. The TSE will be based on more flexible architecture that CompuCell3D. The TSE will add to the current capabilities of CompuCell3D many more, including modeling of solids, basic fluid flows, advection-diffusion effects, cell polarity, active changes of cell shape, force transduction and simulation of subcellular processes. In addition, the TSE use parallel-programming techniques to handle much larger simulations than are possible with CompuCell3D.
Specific Aim 2) Define a standard set of interfaces to allow interoperability of the TSE with major subcellular and supercellular modeling frameworks. We will develop a set of SBML and CellML extensions which will permit interfacing with packages including BioSpice, E-Cell 3 and Physiome.
Specific Aim 3) Make the TSE usable by and attractive to a broad community of biomodelers and experimentalists. We will completely redesign the interface and visualization capabilities of the TSM using modern ideas concerning Human-Computer Interaction, informed by formal usability studies with biomedical researchers using the TSM. Goals are an intuitive user interface, real-time visualization, the ability to control simulations as they progress, and scripting language support. The TSE will link to databases in which parameters and simuation results can be stored, retrieved, and easily ‘replayed.’ We will develop a set of demonstration modules and parameter databases which will allow users to develop models in terms of high-level modules, rather than having to design their simulations from the ground up.

Specific Aim 4) Validate the accuracy and reliability of TSM simulations. We will independently, and with other research groups, cross-validate the TSM against other software tools (including other CPM implementations) by reproducing a representative sample of well-accepted modeling results.

Specific Aim 5) Disseminate and support the TSM. We will fully document the TSM, provide online training, online and off-line user surveys and organize educational workshops aimed at the broad biomedical research community, which will cover both the use of the TSM and considerable information about how to formulate developmental problems in a CPM framework. The TSM will be open source, distributed through recognized open source portals. We will establish a set of formal procedures to incorporate user-generated code into the TSM code-base. We will provide release management, including incorporating user-recognized patches and collecting and fixing user-recognized bugs, and both Linux/Unix and Microsoft platform support.

B. Background and Significance

B1.The Need for Multiscale Modeling
The NIH roadmap and many other recent studies emphasize the importance of a multiscale approach to modeling which will translate the immense advances of molecular genomics into what the Department of Energy has called Genomes-to-Life models.

Explaining embryonic development of multicellular organisms requires insight into complex interactions between genetic regulation and physical, generic mechanisms at multiple scales. Genetic information can only indirectly influence the morphology and physiology of multicellular organisms. We believe that in many aspects of biological development, what matters are the cell’s biophysical properties, the signals it emits and its responses to extracellular signals. This approach treats the cell as the fundamental module of development.

High-throughput experimental procedures, including DNA sequencing, microarray analyses, and high-throughput mutation studies, have shown that the number of interacting players in biological processes is so large that ‘‘mentally juggling’ ’ them in conceptual models has become impractical, especially since behaviors usually arise from complex networks of interactions rather than from the behaviors of individual components. Parallel developments in the physics of complex systems have shown that ensembles consisting of large numbers of interacting components exhibit collective behaviors that we cannot always understand intuitively from the behaviors of the individual components.

To correctly integrate this wealth of information and to use it to generate new hypotheses, systems biology extends traditional conceptual models into mathematical models. Because such models are generally too complex for analytic solution, we translate them into sets of algorithms or computational models, which we then implement as simulations. These problems are particularly evident when we focus our attention on developmental biology,

where problems are intrinsically specific, heterogeneous and multi-scale. A computational treatment of a particular problem must begin by choosing an appropriate scale or level of detail, which the inclusion of additional scales can later refine. Many computational-biology studies of development focus on tissue-level phenomena, modeling tissues as continuous elastic solids or visco-elastic fluids. Others aim to generalize from an understanding of single-cell behaviors and dynamics, building microscopic models of intracellular dynamics (e.g. , electrophysiological models or single-cell models of filopodial extension). Some authors (e.g. , [7]) argue that coupling many detailed single-cell models can produce models of multicellular phenomena. Molecular and subcellular models like Virtual Cell [8] , Silicon Cell1 or E-cell [9] provide great detail on aspects of subcellular processes. These projects ultimately aim to produce a detailed cell-replica. They can, at best, treat small clusters of a few to tens of cells but simulating larger systems presents a challenge.
Macroscopic models, which treat tissues as continuous substances with bulk mechanical properties (e.g. , Physiome [12]) reproduce many biological phenomena but fail when structure develops or functions at the cell scale. Although continuum models are computationally efficient for describing non-cellular materials like bone, extracellular matrix (ECM) , fluids and diffusing chemicals, we feel that cell centered models operate at the scale that is most appropriate for modeling the biology of complex cell aggregates.
Working at too coarse or fine a level of detail makes analysis much harder. The cell provides a natural level of abstraction for mathematical and computational modeling of development. Treating cells phenomenologically immediately reduces the interactions of roughly 1052106 gene products to 10 or so behaviors: cells can move, divide, die, differentiate, change shape, exert forces, secrete and absorb chemicals and electrical charges, and change their distribution of surface properties. In a recent book review [10] , Meinhardt stated that ‘‘The role of the cell as a module of development can hardly be overestimated.”

The questions we can answer with a cell-centered model include: How does the genetic program interact with generic mechanisms to form an organ? What are the relative contributions of local and long-range signaling? What specific factors result in abnormal growth? Building a cell-centered model requires several steps. First, we infer individual cell behaviors from biological experiments. We can often obtain cell-behavior data from the scientific literature, including the cell’s morphology, its response to extracellular and contact-dependent signals, its adhesion to other cell types and the ECM, its chemotactic and haptotactic motility (cell movement in response either to chemical, mechanical or textural gradients in the ECM), the cells into which it can differentiate and the signals which induce differentiation. The phenomenological single-cell model is purely descriptive and has no explanatory value per se. It becomes useful when we simulate many single-cell models simultaneously to determine whether the behaviors we included in the single-cell model suffice to explain the tissue-level patterns and physiological functions we find in experiments.

The hierarchy of biological systems – from molecules to the evolutionary development of new species, takes place over eight or more orders of magnitude in spatial scale.
Current computational and theoretical capabilities typically focus on one or a few related scales of biological organization – the atoms in a folding protein molecule; the molecules in a biological reaction pathway; the expression of a family of genes.

B2. Cellular Potts Model Overview

The CPM is just one of a wide range of cell-centered modeling frameworks. In contract to other cell-centered models where individual cells are described as points or spheres, ignoring that the shape of individual cells can be an essential determining factor in development, within the CPM, a cell’s contact energy with surrounding cells and the ECM determines the cell’s shape, while the surface area over which two cells adhere determines the forces needed to separate them. Additional constraints can determine specific cell shapes, which may affect tissue- level patterning [42,43] . Because CPM cell has definite volume and surface area, CPM cells can be mapped to real biological cells in a straightforward manner
The Cellular Potts Model is a classic example of a stochastic Cellular Automata (CA) model. A biological system is modeled as a map of lattice points as shown in figure 1. Each lattice point has a state, referred to within CPM as a “spin value” and designated .
[image: image4.jpg]

Figure 1: The figure shows a typical configuration of Potts model in 2D. The numerals indicate spin values. The colors indicate cell type. A cell is collection of simply connected lattice points with same spin value . The number of lattice points in a cell is its volume and the number of lattice points on its boundary (interface with other spin value) is its surface area. By convention Extra Cellular Matrix (ECM) is a cell with spin 1.
Operationally, the CPM is an energy-based model wherein interactions among cells are modeled through cell-cell interaction as well as self energies including volume energy, surface energy, etc. An effective energy E and “fields,” e.g., the local concentrations of diffusants, are used to describe their interactions, motion, differentiation and division. The effective energy mixes true energies, like cell-cell adhesion, and terms that mimic energies, e.g., the response of a cell to a chemotactic gradient. The evolution of the system being studied over time is modeled through discrete time step simulation. [REFERENCES] At time step (also referred to as Monte Carlo Step - MCS) many attempts to reassign spin value to a given lattice point (spin-flip) are made. When the spin-flip results in lower energy of the entire system such configuration is accepted. Otherwise the acceptance of spin reassignment is E dependent (a generalized Boltzmann weighting function) where E denotes a change in energy between pre- and post-flip configurations of the system [REFERENCES]. Thus the cells move to minimize their total effective energy. A cumulative result of many spin flips at each Monte Carlo step is a change of the overall configuration of the simulated cell pattern and viewed as a function of the Monte Carlo step it models cells’ dynamics.
B3. Advantages of the CPM Approach

The CPM creates a reasonable set of logic-based rules which may be mapped to biological communication and interaction phenomena that can be understood and studied experimentally. CPM calculations are also computationally tractable for millions of cells, where other models focused on lower scales of biological organization would not be. Because of the high speed of simulations of CPM, a wide range of possibilities can be explored which would be impossible with more traditional methods based on differential equation. As a cell level model the CPM can simulate organs, tissues as well as biological processes observed at multi-cell level. The CPM fills the gap between sub-cellular models which concentrate on a single cell and engineering-based continuum models, which describe bulk properties of tissues and organs within the overall function of an organism, but which are not suitable for the modeling of the development of cells into tissues.
The CPM has a clear theoretical grounding, but the most important indicator of its value is the many successful implementations of the CPM or its near relatives to model successfully important biological and biomedical systems, including simulations of tumor growth, gastrulation, neurospheres angiogenesis, yeast colony growth, Myxobacteria, stem cell differentiation, Dictyostelium Discoideum lifecycle, simulated evolution, general developmental patterning, convergent extension, epidermal formation, hydra regeneration, plant growth, retinal patterning, wound healing, biofilms. This great variety of applications shows the potential reach of a successful CPM-based modeling package [Palsson, 2001 #29]. Below we present classes of problems that can be addressed by the CPM models together with the list of researchers who will or might be interested in using the Tissue Simulation Environment.:

Simulations of tumor growth (e.g. by the groups of Helen Byrne, University of Nottingham, Thomas Alarcon, University College London, Philip Maini, Oxford University, B. RIbba, Institute of Medical Biomathematics, Israel, L. Sun Cent China Normal Univ, Marco Scalerandi, Polytechnic of Torino, Turner, S and Nick Saville and Johnathan Sherratt, Herriott Watt University, Jose Mombach, UNESINOS, Brazil, Rita de Almeida, UFRGS, Brazil, Mark Chaplain, University of Dundee)

Gastrulation (Dirk Drasdo, Max Planck Institute, Leipzig), skin pigmentation (Andreas Deutsch, Technical University Dresden, Nicholas Monk, University of Sheffield, Thomas Skalak, University of Virgina, Dirk Drasdo, Max Planck Institute, Leipzig),

Neurospheres (Zhdanov, VP, Chalmers Univ Technol, Dept Appl Phys, S-41296 Gothenburg, Sweden)

Angiogenesis (Hans Othemer, University of Minnesota,

Yeast colony growth (Brenner, MP, Harvard Univ,),

Myxobacteria (George Oster, University of California Berlkeley, Mark Alber, University of Notre Dame)

Stem Cell Differentiation (Zhdanov, VP, Chalmers Univ Technol; K. Kaneko, Tokyo University)

Dictyostelium Discoideum (Paulien Hogeweg and Stan Maree, University of Utrecht, Bakhtier Vasiev and Cornelis Weijer, University of Dundee, Umeda, T, Kobe University; Inouye, K, Kyoto University, Herbert Levine, UC San Diego, Dallon, J, Brigham Young Univ)

Simulated Evolution, N. Takeuchi, Tohoku University, Paulien Hogeweg, University of Utrecht

General developmental patterning (Krul, T, Univ Amsterdam, Martins, ML, Univ Fed Vicosa; Mochizuki, A, KYUSHU UNIV)

Convergent Extension (G. Jones, University of Notre Dame)

Epidermal formation (Nick Saville and Johnathan Sherratt, Herriott Watt University

Hydra regeneration (Rita de Almeida and Gilberto Thomas, UFRGS, Brazil)

Plant Growth (Kesmir, C, and Rob de Boer, Univ Utrecht, Beyer, T, Tech Univ Dresden)

Retinal patterning (Mochizuki, A, Kyushu Univ)

Wound healing (Dallon, J, Brigham Young Univ, Johnathan Sherratt, Herriott Watt University

Biofilms (Picioreanu, C; van Loosdrecht, MCM, Delft Univ Technol)

While cell-level developmental modeling is still much less mature than other areas of bioinformatics and computational biology, it is attracting a growing number of users. The Cellular Potts Model has become the most popular method for developmental modeling because it is extremely simple to implement computationally, is relatively accurate (has an accuracy that degrades gracefully and stably as its resolution is reduced) and runs quickly on contemporary computers, enabling simulations of tens to hundreds of thousands of cells. Other cell-oriented modeling methods include vertex and center models [references] which are typically less accurate than the CPM approach and finite-element models, which simulate the shapes of cells and the transmission of forces more accurately but are much more computationally intensive [references]. One key advantage of the TSE is that it will allow a computationally sophisticated user to adopt elements of these other methods where they are appropriate and integrate them with the basic framework.
B4. Other Models and their Lessons

While no other modeling environment is both open source and cell-oriented, we can draw a number of important lessons from successful computational biology tools. Because of length limitations, we will mention only a few of the many packages we are studying.

