
An Overview of CellML 1.1, a Biological
Model Description Language
Autumn A. Cuellar
Catherine M. Lloyd
Poul F. Nielsen
David P. Bullivant
David P. Nickerson
Peter J. Hunter
The Bioengineering Institute
University of Auckland
Private Bag 92019
Auckland, New Zealand
a.cuellar@auckland.ac.nz

CellML is an XML-based exchange format developed by the University of Auckland in collaboration
with Physiome Sciences, Inc. CellML 1.1 has a component-based architecture allowing a modeller
to build complex systems of models that expand and reuse previously published models. CellML
Metadata is a format for encoding contextual information for a model. CellML 1.1 can be used in
conjunction with CellML Metadata to provide a complete description of the structure and underlying
mathematics of biological models. A repository of over 200 electrophysiological, mechanical, signal
transduction, and metabolic pathway models is available at www.cellml.org.

Keywords: Biological model, XML, markup language, mathematical model

1. Introduction

CellML is a standard format for defining and exchang-
ing biological models. CellML is based on the eXtensible
Markup Language (XML) [1], a structured document for-
mat that can be read by both humans and machines. Doc-
uments written in XML are plain text and, therefore, can
be created and edited in any basic text editor. XML docu-
ments can be easily transmitted over the Internet. Because
of its acceptance by the Web community as a standard,
vast amounts of software that read, write, manipulate, and
process XML documents are both freely and commercially
available through the Web.

CellML differs distinctly in scope from other biological
markup languages such as MageML, ChemML, and Neu-
roML. CellML’s closest relative is the Systems Biology
Markup Language (SBML) [2]. SBML is “meant to sup-
port basic biochemical network models.” In comparison,
CellML is an equally rigorous description language cover-
ing a more general field of application. The flexibility of the
CellML language is demonstrated by the variety of models
available on the CellML Web site, including electrophys-

|
|
|
|
|

SIMULATION, Vol. 79, Issue 12, December 2003 740-747
©2003 The Society for Modeling and Simulation International

DOI: 10.1177/0037549703040939

iological and mechanical models as well as biochemical
pathway models. In addition to being broader in scope than
SBML, CellML has a modular structure that facilitates the
description of complex interconnected cell models.

CellML takes advantage of the extensibility of the lan-
guage on which it is based. CellML already incorpo-
rates multiple XML-based standards, including MathML,
XLink, and Resource Description Framework (RDF).
CellML elements are used to define model structure, but
other information is incorporated into the model docu-
ment using existing standards, which ensures that parts
of the CellML model may still be understood by XML
processors that are not CellML compliant. MathML [3] is
used to encode the mathematics of the model, XLink [4]
is used to establish the connection between the original
model and the importing model, and background informa-
tion, or metadata, is included via RDF [5]. Furthermore,
modellers have the option of using features of other bi-
ological markup languages in conjunction with CellML.
For instance, if a biologist wanted to give the molecular
description of a species participating in a reaction, he or
she could include ChemML constructs in the ChemML
namespace in a CellML component.

The specification of the CellML language is contained
in two separate documents. The first, the CellML 1.1
specification [6], demonstrates how a model author may
specify the underlying mathematics of the model without

OVERVIEW OF CELLML 1.1

including simulation-specific information. The second, the
CellML Metadata specification [7], allows an author to
include other pertinent information at his or her discretion.
The same CellML document can be processed by rendering
software to generate equations suitable for publishing, or it
can be processed by solution software to generate computer
code that can then be compiled and executed to perform
simulations, ensuring that the executable model and the
published equations are consistent.

Since an in-depth description of CellML 1.0 has already
been published [8], this article only gives a brief overview
of the CellML structure, including metadata, before de-
scribing the recent introduction of the import and reuse ca-
pabilities with CellML 1.1 and explaining how biologists
can use CellML with their favorite simulation package.

