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Research Plan

Development and Improvement of Tissue Simulation Environment
A. Specific Aims
Objective and Scope

In this project we will create new approach to numerical simulations of biological systems by creating Tissue Simulation Environment a successor to CompuCell3D - the only publicly available (http://sourceforge.net/projects/compucell/) open source environment for biological simulations based on the Cellular Potts Model (CPM) [1, 2]. Our overall goal is to develop an improved understanding of the multi-scale phenomena of tissue morphogenesis and organogenesis using an integrated theoretical/computational approach. Simulation environments play an important in experimental biology or medicine because they reduce a need for costly experiments, allow users to better understand certain phenomena and unlike experiments they often deliver results within very short period of time. Thus before doing an actual experiment researchers may simulate a possible outcome and appropriately adjust or alter experimental procedures. 
Tissue Simulation Environment will address needs of various classes of users by providing a high-quality, intuitive graphical user interface and simulation description language based on XML and a scripting language. Since Tissue Simulation Environment is meant to be a simulation environment rather than a collection of libraries we will need to identify and classify problems that scientists might want to solve in their research. While listing and implementing all the ideas for simulations that researchers might come up with is virtually impossible, the Biocomplexity Institute is a leader in using CPM to simulate biological systems, and thus possesses the knowledge regarding major features Tissue Simulation Environment should support. Nevertheless, we will maintain contact with other researchers working on CPM simulations, and continuously get their preferences and requests regarding the functionalities and capabilities of our Toolkit. 

In the final phases of this project, we will demonstrate the usefulness and applicability of the Tissue Simulation Environment in the biological research, by working with several researchers to implement their models using the Tissue Simulation Environment environment. Feedback gained from such collaborations will be used to fine tune various Tissue Simulation Environment features. We will ask pilot users to quantify the time they would spend writing the simulations “by hand” vs. the time it takes to set-up the simulation in the Tissue Simulation Environment. Any critique of the Tissue Simulation Environment from the pilot users will provide a valuable resource for improvements.
By improving and enhancing CompuCell3D to create Tissue Simulation Environment we hope to demonstrate that the availability of the CPM simulation environment will create a common reference point for researchers and alleviate research costs. To demonstrate this point, in the final phases of this project, we will work with several researchers to implement their models using Tissue Simulation Environment. Feedback gained from such collaborations will be used to fine tune various Tissue Simulation Environment features. In particular, we will ask pilot users to quantify the time they would spend writing the simulations “by hand” vs. the time it takes to set-up the simulation in the Tissue Simulation Environment. Any critique of the Tissue Simulation Environment from the pilot users will provide a valuable resource for improvements. Relying on our experience with CompuCell3D we are confident that once Tissue Simulation Environment becomes a fully matured product it will be an indispensable tool for every researcher working on CPM-based biological simulations
B. Background  and Significance
DESCRIBE RESEARCH LABS THAT USE CPM, THEIR SUCCESSES, PUBLICATIONS, ETC. - JAMES
Cellular Potts Model Overview 

The Cellular Potts Model is a classic example of stochastic cellular automata (CA) model. It is a generalized Ising model [3] where each lattice site can be in one of the q different states (q > 2). A group of simply connected lattice points in the same state is referred to as a cell. Hence each cell has definite volume and surface area (which can be mapped to real biological cells after simple normalization). The CPM is an energy-based model wherein cellular interactions are phenomenologically modeled through cell-cell interaction as well as self energies like volume energy, surface energy, etc. An effective energy E and “fields,” e.g., the local concentrations of diffusants, conveniently describe their interactions, motion, differentiation and division. The effective energy mixes true energies, like cell-cell adhesion, and terms that mimic energies, e.g., the response of a cell to a chemotactic gradient. Given an effective energy we can calculate the resulting cell motion, since differences in energy produce forces, F. Since cells in tissues move in an extremely viscous environment, the velocity of the center of mass of the cell, v, not acceleration, is proportional to force, with an effective cell mobility, m. Thus 
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Equation (1.1) implies that cells move to minimize their total effective energy.
[image: image8.jpg]Figure 1.1 The figure shows a typical configuration of Potts model in 2D. The numerals indicate spin values. The colors indicate cell type. A cell is collection of simply connected lattice points with same spin value . The number of lattice points in a cell is its volume and the number of lattice points on its boundary (interface with other spin value) is its surface area. By convention Extra Cellular Matrix (ECM) is a cell with spin 1.  

We can describe the net interaction between two cell membranes – cell adhesion- by an effective cell-type dependent binding energy per unit area. At any time t, a cell, of type has a volume v(,t) and surface area s(,t) where  denotes spin value. Since cell volume can fluctuate, e.g., due to changes in osmotic pressure, we constrain the cell volume fluctuations by introducing an effective volume elasticity. In an analogous way we introduce membrane elasticity to control cell surface fluctuations.
In living tissues cells are in constant motion. By analogy with mixtures of liquid droplets where the thermal fluctuations of the droplet surfaces cause diffusion (Brownian motion) leading to energy minimization we can model the behavior of cells. The simplest assumption is that an effective temperature, T, drives cell membrane fluctuations. We can describe these fluctuations statistically using Monte-Carlo Boltzmann dynamics  [4], where T defines the size of the typical fluctuation. If a proposed change in configuration produces a change in effective energy, E, we accept it with probability:
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where k is a constant converting T into units of energy.
The motion of the cell can be additionally affected or driven by the local concentrations of the molecules diffusing in extracellular space. Cell’s response to the gradient of concentrations is referred to as chemotaxis. In the presence of chemotactic gradients the cell a biased random walk, which averages to directed motion in the direction of the gradient. Spatial distribution of chemicals in the extracellular space is governed by the diffusion equation. Instead of solving the chemotactic diffusion equation directly, we may approximate Laplacian (in the diffusion equation) by an averaging process the diffusion is achieved self-consistently within the framework of the Potts model. Besides diffusion we also achieve advection using this framework. 
Advantages of CPM 

The CPM removes the drawbacks of molecular dynamics simulation on the one hand, where molecular level information has to be provided thereby limiting the size of the simulation, while on the other hand it captures local quantities/fluctuations, which are absent in the mean field models. The contribution of each energy term can be systematically studied and experimentally verified. Furthermore, unlike continuum models where ad hoc cell-cell interactions are difficult to justify, CPM compensates for the lack of detailed knowledge by a reasonable set of logic-based rules, instead of cooking up some effective force for dynamical equations.  Moreover, because of the high speed of simulations of CPM, a wide range of possibilities can be explored which would be impossible with more traditional methods based on differential equation.
The CPM is a cell level model i.e. we can simulate organs, tissues and different biological processes by specifying physical interactions between single cells. As a cell level model the CPM fills the gap between continuum models, which describe bulk properties of e.g. tissue and sub-cell models which concentrate on a single cell but make tissue modeling a very complex task. CPM has proved itself to be an accurate and efficient way of simulating complex biological phenomena like limb growth or bio-film formation [REFERENCES]. More interesting from a clinical point of view processes such as tumor growth or GIVE ANOTHER EXAMPLE [REFERENCE] can also be simulated using the CPM framework. 
Lack of Professional Simulation Environment as a Barrier
Researchers simulating biological systems using the CPM formalism, very often duplicate their efforts by creating their own implementation of Potts model tuned to solve one particular problem. The time spent on code development, debugging and maintenance constitutes a significant portion of a researcher’s time. Lack of universal tools dedicated to the implementation of CPM very often slows the progress in the field.  While in certain situations writing hand-tuned code might be advisable, in the majority of cases, the optimal solution is to take advantage of extensible, professionally written and maintained code-base dedicated to implement CPM simulations, which thus reduces code preparation time to a minimum. However from a researcher’s point of view the best approach would be to eliminate the need of writing any code at all, instead using a universal language which is compatible with other programs to describe the simulation. As experience shows, writing a custom code is not only expensive but also very error prone. By transforming CompuCell3D into Tissue Simulation Environment we will limit the necessity of low level programming to a minimum. 
At present any information or software exchange between members of the CPM community is somewhat problematic due to lack of the standards. Because virtually everybody in the community writes his/her own software using arbitrary conventions and styles, collaboration between different research groups is difficult. In particular, unavailability of the universal CPM simulation environment may lead to misunderstandings between collaborating groups which would be due to a lack of a common reference point in terms terminology and the way in which CPM simulations are implemented. Moreover, combining, two different simulations implemented by different groups, in the absence of a universal simulation environment is usually a very cumbersome and difficult task. It goes without saying that it can be a major source of errors, and requires significant amount of debugging.