BLAST is one of the most widely used computational biology tools. While its focus on statistical analysis of genomic data, rather than modeling differs greatly from the purpose of the TSE, it can teach us a number of key lessons about successful computational biology environments. Its wide use derives from its ability to enable and accelerate new insights in genomics, its usability, and the availability of an expanding base of data that can be apprehended through use of BLAST. Its success also depends crucially on its ability to exchange data seamlessly between other sequence and chemical structure related tools. Often these tools are packaged together as a single toolkit, one (of many) successful examples being the San Diego Supercomputing Center’s Biology WorkBench (http://workbench.sdsc.edu/).

Other similar sets of coupled tools include PHYLIP (PHYLogeny Inference Package) a package of programs for inferring phylogenies (http://evolution.genetics.washington.edu/phylip.html), EMBOSS: The European Molecular Biology Open Software Suite (http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/) and the Bioinformatics Portal at Indiana University, (http://bioportal.cgb.indiana.edu/). We will take full advantage of the development Center for Genomics and Bioinformatics’ expertise in multi-tool integration and user interface in developing the TSE (see letter of support).
Such integration takes time to evolve and depends on the existence of a standard group of recognized ways to describe biological processes. In the development of the TSM we hope to create a tool that is similarly powerful and easy to use in approaching mechanisms at the cell and tissue levels, based on a set of simple and biophysically motivated rules.
A number of highly developed simulation tools also exist that address either the modeling of subcellular processes or of the physiology of whole tissues. These are models to which we need to either build or at least allow the possibility of future interfaces. They also operate in a world much closer to that of the TSE, since they treat spatial structures and adjacent length scales. Each has particular lessons for the TSE:

Physiome Project (http://www.physiome.org/). The Physiome Project aims to develop integrative models at all levels of biological organization. Among its strengths are its scope (multi-level models), versatility, support of XML-based markup languages (CellML, TissueML, AnatML, PhysioML) for every level of modeling, availability of high quality of 2- and 3-D visualization tools and support for public database connectivity.

Virtual Cell (http://www.nrcam.uchc.edu/index.html). Virtual Cell is a general computational framework for modeling cell-level biological processes. Developed mainly in Java and accessible via portals, Virtual Cell provides flexible environment for biomedical simulations. Strengths of Virtual Cell include its availability through the web portals, high performance math libraries (implemented in C++ and including PDE solvers), well documented, extensible modeling language, simulation storage system, and regularly held educational workshops that teach users how to effectively use the package. Unfortunately Virtual Cell is not an open-source project. Although free to use, it is not open source software. The software cannot be obtained or modified by individuals outside the Virtual Cell project, and some modules may be run only by use of servers controlled by the project.

BioSPICE (https://users.biospice.org/home.php) is a framework and toolset for modeling dynamic cellular network functions. BioSPICE has modular structure, is easily extensible and single installation can serve multiple users. Most of BioSPICE’s capabilities are provided in the forms of external modules developed by different institutions. Being a fully open source
project BioSPICE benefits from a wide network of collaborators and this is in part due to well documented code. BioSPICE focuses on subcellular processes and is not well suited to simulate tissues or organs directly.

· E-Cell (http://www.e-cell.org/). According to its website “E-Cell Project is an international research project aiming to model and reconstruct biological phenomena in silico, and developing necessary theoretical supports, technologies and software platforms to allow precise whole cell simulation.. The E-Cell Model description Language (EML), a subset of XML, is used for describing models. Systems Biology Markup Language (SBML) support is also being developed to enable cross-platform model exchange”. E-Cell is an open so
urce project and has been actively developed during recent years.

· SCIRun (http://software.sci.utah.edu/scirun.html) SCIRun is a problem solving environments for simulation, modeling, and visualization of scientific problems. It is fully open source project that has been used in a wide variety of simulations, including planning high-risk neurosurgery. SCIRun is, we believe, an excellent model for the Tissue Simulation Environment in its structure, functionality, standards compliance, and development methodology.

The packages listed above are successful examples that have many users and are supported by many contributors. We will develop the TSE drawing upon the best characteristics, methodological and software engineering principles, and functional modules whenever possible. For example, SCIRun implements the best model of user-software interaction and it also has very functional user interface. Some BioSPICE modules can be reused in our Tissue Simulation Environment to handle simulation of subcelluar processes. From software technology point of view E-Cell is particularly attractive to us because it is built using the same software technology as CompuCell. In the future development we will draw upon the features of these tools, their development, implementation, support, and community interaction processes that have helped make them successful. Common features that made those packages successful include excellent documentation, users’ support (mailing lists, workshops and tutorials), professional websites, and extensibility and interoperability features (including support for markup languages such as CellML and/or SBML.

There are two other striking commonalities among the key exemplars and leading tools in the simulation of celluar processes enumerated above. None of them focus on the level of biological organization that is at the center of the proposed TSM or the existing CompuCell tool, and none of them focuse phenomenologically on developmental processes. The importance of the proposed work with the TSM is that it will focus on a very important level of biological scale – 2 to a million cells – but do so in a way that will maintain interoperability (via standard markup languages) with tools that operate at higher and lower levels of biological organization.

The extremely highly developed world of molecular dynamics modeling also offers excellent examples of well designed user-interfaces, high level shared modules and integration of databases and simulation tools.[REFERENCES]
B5. How will TSE Drive the Field of Developmental Simulation?

Researchers simulating biological systems using the CPM methods very often duplicate their efforts by creating their own implementations of Potts model tuned to solve one particular problem. The time spent on code development, debugging and maintenance constitutes a significant amount of a researcher’s time. Most researchers in this small community write their own software using their own conventions and styles, collaboration between different research groups is difficult. Combining simulations implemented by different groups is usually a very cumbersome task and is a potential source of errors. The lack of a agreed-upon set of standards in notation and software very often slows the progress in the field. Furthermore, the obstacles to use of this software limit the applicability of this very powerful tool to a small group of specialists, when a much larger group of researchers could benefit from including this modeling approach in their research.

While in certain situations writing hand-tuned code might be advisable, in the majority of cases, the preferred solution is to take advantage of extensible, professionally written and maintained code-base, which reduces code preparation time to a minimum. From a researcher’s point of view, however, the best approach would be to eliminate the need of writing any code at all, instead using a universal language which is compatible with other programs to describe the simulation. As experience shows, writing a custom code is not only expensive but also very error prone. Problem Solving Environments (PSE) alleviate this problem by isolating software implementation from its concept. They allow users to think in terms of higher level of abstraction and by providing ready-to-use simulations’ building blocks. They eliminate, to a great extent, most of the errors that custom written codes suffer from. In addition to that, PSEs often posses knowledge about particular models and simulations, thus they can suggest users “reasonable” set of parameters and produce warnings whenever parameter set appears problematic. Despite the fact that PSEs hide most of the implementation from users, they also allow users to do certain amount of low level programming which is facilitated mainly by means of scripting languages. By transforming CompuCell3D into Tissue Simulation Environment we will create fully functional PSE which will minimize the need for biomedical researchers to engage in writing their own codes

The Tissue Simulation Environment will have a broad impact on simulation of development and related processes in three ways: it will make CPM-based approaches to the problem much more easily accessible to a broad group of biomedical and biological researchers; it will allow the existing group of experts in CPM-based methodologies to pool and much more effectively leverage their efforts; the TSE will accelerate experimental biomedical research.

The TSE will be developed using modern software engineering methodologies, resulting in a software package that is much easier to use. As a result of making the software easier to understand and use, and as a result of training efforts we propose, the community of people that use it should grow substantially and rapidly. Availability of the CPM simulation environment will relieve much of the burden of software development from scientists and will allow them to concentrate on constructing and simulating more detailed and complex models of biological systems, and will make this tool easily accessible to researchers who simply would not use a CPM-based model if they had to write their own software.

Open source and community code
s, as discussed in the call for proposals, the BISTI report, and in many other publications, are well suited to problems where a commercially-provided software tools is not possible, yet a need is sufficiently broad within a scientific community that the community. CPM models are widely enough adopted that a community/open source approach will benefit those people already using this approach. Furthermore, by establishing the TSE as a well-engineered software core, well documented, it will be much easier for researchers to build upon this base and add functionality and capability to the core TSE, without having to recreate the basic core work of the interface and data structures. The creation of the TSE will include a set of definitions and conventions that will make information exchange among groups using CPM and CPM-like approaches much more straightforward than is possible now. Open source approaches to community codes also improve testing of software and tend to accelerate corrections of errors when they are found.

 The TSE will allow rapid simulations that will facilitate and accelerate experimental research. There is a good example already available in the physics community, where an open source simulation tool called GEANT (http://wwwasd.web.cern.ch/wwwasd/geant4/geant4.html), which uses the Monte Carlo method to simulate high energy physics experiments. GEANT significantly reduced time necessary to set up detector simulations and thus allowed for faster experiment completions.While the general virtues of open source community codes are well appreciated, there is another element of the GEANT example that bears mention. GEANT was one of the first programs of its kind to be written and distributed in a well engineered, well documented fashion that made it easy for scientists to add their own contributions to the code.
A critical element of the current proposal is the key aim to create a well engineered, well documented core to which other researchers can add functionality – creating a positive feedback that over the course of many years will leverage the collective efforts of the community of researchers studying and modeling developmental processes and making the work of each researcher in the area more efficient.