2. CellML Model Structure

2.1 Models and Components

CellML models are represented by a network of intercon-
nected components. A component is the smallest func-
tional unit of a CellML model. Each component may con-
tain variables, and it may also contain mathematical equa-
tions to describe how that component behaves within the
model. These equations are expressed using the content
markup portion of MathML 2.0 [3], an XML-based lan-
guage that is embedded within the CellML framework.

These features of the CellML language can be illustrated
with an example of a metabolic pathway model such as
glycolysis [9] (see Fig. 1). Biochemical reactions between
substrates are organized into components that represent
the reactants and products of the reactions, the reactions
themselves, and the enzymes or inhibitors that influence
the reaction rates. The properties of a reaction—such as
its reactants, products, enzymes, and inhibitors—and its
reaction kinetics are all captured by the variables and the
mathematical equations of a component.

2.2 Variables

A CellML variable is a named entity that belongs to a sin-
gle component. That is, a variable is declared, or defined,
within one component only. When a variable is being de-
clared, it must be associated with units. It has an optional
initial_value, and it may or may not have public_ or pri-
vate_interfaces. See section 2.5 for the definitions and ex-
planations of these terms.

2.3 Connections

Although a variable can only belong to a single compo-
nent, it is possible to map its value to other components
in the model; however, a variable’s value cannot be al-
tered by these importing components. Due to the complex,
integrated nature of many biological models, a large num-
ber of mappings usually arise. To cope with the poten-

tial complexity of all these mappings, mappings between
components are organized into sets between any two given
components. These sets of mappings between two given
components are known as connections. There can only be
one connection between any two components in a model,
so all mappings between these two components have to be
listed in the one connection element.

The CellML fragment below shows the connection
made between the component representing the species
ATP and a reaction in which the species participates,
reaction10, in the glycolysis pathway shown in Fig-
ure 1. The variables ATP and delta_ATP_rxn10 are
being mapped between the two components. ATP repre-
sents the concentrations of the substrate adenosine triphos-
phate, and delta_ATP_rxn10 represents the change in
concentration in ATP in reaction 10. In both components,
the variables are referenced by the same name, although
this is not always the case:

<connection>
<map_components

component_1="ATP"
component_2="reaction10"/>

<map_variables
variable_1="ATP"
variable_2="ATP"/>

<map_variables
variable_1="delta_ATP_rxn10"
variable_2="delta_ATP_rxn10"/>

</connection>

2.4 Units

One essential feature of the CellML language is that all
variables and numbers must be declared with units. Units
declarations ensure the robustness and reusability of the
CellML components and models as they allow compo-
nents and models containing variables with different units
to be connected. However, it should be emphasized that
variables that are mapped between components and mod-
els must be the same class of units. That is, it is possible
to map two variables with units of mass, even if one is
in imperial pounds and the other in metric kilograms, but
modellers are unable to map two variables if one has units
of length, such as meters, while the other has units of mass,
such as grams.

CellML provides a dictionary of standard units that may
be used when declaring a variable or when including pure
numbers in equations. This dictionary contains the Interna-
tional System of Units (SI) [10, 11] as a base, with the addi-
tion of derived units, such as coulomb, joule, and volt, and
other units, such as gram and liter, that are frequently used
in the types of biological models described by CellML.
New units may be expressed in terms of the units already
defined in the dictionary. Using this method, it is possible
to create complex units made up from the combination of
simple units, define imperial units (which are expressed as

Volume 79, Number 12 SIMULATION 741

Cuellar, Lloyd, Nielsen, Bullivant, Nickerson, and Hunter

Glycogen

Pi

ATP

UDP−glucose

PPi

2Pi UDP

Glucose−1−phosphate

Glucose−6−phosphate

Fructose−6−phosphate

Fructose−1,6−bisphosphate

Glyceraldehyde−3−phosphate

1,3−Bisphosphoglycerate

3−Phosphoglycerate

2−Phosphoglycerate

Phosphoenolpyruvate

Lactate

Glycerol−3−phosphate

Dihydroxyacetone−phosphate

Fructose−2,6−bisphosphate

ATP ADP

H2OPi

UTP

H

ADP ATP

ATP

ADP

Glycolysis

Glucose

NAD

Glycerol

Pyruvate

NADH

H2O

Pi

NAD Pi

NADH+ H

ADP

ATP

H2O

ADP

ATP

NADH
+
H

NAD

+

Pi H2O

ADP

+

Encapsulation

Figure 1. The glycolysis pathway. Through a series of enzyme- catalyzed reactions, one molecule of glucose is converted into two
molecules of pyruvate, which are then fed into the tricarboxylic acid (TCA) cycle.