As mentioned earlier CompuCell3D is the only publicly available CPM simulation environment. Present version of the software, however, lacks a lot of functionality and thus is of limited use to the researchers. Clearly a significant development effort is needed to have the program meet researchers’ expectations. 
Available Software Tools for Biological Simulations

Despite the need for more open source biological software there are already many successful software packages that are used by biomedical community. It is of paramount importance to define, based on available examples, features that a successful package should posses. In this section we will review main biomedical packages and based on that formulate our strategy for Tissue Simulation Environment development. 

JAMES, COULD YOU CHECK THIS SECTION AND EDIT IT ?

Physiome Project

The Physiome Project website (http://www.physiome.org/About/) describes the project as
an initiative “focused on  compiling and providing a central repository of databases, linking experimental information and computational models from many laboratories into a single, self-consistent framework”. The Physiome Project is not a computational tool in a strict sense, but rather provides categorized knowledge-base that is indispensable in the biomedical research. The project aims to develop integrative models at all levels of biological organization and supports. The major strengths of this project are its scope (multi-level models), versatility, support of XML-based markup languages for every level of modeling, availability of high quality of 2- and 3-D visualization tools and support for public database connectivity. 
Virtual Cell (http://www.nrcam.uchc.edu/index.html) 
This tool is a general computational framework for modeling cell-level biological processes. Developed mainly in Java and accessible via portals Virtual Cell provides flexible environment for biomedical simulations. Strengths of Virtual Cell include its availability through the web portals, high performance math libraries (implemented in C++ and including PDE solvers), well documented, extensible modeling language, simulation storage system, and regularly held educational workshops that teach users how to effectively use the package. Unfortunately Virtual Cell is not an open-source project. Although free to use, it does not allow for technology transfers or exchanges. Because certain operations are executed on remote servers and entire system is accessible via Web portal it might scare off potential users who are looking for simpler more “traditional” simulation software.
BioSPICE

This project (https://users.biospice.org/home.php) is a framework and toolset for modeling dynamic cellular network functions. BioSPICE has modular structure, is easily extensible and single installation can serve multiple users. Most of BioSPICE’s capabilities are provided in the forms of external modules developed by different institutions. Being a fully open source project BioSPICE benefits from a wide network of collaborators and this is in part due to well documented code. Similarly like Physiome Project it provides interfaces to public databases and users can take advantage of the precompiled C, C++ Java codes that implement the database connectivity. BioSPICE is an example of a well managed and very extensible project. The extensibility features allowed BioSPICE to become very versatile tool. Concentrating on subcellular processes BioSPICE is not however, well suited to simulate tissues or organs directly. Nevertheless, a lot of expertise gathered in the form of BioSPICE modules can be reused in our Tissue Simulation Environment.
SCIRun

SCIRun dedicated website (http://software.sci.utah.edu/) describes the software as “Problem Solving Environment (PSE), for simulation, modeling, and visualization of scientific problems”. It is fully open source project that allows scientists to interactively steer a computation by changing parameters, re-computing and re-visualizing. SCIRun pros include superb user interface, real time user software interaction, and wide range of visualization tools. SCIRun also provides users with rapid prototyping capabilities and is easily extensible. The project has modular structure and comes with set of software tools that can be reused (e.g. math libraries) in Tissue Simulation Environment.  Currently SCIRun lacks features that would allow users to carry out biological simulations at the same level of sophistication as BioSPICE or Virtual Cell. Nevertheless, significant portion of the methodology used to develop SCIRun can be used in the development of Tissue Simulation Environment.
E-Cell
According to http://www.e-cell.org/ website “E-Cell Project is an international research project aiming to model and reconstruct biological phenomena in silico, and developing necessary theoretical supports, technologies and software platforms to allow precise whole cell simulation. The core simulation software of E-Cell 3 is a set of extension modules for Python language interpreter, written in c++/c/python. The E-Cell Model description Language (EML), a subset of XML, is used for describing models. Systems Biology Markup Language (SBML) support is also being developed to enable cross-platform model exchange”. E-Cell is an open source project and has been actively developed during recent years. From software technology point of view E-Cell is particularly attractive to us because it is built using same programming languages as CompuCell3D thus we will be able to utilize and implement certain solutions already present in the E-Cell

The packages listed above are examples of successful packages that have many users and are supported by many contributors. Common features that made those packages successful include excellent documentation, users’ support (mailing lists, workshops and tutorials), professional websites and extensibility features. Tissue Simulation Environment will certainly benefit from certain solutions present in the abovementioned packages. In particular, we think that SCIRun implements the best model of user software-interactionand it also hase very functional user interface. BioSPICE can be viewed as a model example of extensible package – we will try to learn from their experience of how to establish successful collaboration. In addition to this, almost those packages try to implement compatibility features with other biological software. Currently a bare minimum is to support SBML (Hucka et al., 2003) [REFERENCES] the most widely used markup language for systems biology, which focuses on biochemical pathways and provides “hooks” to subcellular level modeling software.
Users

It is our intention to provide very flexible and versatile simulation environment that would be accepted by a wide community of users. The software functionality should satisfy sophisticated users e.g. biophysicist who is trying to understand mechanics of gastrulation and casual users who are do not wish to be involved in very detailed simulations, yet they wish to get meaningful and useful results that will enhance their understanding of certain processes or phenomena, e.g. clinician interested in modeling a tumor growth in a particular patient. Less sophisticated users are usually more demanding and they also are the driving force in making software more user-friendly.

How will CompuCell3D Drive the Field?

When fully implemented, Tissue Simulation Environment will have a broad impact on how CPM based simulations are done in the future. First of all, with the advent of Tissue Simulation Environment the community will adopt new sets of standards regarding CPM implementations. This has a positive side effect of facilitating knowledge exchangeability between researchers and making collaboration between various groups much easier. The high energy physics community, for example, benefits already from the availability of the detector description and simulation tool called GEANT(http://wwwasd.web.cern.ch/wwwasd/geant4/geant4.html) , which uses the Monte Carlo method as basis of all the simulations. Originally designed for high energy physics experiments, GEANT became popular in medical and biological sciences (e.g. medical imaging, nuclear medicine). Current version of GEANT is implemented in C++ and, by being fully object-oriented, it provides users with a wide range of extensibility features. The success of GEANT is mainly due to a fact that it was one the first fully maintained packages for complex detector simulations. The documentation that came with GEANT allowed many scientists and developers to make direct contributions to the project. GEANT significantly reduced time necessary to set up detector simulations and thus allowed for faster experiment completions. We believe that Tissue Simulation Environment will play the same role in the CPM community, as the basic motivation and ideas behind Tissue Simulation Environment are essentially the same that has driven the success of GEANT. When faced with a choice whether to write a program from scratch or to use a professional simulation environment instead, most researchers will opt for the later 
Availability of the CPM simulation environment will relieve much of the burden of software development from scientists and will allow them to concentrate on constructing and simulating more detailed and complex models of biological systems. Moreover, Tissue Simulation Environment as an open-source package with a wide community support will significantly reduce number of software errors that most of custom written software is susceptible to. Scientists, will no longer be required to carry out tedious and time consuming test runs in order to make sure that their software produces sensible results. 
C. Preliminary Work

Principal Investigator

James will need to market himself here. 

Biocomplexity Institute

Institute’s commercial – demonstration that we have all the required expertise to succeed in this project
Open Systems Lab and UITS
Andy and Craig need to feel it out
Center for the Study of Biocomplexity – University of Notre Dame

THIS IS FROM MARK ALBER (PART OF IT WILL BE SHIFTED TO A SECTION DESCRIBING PLUG-INS)

Lattice gas cellular automata (LGCA) model

Dr. Alber’s group has developed several extensions of the classical LGCA model to self-driven biological cells including recent models for early aggregation in myxobacteria [Alber et al. 2004a-b-c, Kiskowski et al. 2004]. In the LGCA model, each cell first orients itself in accordance with the local rules inparticular direction and then all cells move synchronously, one node per time step each in the direction of their orientations. We will model cell movement on a hexagonal lattice using a cellular model introduced in Alber et al. (2004a). There are six allowed unit velocities (or channels) for each cell. We represent myxobacteria cells as (1) a single node which corresponds to the position of the cell's center (or ``center of mass'') in the xy plane, (2) an occupied channel at the cell's position designating the cell's orientation and (3) a local neighborhood defining the

physical size and shape of the cell with associated interaction neighborhoods. Cells move exactly one node per time-step in the direction of their orientation and, by a simple exclusion rule, there may only be one cell center per channel per node. Since cells are elongated during aggregation, we model cells with width 3 and length 21 as shown in Figure 4.