C. Preliminary Work

C1. Key participants

Principal Investigator Dr. James Glazier

Dr. Glazier has extensive experience both in experimental and computational developmental biology and was co-developer of the CPM approach to developmental modeling in 1992. His work focuses on cell-tracking and fate mapping experiments in chick limb and gastrulation and simulation of those phenomena. He also conducts research on microfluidics devices to quantitate cell behaviors relevant to developmental modeling. He has extensive expertise managing multi-departmental and multi-institution interdisciplinary collaborations. He was PI on and managed the six-faculty, four institution NSF Biocomplexity Award (total value $3,000,000), which developed the current CompuCell 3D package. He has published numerous articles on these topics and presented invited lectures on them in more than 20 countries. While at the University of Notre Dame he also secured funding for the purchase of a high-field (300MHz) Bruker Magnetic Resonance Imager, and developed and ran ND’s MRI shared facility. He initiated and ran the Notre Dame Biocomplexity Center from 2001-2002 and has organized eight international biocomplexity workshops as well as numerous symposia and mini-symposia on biocomplexity at international meetings. He has graduated nine Ph.D. students and supervised numerous postdoctoral researchers and undergraduates. He is a fellow of the Institute of Physics.
The Biocomplexity Institute
Dr. Glazier is the founding director of the Biocomplexity Institute at Indiana University, which has the remit to develop systems and computational biology on the university campus and to promote outside collaborations. In the three years since the Institute’s inception, IU has hired at the assistant professor level or higher, three additional biophysicists and seven computational biologists (as distinct from bioinformaticians), an additional five, specifically interdisciplinary positions in experimental and computational systems biology and biocomplexity have been approved for the next two-three years. The climate at the university has also changed significantly, with a greatly increased openness to systems biology and biochemistry hires by individual departments. The Institute has organized a series of successful international workshops on systems biology issues (on Stem Cells and Regenerative Medicine, 2003; Biofilms and bacterial differentiation, 2004; and biological networks, 2005). The Institute has also hosted a series of long term visitors including Dr. Eshel Ben-Jacob, the President of the Israeli Physical Society, Dr. Philip Maini, head of the Institute of Mathematical Biology, Oxford University and Dr. Yoshinori Hayakawa, Tohoku University Sendai, Japan, as well as numerous short term visitors. In addition, the Institute provides shared facilities for biological research, including a FACSCaliber cell-sorter and (under current installation) a Leica Two-Photon, multispectral microscope. The Biocomplexity Institute has been recently awarded 10 offices and 6000 sq.ft of laboratory space in the Simon Hall - a newly constructed multidisciplinary science building on IU Bloomington Campus. The Institute also provides organizational and grant preparation support to faculty and maintains a Biocomplexity-oriented web site (www.biocomplexity.indiana.edu). The Institute’s members include Dr. Geoffrey Fox, a leading expert on grid-based computing, Dr. Alessandro Vespignani, a leading bio-network researcher and numerous other members of the departments of Biology, chemistry, mathematics, computer science, psychology and the school of medicine.
Open Systems Lab

Andy and Craig need to fill it out NOTE: UITS stuff below
Scientific Data Analysis Lab – IUPUI

The Scientific Data Analysis Lab (SDAL, http://sda.iu.edu) at Indiana University – Indianapolis campus, has a broad range of experience in scientific visualization and data analysis. Randy Heiland, who leads the SDAL, is a seasoned software developer and has worked alongside computational scientists at several national labs (LANL, PNNL, and NCSA) before recently joining Indiana University. Together with Charles Moad, also in the SDAL, they bring a depth of expertise in both low-level computer graphics libraries (e.g., OpenGL) and higher level, open source visualization packages and tools that could be relevant to the Tissue Simulation Environment (e.g., matplotlib, VTK, ParaView, MayaVi, SCIRun). They are also experienced at building graphical user interfaces using a variety of open source projects (e.g., FLTK, glade, Boa-Constructor) and have developed client-server and Web services-based remote data visualization and analysis solutions for a variety of scientific domains (see references in their biographical sketches).

In preliminary work at improving the visualization of data from CompuCell3D, the SDAL has collaborated with researchers in the Open Systems Lab and have provided a VTK-based “steppable” (described below). This allows for output data to be written in a concise binary format (but with an ASCII XML header) and for those results to be displayed in any VTK-based visualization tool or script, including temporal animations.

The SDA Lab actively participates in K-12 education and outreach. The most recent activity was a workshop at the Indianapolis Girl Scout Math & Science Center in spring 2005. The Center has a modern computer lab with a high-speed connection to the Internet. This particular workshop taught basic concepts in scientific (non-gaming) simulation, via computer programming through scripting, and targeted middle school girls. The feedback from the “sold-out” workshop was very positive and we have been invited back to hold more workshops in the 2005-6 school year. In addition, the SDA Lab has been invited to help define the science and math curriculum for an inner-city Indianapolis charter school for 2005-6. The school makes extensive use of computer technology and we intend to introduce scientific simulation to their curriculum. We would welcome the opportunity to use the Tissue Simulation Environment (and simple models therein) as a platform for teaching next-generation researchers.
University Information Technology Services

University Information Technology Services (UITS) provides information technology leadership and support for Indiana University. UITS has a long and successful track record of supporting biomedical researchers at Indiana University and its collaborators, and a highly successful record in creating and disseminating open source software for biomedical and biological research. The Research and Academic Computing Division of UITS is, in particular, charged with supporting use of research computing tools, as well as research, development, and deployment of advanced computing tools for researchers at Indiana University, nationally, and internationally. Led by Associate Vice President Dr. Craig A. Stewart, the Research and Academic Computing Division of UITS currently distributes five different open source software packages used in biomedical research (http://www.indiana.edu/~rac/online_resources.html). Dr. Stewart is a Ph.D. biologist with an extensive publication record in the area of computational biology and bioinformatics (e.g. S1-s6). Stewart also has considerable experience in giving tutorials on advanced computing tools at scientific conferences (s7-s10), esperience that will be put to use directly in aiding the creation and delivery of tutorials about advanced information technology tools in support of research (e.g. s7-s10). Stewart’s group has been successful in the deployment and dissemination of a parallel (supercomputer or linux cluster) version of the popular phylogenetics code fastDNAml (http://www.indiana.edu/~rac/hpc/fastDNAml/). This software is both widely used and widely cited. The Research and Academic Computing Division of UITS has significant funding to support biomedical research at Indiana University, and will participate (via the newly created Center for Computational Cytomics) heavily in this project.

The Research and Academic Computing Division of UITS also maintains UITS’s considerable array of supercomputers, massive data storage systems, and visualization environments. Briefly, IU’s supercomputers consist of a large IBM SP (with more than 600 processors, capable of 1 trillion mathematical operations per second – or 1 TFLOPS) and a large Linux cluster (with more than 400 processors, and capable of more than 2 trillion mathematical operations per second).

UITS will be involved in the software development and testing, develop,ent of training materials, and presentation of tutorials. In addition, UITS will provide access to IU-based supercomputers via a web portal so that researchers may try out and gain experience with the TSE.

Center for the Study of Biocomplexity – University of Notre Dame

Members of the University of Notre Dame Interdisciplinary Center for the Study of Biocomplexity (ICSB) (http://www.nd.edu/~icsb/) come from eight departments in the schools of science and engineering and are working together to meld physical, mathematical, and computational approaches with those of modern
biology to understand this complexity in a quantitative and predictive way. The main goal of the ICSB is to develop comprehensive multi-scale models of cell and tissue organization and relate them to development. The ICSB addresses three scales of structure starting from the subcellular, where we study cell organization, the cytoskeleton, and protein and genetic networks. One of main goals of the ICSB is to improve communication between biological, mathematical and physical scientists with emphasis on developing techniques and tools of broad utility to bioscientists. All ICSB projects combine quantitative experiments and computer simulation and build on the mutually complementary strengths of the researchers at Notre Dame with the support from collaborators at Indiana University and other institutions. Some of the projects currently under way within the center include: Organogenesis and Tissue Development, including the mechanical properties of tissues, Biological Networks, including gene regulation pathways, metabolic pathways, and cell signaling networks, and Subcellular Organization and Dynamics, with a focus on the cytoskeleton.
The ICSB provides research opportunities in Biocomplexity at both graduate and undergraduate levels and support the short and long-term visits of our students to other major institutions and programs, and the short and long-term visits by members at other institutions to Notre Dame. Similar programs exist at the postdoctoral and faculty levels. The ICSB runs an active Biocomplexity Seminar and Distinguished Lecture Series. The ICSB also conducts international workshops essential to the training mission of the ICSB. Thus far the ICSB has organized, in cooperation with the Biocomplexity Institute at IU Bloomington, 8 such Biocomplexity Workshops.
The ND ICSB has received an NSF MRI Grant to establish a Beowulf type cluster to meet its research and educational goals. This cluster will contribute to the BoB cluster (http://bob.nd.edu), one of the top 500 listed supercomputers (http://www.top500.org/list/2002/11/). Dr. Alber will be supervising three postdoctoral researchers (separately funded) who will be developing mathematical models of specific biological phenomena within the TSE environment.
Co-Investigator Dr. Mark Alber

Dr. Alber is the director of the Biocomplexity Center at the University of Notre Dame and a co-developer of CompuCell 3D. He has an extensive background in applied mathematics with experience both in CPM and continuum modeling of chondrogenesis. He has also developed successful models at both coarser and finer levels of detail than the CPM, which will provide significant help in our efforts to inegrate the TSE with other levels of model. He has developed Lattice-Gas Cellular-Automaton (LGCA) models of both chondrogenesis and rippling in myxobacteria [Alber et al. 2004a-b-c, Kiskowski et al. 2004], which use a point-cell approach coarser than the CPM. He has also developed a macromolecular-scale simulation of synapse formation during immune T-cell recognition, focusing on the interaction of T cell receptors (TCRs) with peptides in context of major histocompatibility complex (MHC) molecules displayed on the surface of antigen presenting cells (APCs) or target cells. Dr. Alber will work to develop demonstration simulations within the TSE and assist in interoperability development.

Co-Investigator Santiago Schnell is Associate Director of the BI, Assistant Professor of Informatics and Adjunct Assistant Professor of Biology and Physics at IUB. Dr. Schnell applies systems biology techniques to study complex biochemical reactions and embryology. One of his major contributions has been determining the dynamics and conditions for the validity of multiple scaling techniques in enzyme-catalized reactions. He has published 17 papers in this area [e.g., 23,46,95,96,98,99,100,101,102, 103,104,105,119]. He has also worked on pattern formation during somitogenesis, with six papers which address the effects of heat shock on segmentation, develop a model for cell movement during somite formation, model the wave motion of the expression of the transcription factor c-hairy-1 in the pre-somitic mesoderm, the effect of molecular clocks on the boundary and segmentation formation [21,94,107,108,8,71], and two invited reviews on the marriage between the molecular, cellular and tissue aspects of somitogenesis [108,8]
Co-Investigator Maciej Swat is a Research Associate in the Biocomplexity Institute at IUB. He received his Ph.D. in Elementary Particle Physics and worked on phenomenological modeling of reactions involving light quark mesons’ production. He has developed highly optimized software package that facilitated successful analysis of world largest meson production data samples. He has recently joined the institute and is working on Tissue Simulation Environment development. His areas of expertise include scientific programming, mathematical and statistical modeling and implementation and design of algorithms and numerical methods.
????Each co-investigator needs a paragraph on his skills and role in the project]
C2. The Starting Point: The Current architecture of the CPM implementation CompuCell3D

The current Potts model simulation environment – CompuCell3D consists of a modular C++ software package and a visualization system. The software supports modeling biological cells on a 3-dimensinal (nxnxn) lattice using the Cellular Potts Model described in section B, and additionally simulates the chemical concentration gradients necessary for chemotaxis. The visualization system consists of OpenGL (http://www.opengl.org/) and VTK-based (http://vtk.org) applications that generate 3D representations of the lattice and provide basic animation capabilities.

C2.a. The CompuCell 3D Potts Model Simulation Engine

CompuCell3D was designed using current best practices in software engineering in order to provide a flexible simulation environment. The entire package is based on a system consisting of a core Potts Model Simulation Engine with a clear and well-defined interface through which the simulation engine communicates with a series of program modules called plug-ins. Figure 2 shows the modular layout of the code.

Figure 2: Potts Model Simulation Modules (UML Component Diagram).

Each plug-in implements a different biological model, physical interaction or program functionality. This makes it straightforward to add new functionality to the program by creating a new plug-in; many highly successful open source software projects are based on precisely this approach. There are two types of plug-ins at present:

Plug-ins that are executed after every step in the Monte Carlo simulation. These plug-ins (referred to within CompuCell3D terminology as “steppables”) are used for implementing time dependencies of cell attributes, such as the target volume and chemical gradient. Plug-ins that run at every step are also used for simulation visualizations.

Plug-ins that are called when a spin flip event takes place. Most of these perform energy calculations associated with the spin flip attempt, update cell attributes that change during spin flip (e.g. cell volume or common areas between cells).
To run CompuCell3D, a user prepares an XML-based configuration file in which he/she describes a simulation by specifying lattice size, boundary conditions, temperature, and the set of plug-ins required (together with their parameters). Plug-ins are executed in the proper order automatically by CompuCell3D; the user does not need to worry about the order in which plug-ins are specified in the configuration file. For example, the plug-in that calculates cell volume runs before the plug-in that calculates cell center of mass. By using plug-in based approach we provide software flexibility (users can develop their own plug-ins) as well as careful management of resources (plug-ins not specified in the configuration file are not even loaded into memory)
As the TSE expands and the simulations become more complex, the plug-in approach will to critical to the success of the TSE from the standpoints of code extensibility, maintainability, and efficiency. This approach is exactly that implemented in commercially successful packages such as MATLAB® or Maple™ (in which the sort of functionality implemented in CompuCell3D plug-ins is delivered through software subunits variously called toolboxes, libraries, or packages).