a scaled, and possibly offset, version of an SI unit), and
even define base units that have no simple relation to SI
units (such as pH). Thus, model authors may work with
their units of choice while ensuring that their models can
still be integrated with models that use other units.

The following CellML fragment demonstrates how a
complex unit can be built from SI units:

<units name="millimolar">
<unit prefix="milli" units ="mole"/>
<unit units="liter"exponent ="-1"/>

</units>

2.5 Groups

Grouping adds structure to a model by defining named
relationships between components. Two types of grouping
relationships are predefined by CellML:encapsulation and
containment. In addition, if required, modellers may define
their own types of relationships between components.

Encapsulation simplifies the model structure by restrict-
ing variable exchange between particular sets of compo-
nents. In effect, encapsulation hides a group of components
from the rest of the model. A single component is used as
an interface through which all variables’ values exchanged

between the hidden subnetwork and the rest of the model
components have to be passed.

The components to which any given component can
connect can be divided into four different sets:

1. The set of components encapsulated by the current
component is referred to as theencapsulated set.

2. If the current component is encapsulated, then the
encapsulating component is referred to as theparent.

3. All the other components encapsulated by the same
parent are known as thesibling set.

4. All other components in the model, which cannot
be directly connected to the current component, are
called thehidden set.

Using the glycolysis pathway model as an example,
the two components representing the reactions between
glucoseandglucose-1-phosphate (reaction5
andreaction6) are encapsulated within theglucose-
1-phosphate component. They make up theencap-
sulated set of their parent glucose-1-phosphate
component. Relative to each other, the two encapsu-
lated components represent asibling set. Theglucose-

742 SIMULATION Volume 79, Number 12

OVERVIEW OF CELLML 1.1

1-phosphate itself is not encapsulated and has no par-
ent. Its sibling set consists of all the other components
in the model. The encapsulated components are unable to
make direct connections with components in their parent’s
sibling set, thehidden set; instead, variables coming from
(or going to) the hidden set must be mapped through the
parentglucose-1-phosphate:

<group>
<relationship_ref

relationship="encapsulation"/>
<component_ref

component="Glucose_1_phosphate">
<component_ref component="reaction5"/>
<component_ref component="reaction6"/>
</component_ref>

</group>

When variable values are mapped between components,
each variable must have an interface. Encapsulation intro-
duces the need for two different types of interfaces:public
andprivate. A public interface refers to the variable ex-
change interface exposed to components in the parent and
sibling sets. A value ofout or in implies the direction in
the exchange of the variable value (i.e., a variable interface
value ofout denotes value export from the component,
while an interface value ofin represents variable value im-
port into the current component). A private interface refers
to the interface exposed to components in the encapsulated
set. Like the public interface, it can have a value of either
out or in.

In the following CellML fragment, the change in con-
centration of inorganic phosphate,Pi, is declared and de-
fined in the encapsulatedreaction5 component and
passed out through a public interface ofout to the parent
Glucose_1_phosphate, where it is received through
a private interface ofin:

<component name="Glucose_1_phosphate">
<variable name="delta_Pi_rxn5"

private_interface="in" units ="flux" />
...

</component>

<component name="reaction5">
<variable name="delta_Pi_rxn5"

public_interface="out" units="flux"/>
...