[image: image9.wmf]Figure 4. (a) Five simulation cells are shown on a 42x42 lattice subsection. The cell's “center of mass'” is indicated by a star and the nodes of the interaction neighborhood, where C-signal is exchanged,are indicated by the larger black disks at the cel poles. (b) Electron microscope image of (Myxococcus xanthus) cells in submerged culture (from [Behmlander and Dworkin, 1991] with

permission).

Each cell has two distinct C-signaling areas: a head and a tail C-signaling neighborhood. Csignaling occurs when the C-signaling node at the head of a cell overlaps with the C-signaling nodes at the tail of another cell. The local rules for aggregation demand that cells turn by 60 degrees or persist in their original direction with probability favoring directions that would maximize C-signal exchange between cells. Myxobacteria turn by small angles as they move, which is accounted for by their motility systems. Myxobacteria cells also reverse; i.e., switch their motors between the cell poles so that the leading end of the cell becomes the lagging end, and vice versa [Kaiser 2003]. Our local rules increase alignment since cells turning preferentially to C-signal will arrange end-to-end. These local rules also increase cell density since cells preferentially turn into higher cell density areas where there is more C-signal. Thus, these local rules combine C-signaling with the increase in cell density and cell alignment. Additional local rules accounting for slime production, cell and slime adhesively will be added for modeling more subtle inter-special differences in myxobacteria. 

       Preliminary simulations based on the LGCA model are in excellent agreement with experiments [Alber et al. 2004a-b-c]. At early stages of aggregation, suspended myxobacteria cells settle in several layers randomly on a glass surface. The settled cells soon form ordered cellular domains (see figure 5(a)). The simulation starts with ten layers of randomly oriented cells, which shortly turn into regular arrays as cells aligned by C-signaling (figure 5(d)). In the experiment, after the appearance of aligned patches, preliminary aggregates begin to form, usually at the boundary between patches where the density is assumed to be high, figure 5(b). In simulation, cells in aligned arrays turn from low density areas toward areas of slightly higher cell density and then the cells condense into many closely spaced aggregates. In both the experiment and simulation, aggregates grow as immediately surrounding cells enter the aggregate. At later stages of aggregation, both the LGCA model and experiments showed that streams of cells form between aggregates which resulted in redistribution of cells between aggregates (See Figure 6). We find that streams form by C-signaling when aggregates crowd, and function to ensure a final distribution of large-sized aggregate in a robust two-stage mechanism. First, initial aggregation occurs as cells turn from low to higher density areas. Second, long and thin streams form between small, closely spaced aggregates, allowing long-range communication between cells and redistributing cells from many small aggregates to fewer, larger aggregates (compare figures 5(e) and ( f )).

[image: image10.wmf]
Figure 5. (a)–(c) Light microscopic images of Myxococcus xanthus during fruiting body aggregation stages in submerged culture of Kuner type, at 1 h, 11 h and 24 h, respectively. Field of view is about 4x4 mm 2 (from [Kaiser and Welch 2004] with permission). (d)–( f ) Simulation of aggregation stages on a 500ﾗ500 lattice, which corresponds to an area of 2.8 x m 2. Local cell density after (d ) 25 timesteps, (e) 300 timesteps and ( f ) 25 000 timesteps. Initial cell density is 10. The number of simulated cells is 39 507. The darker shade of gray corresponds to higher cell density.
Cellular Automata Modeling of the Context Dependency in T Cell Recognition

T cell recognition depends on the interaction of T cell receptors (TCRs) with peptides (fragments of self, viral or bacterial protein degradation) in context of major histocompatibility complex (MHC) molecules displayed on the surface of antigen presenting cells (APCs) or target cells. T cell recognition can be remarkably sensitive - detection of even a few copies of an agonist peptide bound to MHC may trigger T cell activation. We simulate in the molecular events at the T cell-APC contact interface with computational particles, as stand-ins for molecules (see Casal et al. 2004, 2005 for details). 

      Molecules move by Brownian motion on two superimposed grids – representing the contact interface on the T cell and APC surfaces -- and interact with one another. We represent different molecule types (TCR, pMHC, adhesion molecules, and inert molecules). In its present form, the model does not include the effect of other cytoplasmic signaling, co-receptor or co-stimulatory molecules.  Each molecule has a number of possible states (free, activated, etc.) that changes when molecules interact. Interactions may occur when molecules collide and are defined by biologically informed local rules. In addition, each interaction is given a stochastic component. The grids are populated with thousands of molecules, corresponding to a 20% realistic occupancy rate.  Despite the low occupancy rate, microclusters can form under the right conditions as the result of an ordered sequence of signal exchanges during TCR-pMHC and TCR-TCR encounters. We take the number of TCRs in stable clusters at the end of the simulation (60 seconds) as a measure of the activation/recognition signal received by the T cell.
   We model TCR microclustering via a multi-stage process.  Two basic types of molecules, TCRs and pMHCs, interact with each other depending on the different peptides present in the pMHCs. The TCRs are then activated to different levels, which in turn determine their tendency to cluster. Each surface molecule is treated as an independent particlet, moving on the array and interacting with other molecules according to its own set of local, probabilistic rules.  Each molecule has a finite number of states, and switches between states when certain events occur, and with a given probability.  Hence, each molecule acts like a probabilistic finite-state automaton (FSA). 
[image: image11.png]
Figure 4.  Evolution of microclusters on the contact interface for 10% agonists and 90% antagonists on the APC surface (Table 7).  Animation snapshots (A through D) show movement, binding, activation and microclustering in black and white on the T cell surface alone, at times 15 seconds (A), 20 seconds (B), 45 seconds (C) and 60 seconds (D), and on both surfaces in color (E) at time 60 seconds.  Time plots of the same information are shown in F,G.  This figure shows that with a mixture of 10% agonists and 90% antagonist, meaningful microclustering does not arise.  Although microclusters do form throughout the simulation, they are small (typically, less than 10 TCRs), unstable and transient.

As future work, we will incorporate the effects of other surface molecules (co-receptors such as CD4 and CD8, and co-stimulatory receptor-ligand pairs such as CD2-CD48, CD28-CD80) and seed with increasingly more complex peptide mixtures to investigate these processes in greater detail.

References

Alber M, Glimm T, Hentschel HGE, Kazmierczak B, Newman SA. 2005a. “Stability of

n-dimensional patterns in a generalized Turing system: implications for biological pattern

formation.” Nonlinearity 18:125-138.

Alber M, Hentschel HGE, Kazmierczak B, Newman SA. (2005b) “Existence of solutions

to a new model of biological pattern formation.” J Math. Anal. Appl. (in press)

Alber MS, Jiang Y and Kiskowski MA. 2004a. “Lattice gas cellular automaton model for

rippling and aggregation in myxobacteria.” Physica D. 191:343-358.

Alber MS, Kiskowski MA and Jiang Y. 2004b. “Two-stage aggregate formation via

streams in myxobacteria.” Phys. Rev. Lett. 93: 068301.

Kiskowski, M.A., Y. Jiang, M.S. Alber [2004], Role of Streams in Myxobacteria Ag-

gregate Formation, Physical Biology 1 173-183.
Alber MS., Kiskowski MA, Jiang Y and Newman SA. 2004c. “Biological lattice gas

models”, in Dynamics and Bifurcation of Patterns in Dissipative Systems, G. Dangelmayr

and I. Oprea (eds.), World Scientific Series on Nonlinear Science, Vol. 12, World

Scientific, Singapore, pp 274-291.

Chaturvedi, R., C. Huang, B. Kazmierczak, T. Schneider, J. A. Izaguirre, T. Glimm,

H.G.E. Hentschel, J. A. Glazier, S. A. Newman, M. Alber, On Multiscale Approaches

to 3-Dimensional Modeling of Morphogenesis, Journal of the Royal Society Interface

(in press).

Casal, A., C. Sumen, T. Reddy, M. Alber. P. Lee [2004], A Cellular Automata Model

of Early T Cell Recognition, Lecture Notes in Computer Science, Springer-Verlag,

Vol. 3305, Springer-Verlag, New York, pp. 553-560 

Casal, A., C. Sumen, T. Reddy, M. Alber. P. Lee [2005], Agent-Based Modeling of the Con-

text Dependency in T Cell recognition, (in press).