C2.b. A guided tour through a simple ComputCell3D simulation.

Figure 3 shows an XML configuration file for a ComuCell3D simulation of cell sorting process where starting from a randomly distributed cells, at the end of the simulation we obtain conglomerates of “Condensing” and “NonCondensign” cells. The pattern formation is governed by the particular choice of the contact energies between these two types of cells and medium.

[image: image1]
Figure 3: Example of CompuCell3D XML configuration file (abbreviated). User may choose which plug-ins to include
The XML listing shown in Figure 3 can be turned into a series of steps of “pseudo-code” – that is, expanations of each main step of the program execution that are fairly readable by programmers or scientists.
1: # Initialize the simulation

2: RandomSeed()

3: InitializeLattice()

4: LoadPlugins()

5: OutputLattice()

6: # Monte Carlo Loop

7: For n Monte Carlo steps:

8:

9:

10: # Select a point and compute its energy change

11: point = ChooseRandomPoint()

12: delta_E = ComputeEnergyChange(point)

13:

14: # Metropolis Step (determine prob(flip))

15: if delta_E <= 0.0:

16: flipProb = 1.0

17: else:

18: flipProb = exp(-beta * delta_E)

19:

20: FlipPoint(point, flipProb)

21:

22: OutputUpdate(point)

23:

24: # End of Monte Carlo Loop

Listing 1: Potts Model Simulation Pseudo-code
The engine calls out to the Initialization module to setup the lattice (line 3). The Initialization module creates the biological cells and initializes the chemical concentrations in the extra-cellular material (ECM). Different Initialization modules can be used depending on the experiment being run. For instance, one module may simply create a random distribution of cells whereas another may setup the lattice to precisely emulate the initial conditions from in-vivo experimental data. The next step (4) consists of Plug-in Management System loading plug-ins specified in the XML configuration file. Before entering the main loop, the engine uses the Output module to output a complete copy of the lattice (line 5). The simulation results are saved in this initial full lattice file and another file that saves the results of each lattice update (line 22). This makes it possible to view the lattice at every Monte Carlo step without using an excessive amount of storage space. The Monte Carlo loop (lines 6-24) drives the execution of the simulation using functions defined in the Energy, Spin Flip, and Random Choice modules. First, a random lattice point is selected as a candidate for spin flipping (line 11). The Random Choice module performs the actual point selection. Different implementations of this module can impose extra restrictions on the selection of the lattice point. For instance, it can ignore all points that are internal to a cell or the ECM or only allow updates on cells of a certain type. Next, CompuCell3D runs energy plug-ins responsible for calculating the change in energy that would occur if this point were to flip its spin (line 12). Each energy plug-in implements part of a Hamiltonian. Different plug-ins here allow for experimentation with different energy functions and different combinations of the coefficients of these functions. For instance, one version may exclude the contribution of surface area and place a stronger emphasis on volume. Based on the results of the energy functions, the Metropolis algorithm is applied to determine the probability of a spin flip occurring at the selected point (lines 14-18). No calls to external modules are made here. With the probability computed, the Spin Flip module is called to perform the actual flip (line 20). This module computes a random number and performs the flip if the probability is less than this random number. Different Spin Flip modules perform different types of updates on the lattice. A simple module will simply change the spin value for the point. More complex ones also enable tracking of parameters for the cells such as area and volume. Finally, after each Monte Carlo step, the CompuCell3D “kernel” executes all user specified Steppable plug-ins. Because some of them might be computationally expensive to run or produce large output files, a user can specify in the XML configuration file a frequency with which a given plug-in should be called.

C3. Limitations of CompuCell3D

The major shortcoming of CompuCell3D is the limited number of available plug-ins. The plug-ins that are available are responsible for lattice initialization, basic visualization, and energy calculations. Plug-ins that have been requested already by current users of CompuCell3D include visualization and parameter sweeps. The development of new modules is complicated by developer documentation that is not presently sufficient or accessible.

Visualization of the cells on the lattice plays a very important role in the research process. A good visualization module is crucial in making sure that cells behave in a reasonable fashion and very often researchers may tune “on-the-fly” parameters of the energy functions without waiting for the entire simulation to finish. The current implementation of CompuCell3D lacks a robust real-time viewer of the lattice (a prototype of such a viewer has been developed and will be discussed later). Most of the visualization is performed a posteriori using Ogle (http://www.cora.nwra.com/Ogle/index.html), a scientific data visualization tool which is no longer actively maintained. For the TSE, we will adopt open source visualization libraries and packages that are being actively developed and maintained. In addition to providing a viewer for post-processing, we will also provide a real-time viewer which would obviate the requirement of saving large output files solely for the purpose of visualization.

In the research process, it seldom happens that all the parameters describing a physical or biological system are known from the beginning. The major task of running computer simulations is to be able to empirically determine or estimate those parameters. For certain problems one may run suitable objective function minimization routines and reduce the problem of parameter estimation to finding function minima. Although such an approach is useful in some biological problems, we find that in the class of problems addressed by the TSE, it is more important to provide users with a possibility of carrying out parameter sweep – that is, allowing a user to perform multiple simulation runs, each time with different set of parameters. The current version of the program does not provide a simple mechanism for accomplishing this task. Instead, users are required to implement this functionality themselves (which usually means writing a script that alters XML configuration file and runs new simulations). Because parameter sweeps should be an integral part of Tissue Simulation Environment runs, we need to provide an efficient and easy way to use this feature.

As parameter sweeps are performed, one has to store results from large number of simulations. Currently this task is delegated to CompuCell3D users. However, as the number of simulations grows, it will become very important to provide users with data archival and retrieval tools. This feature is missing in CompuCell3D.

In most of the custom written scientific programs, the only place where interaction between a user and a program takes place is when the user passes parameters to the program. After that, there is no way to alter the execution of the program. After the program has finished its execution, a researcher inspects the results and, if necessary, adjusts program parameters and runs the program again. This model of user-program interaction is quite limiting. An improvement on this would be the possibility of “computational steering”, i.e., changing parameters during the course of a running simulation. Biological simulations are perfect examples of a situation where one often has to use time-dependent parameters. As of now, the only way in which the user may implement time-dependence of the parameters in CompuCell3D is by explicit hard-coding. The real time, user-program interaction is not possible at the moment. This is a serious limitation of CompuCell3D and will be given a high priority in future development efforts.

While development of new plug-ins is a straightforward process for a competent programmer, we believe that the Tissue Simulation Environment should support a wider variety of features than it currently does in order to minimize the necessity of developing new modules. In situations where coding is unavoidable it is of great importance to make this task as easy as possible. Currently a CompuCell3D user has to work directly in C++ to develop or test new modules. Developer documentation is available only in the form of a few papers [Cickovski T, 2004 #28;Izaguirre, 2004 #9] where authors describe the main ideas of CompuCell3D and implementation of some of the more complicated design patterns. Consequently, new developers are forced to study source code to understand major CompuCell3D concepts. Clearly, we need to provide comprehensive developers’ documentation. We have had several requests for the ability to rapidly prototype new modules – in the way that the scripting language Python permits prototyping of applications written in C++. First attempts to integrate scripting languages with CompuCell3D have been made and they will be described later.
C4. Dissemination problems

Current version of CompuCell3D is already being used by several researchers from Indiana University and the University of Notre Dame. Expansion of the program user-base was impeded by the fact that CompuCell3D lacks a lot of functionality needed to build realistic models. This is mainly because CompuCell3D was developed by computer scientists and outside professional developers but without sufficient interaction with biophysicist, biologists or other relevant research groups. As a consequence, convincing potential users to use CompuCell3D was quite difficult. Therefore, based on our experiences with a current version of CompuCell3D we are reluctant to consider outsourcing the development work to the outside subcontractor. We are strongly committed to the idea that close collaboration between scientists and developers (some of which might have scientific background) is the way of producing successful scientific package.
C5. Current user base of CompuCell3D

The current version of CompuCell3D is already being used by several researchers from Indiana University and the University of Notre Dame. Good user documentation exists (http://www.nd.edu/~lcls/compucell/userguide.pdf),

Expansion of the program user-base has been impeded by the fact that the current suite of plug-ins is inadequate to handle many modeling scenarios, Indiana University and the University of Notre Dame do not have enough programming staff to keep up with existing requests for creation of new modules, and it is still too difficult for researchers to add their own new modules. Our experience with the CPM and CompuCell3D has led us to identify several classes of potential users of developmental biology simulation environment:
developers are often applied mathematicians, computer scientists and biophysicists who are comfortable with the mathematics of biological simulation and with code development. This group currently tends to write and run its own implementations of the CPM. To appeal to them, the TSE must be as fast as and as easy to customize as their current software and must include all of the features that they have included in their own code. They are a potentially invaluable source of plug-ins and hard-coded improvements to the TSE.

biomodelers, who are adept at writing mathematical descriptions of their target biological phenomena but may not wish to develop a software environment in which to implement them. This group is the audience most likely to adopt the TSE early, since its benefits will be immediately obvious to them. For them, the ease of implementing models within the TSE, the quality of TSE visualizations, statistical outputs and the quality of support and documentation will be critical.

 experimentalists, many of whom are not currently using modeling. This group may not have thought about how modeling could benefit their research and may not have any experience in translating their biological insights into mathematical form. For this group, ease of use and quality of training are key, as well as our ability to demonstrate that the results of simulations can aid them in experiment design and interpretation and, that simulations can make quantitative predictions of new phenomena. The specific examples of Entelos for diabetes modeling and the Virtual Heart for cardiovascular modeling show where this transition has already occurred. We would hope that the TSE can do the same for tissue engineering, regenerative medicine and developmental biologists. The availability of extensive demonstration modules and a substantial body of quantitative data on cell behaviors within the TSE, which eliminate the need to develop mathematical models directly, are essential to appeal to this group of users.

The TSE functionality should satisfy biomodelers users e.g. biophysicist who is trying to understand mechanics of gastrulation as well as experimentalists who want to obtain insightful results with minimal effort in terms of setting up the simulation, for example a clinical researcher who wants to model the growth of a particular type of tumor as influenced by a potential therapeutic compound that research is investigating.

D. Research Design and Methods

[Note that the specific aims must correspond to those in the initial specific aims section]

D1. Specific Aim 1 - Providing modeling capability comparable to or better than other CPM simulations
Our specific aim is to redesign certain parts of the existing CompuCell3D and develop set of new modules that will increase capabilities of the TSE. Our current priority order for adding capabilities to CompuCell3D in the creation of a Tissue Simulation Environment is as follows: code clean-up and architecture redesign, development of new modules, parallelizing the code. However, we will engage in a survey of researchers engaged in modeling developmental phenomena and researchers who might benefit from incorporating modeling into their research programs (see Specific Aim 3). We will modify our plans and priorities as appropriate based on the results of this survey.

Methodology
D1.a. Code clean-up and design improvements

During the development of the CompuCell3D a lot of attention was paid to using, what is considered, a good programming style. Nevertheless, certain parts of the code need to be adapted to the standards that most of the code followed. This will increase code readability and also make code documentation easier. In addition to code clean-up we will need to revisit some of the design decisions that were made at the very early stage of CompuCell3D development. Because CompuCell3D is currently used by several researchers who provide us their comments, we have already managed to build a list of certain aspects of CompuCell3D design that need to be changed. For example, current version of the CompuCell3D enforces cell attributes to be stored in contiguous memory locations (the motivation for that was an increased performance). The implementation of this feature, however, places a limit on what can be used as cell attribute. In particular it is very difficult to use as cell attributes dynamic containers such as lists or dynamic arrays. This, in turn, will most likely prohibit the implementation of the more complex biological models.
D1.b. Environment Architecture

A prototype of the architecture of the TSE is presented in the figure below.