</component>

The containment relationship is used to describe the
physical organization of a model. That is, the containment
relationship allows a modeller to specify that one compo-
nent is physically nested inside another one. For example,
a channel component can be physically embedded within
a membrane component by specifying a containment re-
lationship, as shown in the CellML fragment below. This
information may then be used by rendering software to
create a visual diagram of the model:

<group>
<relationship_ref

relationship="containment"/>
<component_ref
component="membrane">
<component_ref component="channel"/>

<component_ref component="pump"/>
</component_ref>
</group>

2.6 Metadata

Metadata are “data about data.” Metadata are included
in CellML to provide context for models and to facili-
tate searches of collections of models and model compo-
nents. They provide a means for modellers to include struc-
tured descriptive information about their models, which
can help other modellers determine whether they can in-
corporate the model into their own work. Metadata are
defined in a separate CellML specification [7] and include
constructs such as model author, literature reference, copy-
right, model creation date, and various elements intended
to place the model into a meaningful biological context.

CellML Metadata are composed of a combination of
several existing metadata standards. The syntax devel-
oped for embedding metadata within CellML documents
is based on the RDF [5] specification developed and main-
tained by the World Wide Web Consortium (W3C). RDF
consists of sets of triples: aresource has aproperty of
somevalue. For instance, a CellML model, the resource,
may have a model author property with a person as the
property value. The property value may itself be another
resource described by properties. In this way, one can break
down large chunks of contextual information for CellML
models.

The information stored within the RDF metadata frame-
work is based on the Dublin Core, vCard, and bibliographic
query service (BQS) public standards. In addition, the
CellML Metadata specification defines several attributes
that cover the biological categories that the above stan-
dards do not.

The Dublin Core Metadata Initiative (DCMI) group,
composed of members from the library science and knowl-
edge management communities, identified 15 “common”
properties across a large range of resources. The Dublin
Core Metadata Element Set [12, 13] includes title, cre-
ator, subject, date, format, and language properties. The
DCMI has also recognized two classes of qualifiers [14, 15]
for the metadata elements,element refinement andencod-
ing scheme qualifiers. The element refinement qualifiers
restrict the scope of the element. Valid refinement quali-
fiers for the date element, for example, are “created, valid,
available, issued, and modified.” Encoding scheme quali-
fiers indicate how the content of the element is encoded.
For instance, if a date element has an encoding scheme of
W3C-DTF, the content has a format of YYYY-MM-DD.

Volume 79, Number 12 SIMULATION 743

Cuellar, Lloyd, Nielsen, Bullivant, Nickerson, and Hunter

The vCard data model [16] has several elements nec-
essary to reference people. These elements include name
constructs; contact information in the form of mailing ad-
dresses, e-mail addresses, and telephone numbers; and af-
filiation information.

No bibliographic standards currently exist within
RDF/XML. The CellML Metadata specification proposes
an RDF serialization of theDsLSRBibObjects module
defined in the Object Management Group’s BQS specifi-
cation [17]. The RDF serialization of the BQS data model
makes use of the Dublin Core Metadata Element Set and
vCard elements wherever possible, and it includes meth-
ods to reference journal articles, books, and Web resources
and to cite databases of references such as PubMed. For
example, the XML fragment below shows how publica-
tion information can be included in CellML Metadata. The
rdf, bqs, dc, dcterms, andvCard prefixes indicate
that elements are in the RDF, BQS, Dublin Core, Dublin
Core Qualifier, and vCard namespaces, respectively:

<bqs:Book rdf:parseType="Resource">
<dc:creator

rdf:parseType="Resource">
<bqs:Person

rdf:parseType="Resource">
<vCard:N

rdf:parseType="Resource">
<vCard:Family>
Bronk

</vCard:Family>
<vCard:Given>J</vCard:Given>
<vCard:Other>
Ramsey
</vCard:Other>

</vCard:N>
</bqs:Person>

</dc:creator>

<dcterms:issued
rdf:parseType="Resource>

<dcterms:W3CDTF>
1999

</dcterms:W3CDTF>
</dcterms:issued>

<dc:title>Human Metabolism
</dc:title>

</bqs:Book>

In addition, biological metadata are necessary to de-
scribe the models encoded in CellML. The CellML Meta-
data specification includes several newly defined elements
for this purpose, such as species, sex, and biological entity.