Cickovski, T., C. Huang, R. Chaturvedi, T. Glimm, H.G.E. Hentschel, M. Alber,

J. A. Glazier, S. A. Newman, J. A. Izaguirre, A Framework for Three-Dimensional

Simulation of Morphogenesis (subm.)
Alber MS, Kiskowski MA, Glazier JA and Jiang Y. 2003. “On cellular automaton

approaches to modeling biological cells”, Mathematical Systems Theory in Biology,

Communication and Finance.” IMA Volume 134, Springer-Verlag, New York, ) pp 1–39.

Computer Science – University of Notre Dame

James or Notre Dame people should describe CS department at ND here

Randy Heiland and Charile Moad – IUPUI

Presentation of IUPUI vis group
 Potts Model Simulation Environment – Architecture of CompuCell3D
The current Potts model simulation environment – CompuCell3D - (Figure 1.2) consists of a modular C++ software package and a visualization system. The software implements a Metropolis-based Monte Carlo algorithm and supports modeling biological cells on an nxnxn lattice and additionally simulates the chemical concentration gradients necessary for chemotaxis. The visualization system consists of OpenGL (http://www.opengl.org/)  and VTK-based (http://public.kitware.com/VTK/)  applications that generate 3D representations of the lattice and provide basic animation capabilities.

[image: image3.png]
Figure 1.2: The Potts Model Simulation Environment

CompuCell3D was initially developed as an open source package at University of Notre Dame.  It is currently the only publicly available package (http://sourceforge.net/projects/compucell/) which implements CPM in three dimensions. 
Potts Model Simulation Engine

The Potts model simulation is implemented as a modular system, with main controlling engine – the “kernel” - that calls out to different modules. Figure 1.3 shows the modular layout of the code.

[image: image4.jpg]
Figure 1.3: Potts Model Simulation Modules (UML Component Diagram)

CompuCell3D was designed using best software engineering practices which were focused on providing flexible simulation environment.  The entire package is based on a system of plug-ins and each plug-in implements different biological model, physical interaction or program functionality. The design of CompuCell3D mimics, to certain extent, the design of operating systems i.e. it based on “kernel” which manages modules and provides different kind of services e.g. information about current state of simulation. Plug-in management consists of loading the plug-ins, resolving dependencies between them and running plug-in code. Currently there are two types of plug-ins supported – those that “react” to a spin flip event (most of them are responsible for energy calculations) and plug-ins that are run after each Monte Carlo step (in CompuCell3D terminology they are called Steppables). Steppables are mainly used for visualization purposes and for outputting physically meaningful simulation results (e.g. chemical concentration or cell velocity field). However they also are used for manipulating certain attributes of cells every MonteCarlo step (instead of every spin flip) e.g. to simulate time dependence of certain attributes, for example target volume, we update this attribute every Monte Carlo step rather than every spin flip. Plug-in system gives user a flexibility in terms of which plug-ins are used in a given simulations. In particular, plug-ins not specified by the user in the configuration file are not executed during program run and do not have to be loaded into memory. Plug-in based approach is much more flexible and less error prone than compile-time software configuration.
 To run CompuCell3D a user has to prepare an XML-based configuration file in which he/she describes simulation by specifying lattice size, boundary conditions, temperature, set of plug-ins (together with their parameters) and   Steppables. The CompuCell3D “kernel” parses the XML configuration file, loads the appropriate plug-ins (only those plug-ins which are necessary to complete given simulation are loaded) and runs the simulation.  The order in which plug-ins are specified in the configuration file may be changed by the Plug-in Management System to ensure that dependencies between plug-in are satisfied. This way, for example, a plug-in which calculates volume is guaranteed to run before a plug-in which calculates a cell’s center of mass position. 
Currently, CompuCell3D is not at the optimal stage in terms of available plug-ins and their functionality. This may create a false impression that using Plug-in Management System is unnecessary complication. However, as the environment expands and the simulations become more complex, the Plug-in Management System will prove to be of crucial importance from the point of view of both software efficiency and maintainability. It is worth pointing out that, commercially successful packages such as e.g.  Matlab or Maple are also based on a principle of “on-demand” extensibility – implemented using so called Toolboxes (Matlab) or libraries and packages (Maple). 
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Figure 1.4 An example of CompuCell3D XML configuration file (abbreviated). User may choose which plug-ins or Steppables to use 
The CompuCell3D simulation engine contains the main Monte Carlo loop and calls out the different modules (plug-ins) to perform the actual operations on the lattice.  The pseudo-code for the simulation engine is in Listing 1, below.

1:  # Initialize the simulation

2:  RandomSeed()

3:  InitializeLattice()

4:  LoadPlugins()

5: OutputLattice()

6:  # Monte Carlo Loop

7:  For n Monte Carlo steps:

8:    

9: 

10:   # Select a point and compute its energy change   

11:   point = ChooseRandomPoint()

12:   delta_E = ComputeEnergyChange(point)

13:

14:   # Metropolis Step (determine prob(flip))

15:   if delta_E <= 0.0:

16:     flipProb = 1.0

17:   else:

18:     flipProb = exp(-beta * delta_E)

19:

20:   FlipPoint(point, flipProb)

21:

22:   OutputUpdate(point)

23:

24: # End of Monte Carlo Loop


Listing 1: Potts Model Simulation Pseudo-code
The engine calls out to the Initialization module to setup the lattice (line 3).  The Initialization module creates the biological cells and initializes the chemical concentrations in the extra-cellular material (ECM).  Different Initialization modules can be used depending on the experiment being run.  For instance, one module may simply create a random distribution of cells whereas another may setup the lattice to precisely emulate the initial conditions from in-vivo experimental data. 

The next step (4) consists of Plug-in Management System loading plug-ins specified in the XML configuration file.

Before entering the main loop, the engine uses the Output module to output a complete copy of the lattice (line 5).  The simulation results are saved in this initial full lattice file and another file that saves the results of each lattice update (line 22).  This makes it possible to view the lattice at every Monte Carlo step without using an excessive amount of storage space.

The Monte Carlo loop (lines 6-24) drives the execution of the simulation using functions defined in the Energy, Spin Flip, and Random Choice modules.  First, a random lattice point is selected as a candidate for spin flipping (line 11).  The Random Choice module performs the actual point selection.  Different implementations of this module can impose extra restrictions on the selection of the lattice point.  For instance, it can ignore all points that are internal to a cell or the ECM or only allow updates on cells of a certain type.  

Next, CompuCell3D runs energy plug-ins responsible for calculating the change in energy that would occur if this point were to flip its spin (line 12). Each energy plug-in implements part of a Hamiltonian. Different plug-ins here allow for experimentation with different energy functions and different combinations of the coefficients of these functions.  For instance, one version may exclude the contribution of surface area and place a stronger emphasis on volume.

Based on the results of the energy functions, the Metropolis algorithm is applied to determine the probability of a spin flip occurring at the selected point (lines 14-18).  No calls to external modules are made here.

With the probability computed, the Spin Flip module is called to perform the actual flip (line 20).  This module computes a random number and performs the flip if the probability is less than this random number.  Different Spin Flip modules perform different types of updates on the lattice.  A simple module will simply change the spin value for the point.  More complex ones also enable tracking of parameters for the cells such as area and volume.

Finally, after each Monte Carlo step, the CompuCell3D “kernel” executes all user specified Steppable plug-ins. Because some of the Steppables might be computationally expensive to run or produce large output files, a user can specify in the XML configuration file a frequency with which a given Steppable should be called.

Extensibility and modularity in CompuCell3D

CompuCell3D already is a good example of extensible and modular software. To illustrate this fact let us consider a process of adding a software module which tracks cell neighbors. The basic task that this module should perform is simple – first do the sweep through the lattice to initialize neighbors for every cell and then as one assigns different spin to a given lattice point we update the list of the cell neighbors by visiting adjacent lattice points only.  When a lattice point changes its spin, the lattice “senses” that a change has occurred (this happens because spin assignment is done by calling a member function of the class that represents lattice, thus when this function is called lattice is automatically notified) and as a result all registered plug-ins that react to such change (among other, neighbor tracking plug-in) are executed.  Such a design guarantees that subsequent addition of a plug-in implementing, for example, cell mitosis (division of a single cell into two cells) does not require re-implementation or changing the neighbor tracking module, because mitosis is implemented as a collection of spin reassignment. This means that plug-ins are completely independent of each other and can be (in fact they are) implemented by different developers. Such an approach will make future contributions to the Tissue Simulation Environment very easy to manage. 
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Figure 1.4: Automatic reaction of the lattice as a response to the spin-flip. Mitosis and Neighbor Tracking plug-in are independent
Limitations of CompuCell3D
In this paragraph we will highlight several shortcomings of CompuCell3D. We will present proposed solutions in subsequent paragraphs.