[image: image2]
Figure 4: A prototype of the Tissue Simulation Environment Architecture

Most of the interaction between user and program will take place via User Interface. All the core functions (running actual simulations) will be performed by kernel and some of the plug-ins. In addition to precompiled plug-ins a user will be able to implement his/her own plug-ins using scripting language and thus will avoid the necessity to recompile the program. In most cases the implementation of the kernel will be hidden from the user and he/she will operate at the interpreter layer. To ensure maximum extensibility and flexibility of the software the only modules that access the kernel directly are the interpreter and those plug-ins that contain implementation of models. Such an approach strikes the right balance between configurability of the software and its efficiency.
D1.c. Plug-in system

We will incorporate most of the missing functionality in the form of dynamically loadable modules (plug-ins). We realize that without implementation of certain class of modules, the TSE will not be able to attract attention of researchers. Plug-ins whose lack significantly limits the usability of the CompuCell3D as well as proposed methods to develop them, are listed below.

Diffusion Solver

Lack of a robust diffusion solver makes it impossible to use CompuCell3D to simulate environments where chemical signaling is important. We propose to incorporate into TSE a flexible diffusion solver that will provide several methods of solving diffusion equation and the user will be able to choose the preferred method. The diffusion solvers based on averaging process (discussed in the introduction to CPM) will be fully implemented by us. Exact solvers based on Finite Difference Methods, or Finite Element Method will be either implemented by us or alternatively we may use external, high-performance, open source, packages that numerically solve partial differential equations (e.g. Overture – http://www.llnl.gov/CASC/Overture or PDE modules from SCIRun). In parallel to diffusion related plug-ins we will develop modules that will enable us to simulate Extra-Cellular Matrix (ECM). By coupling diffusion phenomena to the motion of ECM we will be able to simulate advection-diffusion processes. The ability to simultaneously simulate both cells and ECM is essential if one wants to build realistic cell or tissue models. In fact, a standalone program for advection-diffusion simulations has been already developed by Debasis Dan (Postdoctoral Fellow in the Biocomplexity Institute). We will adapt his code so that it can be used in a form of a plug-in.

Solids

Another example of feature that will be implemented as a plug-in is the support of solids. This particular plug-in will be essential to simulate the motion of quasi-rigid bodies inside cellular matter. Currently the only type motion that one can simulate within CompuCell3D is fluid-like visco-elastic motion of cells. Clearly, this is not sufficient for simulation of more complex biological systems. For example to simulate a bone surrounded by a tissue [Chaturvedi, 2004 #3;Chaturvedi, 2003 #13], we need to make sure that bone cells move as if they were glued together but at the same time the bone should exhibit elastic properties. One way to achieve this required behavior is to use Finite Element Method on the lattice to model elastic properties of certain type of cell aggregates (e.g. bones).
Cell Polarity

To account for a more accurate representation of the cell functions we will develop modules implementing cell polarity. This means that different part of the cells will have different properties, for example, one end of the cell may be responsible for secreting chemical whereas another region of the cell may act as a sensor. There are a lot of simulations that depend on ability to implement cell polarity e.g.angiogenesis.
Active Changes of Cell Shape

JAMES, please describe it
Force Transduction

JAMES, please check if I am right.
In order to study the behavior of cells subject to external pressure (e.g. motion of the foams give better example) we need to be able to express pressure gradient in terms of cells’ energy. Different spatial distributions of the pressure gradient will call for different functional forms of the energy terms. Implementation of pressure related plug-ins will open new possibilities in terms of simulating full range of dynamic as well as elastic properties of different tissues.
Ordinary Differential Equation Model of Cell Regulatory Network – subcellular level modeling
Usefulness of the Tissue Simulation Environment in the biological research will be greatly enhanced by implementing modules that will realistically simulate cell growth and division [Mombach, 1993 #22] - fundamental processes in cell’s life.

These processes are tightly regulated by a chemical reaction network called the cell cycle engine. A damage of the cell cycle control can cause abnormal growth and division of cells, leading to a cancer. Thus, modeling cell cycle regulation is a very important problem. Recently, mathematical models describing cell cycle controls in different organisms have been developed. Despite their success, these models are restricted by descriptions of cell cycle to regulation in individual cells. The next step is modeling growth and division in populations of cells and tissues. Our mathematical model for cell growth and division in interacting cell populations consists of two sub-systems. The first subsystem describes kinetics of proteins and genes regulating the cell cycle engine in individual cells and it is given by a system of ordinary differential equations (ODE's). ODE's describing cell cycle regulation in different cells need to be coupled, as the cell cycle engine interacts with the environment. For simplicity, we will assume that inactive, fast diffusive molecules act as coupling agents between reaction networks in different cells. The second subsystem describes growth, division and death of cells and can be given either by maps or coupled ODE's. These are also coupled, as we account cell to cell communications. Such model cannot be efficiently simulated by existing computational tools in systems biology. There are several good tools for simulating the first subsystem, but the second subsystem requires a tool based on cellular Pott's model. We will therefore set of plug-ins that will allow for realistic cell growth-division simulations by coupling Monte Carlo based method based Potts model with ODE’s. These plug-ins will allow us to realistically model, for example, tumor growth[Mombach, 1993 #22;Alarcon, 2004 #8;Alarcon, 2005 #1;Stott, 1999 #19].

Monte Carlo Algorithms and Parallelization
In the recent years several researchers [Wong, 2005 #31;Gusatto E, 2004 #36] have presented Monte Carlo algorithms which may be used as an alternative to the Metropolis algorithm. These algorithms promise a significant increase in simulation speed and are claimed to be easily parallelizable. Tissue Simulation Environment will support a variety of modules that implement such algorithms leaving to the user the decision of which algorithm to use. In addition to this we will implement experimental version of the TSE capable of running on parallel processors, however, at this stage of the code development we will not be able to address this issue in full.
The above mentioned plug-ins and extensions, by no means, exhaust a list of modules that will be incorporated into Tissue Simulation Environment. They rather serve as examples of key features that are missing in the current version of the program and once they become available one will be able to construct more realistic biological models. In addition to plug-ins which implement different parts of biological model, any other enhancements to the Tissue Simulation Environment functionality will be also implemented in the form of dynamic modules to ensure that core functionalities of the program are not mixed with the features which are needed only occasionally. This will result in greater extensibility and configurability of Tissue Simulation Environment.

NEED to expand expected outcomes and success metrics
Expected outcomes

Significant increase in the functionality of the TSE that brings it to a new level so that it may become fully-fledged biomedical simulation environment

Success Metrics and fallbacks in case of failure
The success in reaching this aim will be measured by 1) positive feedback from users, 2) increased interest in the TSE, 3) model complexity that TSE will be able to handle including the scale of the simulations.

D2 .Specific Aim 2 – Define a standard set of interfaces to allow interoperability of the TSE with major subcelluar and supercellular modeling frameworks.

Methodology

Computational biology and bioinformatics are fields now populated by a few very widely used software tools (such as BLAST) and a wide variety of highly useful but sometimes specialized modeling tools. There are, quite literally, hundreds of software tools that model some aspect or another of biological systems. Some of these tools are very tightly focused, and within their area of focus provide unparalleled functionality. For example, M-Cell [REFERENCES] provides capabilities for modeling neurosynapses and neuro-muscular junctions. Some packages aspire to model very large suites of biological processes, such as BioSPICE, E-Cell, and V-cell. With such diversity of software tools available, it is far too early to tell which software tools will eventually become very widely used and adopted, and which will disappear altogether or have their functionality incorporated into what eventually becomes more widely used and dominant software tools. In such an environment, it makes sense to aim for interoperability with as many software packages as possible, so that the TSE remains useful and used, no matter what the course of evolution of major biomedical simulation packages eventually turns out to be.

The mechanism for creating such interoperability exists in the form of XML-based markup languages. At present there are two efforts to develop Markup Language definitions that enjoy significant support and are of direct relevance to CPM models – Systems Biology Markup Language (SBML) and the Markup Lanugages being developed by the Physiome Project (CellML, TissueML, and OrganML). The Systems Biology Markup Language home page (http://sbml.org/index.psp) lists more than 80 software tools that address some aspect of biological modeling that is pertinent or related to modeling cell processes. CellML (http://dev.cellml.org/) is supported by and interoperable with several modeling tools, most notably Virtual Cell. TissueML and OrganML are similar efforts being developed by the Physiome Project (http://www.bioeng.auckland.ac.nz/physiome/physiome_project.php). A new initiative, called Biomodels (http://www.biomodels.net/) aims to create a repository of models represented in SBML. A recent editorial in Nature (Nature 435, page 1, May 5 2005) endorsed the submission of models in SBML to the Biomodels database. Significantly, there are translation programs that provide interoperatbility between SBML and CellML, and between SBML and Kegg Pathways.
We have already had some success in pilot efforts. A graduate student affiliated with the Biocomplexity Institute, Fang Liu, has already implemented a CompuCell3D extension that provides interface to Systems Biology Markup Language (SBML). Integrating SBML compliant interface into Tissue Simulation Environment provides a way of producing data format accessible by other environments. Because of the growing popularity of the SBML we believe that SBML support in Tissue Simulation Environment will result in greater information exchangeability between current as well as future biological simulation software. In addition to SBML we will implement support for CellML and TissueML (used in the Physiome Project [REFERENCES] (Hunter and Borg, 2003; http://www.physiome.org/), the markup languages that describe cell processes and tissue. In the longer term we also plan to develop support for AnatML which will become important as soon as one is able to simulate entire organs using Tissue Simulation Environment. We strongly believe that the support for standard markup languages plays an essential role in unifying biomedical software.
There are two critical steps in the process of establishing interoperability through community processes such as SBML and CellML. One is the creation of an accepted set of definitions and ontologies for the objects represented, and the other is implementing programmatic support for models expressed in XML in compliance with these ontologies and definitions. We will engage with SBML working groups, the Physiome project, and the existing community of researchers using Cellular Potts Models to arrive at a set of definitions and ontologies, and will then develop the relevant XML implementations to read and write such models with the TSE.

The creation of definitions and SBML and CellML implementations of Cellular Potts Models via the TSE will provide interoperability with any other software package that supports SBML or CellML. We will provide “run time” integration of TSE with a very small number of other packages, also accomplished via markup language standards. In this way, the TSE can be extended to explicitly include subcellular process simulation with such simulation environments as Bio-SPICE (https://users.biospice.org/home.php) and E-Cell (http://www.e-cell.org/). Interfaces inside the Tissue Simulation Environment will allow performing certain parts of simulations using modules from these tools. In essence, these other tools will become accessible in a fashion very much like that already provided by existing CompuCell3D plug-ins. Our endeavors will concentrate mainly on those packages that complement the existing functionality of CompuCell3D by implementing functionalities not already present in CompuCell3D – often at biological levels of organization above or below that addressed explicitly by CompuCell3D. For example, to implement kinetics of proteins and genes regulating cell cycle (handled by means of ODE’s), we will most likely use external package e.g. Bio-SPICE-JigCell (https://users.biospice.org/toolsumm.php?id=21). We will also strive to make TSE accessible from the SCIRun.

Expected outcomes

The expected outcomes of this Specific Aim are as follows:

2.1 A set of definitions and ontologies required to describe Cellular Potts Models will be adopted by and incorporated into SBML and CellML.

2.2 Clear relationships will be developed between the definitions and ontologies describing Cellular Potts Models and the definitions and ontologies within TissueML, OrganML, and AnatML

2.3 The Tissue Simulation Environment will include capabilities to read and write models via SBML and CellML, and in this way establish interoperability and in this way enable the exchange of information between the TSE and other modeling tools that support SBML and Cell ML.

2.4 The Tissue Simulation Environment will support capabilities to model key intracellular activities via linkages to BioSPICE and E-Cell modules, and to incorporate effects of models at higher scales of biological organization via interoperability with SciRun.

Success Metrics and fallbacks in case of failure

Expected outcomes 2.1, 2.2, and 2.3 are binary outcomes; they either are accomplished or not. Depending on time scales, we might publish draft specifications for incorporation of Cellular Potts Models into SBML and CellML. While we are reluctant to propose the creation of yet another markup language specification, if it proves impossible to cast CPM models within SBML and CellML frameworks in a way that meets the needs of CPM models and the original needs of the creators of these standards, another approach would be to promulgate a markup language specifically for CPM models, and then establish translation frameworks such as those that already exist for SBML and Kegg pathways, or SBML and CellML.