Modellers are free to define additional metadata within
their own RDF schema. However, CellML processing soft-
ware is not required to recognize any metadata other than
that defined in the CellML Metadata specification.

Metadata are optional in a CellML document. A model
without metadata is a valid CellML model. However, the

CellML specification strongly recommends that the mod-
eller provide as much metadata as possible, particularly his
or her name and contact information and a reference for a
paper that describes the development of the model.

3. CellML 1.1: Import and Reuse

All of the features discussed so far are common to both
CellML versions 1.0 and 1.1. However, the recently de-
veloped CellML 1.1 has the additional feature of allowing
unit, variable, and component exchanges between different
models.

A repository of more than 200 electrophysiological, me-
chanical, signal transduction, and metabolic pathway mod-
els suggests that CellML 1.0 [18] is sufficiently flexible to
describe a variety of biological models. However, one lim-
itation of CellML 1.0 is the isolation of the models: each
model must contain all components in a single file. As
models become larger and more complex, requiring all the
information in a single document becomes inconvenient
and unwieldy. When dealing with a complex system, it is
essential to break it down into manageable pieces, enabling
each piece to be considered independently.

CellML 1.1 [6] provides additional features to take
advantage of the modular structure of CellML 1.0 and
provide authors with the ability to reuse parts of other
models. A model in CellML 1.1 may import components
and units from other models. The<cellml:import>
element is used to locate the model that will be im-
ported. The CellML import feature makes use of the
W3C hyperlink standard, XLink [4], to identify the link
between the current model and the model being im-
ported. Each<cellml:import> element must have
anxlink:href attribute. Thexlink:href attribute
has a value equal to the uniform resource identifier that
identifies the location of the imported cell model.

Imported units and components are treated as tem-
plates from which instances are created in the import-
ing model. Each<cellml:import> element con-
tains a list of units and components that the model
author would like to make available to the import-
ing model. Each<cellml:units> element inside
a <cellml:import> element has two attributes:
units_ref, which locates the units’ definition in the
original model, andname, which reassigns the name by
which the units will be referred in the current model. When
imported units are used within an importing model, a pro-
cessor is expected to resolve the units from the original
model so that units that depend on other user-defined units
can still be understood.

The <cellml:component> element inside a
<cellml:import> element also has two attributes:
component_ref, which identifies the component from
the original model, andname, which gives a unique name
by which the component will be referred in the current
model. Each component in the import list represents an in-
stance of itssubtree. The component subtree consists of the

744 SIMULATION Volume 79, Number 12

OVERVIEW OF CELLML 1.1

g h

f

ed

b

a

c

Model

Figure 2. Encapsulation hierarchy

component, its encapsulated subset, any components that
are encapsulated by the encapsulated subset, and so on.
Figure 2, for example, shows a model that contains eight
components. The arrows between the components repre-
sent the encapsulation hierarchy:d is encapsulated byb,
b is encapsulated bya, andg andh are encapsulated byf.
Componenta’s subtree consists of componentsa, b, c, d,
ande. Therefore, if the imported component encapsulates
and depends on other components in the original model,
the importing model can still get the full meaning from the
hidden complexity of the original encapsulation hierarchy.

All connections between the components listed in the
<cellml:import> element are maintained in the
importing model. If, for some reason, a model author
wishes to make use of several components from a single
model individually, the model may be identified in several
<cellml:import> elements so that components are
imported separately.

CellML 1.1 is best illustrated by use of an exam-
ple. Metabolism is a highly integrated process: individual
metabolic pathways are connected with complex networks
through common, shared intermediate substrates. An ex-
ample of this is in the pathway of carbohydrate metabolism.
Pyruvate is a product of the glycolytic pathway, which gets
fed into the tricarboxylic acid (TCA) cycle [9] (see Figs. 1
and 3).