The current version of CompuCell3D is already being used by several researchers from Indiana University and the University of Notre Dame. As compared to the “traditional” way of doing computational research (scientists writing their own code from scratch), the availability of CompuCell3D significantly reduces the time spent on software development.  There are however limitations to the current CompuCell3D implementation that may turn out to be prohibitive to some of the potential researchers (especially those for whom C++ is a challenge). The major shortcoming of CompuCell3D is the limited number of available plug-ins. While development of new plug-ins is a pretty straightforward process for a competent programmer, we believe that Tissue Simulation Environment should support a wider variety of features than it currently does in order to reduce to a minimum the necessity of development of new modules. In situations where coding is unavoidable it is of great importance to make this task as easy as possible. Currently, CompuCell3D user has to work directly in C++ to develop or test new modules. Clearly, one key feature that is missing is the rapid prototyping capability. Such a feature would allow both developers and users to quickly develop and test any extensions using a scripting language, thus avoiding package recompilation. Because scripting languages are easier to understand and use than compiled languages (especially C++) rapid prototyping would provide a common platform for exchange of ideas between users and professional developers. First attempts integrate scripting languages with CompuCell3D have been made and they will be described later on.

The lack of solid developers’ documentation is another serious issue that has to be addressed. While user documentation exists and is self-explanatory (http://www.nd.edu/~lcls/compucell/userguide.pdf), developer documentation is available only in the form of a few papers [1, 5] where authors describe the main ideas of CompuCell3D and implementation of some of the more complicated design patterns. Consequently, new developers are forced to study source code to understand major CompuCell3D concepts. The learning curve for the new developer can be made far less steep by providing a comprehensive developer’s documentation.

Visualization of the cells on the lattice plays a very important role in the research process. A good visualization module is crucial in making sure that cells behave in a reasonable fashion and very often researchers may tune “on-the-fly” parameters of the Hamiltonians without waiting for the entire simulation to finish. The current implementation of CompuCell3D lacks a real-time viewer of the lattice, thus viewing lattice is done by opening text files with lattice descriptions in an external rendering tool, for example Ogle (http://www.cora.nwra.com/Ogle/index.html), and viewing the results a posteriori. Although this way of handling visualization may be acceptable for some researchers we believe that implementing a real-time viewer will automate the whole delivery of the visual results, remove the need for handling files with temporary results, thus making the whole process less error prone. First attempts of implementing real-time viewer have been made, and we will discuss them later in the text.

In the research process, it happens very seldom that all the parameters describing physical or biological system are known from the beginning. The major task of running computer simulations is to be able to empirically determine or estimate those parameters. For certain problems one may run suitable objective function minimization routines and reduce the problem of parameter estimation to finding function minima. Although, such an approach is useful in some of the biological problems, we find that in the case of problems addressed by CompuCell3D it is more important to provide users with a possibility of carrying out parameter sweep – that is allowing a user to perform multiple simulation runs, each time with different set of parameters. Alas, the current version of the program does not provide a simple mechanism of accomplishing this task. Instead, users are required to implement this functionality themselves (which usually means writing a script that alters XML configuration file and runs new simulations). Because parameter sweeps should be an integral part of Tissue Simulation Environment runs, we need to provide an efficient and easy way to use this feature.

As parameter sweeps are done one has to store results from large number of simulations. Currently this task is delegated to the CompuCell3D users. However, as the number of simulations grows, it will become very important to provide users with data archival and retrieval tools. This feature is missing in CompuCell3D. 

In most of the custom written scientific programs the only place where interaction between a user and a program takes place is when the user passes parameters to the program. After that, the there is no way to alter the execution of the program. After program has finished its execution, a researcher inspects the results and if necessary, adjusts program parameters and re-runs the program again. Such a model of user-program interaction is acceptable as long as the parameters describing the simulated system do not depend on time. If it is not the case and it is necessary to not only change a value of the parameter but also its time dependence, a user must have the ability to interact in the real-time with the program and adjust parameters as necessary.  Biological simulations are perfect examples of a situation when one often has to use time-dependent parameters. As of now, the only way in which the user may implement time-dependence of the parameters in CompuCell3D is by explicit hard-coding. The real time, user-program interaction is not possible at the moment. This is a serious limitation of CompuCell3D and will be given a high priority in future development efforts.

To realize its potential, CompuCell3D must eventually transform into a Tissue Simulation Environment, so attractive and so easy to use that it becomes a part of the desktop arsenal of theoretical and experimental biologists and eventually of clinicians, in applications including cancer growth, wound healing regenerative medicine, developmental biology, tissue engineering etc.

D. Research Design and Methods
Tissue Simulation Environment – suggested improvements

CompuCell3D is already a semi-mature code. This means that, although already usable, it still needs a significant development effort to make it become a fully professional end-product. Below we present list of improvements that will be made to the CompuCell3D to achieve required goals.

Code clean-up and design improvements

During the development of the CompuCell3D a lot of attention was paid to using, what is considered, a good programming style. Nevertheless, certain parts of the code need to be adapted to the standards that most of the code followed. This will increase code readability and also make code documentation easier. In addition to code clean-up we will need to revisit some of the design decisions that were made at the very early stage of CompuCell3D development. Because CompuCell3D is currently used by several researchers who provide us their comments, we have already managed to build a list of certain aspects of CompuCell3D design that need to be changed. For example, current version of the CompuCell3D enforces cell attributes to be stored in contiguous memory locations (the motivation for that was an increased performance). The implementation of this feature, however, places a limit on what can be used as cell attribute. In particular it is very difficult to use as cell attributes dynamic containers such as lists or dynamic arrays. This, in turn, will most likely prohibit the implementation of the more complex biological models. 
Plug-in system
Insufficient number of plug-ins may in many cases prohibit users from studying more complex and realistic models. In this section we present a list of most important extensions to the CompuCell3D that will greatly enhance functionality of entire package.

Diffusion Solver

Lack of a robust diffusion solver makes it impossible to use CompuCell3D to simulate environments where chemical signaling is important. We propose to incorporate into  Tissue Simulation Environment a flexible diffusion solver that will provide several methods of solving diffusion equation and the user will be able to choose the preferred method. The diffusion solvers based on averaging process (discussed in the introduction to CPM) will be fully implemented by us. Exact solvers based on Finite Difference Methods, or Finite Element Method will be either implemented by us or alternatively we may use external, high-performance, open source, packages that numerically solve partial differential equations (e.g. Overture – http://www.llnl.gov/CASC/Overture or PDE modules from  SCIRun). 
In parallel with diffusion related plug-ins we will develop modules that will enable us to simulate Extra-Cellular Matrix (ECM). By coupling diffusion phenomena to the motion of ECM we will be able to simulate advection-diffusion processes. The ability to simultaneously simulate both cells and ECM is essential if one wants to build realistic models. In fact, a standalone program for advection-diffusion simulations has been already developed by Debasis Dan, who is a postdoc with the Biocomplexity Institute. We will adapt his code so that it can be used in a form of a plug-in.
Solids
Another example of feature that will be implemented as a plug-in is the support of solids. This particular plug-in will be essential to simulate the motion of quasi-rigid bodies inside cellular matter. Currently the only type motion that one can simulate within CompuCell3D is fluid-like visco-elastic motion of cells. Clearly, this is not sufficient for simulation of more complex biological systems. For example to simulate a bone surrounded by a tissue [6, 7], we need to make sure that bone cells move as if they were glued together but at the same time the bone should exhibit elastic properties. One way to achieve this required behavior is to use Finite Element Method on the lattice to model elastic properties of certain type of cell aggregates (e.g. bones). 
Ordinary Differential Equation Model of Cell Regulatory Network
Usefulness of the Tissue Simulation Environment in the biological research will be greatly enhanced by implementing modules that will realistically simulate cell growth and division [8] -  fundamental processes in cell’s life.