One quantitative measure of the success of the ability to express CPM models in SBML (or an SBML-like format) will be the number of CPM models stores within the biomodels.net repository.

Specific Aim 2.4 is quantitative in at least one sense, and will be measured by the number of modules that can be accessed at execution time from within the TSE, or that can access the TSE as a run time module. In the former category will be modules of BioSpcice and V-Cell; in the latter category will be SciRun. A more qualitative outcome will be the extent to which the sophistication of models operated in the TSE can be enhanced and extended by including subcellular processes from other widely used simulation packages to model phenomena beyond the capabilities of the existing CompuCell3D software.

The success in reaching this aim will be measured by 1) posibility to port information to and from TSE and other relevant packages 2) possibility of carrying out some of the computations using other software and importing it back to the TSE. If the above goals are not met, by providing support for standardized markup languages we will facilitate future endeavors to implement required compatibility features.
D3. Specific Aim 3 - Make the TSE usable by and attractive to a broad community of biomodelers and experimentalists.
There are three aspects to specific aim 3, as follows:

3.1 Survey existing communities of biomodelers, including those who use Cellular Potts (and similar) models, as well as experimentalists who could benefit from use of Cellular Potts Models in their research but are not currently making use of such models

3.2 Engage in formal usability studies to create a friendly and intuitive graphical user interface, informed by current best practices in the area of Human-Computer Interaction.

3.3 We will develop a set of demonstration modules and parameter databases which will allow users to develop models in terms of high-level modules, rather than having to design their simulations from the ground up.

Our goal is to improve functionality of TSE to address needs of the more advanced users but at the same time to make it more user-friendly so that the environment could be a useful tool for users who are not experts in the CPM simulations.
Methodology
D3.a. User surveys

During the first year of this project we will engage in the development of an online survey regarding possible features to be added to the TSE, and priorities for adding these features. We will work with two distinct groups of experts: our existing colleagues and collaborators who are expert in the area of Cellular Potts Models, and biomedical researchers studying development, cancer, and wound healing but who are not using CPM or similar approaches. Through discussion with current experts in the area of Cellular Potts Models we will generate a list of potential functionalities to be added to CPM in the development of the TSE – based on the list given in Objective 1 but with possible additions. Through discussions with biomedical researchers studying development, cancer, and wound healing - but who are not currently using models to guide or interpret their experiments – will will work out a very functional list of types of phenomena that these researchers would like to be able to model. We will use this input to develop an online survey. Biomnedical researchers will be asked to identify themselves as biomodelers, experimentalists, or both, and will be asked to provide their requests regarding capabilities of the TSE (including modules that TSE should posses, classes of problems that it should target), functionalities (user interface, markup and scripting languages support, visualization tools), and preferred ways of user support (online documentation, user manual, training). To obtain user’s preferences we will ask them to answer simple questions (e.g.) as well as give brief description of their research so that we can better address needs of possibly biggest class of users. It would be of particular benefit to us if potential users could directly contribute their codes to us. This would dramatically shorten the development of certain modules.

Once we have a list of functional capabilities to be added to the TSE, we will engage in formal usability studies, involving both experienced biomodelers and seasoned experimentalists with little background in modeling, to develop an intuitive, easy to understand user interface. As the development of the TSE progresses and the program is used by more researchers we will conduct “iterative” series of surveys to ensure sufficient level of interaction between users and developers. As part of the process of making the TSE more easily understandable and more widely used, we will implement a suite of demonstration models. Such models can be used in tutorials, self-paced learning, and demonstrations to enable potential users to quickly grasp the capabilities of the TSE. These models will also provide test modules, that may be used to assure that the TSE is installed and operating correctly when installed at user locations.
D3.b. User Interface (UI)

In parallel to developing visualization tools we will concentrate our efforts on constructing a clear and self-explanatory interface. Currently a user runs CompuCell3D by modifying the XML configuration file and invoking a command from a command-line. While such an approach works quite well and might be preferred by certain users (because, for example, makes running programs in batches easy), there are users, mainly CompuCell3D newcomers or people just evaluating the software, who would significantly benefit if instead of preparing configuration files themselves they could take advantage of the GUI tools. As experience shows, in many cases having a good user interface, determines the odds of the software being successful on the market. Scientific software is no exception and thus by giving users the flexibility of whether to use command line or GUI we hope to appeal to users with various preferences. GUI front-end to Tissue Simulation Environment will establish a way of isolating the user from the actual program implementation. In particular, any extensions to the XML format of the configuration file are hidden from the user. At the same time more experienced users will be able to take advantage of the UI and use it as a tool for rapid preparation of an XML configuration file.

The main feature of the Tissue Simulation Environment UI will be simplicity. While fancy and often overloaded user interfaces may look impressive, at the same time they often tend to scare off potential users due to an overwhelming amount of options being displayed on a single screen. We will implement UI based on Multiple Document Interface (MDI), with main window serving as a control panel. The amount of options available to the user in the main panel will be limited to a minimum. The detailed configuration of the environment will be done entirely via dialog windows.

TSE GUI will be implemented using wxWidgets and their corresponding Python binding - wxPython. wxWidgets and wxPython are cross-platform packages for GUI development. To expedite GUI development we will use Boa Constructor (http://boa-constructor.sourceforge.net) – a cross platform Python IDE and wxPython GUI Builder. In the figure below we show a prototype of CompuCell3D GUI.

Figure 5: TSE GUI prototype. To avoid “feature overloading” of the main window we will use Multiple Document Interface.
D3.c. Scripting languages inside Tissue Simulation Environment

While most of the CompuCell3D program is implemented in native C++ we have found that wrapping the code inside one of the scripting languages provides significant benefits in terms of expedited software development and also increases cross-platform interoperability of the software. Our scripting language of choice is Python (http://www.python.org). This language is very well suited to handle large projects and there are many freely available extension modules that make Python extremely versatile tool. The language is also very popular in scientific communities. To make Tissue Simulation Environment code accessible from Python level, we have used SWIG (http://www.swig.org) - a software development tool that connects C and C++ programs with a variety of high-level programming languages.

An example of benefits of having C++ code being wrapped inside a scripting language is our attempt to develop a beta-version real-time lattice viewer (presented on the figure below). Using the VTK visualization toolkit (http://public.kitware.com/VTK), wxWidgets (http://www.wxwidgets.org/) and their corresponding Python bindings (wxPython) we were able within a very short period of time to implement and integrate with the main package this simple, yet very useful visualization tool. It is a well know fact that GUI development is much faster when implemented in scripting languages, Python for example, as opposed to compiled languages like C++ or Java.

Figure 6: A screenshot of beta version real-time viewer that enhances CompuCell3D capabilities.

As mentioned earlier, scripting languages are perfect tools to implement rapid prototyping capabilities of a package. When fully implemented, our Python interface to Tissue Simulation Environment will make software development and debugging much faster. Moreover, combining XML-based configuration file with scripting capabilities provided by Python will give a user an extra freedom and flexibility in describing the biological model. This means that one will, no longer, be limited to specifying static parameters in the XML configuration file, but it will be possible to describe parts of the simulations using Python. We believe that support of scripting language will make Tissue Simulation Environment particularly attractive to experienced users working with complex models. Because Tissue Simulation Environment will be fully accessible from Python, implementation of aforementioned features will be straightforward and thus we will avoid implementing and maintaining our own scripting language. This will also be with a clear benefit to the users who will not be required to learn, yet another scripting language. Support of scripting languages is currently an essential feature of any simulation environment. Commercially successful packages like MATLAB®, Maple™ or Mathematica® all of them offer such features.

D3.d. Visualization

One of the major goals of enhancing Tissue Simulation Environment will be to come-up with a portable and easy to use set of visualization tools. The original version of CompuCell3D relied on Ogle, a scientific data 3D visualization tool, to render the lattice. As it was discussed earlier, this method had many drawbacks. In particular if one wanted to view a lattice using different rendering schemes, the number of files with lattice descriptions would increase dramatically, thus making this method of implementing visualization highly impractical. A real-time lattice viewer addresses this particular problem. Moreover, when a real-time viewer is fully implemented, a user will be able to view cross-section through the lattice (by either moving the slidebars or entering appropriate parameters). Viewing a cross section through the lattice is in many cases more important and gives more information than full 3D rendering. Nevertheless it is our goal to produce a viewer that will handle both 2- and 3D display.

A real-time viewer will also have the “screenshot on-demand” capabilities. This way it will be entirely up to the user which lattice configurations are worth saving. Currently a user may specify frequency with which snapshots of the lattice are stored on the storage device. We will continue supporting this feature but we feel that giving a researcher the extra flexibility in the form of “screenshot on-demand“ will be very much welcomed by users of Tissue Simulation Environment.
Another important feature, closely related to visualization, is the possibility of storing detailed map of a cell field. Such an object would contain detailed information about very cell and could be examined by a visual “inspector” so that by clicking on a given cell the user would get all information about this particular cell such as its type, size, center of mass, chemical field value.

Implementation of the Tissue Simulation Environment visualization modules will be facilitated by reusing some of the tools developed by other open source projects, for example SCIRun.

D3.e. Output of scientific results

Visualization of the simulation is helpful in qualitative assessment of the simulation results but lacks quantitative features. Thus if quantitative results are needed, visualization system has to be complemented by set of modules which will be responsible for outputting quantitative results. Such quantitative results can be then processed using external tools to provide the precise description of simulated system. For example, when implementing and then using the diffusion solver it is crucial to be able to have access to the value of chemical concentration at every lattice point. We will develop set of modules which will be responsible for outputting scientifically meaningful results. This will include simple modules outputting the state of the lattice in the form of an ASCII file and more sophisticated ones which will perform various kind of statistical preprocessing, for example calculating average cell velocity as a function of a chosen coordinate.
D3.f. Parameter sweeps

Being able to run scientific software with different sets of parameters describing the system under investigation is a key feature that should be supported by simulation programs. As mentioned earlier, the task of implementing parameter sweeps is currently delegated to the user. Although it is not a very difficult task, it places an additional burden on a researcher and leads to quite tedious and hard to maintain scripting. We will automate this task and make parameter sweeps easy to use by providing both dedicated UI and special syntax inside the XML configuration file. Additionally we will provide a dedicated user interface via which users will be able to set up and execute multiple runs on different nodes of the multi-processor cluster.

D3.g. Steering and real-time interaction with the package

At an early stage of model studies one usually has limited knowledge about optimal values of the model parameters and how those parameters should evolve with time (time is measured in terms of Monte Carlo Steps). When one uses “static” parameters only, i.e. those that do not depend on time, one can do parameters sweeps to determine best values of the parameters. The problem is more complicated when one uses time-dependent parameters and the exact form of the time dependence is not known a priori. In such a case it will be very helpful to give user the ability to dynamically change parameters while the program runs. This way by real-time interaction with the software the user can guess or tune the form of time dependence for a given set of parameters. To make this feature even more useful we will allow the user to restore the past state of simulation, so that it will be possible to do many parameter guesses starting from the same state of the simulation and watching the result in the real time viewer. All the parameters entered by the user will be recorded as a function of time so that later on one can fit a functional dependence to the time series which gave best simulation results. Enabling all the features described in this section is equivalent to giving a user the ability to perform real time computational experiments on the lattice. The usefulness of this approach becomes clear when one realizes that the alternative would be to run many simulations, each time with different plug-in implementing various forms of time dependence of parameters. Needles to say, much more effort would be required to carry out the later solution.