In CellML 1.1, the model of the TCA cycle can im-
port the parts of the glycolysis model that a processor
would need in order to calculate the initial concentration
of pyruvate. Since the pyruvate concentration in the gly-
colysis model depends on the rest of the glycolysis path-
way, the list of components that the TCA cycle model
needs to import consists of every component in the gly-
colysis model (exceptreaction5 and reaction6,
described in Section 2.5, which are encapsulated by

Glucose_1_phosphate). The pyruvate component
from the glycolysis model is renamed initial_pyruvate in
the TCA cycle model. The TCA cycle model also defines
a new component representing the pyruvate species. The
initial value of the concentration is passed in from the im-
ported component. The full description of the TCA cycle
is available in the examples section of thecellml.org Web
site. A fragment of the CellML code is shown below (the
xlink prefix indicates that the attributes are located in the
XLink namespace):

<import
xlink:href="glycolysis_model.xml">

<units
units_ref="micromolar"
name="uM"/>

<component>
component_ref="glycogen"
name="glycogen"/>

<component
component_ref="pyruvate"
name="initial_pyruvate"/>

<component
component_ref="reaction0"
name="reaction0"/>

...
</import>
<component name="pyruvate>

<variable
name="pyruvate"
public_interface="out"
initial_value="pyruvate_init"
units="uM"/>

<variable
name="pyruvate_init"
public_interface="in"
units="uM"/>

...
</component>
<connection>

<map_components
component_1="pyruvate"
component_2="initial_pyruvate"/>

<map_variables
variable_1="pyruvate_init"
variable_2="pyruvate"/>

</connection>

In addition to providing a mechanism with which
metabolic pathway models can be connected into a net-
work, the model import feature of CellML 1.1 is useful in
allowing mathematical modellers to build more complex
models upon previously published, simpler models, with-
out having to include all the components of the original
model.

New models often incorporate components of previ-
ously published models. This is illustrated by the exam-
ple of the Sachse et al. [19] model of stretch-activated ion

Volume 79, Number 12 SIMULATION 745

Cuellar, Lloyd, Nielsen, Bullivant, Nickerson, and Hunter

Phosphoenolpyruvate

The TCA Cycle

NAD

NADH + H

GTP

GDP + CO2

ADP + H

ATP

ATP + CO2

ADP + Pi

CoA−SH + H + NAD

NADH + H + CO2

H2O

CoA−SH + H

NAD

NADH + CO2

NADH + NH4 + H

NAD + H2O

CoA−SH
+ NAD

NADH
+ CO2

GDP + Pi

GTP + CoA−SH

FAD

FADH2

H2O

Isocitrate

2−Oxoglutarate

Glutamate

Succinyl−CoA

Succinate

Fumarate

Malate Citrate

Oxaloacetate

Acetyl coenzyme A

Pyruvate

Figure 3. The tricarboxylic acid (TCA) cycle

channels in ventricular myocytes. This model uses the pre-
viously published Noble et al. [20] mathematical model as
a framework in which the new stretch current calculated
by the Sachse et al. model is implemented. This example
is ideal for illustrating the use of CellML version 1.1, and
a full description can be found on the CellML Web site.

Another example in which the model reuse and import
features of CellML 1.1 could be applied is if a mathemat-
ical biologist is modelling interactions between multiple
cells of the same type but with slightly different parameter
specifications. Apart from their initial values, the models
for each cell would remain the same. Rather than develop-
ing a new model for every cell, the same basic model could
be imported but with different initial values specified.

4. Interfacing to Simulation Packages

CellML is a static description language and makes a dis-
tinction between the mathematical representation of a
model and the implementation of the model. However,
a model is of limited use to a biologist if it cannot be
run. To facilitate reading and writing CellML models from
and to simulation applications, a CellML application pro-

gramming interface (API) has been written, based on the
W3C DOM standard (www.w3c.org/DOM) and the W3C
MathML DOM [21]. The CellML API and its C++ imple-
mentation, which are available at cellml.sourceforge.net,
currently work with the subset of CellML 1.0 relevant
to electrophysiological and mechanical models but will
shortly be expanded to cover the entire CellML 1.1
language.