These processes are tightly regulated by a chemical reaction network called the cell cycle engine. A damage of the cell cycle control can cause abnormal growth and division of cells, leading to a cancer. Thus, modeling cell cycle regulation is a very important problem. Recently, mathematical models describing cell cycle controls in different organisms have been developed. Despite their success, these models are restricted by descriptions of cell cycle to regulation in individual cells. The next step is modeling growth and division in populations of cells and tissues. Our mathematical model for cell growth and division in interacting cell populations consists of two sub-systems. The first subsystem describes kinetics of proteins and genes regulating the cell cycle engine in individual cells and it is given by a system of ordinary differential equations (ODE's). ODE's describing cell cycle regulation in different cells need to be coupled, as the cell cycle engine interacts with the environment. For simplicity, we will assume that inactive, fast diffusive molecules act as coupling agents between reaction networks in different cells. The second subsystem describes growth, division and death of cells and can be given either by maps or coupled ODE's. These are also coupled, as we account  cell to cell communications. Such model cannot be efficiently simulated by existing computational tools in systems biology. There are several good tools for simulating the first subsystem, but the second subsystem requires a tool based on cellular Pott's model. We will therefore set of plug-ins that will allow for realistic cell growth-division simulations by coupling Monte Carlo based method based Potts model with ODE’s. These plug-ins will allow us to realistically model, for example, tumor growth[8-11].
Monte Carlo algorithms

In the recent years several researchers [REFERENCES] have presented Monte Carlo algorithms which may be used as an alternative to the Metropolis algorithm. These algorithms promise a significant increase in simulation speed and are claimed to be easily parallelizable. Tissue Simulation Environment will support a variety of modules that implement such algorithms leaving to the user the decision of which algorithm to use.

The above mentioned plug-ins and extensions, by no means, exhaust a list of modules that will be incorporated into Tissue Simulation Environment. They rather serve as examples of key features that are missing in the current version of the program and once they become available one will be able to construct more realistic biological models. In addition to plug-ins which implement different parts of biological model, any other enhancements to the Tissue Simulation Environment functionality will be also implemented in the form of dynamic modules to ensure that core functionalities of the program are not mixed with the features which are needed only occasionally. This will result in greater extensibility and configurability of Tissue Simulation Environment.

Compatibility with other packages

One of the long term goals of this proposal is to integrate Tissue Simulatin Toolkit with other computational tools so that biological processes can be better modeled and analyzed at organ, tissue cellular and sub-cellular levels. In fact, the scope of the project requires that certain tasks have to be delegated to other programs, as otherwise we might end up repeating work already done or could even jeopardize the success of entire project. In providing compatibility with external software we will concentrate mainly on those packages that already implement some of Tissue Simulation Environment missing functionalities. For example, to implement kinetics of proteins and genes regulating cell cycle (handled by means of ODE’s), we will most likely rely on external packages e.g. Bio-SPICE-JigCell (https://users.biospice.org/toolsumm.php?id=21).
Subsequently, we will try to integrate Tissue Simulation Environment with such simulation environments as Bio-SPICE (https://users.biospice.org/home.php) and E-Cell (http://www.e-cell.org/).  By integration we mean an exchange of information between different packages. As a matter of fact, a graduate student affiliated with the Biocomplexity Institute, Fang Liu, has already implemented a CompuCell3D extension that provides interface to Systems Biology Markup Language (SBML). Integrating SBML compliant interface into Tissue Simulation Environment provides a way of producing data format accessible by other environments. Because of the growing popularity of the SBML we believe that SBML support in Tissue Simulation Environment will result in greater information exchangeability between current as well as future biological simulation software. 
Documentation

Proper documentation of the project is essential factor in convincing prospective users to use particular software. CompuCell3D User’s Manual exists already (http://www.nd.edu/~lcls/compucell/userguide.pdf). As the development of the program progresses we it will be under constant revision. On the other hand, developer’s documentation is missing and this impedes our efforts to bring new collaborators. As part of the proposed project we will develop full developers’ documentation as well as maintain existing User’s Manual. Developers’ documentation will consist of the description of the main program architecture, API documentation, module interoperability, description of classes together with example uses, UML diagrams of inheritance, description of relevant parts of third party libraries, and a description of the more complicated algorithms implemented in CompuCell3D. In part, the developers’ documentation will be generated using Doxygen (http://www.doxygen.org) – a documentation system supporting most popular programming languages. In addition to this we will develop a set of tutorials that will teach prospective developers about main ideas behind Tissue Simulation Environment. By doing that we hope to significantly reduce the amount of time spent by a new developer on learning the existing code. Many development teams find such approaches very successful.

Scripting languages inside Tissue Simulation Environment
While most of the CompuCell3D program is implemented in native C++ we have found that wrapping the code inside one of the scripting languages provides significant benefits in terms of expedited software development and also increases cross-platform interoperability of the software. Our scripting language of choice is Python (http://www.python.org). This language is very well suited to handle large projects and there are many freely available extension modules that make Python extremely versatile tool. The language is also very popular in scientific communities. To make Tissue Simulation Environment code accessible from Python level, we have used SWIG (http://www.swig.org) - a software development tool that connects C and C++ programs with a variety of high-level programming languages.
An example of benefits of having C++ code being wrapped inside a scripting language is our attempt to develop a beta-version real-time lattice viewer (presented on the figure below).  Using the VTK visualization toolkit (http://public.kitware.com/VTK), wxWidgets (http://www.wxwidgets.org/) and their corresponding Python bindings (wxPython) we were able within a very short period of time to implement and integrate with the main package this simple, yet very useful visualization tool. It is a well know fact that GUI development is much faster when implemented in scripting languages, Python for example, as opposed to compiled languages like C++ or Java.
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Figure 1.5: A screenshot of beta version real-time viewer that enhances CompuCell3D capabilities

As mentioned earlier, scripting languages are perfect tools to implement rapid prototyping capabilities of a package. When fully implemented, our Python interface to Tissue Simulation Environment will make software development and debugging much faster. Moreover, combining XML-based configuration file with scripting capabilities provided by Python will give a user an extra freedom and flexibility in describing the biological model. This means that one will, no longer, be limited to specifying static parameters in the XML configuration file, but it will be possible to describe parts of the simulations using Python. We believe that support of scripting language will make Tissue Simulation Environment particularly attractive to experienced users working with complex models. Because Tissue Simulation Environment will be fully accessible from Python, implementation of aforementioned features will be straightforward and thus we will avoid implementing and maintaining our own scripting language.  This will also be with a clear benefit to the users who will not be required to learn, yet another scripting language. Support of scripting languages is currently an essential feature of any simulation environment. Commercially successful packages like Matlab, Maple or Mathematica all of them offer such features.
Visualization

One of the major goals of enhancing Tissue Simulation Environment will be to come-up with a portable and easy to use set of visualization tools. The original version of CompuCell3D relied on Ogle, a scientific data 3D visualization tool, to render the lattice. As it was discussed earlier, this method had many drawbacks. In particular if one wanted to view a lattice using different rendering schemes, the number of files with lattice descriptions would increase dramatically, thus making this method of implementing visualization highly impractical. A real-time lattice viewer addresses this particular problem. Moreover, when a real-time viewer is fully implemented, a user will be able to view cross-section through the lattice (by either moving the slidebars or entering appropriate parameters). Viewing a cross section through the lattice is in many cases more important and gives more information than full 3D rendering. Nevertheless it is our goal to produce a viewer that will handle both 2- and 3D display. 

A real-time viewer will also have the “screenshot on-demand” capabilities. This way it will be entirely up to the user which lattice configurations are worth saving. Currently a user may specify frequency with which snapshots of the lattice are stored on the storage device. We will continue supoorting this feature but we feel that giving a researcher the extra flexibility in the form of “screenshot on-demand“ will be very much welcomed by users of Tissue Simulation Environment. Implementation of the Tissue Simulation Environment visualization modules will be facilitated by reusing some of the tools developed by other open source projects, for example SCIRun.
Output of scientific results

Visualization of the simulation is helpful in qualitative assessment of the simulation results but lacks quantitative features. Thus if quantitative results are needed, visualization system has to be complemented by set of modules which will be responsible for outputting quantitative results. Such quantitative results can be then processed using external tools to provide the precise description of simulated system. For example, when implementing and then using the diffusion solver it is crucial to be able to have access to the value of chemical concentration at every lattice point. We will develop set of modules which will be responsible for outputting scientifically meaningful results. This will include simple modules outputting the state of the lattice in the form of an ASCII file and more sophisticated ones which will perform various kind of statistical preprocessing, for example calculating average cell velocity as a function of a chosen coordinate.