D3.h. Archiving simulation results

Despite the fact that this task is usually taken care of by users, we believe that proper storage of the simulation results may reduce the chance of simulations being misplaced or even lost. We plan to provide a special option inside our environment which will be equivalent to and inspired by the concept of the “project” of some of the Integrated Development Environments (IDE). Similar to IDE, where a programmer can group different files and directories to form a project, Tissue Simulation Environment user will have the option to group a set of related simulations into one logical entity. For example, it will be very convenient for users to store results of parameter sweeps together or to compare results of simulations with or without certain terms of the Hamiltonian. The user will have a chance to specify a level of simulation serialization. In particular, it will be possible to store detailed images of the simulations so that such simulations could be “replayed” in the viewer without necessity of carrying out expensive calculations.
D3.i. Example applications

The Tissue Simulation Environment will be released with several example applications. Those are the examples that were thoroughly studied and were described in theses and scientific journals [REFERENCES] . They will be used to demonstrate capabilities of the Tissue Simulation Environment and may serve as a starting point for creating new models and simulations. All example applications will be described in detail in the User’s Manual. The list of sample application includes a simulation of dictostylium development, simulation of chick vascular system, gastrulation, chick wing development, cancer and coral growth.
Figure 7: Visualization of some of the results of CPM based simulations. a) … b)…
JAMES PLEASE FILL OUT THE REST OF THE CAPTION
EXPAND ON SOME OF THE EXAMPLES, INCLUDE SCREENSHOTS

Expected outcomes

3.1 As a result of our survey, we expect to have two prioritized lists of functionality – one based on very detailed and biophysically-oriented program details, and a second listing the types of functionality that was more oriented towards specific types of phenomena that experimentalists would like to have in order to implement Cellular Potts Modles into their research programs.

3.2 As a result of our usability analysis, we plan to have a highly intuitive user interface design, along with detailed descriptions of the steps required for users to perform particular tasks.

3.3 We plan to develop a set of demonstrations that can be used to demonstrate the utility of the software as well as verify the correct functioning of the software when installed by a researcher.

Items 3.1 and 3.2 are essentially binary outcomes: we either will succeed in doing these or we won’t. However, we see no substantial risk of failure.

Quantifiable outcomes for item 3.3 are the number of models made available as demonstration modules for the Tissue Simulation Environment. We already have a small number of demonstration models that work with CompuCell3D.

Fallbacks in case of failure

We see no real risk of failure in items 3.1 and 3.2. Craig Stewart is already certified for human subjects work and commonly engages in survey and usability studies. The Biocomplexity Institute’s track record in this area, and success in gaining feedback through workshops and informal collaborative discussions, suggests that items 3.1 and 3.2 can be accomplished in a straightforward fashion. Item 3.3 can be easily accomplished in part by carrying forward existing demonstration examples; the only real question is how many demonstration projects we can create and verify, and how compelling these demonstrations are to potential users.
D4. Specific Aim 4 - Validate the accuracy and reliability of TSM simulations
Our specific aim is to establish the equivalence of CPM results with those provided by other standard modeling strategies.

Methodology
The CPM is a well-validated simulation methodology, which has successfully and quantitatively reproduced a substantial number of experimental observations in development. However, to maximize its acceptance to the broadest possible range of biomedical researchers, we feel it is crucial to establish that it performs at least as well as more familiar methodologies in a set of familiar developmental situations. In parallel to the development of the TSE we will carry out tests which will test predictive power of the CPM and compare it with other models. In particular we will focus on duplication of the predictions of other modeling methods including models based on immersed boundary method [Lai, 2000 #34]. Those models treat each cell as an individual entity with its own elastic plasma membrane, fluid cytoplasm, point nucleus, partial cytoskeleton and independently defined cell processes such as growth, division death, fusion or movement. Immersed boundary inspired models are capable of simulating whole tissue and studying how changes in biomechanical properties of individual cells influence and the development and behavior of the whole tissue [Rejniak, 2004 #35]. Such models are particularly attractive to us because, similarly as the CPM, they are cell level models, thus comparing their predictions with results obtained from the CPM is a necessary step in establishing the reputation of the CPM. One of the examples that will be cross-studied using both CPM and immersed boundary models will be tumor growth and development of tumor micro-regions.

Although continuum models do not fall into the same category as the CPM or immersed boundary methods, nevertheless, because they focus on simulating entire tissue, we will cross-validate the CPM against continuum models [REFERENCES: MAINI] as well by, again, studying tumor growth processes.
Expected outcomes

Improved confidence in CPM results and broader acceptance and uptake by the biomedical community.
Success Metrics and fallbacks in case of failure
We will measure the success in reaching this aim: 1) By the number of other modeling method examples successfully (define?) reproduced. 2) By the uptake rate by new users, especially those not currently using modeling methods. Because of the existing validations, the TSE users will be assured that CPM predictions are in agreement with other models and that apparent simplicity of the CPM is not a flaw, rather an advantage as it allows less experienced users to have more control over the simulations.

How can we validate such cell-centered models? First, we must quantitatively compare the simulations with experiments. The CPM provides a wide range of measurements, which we can directly compare with experimental measurements, including tissue patterns, cell positions and velocities, pressure caused by migration or shape changes of cells, cell morphology, surface tensions and morphogen concentrations. We are not yet able, however, to obtain information about the action and reaction forces the cells exert on the medium. We cannot expect cells to take precisely the same migratory paths in simulation and experiment, since they follow different paths in repeated experiments. Instead, we must compare the statistics of cell-migration to the final pattern. We must be cautious, however, because different biological mechanisms can produce similar patterns. For example, continuum models assuming chemotaxis- driven cell migration [46] and strain-driven cell migration [47] both reproduce aspects of in vitro vascular patterning. We may be able to distinguish between such alternative patterning mechanisms by tracking patterning over time. For example, in a chemotaxis-driven model we expect cells to speed up as they approach each other because the interplay between chemoattractant secretion, diffusion and decay creates exponential chemoattractant gradients around the cells. In a strain-driven model we would instead expect linear dynamics.
D5. Specific Aim 5 - Disseminate and Support of the Program

The IU Biocomplexity Institute is a leader in using CPM to simulate biological systems, and thus possesses considerable knowledge regarding the major features the TSE should support. To ensure that the TSE meets the needs of the biomedical research community, and to ensure that modules are implemented in the correct priority order, we will conduct an online survey of potential users to better understand their needs and priorities. We will maintain contact with other researchers working on CPM simulations, and continuously get their preferences and requests regarding the functionalities and capabilities of our toolkit. Furthermore, training sessions and workshops will include feedback sessions in which we will ask participants what features they find most important, and which features are needed most importantly but not present. During the final phases of this project, we will work with several researchers to implement their models using Tissue Simulation Environment. Feedback gained from such collaborations will be used to fine tune various Tissue Simulation Environment features. In particular, we will ask pilot users to quantify the time they would spend writing the simulations “by hand” vs. the time it takes to set-up the simulation in the Tissue Simulation Environment.
Our main goal is to reach largest possible number of potential users and to demonstrate to them the benefits of using Tissue Simulation Environment. By providing user’s and developer’s documentations we hope to reduce hurdles in adopting the TSE by prospective users. We will provide also online training
Methodology
D5.a. Documentation

Proper documentation of the project is essential factor in convincing prospective users to use particular software. CompuCell3D User’s Manual exists already (http://www.nd.edu/~lcls/compucell/userguide.pdf). As the development of the program progresses we it will be under constant revision. On the other hand, developer’s documentation is missing and this impedes our efforts to bring new collaborators. As part of the proposed project we will develop full developers’ documentation as well as maintain existing User’s Manual. Developers’ documentation will consist of the description of the main program architecture, API documentation, module interoperability, description of classes together with example uses, UML diagrams of inheritance, description of relevant parts of third party libraries, and a description of the more complicated algorithms implemented in CompuCell3D. In part, the developers’ documentation will be generated using Doxygen (http://www.doxygen.org) – a documentation system supporting most popular programming languages. In addition to this we will develop a set of tutorials that will teach prospective developers about main ideas behind Tissue Simulation Environment. By doing that we hope to significantly reduce the amount of time spent by a new developer on learning the existing code. Many development teams find such approaches very successful.

The documentation will be available online both in html and pdf format. In addition to this we will develop set of interactive online tutorials that will help newcomers to quickly learn and adopt the Tissue Simulation Environment.

D5.b. Online Training

As a part of our user support strategy we will make users’ and developers’ documentation publicly available Internet resources. In addition to this we will develop online tutorials (separately for users and for developers) . The users’ part of the tutorial will target biomodelers and experimentalists. We will teach them how to effectively use TSE, present classes of simulations can be done using TSE, suggest alternative simulation environments for those types of problems that cannot be tackled easily by TSE.

The developers’ part of the tutorials will show users how to write new modules that are compatible with TSE standards and how to submit contributions so that they can be integrated with the official release of the software. We will devote a separate section of the developers’ tutorials to compatibility issues, i.e. we will describe in detail what needs to be done to implement links between Tissue Simulation Environment and other biomedical software.

D5.c. Training Workshops and Users’ Surveys
We plan to host one workshop devoted to Tissue Simulation Environment and its applications in biological and medical research. It is also our intention to especially invite speakers who have used Tissue Simulation Environment and other biological simulation packages. We will encourage presenters to show the results of the simulations done in Tissue Simulation Environment and to discuss the limitations as well improvement possibilities of the software. The workshop will be a perfect place where scientists will meet face to face with developers to discuss different ideas and extensions to the Tissue Simulation Environment. The event will allow us to even better understand what scientists expect from biological simulation software. The Biocomplexity institute, the Open Systems Laboratory, and UITS all have considerable experience and admirable success in offering workshops and tutorials. To constantly monitor how users’ preferences with regard to TSE evolve we will conduct periodic (once a year) user surveys. They will give use valuable feedback in terms of future software improvements.
D5.d. Tissue Simulation Environment – extensibility, maintainability

When large, collaborative, computer-intensive research projects in the US have been successful, one of the keys to their success has been that the project is designed in a fashion that ensures robustness of the project and availability of software and services, independent of the participation of individual institutions involved in the project. We will follow this approach
As with every large software project, Tissue Simulation Environment will have to be written in the “future tense”. This means that significant emphasis will be made on making sure that current system design does not compromise its potential future extensibility. The current version of CompuCell3D provides a very good starting point in terms of extensibility. The Plug-in Management System currently implemented makes both extension and maintenance of CompuCell3D a relatively easy task. Nevertheless, some of the modules which would be perfect candidates for dynamically loadable modules are still hard-compiled into the code. We will enhance and make the Plug-in Management System more versatile and this in turn will result in better modularity of the entire environment.

The project is and will be hosted by Sourceforge.net. There will be separate development repositories for Tissue Simulation Environment main engine (this will also include plug-ins) and a repository dedicated to User Interface. Separating the two will result in better maintenance capabilities of the Tissue Simulation Environment. Potential contributors will be encouraged to submit enhancements which will subsequently be reviewed by core Tissue Simulation Environment developers and, if approved, incorporated in the official Tissue Simulation Environment release. In addition to Sourceforge.net we will consider the possibility of hosting TSE in other open source archives to make it even more accessible to potential users.

As an open-source project Tissue Simulation Environment will be quickly adopted by prospective users and benefit in the form of various kinds of contributions. It is worth mentioning that, significant part of the CompuCell3D visualization and scripting language extensions were implemented by external contributors, who subsequently became actively involved in Compucell3D development. Moreover, bug detections and bug fixes will also proceed much faster if the product is fully accessible by wide community of users.
We will provide a defect tracking system which will be based on the open source Bugzilla server. It will provide an excellent tool of communication between users and developers. Bugzilla will also facilitate bug-fix submission and will greatly contribute to quality assurance of our product. Bugzilla is currently being used by almost 400 companies, organizations and projects. Best known free software projects which benefit from Bugzilla include, Linux Kernel, Mozilla, OpenOffice.

In parallel to implementing the defect tracking system we will develop a test suite – a set of tools for testing logical consistency of particular Tissue Simulation Environment components as well as robustness of entire package. Although the development of these tools will be labor intensive project by itself, having a robust set of test tools is essential in a large scientific software project. The testing will assure that completed parts of the software do not regress as new features are added. Although, it is not possible to detect all defects of the software using test suite, the automation of the most routine tests will speed up acceptance or rejection of external contributions.

As an additional tool of user support we will set up and maintain a mailing list dedicated to the Tissue Simulation Environment issues. This will provide a direct assistance to any user who experiences problems with Tissue Simulation Environment or simply seeks an advice.

D5.e. Deployment, packaging, update, cross-platform interoperability

CompuCell3D is available for free download from the Sourceforge.net website. The current version is distributed in the form of Linux/BSD/Unix binary and source packages.