The C++ implementation of the CellML API is used
to incorporate CellML into CMISS (www.cmiss.org), a
multiplatform interactive computer program for continuum
mechanics, image analysis, signal processing, and system
identification. The CMISS application is now capable of
importing individual cell models described by CellML and
using the models in tissue and whole-organ simulations
[22].

There are simulation packages that do not make use
of the CellML API but do import and run CellML. These
include Physiome Sciences’ PathwayPrism software and
the National Resource for Cell Analysis and Modelling’s
(NRCAM’s) remote user modelling and simulation envi-
ronment, Virtual Cell (www.nrcam.uchc.edu).

746 SIMULATION Volume 79, Number 12

OVERVIEW OF CELLML 1.1

5. Conclusion

CellML 1.1 can be used in conjunction with CellML Meta-
data to provide a complete description of a wide class of
biological models. With XML syntax as the basis for the
language, CellML ensures that the model can be easily
exchanged between applications. The component-based
architecture and import features of CellML 1.1 allow a
modeller to describe complex models. Furthermore, the
open-source C++ implementation of the CellML API is
available, allowing biologists to reap the benefits of using
CellML with the simulation package of their choice.

One limitation of CellML is the shortage of tools avail-
able that write and edit CellML. Current work is focusing
on the development of such tools. Future development of
CellML will include the addition of typing mechanisms to
link ontologies into model descriptions.

6. References

[1] Bray, T., J. Paoli, C. M. Sperberg-McQueen, and E. Maler. 2000. Ex-
tensible Markup Language (XML) 1.0. 2d ed. W3C recommen-
dation, 6 October [Online]. Available: http://www.w3.org/TR/
REC-xml

[2] Hucka, M., A. Finney, H. M. Sauro, H. Bolouri, et al. 2003. The
Systems Biology Markup Language (SBML): A medium for rep-
resentation and exchange of biochemical network models. Bioin-
formatics 19:524-31.

[3] Ausbrooks, R., S. Buswell, S. Dalmas, S. Devitt, A. Diaz, R.
Hunter, B. Smith, N. Soiffer, R. Sutor, and S. Watt. 2001. Math-
ematical Markup Language (MathML) version 2.0. W3C rec-
ommendation, 21 February [Online]. Available: http://www.w3.
org/TR/MathML2/

[4] DeRose, S., E. Maler, and D. Orchard. 2001. XML Linking Language
(XLink) version 1.0. W3C recommendation, 27 June [Online].
Available: http://www.w3.org/TR/xlink/

[5] Lassila, O., and R. R. Swick. 1999. Resource Description Framework
(RDF) model &syntax specification. W3C recommendation, 22
February [Online]. Available: http://www.w3.org/TR/1999/REC-
rdf-syntax-1999

[6] Cuellar, A. A., P. Nielsen, M. Halstead, D. Bullivant, D. Nick-
erson, W. Hedley, M. Nelson, and C. Lloyd. 2003. CellML
specification 1.1. Draft 30, September [Online]. Available:
http://www.cellml.org/public/specification/20030930/cellml_
specification.html

[7] Cuellar, A. A., M. Nelson, W. Hedley, D. Bullivant, F. Liv-
ingston, C. Lloyd, and P. Nielsen. 2002. CellML Metadata 1.0
specification. Working draft, 16 January [Online]. Available:
http://www.cellml.org/public/metadata/cellml_metadata_specifi-
cation.html

[8] Hedley, W. J., M. R. Nelson, D. P. Bullivant, and P. F. Nielsen. 2001.
A short introduction to CellML. Philosophical Transactions of
the Royal Society, Series A 359:1073-89.

[9] Bronk, J. R. 1999. Human metabolism: Functional diversity and in-
tegration. Harlow, UK: Addison Wesley Longman.