User Interface (UI)

In parallel to developing visualization tools we will concentrate our efforts on constructing a clear and self-explanatory interface. Currently a user runs CompuCell3D by modifying the XML configuration file and invoking a command from a command-line. While such an approach works quite well and might be preferred by certain users (because, for example, makes running programs in batches easy), there are users, mainly CompuCell3D newcomers or people just evaluating the software, who would significantly benefit if instead of preparing configuration files themselves they could take advantage of the GUI tools. As experience shows, in many cases having a good user interface, determines the odds of the software being successful on the market. Scientific software is no exception and thus by giving users the flexibility of whether to use command line or GUI we hope to appeal to users with various preferences. GUI front-end to Tissue Simulation Environment will establish a way of isolating the user from the actual program implementation. In particular, any extensions to the XML format of the configuration file are hidden from the user. At the same time more experienced users will be able to take advantage of the UI and use it as a tool for rapid preparation of an XML configuration file.

The main feature of the Tissue Simulation Environment UI will be simplicity. While fancy and often overloaded user interfaces may look impressive, at the same time they often tend to scare off potential users due to an overwhelming amount of options being displayed on a single screen. We will implement UI based on Multiple Document Interface (MDI), with main window serving as a control panel. The amount of options available to the user in the main panel will be limited to a minimum. The detailed configuration of the environment will be done entirely via dialog windows.  

CompuCell3D GUI will be implemented using wxWidgets and their corresponding Python binding - wxPython. wxWidgets and wxPython are cross-platform packages for GUI development. To expedite GUI development we will use Boa Constructor (http://boa-constructor.sourceforge.net) – a cross platform Python IDE and wxPython GUI Builder. In the figure below we show a prototype of CompuCell3D GUI.
INSERT A GRAPH WITH UI PROTOTYPE

Parameter sweeps

Being able to run scientific software with different sets of parameters describing the system under investigation is a key feature that should be supported by simulation programs. As mentioned earlier, the task of implementing parameter sweeps is currently delegated to the user. Although it is not a very difficult task, it places an additional burden on a researcher and leads to quite tedious and hard to maintain scripting. We will automate this task and make parameter sweeps easy to use by providing both dedicated UI and special syntax inside the XML configuration file. Additionally we will provide a dedicated user interface via which users will be able to set up and execute multiple runs on different nodes of the multi-processor cluster. 

Steering and real-time interaction with the package

At an early stage of model studies one usually has limited knowledge about optimal values of the model parameters and how those parameters should evolve with time (time is measured in terms of Monte Carlo Steps). When one uses “static” parameters only, i.e. those that do not depend on time, one can do parameters sweeps to determine best values of the parameters. The problem is more complicated when one uses time-dependent parameters and the exact form of the time dependence is not known a priori. In such a case it will be very helpful to give user the ability to dynamically change parameters while the program runs. This way by real-time interaction with the software the user can guess or tune the form of time dependence for a given set of parameters. To make this feature even more useful we will allow the user to restore the past state of simulation, so that it will be possible to do many parameter guesses starting from the same state of the simulation and watching the result in the real time viewer. All the parameters entered by the user will be recorded as a function of time so that later on one can fit a functional dependence to the time series which gave best simulation results. Enabling all the features described in this section is equivalent to giving a user the ability to perform real time computational experiments on the lattice. The usefulness of this approach becomes clear when one realizes that the alternative would be to run many simulations, each time with different plug-in implementing various forms of time dependence of parameters. Needles to say, much more effort would be required to carry out the later solution.
Archiving simulation results

Despite the fact that this task is usually taken care of by users, we believe that proper storage of the simulation results may reduce the chance of simulations being misplaced or even lost. We plan to provide a special option inside our environment which will be equivalent to and inspired by the concept of the “project” of some of the Integrated Development Environments (IDE). Similar to IDE, where a programmer can group different files and directories to form a project, Tissue Simulation Environment user will have the option to group a set of related simulations into one logical entity. For example, it will be very convenient for users to store results of parameter sweeps together or to compare results of simulations with or without certain terms of the Hamiltonian. The user will have a chance to specify a level of simulation serialization. In particular, it will be possible to store detailed images of the simulations so that such simulations could be re-run in the viewer without necessity of carrying out expensive calculations. 
Tissue Simulation Environment – extensibility, maintainability

When large, collaborative, computer-intensive research projects in the US have been successful, one of the keys to their success has been that the project is designed in a fashion that ensures robustness of the project and availability of software and services, independent of the participation of individual institutions involved in the project. We will follow this approach
As with every large software project, Tissue Simulation Environment will have to be written in the “future tense”. This means that significant emphasis will be made on making sure that current system design does not compromise its potential future extensibility. The current version of CompuCell3D provides a very good starting point in terms of extensibility. The Plug-in Management System currently implemented makes both extension and maintenance of CompuCell3D a relatively easy task. Nevertheless, some of the modules which would be perfect candidates for dynamically loadable modules are still hard-compiled into the code. We will enhance and make the Plug-in Management System more versatile and this in turn will result in better modularity of the entire environment.

The project is and will be hosted by Sourceforge.net. There will be separate development repositories for Tissue Simulation Environment main engine (this will also include plug-ins) and a repository dedicated to User Interface. Separating the two will result in better maintenance capabilities of the Tissue Simulation Environment. Potential contributors will be encouraged to submit enhancements which will subsequently be reviewed by core Tissue Simulation Environment developers and, if approved, incorporated in the official Tissue Simulation Environment release. In addition to Sourceforge.net we will consider the possibility of hosting Tissue Simulation Environment in other open source archives to make it even more accessible to potential users.

As an open-source project Tissue Simulation Environment will be quickly adopted by prospective users and benefit in the form of various kinds of contributions. It is worth mentioning that, significant part of the CompuCell3D visualization and scripting language extensions were implemented by external contributors, who subsequently became actively involved in Compucell3D development. Moreover, bug detections and bug fixes will also proceed much faster if the product is fully accessible by wide community of users.  
We will provide a defect tracking system which will be based on the open source Bugzilla server. It will provide an excellent tool of communication between users and developers. Bugzilla will also facilitate bug-fix submission and will greatly contribute to quality assurance of our product. Bugzilla is currently being used by almost 400 companies, organizations and projects. Best known free software projects which benefit from Bugzilla include, Linux Kernel, Mozilla, OpenOffice.

In parallel to implementing the defect tracking system we will develop a test suite – a set of tools for testing logical consistency of particular Tissue Simulation Environment components as well as robustness of entire package. Although the development of these tools will be labor intensive project by itself, having a robust set of test tools is essential in a large scientific software project. The testing will assure that completed parts of the software do not regress as new features are added. Although, it is not possible to detect all defects of the software using test suite, the automation of the most routine tests will speed up acceptance or rejection of external contributions. 

As an additional tool of user support we will set up and maintain a mailing list dedicated to the Tissue Simulation Environment issues. This will provide a direct assistance to any user who experiences problems with Tissue Simulation Environment or simply seeks an advice.

Deployment, packaging, update, cross-platform interoperability

CompuCell3D is available for free download from the Sourceforge.net website. The current version is distributed in the form of Linux/BSD/Unix binary and source packages. 

The Windows version of CompuCell3D is distributed as a Visual Studio .NET project to be compiled using Microsoft compilers but also one can download precompiled binaries similarly as for Linux/Unix. We will support bundles containing source code as well as precompiled binary versions of the product together with a self-explanatory install/uninstall tool. 

Modularity of the Tissue Simulation Environment ensures that software updating and patching will be easily manageable tasks. For example, upgrading a plug-in will simply mean replacing an appropriate library. We do not plan to develop sophisticated update agent though, and any major software updates will require package re-installation. 

Example applications

The Tissue Simulation Environment will be released with several example applications. Those are the examples that were thoroughly studied and were described in theses and scientific journals [REFERENCES] . They will be used to demonstrate capabilities of the Tissue Simulation Environment and may serve as a starting point for creating new models and simulations. All example applications will be described in detail in the User’s Manual. The list of sample application includes a simulation of dictostylium development, simulation of chick vascular system, gastrulation, chick wing development, cancer and coral growth. 