The Windows version of CompuCell3D is distributed as a Visual Studio .NET project to be compiled using Microsoft compilers but also one can download precompiled binaries similarly as for Linux/Unix. We will support bundles containing source code as well as precompiled binary versions of the product together with a self-explanatory install/uninstall tool.

Modularity of the Tissue Simulation Environment ensures that software updating and patching will be easily manageable tasks. For example, upgrading a plug-in will simply mean replacing an appropriate library. We do not plan to develop sophisticated update agent though, and any major software updates will require package re-installation.

Expected Outcomes
Acceptance of the TSE by both experienced and casual users. Increased development activity and expansion of developers collaboration. Feedback from pilot users and suggestions for future improvements.

Success Metrics and fallbacks in case of failure
The success in reaching this aim will be measured by positive feedback from users and increased interest in the TSE. Particular quantifiable outcomes include the following:

· Number of downloads of the TSE

· Number of attendees of training classes about TSE

· Number of publications based at least in part on use of TSE.
In the case that our user-base does not enlarge according to our expectations, we will continue to support and promote TSE by using it in our research as well as collaborating with other institutions, in particular, those who endorsed our efforts and declared their interest in the TSE by writing support letters, to the end that it will become used in very important research, which should eventually lead to wide adoption.

Development Strategy
Throughout this document, we have discussed various development strategies that have already been used and will be employed over the course of the project. Our initial experiences separating software development and scientific tasks have reinforced our belief in using “agile” programming techniques and we will continue with this strategy as we develop the full Tissue Simulation Environment. A core principle in agile software development is to “satisfy the customer through early and continuous delivery of valuable software” [http://agilemanifesto.org/]. In the case of the Tissue Simulation Environment, the customer is clearly the scientist. The software developers involved in the project will work closely with the scientists in defining requirements and evaluating deliverables. Because CompuCell3D is already a working system, we have the advantage of implementing a highly iterative development cycle from the beginning. Scientists already use the system and, due to the flexible nature of the current software, new features can be added and evaluated in increments that make it possible to identify good and bad design decisions before the features are complete.
Management Plan

During entire duration of the project main activities will take place at Indiana University, Bloomington (IUB) however important sub-projects will be carried out at the University of Notre Dame (sample programs, model developments) and at IUPUI (graphical user interface and visualization). Entire project will be overseen by Program Director (James Glazier). A Project Manager, who will report to Program Director, will be responsible for coordination of code and documentation development. The developer teams will consists of three core developers (Maciej Swat and two developers to be named) who will work on package design, integration and implementation of most of the modules and functionalities described in this proposal. One of the developers (to be named) will be working exclusively on implementation of software interoperability. We will hire part time technical writer (to be named) to work on documenting the code and updating user’s manual. Additionally, the Biocomplexity Institute will support two Postdoctoral Fellows (Battogtokh Dorjsuren and Ramon Grima) to work on the development of models that subsequently will be ported to the Tissue Simulation Toolkit. Open System Lab (Andrew Lumsdaine and Chris Mueller) and University Information Technology Services (Craig Stewart) in addition to providing expertise in software design, release management and software support, will conduct user surveys, build and maintain online documentation and training portals, implement and maintain mailing list and organize educational workshops. The University of Notre Dame group headed by Dr. Mark Alber will be responsible for producing sample applications that will be used in the tutorials, implementation of numerical methods (in cooperation with postdocs from IUB) as well as implementation of LGCA and Cellular Automata Modeling of the Context Dependency in the T Cell Recognition. Dr. Alber will supervise one postdoctoral fellow (Dr. Nan Chen) who will work exclusively on TSE development. IUPUI group overseen Mr. Heiland will be responsible for implementation of visualization tools and GUI front-end to the TSE. Entire project will be overseen by Program Director (Dr. Glazier) .Close collaboration between all abovementioned institutions ensures high level of coordination and guarantees the success of entire project.

[image: image3]
Figure 8: Chart presenting organizational structure of the project

Initial Deliverables and Time-Lines

The expected duration of the proposed project is three years. During that time we will implement all the enhancements and new features of Tissue Simulation Environment described in this research plan. We expect that at the end of third year of the project an enhanced official version of Tissue Simulation Environment should be available for download.

Our anticipated timeline is shown. Note that duration listed below is that of the major development – ongoing refinement and bug fixes will occur after the initial focused development phase.

THIS NEEDS TO BE LOOKED AT AND ADJUSTED!

	Deliverable
	Specific Aims
	Start Time
	Duration

	Gather detailed information from researchers using CPM concerning core functionalities that Tissue Simulation Environment should provide. Code redesign and clean-up.
	3
	Year 1
	1 year

	Develop new plug-ins implementing different biophysical models.
	1
	Year 1
	3 year

	Documenting existing and newly written code
	5
	Year 1
	3 years

	Developing interfaces to external packages to be used by CompuCell3D
	2
	Year 1
	1 year

	Gathering user preferences regarding visualization. Developing visualization tools.
	3
	Year 1
	2 years

	Implementing support for scripting languages
	3
	Year 1
	2 years

	Developing tools for information exchange with other packages e.g. SBML
	2
	Year 2
	1 year

	Implementing real-time user interaction with the Tissue Simulation Environment
	3
	Year 2
	2 years

	Implementing parameter sweeps enabling cluster runs of the Tissue Simulation Environment simulations
	3
	Year 2
	1 year

	Developing GUI and simulation archival system
	3
	Year 2
	2 years

	Incorporating defect tracking system. Ensuring cross-platform interoperability. Performing test simulations
	5
	Year 2
	2 year

	Demonstrating usefulness of Tissue Simulation Environment by working with scientists who use CPM in their research. Organizing workshop on Tissue Simulation Environment and other simulation software in biomedical research.
	5,4
	Year 3
	1 year

	Developing Tissue Simulation Environment website , setting-up mailing list.

Preparing official release of the software. Conducting user’s survey. Releasing developer’s and user’s guides
	5
	Year 3
	1 year

Overall Expected Outcome and Exit Strategy

Once fully implemented and disseminated, TSE will become a basic tool for biomedical Monte Carlo simulations. We hope that wide range of options and abundance of modules will attract a lot of researchers including those who as of now favor custom code writing over using prewritten packages. The presented proposal although quite ambitious, has a great chance of succeeding. In particular, transformation of CompuCell3D into functional CPM-based Tissue Simulation Environment is just a matter of time. Interoperability with other biomedical software will require more effort but will certainly be implemented within the three years of the grant duration. Because currently CompuCell3D has limited capabilities, current users will immediately benefit from every new module that will be added to this program. Even in the case of unforeseen difficulties in implementation of all of the planned features we know that any extension to the CompuCell3D will improve its usability by biomedical researchers. In particular, if for any reason, interoperability with other software remains unimplemented, still, users will be able to benefit from all the plug-ins and modules that we will implement with TSE being a stand-alone environment. In this worse case scenario

It will, nevertheless, still be possible to extend and enhance TSE to interface other programs except it would have to be done by other developers. Since TSE will be an open source project we do not foresee any problems with knowledge or license transfers.

Tissue Simulation Environment is good example of a project that can be maintained by ongoing university base budgets. Should a time come when further development, management, and maintenance of the software should shift away institutions involved in this project, our strategies in software development will make transfer straightforward.

We are developing new software only where necessary and maintaining interoperability with other key projects. The fact that we will use accessible software engineering practices, documenting the code internally with comments, as well as providing comprehensive developer’s documentation means that the code base will be intellectually as well as physically available. Indiana University has an excellent ongoing history of supporting open source projects through its participation in providing publicly available mirrors of other source code archives (http://www.ussg.iu.edu/index.php?option=com_downloads, ftp://ftp.ussg.iu.edu).The combination of ongoing commitment by the involved in Tissue Simulation Environment, and the commitment to open source practices, ensures that NIH investment in the Tissue Simulation Environment will reap benefits for years and decades to come.

E. Human Subjects Research
EITHER JAMES OR CHRIS HOWARD SHOULD FEEL IT OUT (PROVIDED OUR SURVEY FALL INTO THIS CATEGORY)
F. Vertebrate Animals

None

G. Literature Cited
H. Consortium/Contractual Arrangements

None
I. Resource Sharing
EITHER JAMES OR CHRIS HOWARD SHOULD FEEL IT OUT (PROVIDED OUR SURVEY FALL INTO THIS CATEGORY)

J. Consultants

None
<CompuCell3D>

 <Potts>

 <Dimensions x="300" y="300" z="1"/>

 <Anneal>10</Anneal>

 <Steps>100</Steps>

 <Temperature>5</Temperature>

 <Flip2DimRatio>1</Flip2DimRatio>

 </Potts>

 <Plugin Name="Volume">

 <TargetVolume>20</TargetVolume>

 <LambdaVolume>1.0</LambdaVolume>

 </Plugin>

 <Plugin Name="Surface">

 <TargetSurface>16</TargetSurface>

 <LambdaSurface>0.5</LambdaSurface>

 </Plugin>

 <Plugin Name="CellSortType" />

 <Plugin Name="Contact">

 <Energy Type1="Medium" Type2="Medium">0</Energy>

 <Energy Type1="NonCondensing" Type2="NonCondensing">14</Energy>

 <Energy Type1="Condensing" Type2="Condensing">2</Energy>

 <Energy Type1="NonCondensing" Type2="Condensing">11</Energy>

 <Energy Type1="NonCondensing" Type2="Medium">16</Energy>

 <Energy Type1="Condensing" Type2="Medium">16</Energy>

 </Plugin>

 <Plugin Name="CenterOfMass"/>

 <Steppable Type="OutputData"/>

<Steppable Type="PythonSteppable">

 <PyStep module="SteppableExamples" class="SimpleSteppable"/>

 <PyStep module="SteppableExamples" class="ParameterSteppable">

 <parameter1 value1="one" value2="two"/>

 <parameter2>ptwo</parameter2>

 <parameter3/>

 </PyStep>

 <PyStep module="SteppableExamples" class="XMLDataDumper">

 <Prefix>cellsort</Prefix>

 </PyStep>

 </Steppable>

 <Steppable Type="BlobInitializer">

 <Gap>0</Gap>

 <Width>2</Width>

 </Steppable>

XML Parser

Kernel

Visualization and Results Output

User Interface

Interpreter

Plug-ins and Math Toolbox

Steering and Parameter Sweeps

Hooks to Other Packages

Scripting Language Add-ons

Program Director

Project Manager

Developers

Postdocs

Tech Writer

Craig Stewart,

Andrew Lumsdaine,

Mark Alber,

Randy Heiland

�I think we need a different term than cell-level here. This sounds too much like just another (intra)cell model, which we need about like a hole in the head

�When I think of “environment” I think of PSEs, which tend to be collections of different tools. I think. I think TSM is a more direct name, and says what the proposed software will do more effectively. I HAVE NOT gone through and chanced TSE to TSM throughout – I don’t want to presuppose that this idea meets with everyone’s approval.

�Need references here!

�Again - we need to establish a set of terms,I think, that clearly delineate three ranges of modeling : "up to one cell" , two to millions handled explicitly (the "CPM zone"), and continuum models above that. I don't know exactly what terms to suggest but we haven't gotten it to a point yet where it's intuitive.

�There’s a reference for this someplace… will have to hunt down.

�I guess I don't understand the point here. Are these all researchers that have used CPM-like models to study these phenomena? And thus they would be interested in using the proposed TSE? If so, that should be made clearer

�James - I'm going to leave this re-edited the way you left it, but i think it is a fatal flaw to make the reader wade through all this stuff about "not the CPM" before getting to the CPM. Aim head on for the target. Talk about CPM first, then talk about other models.

�REALLY????????????? Have you read carefully the license terms when you go to download and install it? It MAY have an open API that is well documented, but I would like to hear Andrew’s opinion as to whether or not he thinks it qualifies as open source.

�This text should be reused someplace else:

� same programming languages as CompuCell3D thus we will be able to utilize and implement certain solutions already present in the E-Cell.

�We could probably benefit from having Andrew write a sentence or two here on the matter of open source vs community source, perhaps?

PHS 398/2590 (Rev. 09/04)
Page 1
Continuation Format Page