[10] Bureau International des Poids et Mesures. 1998. The In-
ternational System of Units (SI) [Online]. Available:
http://www.bipm.fr/pdf/si-brochure.pdf

[11] Bureau International des Poids et Mesures. 2000. The International
System of Units. Supplement 2000: addenda and corrigenda to
the 7th ed. (1998) [Online]. Available: http://www.bipm.fr/pdf/si-

supplement2000.pdf
[12] Dublin Core Metadata Initiative. 1999. Dublin Core Metadata Ele-

ment Set, version 1.1: Reference description [Online]. Available:
http://purl.org/dc/documents/rec-dces-19990702.htm

[13] Beckett, D., E. Miller, and D. Brickley. 2001. Expressing Simple
Dublin Core in RDF/XML. DCMI proposed recommendation, 28
November [Online]. Available: http://dublincore.org/documents/
2001/11/28/dcmes-xml/

[14] Dublin Core Metadata Initiative. 2000. Dublin Core qualifiers
[Online]. Available: http://purl.org/dc/documents/rec/dcmes-
qualifiers-20000711.htm

[15] Kokkelink, S., and R. Schwanzl. 2001. Expressing qualified
Dublin Core in RDF/XML. DCMI proposed recommendation, 30
November [Online]. Available: http://dublincore.org/documents/
2001/11/30/dcq-rdf-xml/

[16] Iannella, R. 2001. Representing vCard objects in
RDF/XML. W3C note, 22 February [Online]. Available:
http://www.w3.org/TR/vcard-rdf

[17] Object Management Group. 2001. Bibliographic query service spec-
ification [Online]. Available: http://cgi.omg.org/docs/formal/02-
05-03.pdf

[18] Hedley, W., M. Nelson, D. Bullivant, A. A. Cuellar, Y. Ge,
M. Grehlinger, K. Jim, S. Lett, D. Nickerson, P. Nielsen, and H.
Yu. 2001. CellML 1.0 specification. Recommendation, 10 August
[Online]. Available: http://www.cellml.org/public/specification/
20010810/cellml_specification.html

[19] Sachse, F. B., C. Riedel, G. Seemann, and C. D. Werner. 2001.
Stretch activated ion channels in myocytes: Parameter estimation,
simulations and phenomena. In Proceedings of the 23rd Annual
International Conference, IEEE Engineering in Medicine and Bi-
ology Society, pp. 52-5.

[20] Noble, D., A. Varghese, P. Kohl, and P. Noble. 1998. Improved
guinea-pig ventricular cell model incorporating a diadic space,
IKr and IKs, and length- and tension-dependent processes. Cana-
dian Journal of Cardiology 14:123-34.

[21] World Wide Web Consortium (W3C). 2001. Docu-
ment object model for MathML [Online]. Available:
http://www.w3.org/Math/DOM/mathml2/appendixd.html

[22] Nickerson, D. P., and P. J. Hunter. 2003. Modelling cardiac electro-
mechanics: From CellML to the whole heart. In Proceedings of
the 5th IFAC Symposium on Modelling and Control in Biomedical
Systems, pp. 47-50.

Autumn A. Cuellar is a research fellow at The Bioengineering
Institute, University of Auckland, Auckland, New Zealand.

Catherine M. Lloyd is a research fellow at The Bioengineering
Institute, University of Auckland, Auckland, New Zealand.

Poul F. Nielsen is a senior lecturer at The Bioengineering Insti-
tute, University of Auckland, Auckland, New Zealand.

David P. Bullivant is a software development engineer at The
Bioengineering Institute, University of Auckland, Auckland, New
Zealand.

David P. Nickerson is a PhD student at The Bioengineering In-
stitute, University of Auckland, Auckland, New Zealand.

Peter J. Hunter is Director of the Bioengineering Institute, Uni-
versity of Auckland, Auckland, New Zealand.

Volume 79, Number 12 SIMULATION 747