EXPAND ON SOME OF THE EXAMPLES, INCLUDE SCREENSHOTS

Workshop

We plan to host one workshop devoted to Tissue Simulation Environment and its applications in biological and medical research. It is also our intention to especially invite speakers who have used Tissue Simulation Environment and other biological simulation packages. We will encourage presenters to show the results of the simulations done in Tissue Simulation Environment and to discuss the limitations as well improvement possibilities of the software. The workshop will be a perfect place where scientists will meet face to face with developers to discuss different ideas and extensions to the Tissue Simulation Environment. The event will allow us to even better understand what scientists expect from biological simulation software.
Initial Deliverables and Time-lines
The expected duration of the proposed project is three years. During that time we will implement all the enhancements and new features of Tissue Simulation Environment described in this research plan.  We expect that at the end of third year of the project an enhanced official version of Tissue Simulation Environment should be available for download.
Our anticipated timeline is shown. Note that duration listed below is that of the major development – ongoing refinement and bug fixes will occur after the initial focused development phase.

	Deliverable
	Start Time
	Duration

	Gather detailed information from researchers using CPM concerning core functionalities that Tissue Simulation Environment should provide. Code redesign and clean-up.
	Year 1
	1 year

	Develop new plug-ins implementing different biophysical models.
	Year 1
	3 year

	Documenting existing and newly written code
	Year 1
	3 years

	Developing interfaces to external packages to be used by CompuCell3D
	Year 1
	1 year

	Gathering user preferences regarding visualization. Developing visualization tools. 
	Year 1
	2 years

	Implementing support for scripting languages
	Year 1
	2 years

	Developing tools for information exchange with other packages e.g. SBML
	Year 2
	1 year

	Implementing real-time user interaction with the Tissue Simulation Environment 
	Year 2
	2 years

	Implementing parameter sweeps enabling cluster runs of the Tissue Simulation Environment simulations
	Year 2
	1 year

	Developing GUI and simulation archival system
	Year 2
	2 years

	Incorporating defect tracking system. Ensuring cross-platform interoperability. Performing test simulations
	Year 2
	2 year

	Demonstrating usefulness of Tissue Simulation Environment by working with scientists who use CPM in their research. Organizing workshop on Tissue Simulation Environment and other simulation software in biomedical research. 
	Year 3
	1 year

	Developing Tissue Simulation Environment website , setting-up mailing list.
Preparing official release of the software. Conducting user’s survey. Releasing developer’s and user’s guides
	Year 3
	1 year


Development Strategy
Throughout this document, we have discussed various development strategies that have already been used and will be employed over the course of the project.  Our initial experiences separating software development and scientific tasks have reinforced our belief in using “agile” programming techniques and we will continue with this strategy as we develop the full Tissue Simulation Environment.  A core principle in agile software development is to “satisfy the customer through early and continuous delivery of valuable software” [http://agilemanifesto.org/].  In the case of the Tissue Simulation Environment, the customer is clearly the scientist.  The software developers involved in the project will work closely with the scientists in defining requirements and evaluating deliverables.  Because CompuCell3D is already a working system, we have the advantage of implementing a highly iterative development cycle from the beginning.  Scientists already use the system and, due to the flexible nature of the current software, new features can be added and evaluated in increments that make it possible to identify good and bad design decisions before the features are complete.
Exit Strategy
Tissue Simulation Environment is good example of a project that can be maintained by ongoing university base budgets. Should a time come when further development, management, and maintenance of the software should shift away institutions involved in this project, our strategies in software development will make transfer straightforward. 
We are developing new software only where necessary and maintaining interoperability with other key projects. The fact that we will use accessible software engineering practices, documenting the code internally with comments, as well as providing comprehensive developer’s documantation means that the code base will be intellectually as well as physically available. Indiana University has an excellent ongoing history of supporting open source projects through its participation in providing publicly available mirrors of other source code archives (http://www.ussg.iu.edu/index.php?option=com_downloads, ftp://ftp.ussg.iu.edu).The combination of ongoing commitment by the involved in Tissue Simulation Environment, and the commitment to open source practices, ensures that NIH investment in the Tissue Simulation Environment will reap benefits for years and decades to come.
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James’s remarks

Organization:

Motivation

Discuss Generaly accepted need for multiscale models which connect directly to experiments. Cite Harvard, roadmap, others.

Specific need for Cell level model. What could such a model accomplish scientifically? What ought it to be able to predict/do?
CPM approach as a good starting point for such a framework. “The CPM has proved itself…” 

CompuCell “CompuCell is the first…”

Describe current user base. Issues of reaching out beyond current user base

Discuss

Classes of users: most sophisticated( least sophisticated (who are they, typical example, e.g. a biophysicist trying to understand mechanics of gastrulation to experimental biologist, clinician interested in modeling shape of tumor growth in a particular patient.

Needs of each class of user.


What is a successful package? “Public acceptability is much more than publishing on SourceForge…” List and review main successful packages: Biospice, Physiome, V-Cell Virtual-Cell, M-Cell, E-Cell, Entelos, Neuron… What do they do? What do they look like? What are their current levels of support? What is their documentation like? How much did they cost? Which are widely adopted, which not? Why? (we can include some studies of these issues in the main proposal, i.e. goal is identify the characteristics of successful packages vs. unsuccessful ones)


What are CompuCell’s main problems in this context?


“To realize its potential, CompuCell must transform into a Tissue Simulation Environment, so attractive and so easy to use that it becomes part of the desktop arsenal of theoretical and experimental biologists and eventually of clinicians, in applications including, cancer growth, wound healing, regenerative medicine, developmental biology, tissue engineering…”

Main Goals

Provide Flexible framework at cell level+tissue+subcell

Survey current and potential users to guide development.

Expand user base to include users at all levels of sophistication.
Support and enhance for exiting users

General issues of software usability and support. It is more expensive to go from research code( user code than from nothing( research code. (Need specific examples and references).

Links to other packages (may be deferred to a later proposal—need to prioritize)

Demo development (committed early users, list)

Validation (technical only or technical and biological?)


Specific Aims needed to accomplish above. (a numbered list with each item briefly described as a) Aim and justification, b) Methodology of accomplishment c) Expected outcomes. D) Fallback outcomes if a failure.



Put specific tasks into the following categories:




1) Technical Improvements




2) Usability Improvements




3) Documentation and Support




4) Hooks to other levels.




5) Deployment/rollout

E.g. of tasks:

Large repertory of example programs.




Tables of Constants




Tracability of models




Selectability of solution methods




GUI




Visualization




Verifiability

Proposal Details on above.

Demo Projects

Management

Survey and Methodology

Success metrics.

Outcomes success/failure.

Lattice



Spin-Flip



Response to Spin-Flip



Mitosis



Neighbor Tracking



<CompuCell3D>

 <Potts>

   <Dimensions x="300" y="300" z="1"/>

   <Anneal>10</Anneal>

   <Steps>100</Steps>

   <Temperature>5</Temperature>

   <Flip2DimRatio>1</Flip2DimRatio>

 </Potts>



 <Plugin Name="Volume">

   <TargetVolume>20</TargetVolume>

   <LambdaVolume>1.0</LambdaVolume>

 </Plugin>



 <Plugin Name="Surface">

   <TargetSurface>16</TargetSurface>

   <LambdaSurface>0.5</LambdaSurface>

 </Plugin>



 <Plugin Name="CellSortType" />



 <Plugin Name="Contact">

   <Energy Type1="Medium" Type2="Medium">0</Energy>

   <Energy Type1="NonCondensing" Type2="NonCondensing">14</Energy>

   <Energy Type1="Condensing"    Type2="Condensing">2</Energy>

   <Energy Type1="NonCondensing" Type2="Condensing">11</Energy>

   <Energy Type1="NonCondensing" Type2="Medium">16</Energy>

   <Energy Type1="Condensing"    Type2="Medium">16</Energy>

 </Plugin>



 <Plugin Name="CenterOfMass"/>



 <Steppable Type="OutputData"/>



<Steppable Type="PythonSteppable">

   <PyStep module="SteppableExamples" class="SimpleSteppable"/>

   <PyStep module="SteppableExamples" class="ParameterSteppable">

     <parameter1 value1="one" value2="two"/>

     <parameter2>ptwo</parameter2>

     <parameter3/>

   </PyStep>

   <PyStep module="SteppableExamples" class="XMLDataDumper">

     <Prefix>cellsort</Prefix>

   </PyStep>

 </Steppable>



 <Steppable Type="BlobInitializer">

   <Gap>0</Gap>

   <Width>2</Width>

 </Steppable>







�Will need to describe what exactly CompuCell3D should do and what functionality it should provide – prepare ground for the rest of the plan
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